1
|
Sarkhel S, Mondal M, Datta D, Sahoo B, Kumari A, Saha S, Bera S, Jana M, Tiwari A, Roy A. Ultrasonic high-yield extraction of non-toxic fucose-containing Abroma augusta polysaccharide bearing emulsifying properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8858-8868. [PMID: 38988267 DOI: 10.1002/jsfa.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The stem of Abroma augusta contains mucilaginous polysaccharides having numerous ethnomedicinal properties. The present work aimed to develop a scalable ultrasonic-assisted aqueous Abroma augusta mucilage (AAM) extraction (UAE) method and further explores its emulsifying property and toxicity concern. RESULTS The combination of ultrasonic power (750 W), solid-to-liquid ratio (1:15) and temperature (348 K) gave the highest extraction yield of 2.28% with a diffusivity value of 3.85 × 10-9 m2 s-1, which was higher than aqueous extraction method using a kinetic model based on Fick's second law of diffusion. The extracted polysaccharide showed no toxicity as measured through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay on RAW cell line. Additionally, the polysaccharide over its critical micelle concentration (400, 500, 600 and 700 μg mL-1) offered emulsifying properties with 0.5%, 1% and 5% oil (v/v). The emulsion with a polysaccharide concentration of 600 μg mL-1 with 5% oil (v/v) provides stability against coalescence for 3 days. CONCLUSION The overall findings indicated that UAE of AAM polysaccharide can be used for an efficient extraction method, and the obtained polysaccharide is nontoxic in nature and bears emulsifying properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Mrinmoy Mondal
- Membrane Science and Separation Technology Division, GB Marg, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Deepanwita Datta
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Sandipan Bera
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Amit Tiwari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, India
| |
Collapse
|
2
|
Li Z, Liu X, Xiao J, Jiang H, Ma L, Luo Y, Wang M, Zhu Y, Jiang H, Yao H, Ngai T, Guo Q. Ultrastable Iodinated Oil-Based Pickering Emulsion Enables Locoregional Sustained Codelivery of Hypoxia Inducible Factor-1 Inhibitor and Anticancer Drugs for Tumor Combination Chemotherapy. ACS Biomater Sci Eng 2024; 10:2270-2281. [PMID: 38536862 DOI: 10.1021/acsbiomaterials.3c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tumor hypoxia-associated drug resistance presents a major challenge for cancer chemotherapy. However, sustained delivery systems with a high loading capability of hypoxia-inducible factor-1 (HIF-1) inhibitors are still limited. Here, we developed an ultrastable iodinated oil-based Pickering emulsion (PE) to achieve locally sustained codelivery of a HIF-1 inhibitor of acriflavine and an anticancer drug of doxorubicin for tumor synergistic chemotherapy. The PE exhibited facile injectability for intratumoral administration, great radiopacity for in vivo examination, excellent physical stability (>1 mo), and long-term sustained release capability of both hydrophilic drugs (i.e., acriflavine and doxorubicin). We found that the codelivery of acriflavine and doxorubicin from the PE promoted the local accumulation and retention of both drugs using an acellular liver organ model and demonstrated significant inhibition of tumor growth in a 4T1 tumor-bearing mouse model, improving the chemotherapeutic efficacy through the synergistic effects of direct cytotoxicity with the functional suppression of HIF-1 pathways of tumor cells. Such an iodinated oil-based PE provides a great injectable sustained delivery platform of hydrophilic drugs for locoregional chemotherapy.
Collapse
Affiliation(s)
- Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meijuan Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, PR China
| | - Hongliang Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hanyang Yao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, PR China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Simões A, Castro RAE, Veiga F, Vitorino C. A quality by design framework for developing nanocrystal bioenabling formulations. Int J Pharm 2023; 646:123393. [PMID: 37717717 DOI: 10.1016/j.ijpharm.2023.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The present study aims to outline a rational framework for the design and development of a 1.0% (w/v) hydrocortisone nanocrystal-based formulation, resorting to a simple, efficient, and scalable nanonization methodology, based on the high-pressure homogenization (HPH) technique. Accordingly, the innovative product was comprehensively optimized following a Quality by Design (QbD) approach. The thorough selection of formulation composition was driven by a dual purpose: improving skin permeation and stability. In the early stage of development, a Failure Mode, Effects and Criticality Analysis (FMECA) diagram was employed to identify the most impactful variables for the critical quality attributes (CQAs). In this sense, a rotatable, three-factor and five-level circumscribed central composite design (CCCD) was applied to investigate how squalene concentration (x1), soluplus concentration (x2) and HPH-time (x3) influence physicochemical properties, performance and physical stability of the formulation. A robust Design Space (DS) was defined, establishing the optimal settings for the critical variables, whose combination meets the requirements set in the quality target product profile (QTPP). Morphological analysis revealed the cuboidal shape of hydrocortisone nanocrystals. In what concerns colloidal properties, the most promising formulation disclosed a small particle size (Dx(50) = 311.8 ± 1.5 nm), along with narrow size distribution (span value = 1.91 ± 0.17). Zeta potential results (-2.19 ± 0.15 mV--12.1 ± 0.4 mV) suggested a steric hindrance stabilization. FTIR spectra showed no chemical interactions between drug and formulation components. XRD diffractograms confirmed loss of crystallinity during the downsizing process. In vitro studies revealed an improvement on drug release rate (316 ± 21-516 ± 35 μg/cm2/√t), compared to the coarse suspension and commercial products, and a straight dependence on the stabilizer concentration and HPH time. The permeation flux across the skin (0.16 ± 0.02-1.2 ± 0.5 μg/cm2/h) appeared to be dependent on the drug physicochemical properties, in particular saturation solubility. Further characterization of the experimental formulations pointed out the role of the stabilizing component to prevent against physical instability phenomena. This organic solvent-free, and therefore "green" nanocrystal production technology offers great potential for pharmaceutical R&D and drug delivery by enabling the development of new forms of conventional drugs with optimal physicochemical properties and performance.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ricardo A E Castro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
4
|
Miastkowska M, Kulawik-Pióro A, Lasoń E, Śliwa K, Malinowska MA, Sikora E, Kantyka T, Bielecka E, Maksylewicz A, Klimaszewska E, Ogorzałek M, Tabaszewska M, Skoczylas Ł, Nowak K. Topical Formulations Based on Ursolic Acid-Loaded Nanoemulgel with Potential Application in Psoriasis Treatment. Pharmaceutics 2023; 15:2559. [PMID: 38004538 PMCID: PMC10675167 DOI: 10.3390/pharmaceutics15112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Psoriasis is a chronic disorder that causes a rash with itchy, scaly patches. It affects nearly 2-5% of the worldwide population and has a negative effect on patient quality of life. A variety of therapeutic approaches, e.g., glucocorticoid topical therapy, have shown limited efficacy with systemic adverse reactions. Therefore, novel therapeutic agents and physicochemical formulations are in constant need and should be obtained and tested in terms of effectiveness and minimization of side effects. For that reason, the aim of our study was to design and obtain various hybrid systems, nanoemulgel-macroemulsion and nanoemulgel-oleogel (bigel), as vehicles for ursolic acid (UA) and to verify their potential as topical formulations used in psoriasis treatment. Obtained topical formulations were characterized by conducting morphological, rheological, texture, and stability analysis. To determine the safety and effectiveness of the prepared ursolic acid carriers, in vitro studies on human keratinocyte cell-like HaCaT cells were performed with cytotoxicity analysis for individual components and each formulation. Moreover, a kinetic study of ursolic acid release from the obtained systems was conducted. All of the studied UA-loaded systems were well tolerated by keratinocyte cells and had suitable pH values and stability over time. The obtained formulations exhibit an apparent viscosity, ensuring the appropriate time of contact with the skin, ease of spreading, soft consistency, and adherence to the skin, which was confirmed by texture tests. The release of ursolic acid from each of the formulations is followed by a slow, controlled release according to the Korsmeyer-Peppas and Higuchi models. The elaborated systems could be considered suitable vehicles to deliver triterpene to psoriatic skin.
Collapse
Affiliation(s)
- Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Agnieszka Kulawik-Pióro
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Elwira Lasoń
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Karolina Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Magdalena Anna Malinowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Elżbieta Sikora
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (A.K.-P.); (E.L.); (K.Ś.); (M.A.M.); (E.S.)
| | - Tomasz Kantyka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Anna Maksylewicz
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (T.K.); (E.B.); (A.M.)
| | - Emilia Klimaszewska
- Department of Cosmetology, Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland; (E.K.); (M.O.)
| | - Marta Ogorzałek
- Department of Cosmetology, Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Chrobrego 27, 26-600 Radom, Poland; (E.K.); (M.O.)
| | - Małgorzata Tabaszewska
- Department of Fruit, Vegetable and Mushroom Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.)
| | - Łukasz Skoczylas
- Department of Fruit, Vegetable and Mushroom Processing, University of Agriculture in Krakow, Balicka 122, 30-149 Cracow, Poland; (M.T.); (Ł.S.)
| | - Krzysztof Nowak
- Wellnanopharm, Jerzego Samuela Bandtkego 19, 30-129 Cracow, Poland;
| |
Collapse
|
5
|
van Jaarsveld E, du Plessis J, du Preez JL, Shahzad Y, Gerber M. Formulation and characterisation of artemether-loaded nano-emulsion for topical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical interest, by exploiting oil-in-water microemulsions. Two different oils, oleic acid and soybean oil, were tested as an oil phase while mixtures of laureth-5-carboxylic acid (Akypo) and 2-propanol were used for the stabilization of the dispersions. This allowed us to obtain stable aqueous-based formulations with a relatively reduced content of oily phase (around 3% w/w), that may enhance the bioavailability of this molecule by its solubilization in nanometric oil droplets (with a size range of 30–80 nm), that allow the incorporation of a ceramide-like molecule of up to 3% w/w, to remain stable for more than a year. The nanometric size of the droplet containing the active ingredient and the stability of the formulations provide the basis for evaluating the efficiency of microemulsions in preparing formulations to enhance the distribution and availability of ceramide-like molecules, helping to reach targets in cosmetic and pharmaceutical formulations.
Collapse
|
7
|
Banerjee A, Binder J, Salama R, Trant JF. Synthesis, characterization and stress-testing of a robust quillaja saponin stabilized oil-in-water phytocannabinoid nanoemulsion. J Cannabis Res 2021; 3:43. [PMID: 34556180 PMCID: PMC8461879 DOI: 10.1186/s42238-021-00094-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study describes the design, optimization, and stress-testing of a novel phytocannabinoid nanoemulsion generated using high-pressure homogenization. [Formula: see text], a plant-derived commercial emulsifier containing quillaja saponin, was used to stabilize the lipid phase droplets in water. Stress-testing was performed on this nanoemulsion in order to evaluate its chemical and colloidal stability under the influence of different environmental factors, encompassing both physical and chemical stressors. METHODS Extensive optimization studies were conducted to arrive at an ideal nanoemulsion formulation. A coarse emulsion containing 16.6 wt% CBD-enriched cannabis distillate and 83.4 wt% carrier (soybean) oil dispersed in 10 wt% [Formula: see text] (1.5 wt% quillaja saponin) solution after 10 homogenization cycles at a pressure of 30,000 psi produced a stable nanoemulsion. This nanoemulsion was then subjected to the stress studies. RESULTS The optimized nanoemulsion had an average droplet diameter of ca. 120 nm and average droplet surface ζ potentials of ca. -30 mV. It was imaged and characterized by a variety of protocols. It proved to be stable to droplet agglomeration and phase separation upon storage under ambient conditions for 6 weeks, as well as under a variety of physical stressors such as heat, cold, dilution, and carbonation. pH values ≤2 and moderately high salt concentrations (> 100 mM), however, destabilized the nanoemulsion, eventually leading to phase separation. Cannabis potency, determined by HPLC, was detrimentally affected by any changes in the nanoemulsion phase stability. CONCLUSIONS Quillaja saponin stabilized cannabidiol(CBD)-enriched nanoemulsions are stable, robust systems even at low emulsifier concentrations, and are therefore significant from both a scientific as well as a commercial perspective.
Collapse
Affiliation(s)
- Abhinandan Banerjee
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | | | - Rayan Salama
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| | - John F. Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, Canada
| |
Collapse
|
8
|
Abstract
Skin care formulations have evolved as the interaction of health and beauty products for the skin. Their benefits are based on the combination of cosmetic active ingredients and targeted application. Cosmetic actives have been used in novel formulations for decades (sunscreens, anti-aging treatments, etc.), but the problems with their low solubility, low penetration, and physicochemical instability when applied to the skin have yet to be solved. One way to circumvent these shortcomings is to use lipid carriers, which are known to play an important role in the solubility of poorly soluble compounds by facilitating skin permeation and improving stability. This review addresses recent advances in skin care products that use novel nanotechnology-based lipid systems (liposomes, solid lipid nanoparticles, etc.) to deliver moisturizing cosmetic actives and improve product efficacy.
Collapse
|
9
|
Exploration of the Microstructure and Rheological Properties of Sodium Alginate-Pectin-Whey Protein Isolate Stabilized Β-Carotene Emulsions: To Improve Stability and Achieve Gastrointestinal Sustained Release. Foods 2021; 10:foods10091991. [PMID: 34574098 PMCID: PMC8465917 DOI: 10.3390/foods10091991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sodium alginate (SA)-pectin (PEC)-whey protein isolate (WPI) complexes were used as an emulsifier to prepare β-carotene emulsions, and the encapsulation efficiency for β-carotene was up to 93.08%. The confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) images showed that the SA-PEC-WPI emulsion had a compact network structure. The SA-PEC-WPI emulsion exhibited shear-thinning behavior and was in a semi-dilute or weak network state. The SA-PEC-WPI stabilized β-carotene emulsion had better thermal, physical and chemical stability. A small amount of β-carotene (19.46 ± 1.33%) was released from SA-PEC-WPI stabilized β-carotene emulsion in simulated gastric digestion, while a large amount of β-carotene (90.33 ± 1.58%) was released in simulated intestinal digestion. Fourier transform infrared (FTIR) experiments indicated that the formation of SA-PEC-WPI stabilized β-carotene emulsion was attributed to the electrostatic and hydrogen bonding interactions between WPI and SA or PEC, and the hydrophobic interactions between β-carotene and WPI. These results can facilitate the design of polysaccharide-protein stabilized emulsions with high encapsulation efficiency and stability for nutraceutical delivery in food and supplement products.
Collapse
|
10
|
Li X, Fan L, Liu Y, Li J. New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing. Crit Rev Food Sci Nutr 2021; 63:1564-1586. [PMID: 34407718 DOI: 10.1080/10408398.2021.1965953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
3D printing technology has been widely used in food processing with its advantages of customized food design, personalized nutrition design, and simplified food supply chain. Food emulsion gels have application value and prospects in food 3D printing due to their promising properties, including biodegradability, biocompatibility, as well as dual characteristics of emulsions and biopolymer gels. Food emulsion gels with appropriate mechanical properties, as a new type of food inks, expand the types and functions of the inks. However, food emulsion gels without adequate reinforced mechanical properties may suffer from defects in shape, texture, mouthfeel, and functionality during 3D printing and subsequent applications. Therefore, it is necessary to summarize the strategies to improve the mechanical properties of food emulsion gels. According to the methods of characterizing the mechanical properties of emulsion gels, this article summarizes four strategies for improving the mechanical properties of emulsion gels through two ways: inside-out (reinforcement of interface and reinforcement of cross-linking) and outside-in (physical approaches and environmental regulations), as well as their basic mechanisms. The application status and future research trends of emulsion gels in food 3D printing are finally discussed.
Collapse
Affiliation(s)
- Xueqing Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Effect of pH and xanthan gum on emulsifying property of ovalbumin stabilized oil-in water emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Vado Y, Puras G, Rosique M, Martin C, Pedraz JL, Jebari-Benslaiman S, de Pancorbo MM, Zarate J, Perez de Nanclares G. Design and Validation of a Process Based on Cationic Niosomes for Gene Delivery into Novel Urine-Derived Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13050696. [PMID: 34064902 PMCID: PMC8151286 DOI: 10.3390/pharmaceutics13050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are stem cells present in adult tissues. They can be cultured, have great growth capacity, and can differentiate into several cell types. The isolation of urine-derived mesenchymal stem cells (hUSCs) was recently described. hUSCs present additional benefits in the fact that they can be easily obtained noninvasively. Regarding gene delivery, nonviral vectors based on cationic niosomes have been used and are more stable and have lower immunogenicity than viral vectors. However, their transfection efficiency is low and in need of improvement. Methods: We isolated hUSCs from urine, and the cell culture was tested and characterized. Different cationic niosomes were elaborated using reverse-phase evaporation, and they were physicochemically characterized. Then, they were screened into hUSCs for transfection efficiency, and their internalization was evaluated. Results: GPxT-CQ at a lipid/DNA ratio of 5:1 (w/w) had the best transfection efficiency. Intracellular localization studies confirmed that nioplexes entered mainly via caveolae-mediated endocytosis. Conclusions: In conclusion, we established a protocol for hUSC isolation and their transfection with cationic niosomes, which could have relevant clinical applications such as in gene therapy. This methodology could also be used for creating cellular models for studying and validating pathogenic genetic variants, and even for performing functional studies. Our study increases knowledge about the internalization of tested cationic niosomes in these previously unexplored cells.
Collapse
Affiliation(s)
- Yerai Vado
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, BioAraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Araba, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Melania Rosique
- BIOMICs Research Group, Microfluidics Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Araba, Spain; (M.R.); (M.M.d.P.)
| | - Cesar Martin
- Biofisika Institute (UPV/EHU, CSIC), Department Biochemistry and Molecular Biology, University of the Basque Country University (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (C.M.); (S.J.-B.)
| | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC), Department Biochemistry and Molecular Biology, University of the Basque Country University (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (C.M.); (S.J.-B.)
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Microfluidics Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Araba, Spain; (M.R.); (M.M.d.P.)
| | - Jon Zarate
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, BioAraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Araba, Spain
- Correspondence: ; Tel.: +34-945007097
| |
Collapse
|
13
|
Geng M, Hu T, Zhou Q, Taha A, Qin L, Lv W, Xu X, Pan S, Hu H. Effects of different nut oils on the structures and properties of gel‐like emulsions induced by ultrasound using soy protein as an emulsifier. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14786] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mengjie Geng
- College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei430070China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural UniversityMinistry of Education Wuhan China
| | - Tan Hu
- College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei430070China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural UniversityMinistry of Education Wuhan China
| | - Qi Zhou
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Wuhan Hubei430062China
| | - Ahmed Taha
- College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei430070China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural UniversityMinistry of Education Wuhan China
- Department of Food Science Faculty of Agriculture (Saba Basha) Alexandria University Alexandria21531Egypt
| | - Lang Qin
- College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei430070China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural UniversityMinistry of Education Wuhan China
| | - Wenhui Lv
- College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei430070China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural UniversityMinistry of Education Wuhan China
| | - Xiaoyun Xu
- College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei430070China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural UniversityMinistry of Education Wuhan China
| | - Siyi Pan
- College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei430070China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural UniversityMinistry of Education Wuhan China
| | - Hao Hu
- College of Food Science and Technology Huazhong Agricultural University Wuhan Hubei430070China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural UniversityMinistry of Education Wuhan China
| |
Collapse
|
14
|
Ilkar Erdagi S, Ngwabebhoh FA, Yildiz U. Pickering stabilized nanocellulose-alginate: A diosgenin-mediated delivery of quinalizarin as a potent cyto-inhibitor in human lung/breast cancer cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110621. [PMID: 32228903 DOI: 10.1016/j.msec.2019.110621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/29/2023]
Abstract
The current study explores the facile fabrication of multilayer self-assembled electrostatic oil-in-water Pickering emulsions (PEs) using quaternized nanocellulose (Q-NC) and diosgenin-conjugate alginate (DGN-ALG) particles as stabilizers to form hydrocolloid nanocarriers. The conditions of formulation such as storage time, pH, temperature and salt effect on the emulsion stability were evaluated. The results deduced showed good emulsion droplet stability over a period of 30 days. Morphological analysis revealed the hydrodynamic sizes of the PE droplets to be spherically shaped with an average diameter of 150 ± 3.51 nm. Creaming index, wettability and critical aggregation concentrations (CAC) as well as chemical characterization of the PEs were examined. In vitro release kinetics of encapsulated quinalizarin as a model drug was investigated with a determined cumulative drug release (CDR) of 89 ± 1.21% in simulated pH blood medium of pH 7.4. In addition, cellular internalization of the PEs was studied via confocal microscopy imaging and showed high cellular uptake. Also, evaluated in vitro cytotoxicity by MTT assay demonstrated excellent anticancer activity in human lung (A549) and breast (MCF-7) cancer cell lines.
Collapse
Affiliation(s)
| | | | - Ufuk Yildiz
- Department of Chemistry, Kocaeli University, 41380 Kocaeli, Turkey
| |
Collapse
|
15
|
Moula Ali AM, Prodpran T, Benjakul S. Effect of squalene as a glycerol substitute on morphological and barrier properties of golden carp (Probarbus Jullieni) skin gelatin film. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Moula Ali AM, Prodpran T, Benjakul S. Effect of squalene rich fraction from shark liver on mechanical, barrier and thermal properties of fish (Probarbus Jullieni) skin gelatin film. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:50. [PMID: 30968019 PMCID: PMC6439483 DOI: 10.3389/fbioe.2019.00050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
The triterpene squalene is a natural compound that has demonstrated an extraordinary diversity of uses in pharmaceutical, nutraceutical, and personal care industries. Emboldened by this range of uses, novel applications that can gain profit from the benefits of squalene as an additive or supplement are expanding, resulting in its increasing demand. Ever since its discovery, the primary source has been the deep-sea shark liver, although recent declines in their populations and justified animal conservation and protection regulations have encouraged researchers to identify a novel route for squalene biosynthesis. This renewed scientific interest has profited from immense developments in synthetic biology, which now allows fine-tuning of a wider range of plants, fungi, and microorganisms for improved squalene production. There are numerous naturally squalene producing species and strains; although they generally do not make commercially viable yields as primary shark liver sources can deliver. The recent advances made toward improving squalene output from natural and engineered species have inspired this review. Accordingly, it will cover in-depth knowledge offered by the studies of the natural sources, and various engineering-based strategies that have been used to drive the improvements in the pathways toward large-scale production. The wide uses of squalene are also discussed, including the notable developments in anti-cancer applications and in augmenting influenza vaccines for greater efficacy.
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
18
|
Teixeira HF, Bruxel F, Fraga M, Schuh RS, Zorzi GK, Matte U, Fattal E. Cationic nanoemulsions as nucleic acids delivery systems. Int J Pharm 2017; 534:356-367. [DOI: 10.1016/j.ijpharm.2017.10.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
19
|
Obeid MA, Elburi A, Young LC, Mullen AB, Tate RJ, Ferro VA. Formulation of Nonionic Surfactant Vesicles (NISV) Prepared by Microfluidics for Therapeutic Delivery of siRNA into Cancer Cells. Mol Pharm 2017; 14:2450-2458. [DOI: 10.1021/acs.molpharmaceut.7b00352] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mohammad A. Obeid
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, United Kingdom
- Faculty
of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ashref Elburi
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, United Kingdom
| | - Louise C. Young
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, United Kingdom
| | - Alexander B. Mullen
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, United Kingdom
| | - Rothwelle J. Tate
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, United Kingdom
| | - Valerie A. Ferro
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, United Kingdom
| |
Collapse
|
20
|
Ojeda E, Puras G, Agirre M, Zarate J, Grijalvo S, Eritja R, DiGiacomo L, Caracciolo G, Pedraz JL. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells. Int J Pharm 2016; 503:115-26. [PMID: 26956159 DOI: 10.1016/j.ijpharm.2016.02.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/26/2022]
Abstract
In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency.
Collapse
Affiliation(s)
- Edilberto Ojeda
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Mireia Agirre
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jon Zarate
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Santiago Grijalvo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ramon Eritja
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Luca DiGiacomo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Jose-Luis Pedraz
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
21
|
Ojeda E, Puras G, Agirre M, Zarate J, Grijalvo S, Eritja R, Martinez-Navarrete G, Soto-Sánchez C, Diaz-Tahoces A, Aviles-Trigueros M, Fernández E, Pedraz JL. The influence of the polar head-group of synthetic cationic lipids on the transfection efficiency mediated by niosomes in rat retina and brain. Biomaterials 2015; 77:267-79. [PMID: 26610076 DOI: 10.1016/j.biomaterials.2015.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
The development of novel non-viral delivery vehicles is essential in the search of more efficient strategies for retina and brain diseases. Herein, optimized niosome formulations prepared by oil-in water (o/w) and film-hydration techniques were characterized in terms of size, PDI, zeta potential, morphology and stability. Three ionizable glycerol-based cationic lipids containing a primary amine group (lipid 1), a triglycine group (lipid 2) and a dimethylamino ethyl pendent group (lipid 3) as polar head-groups were part of such niosomes. Upon the addition of pCMS-EGFP plasmid, nioplexes were obtained at different cationic lipid/DNA ratios (w/w). The resultant nioplexes were further physicochemically characterized and evaluated to condense, release and protect the DNA against enzymatic digestion. In vitro experiments were performed to evaluate transfection efficiency and cell viability in HEK-293, ARPE-19 and PECC cells. Interestingly, niosome formulations based on lipid 3 showed better transfection efficiencies in ARPE-19 and PECC cells than the rest of cationic lipids showed in this study. In vivo experiments in rat retina after intravitreal and subretinal injections together with in rat brain after cerebral cortex administration showed promising transfection efficiencies when niosome formulations based on lipid 3 were used. These results provide new insights for the development of non-viral vectors based on cationic lipids and their applications for efficient delivery of genetic material to the retina and brain.
Collapse
Affiliation(s)
- E Ojeda
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - G Puras
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - M Agirre
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J Zarate
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - S Grijalvo
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - R Eritja
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - G Martinez-Navarrete
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Spain
| | - C Soto-Sánchez
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Spain
| | - A Diaz-Tahoces
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Spain
| | - M Aviles-Trigueros
- Laboratory of Experimental Ophthalmology, Faculty of Medicine, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - E Fernández
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Spain
| | - J L Pedraz
- NanoBioCel Group, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
22
|
Combined delivery of the adiponectin gene and rosiglitazone using cationic lipid emulsions. Int J Pharm 2015; 483:124-30. [DOI: 10.1016/j.ijpharm.2015.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/13/2015] [Accepted: 02/10/2015] [Indexed: 02/06/2023]
|
23
|
Hassani Najafabadi A, Azodi-Deilami S, Abdouss M, Payravand H, Farzaneh S. Synthesis and evaluation of hydroponically alginate nanoparticles as novel carrier for intravenous delivery of propofol. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:145. [PMID: 25743747 DOI: 10.1007/s10856-015-5452-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
Commercial lipid emulsion of propofol (CLE) has several drawbacks including pain on injection and emulsion instability. In this paper, a novel nanocarrier system is introduced to improve stability and solubility of the poorly soluble anesthetic drug, propofol, for intravenous administration. In this paper, alginate is modified using a facile method in which the carboxylic group of alginate is grafted to octanol. The octanol-grafted alginate (Alg-C8) is then employed to prepare nanoparticles which are subsequently used for encapsulation of propofol. The nanoparticles are analyzed for their pH, osmolarity, particle size, stability, morphology and sleep recovery and the results are compared with CLE as control. It is revealed that nanoparticles have the average particle size of 180 nm ± 1.2 and spherical morphology which is less than CLE while their pH, osmolarity and profile of release of formulated nanoparticles are similar to those of CLE. In addition, the results show good chemical and physical storage stability for the nanoparticles at room temperature for at least 6 months compared to CLE as control. The animal sleep recovery test on rats shows no significant difference in time of unconsciousness and recovery of the righting reflex between nanoparticles and CLE. It is concluded that encapsulated nanoparticles introduced here could be a promising clinical intravenous system for delivery of poorly soluble anesthetic propofol. In addition, this study provides an efficient and facile method for preparing a carrier system for water insoluble drugs.
Collapse
|
24
|
Preparation and evaluation of submicron-carriers for naringenin topical application. Int J Pharm 2015; 481:84-90. [PMID: 25615985 DOI: 10.1016/j.ijpharm.2015.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/30/2014] [Accepted: 01/18/2015] [Indexed: 11/21/2022]
Abstract
Submicron emulsion system is one kind of submicron-carrier that can ensure close contact and increase the amount of drug transport into the skin. In the present study, naringenin was loaded into a submicron emulsion system for topical applications. The enhancement effect of drug permeability through skin, stability, and skin irritation of naringenin-loaded submicron emulsions were evaluated. The results showed that the transdermal amount and deposition amount in skin of naringenin from submicron emulsion formulations were significantly increased when compared to the control group of saturated aqueous solution of naringenin. The drug-loaded submicron emulsions showed thermodynamic stability after centrifugation and cooling-heating cycle tests. The level of drug was more than 98% after 3 months of storage at 25°C and 40°C. In skin irritation test, the result also demonstrated that naringenin-loaded submicron emulsion had less skin irritation, indicating that the formulation can possibly be developed for topical application.
Collapse
|
25
|
Ojeda E, Puras G, Agirre M, Zárate J, Grijalvo S, Pons R, Eritja R, Martinez-Navarrete G, Soto-Sanchez C, Fernández E, Pedraz JL. Niosomes based on synthetic cationic lipids for gene delivery: the influence of polar head-groups on the transfection efficiency in HEK-293, ARPE-19 and MSC-D1 cells. Org Biomol Chem 2014; 13:1068-81. [PMID: 25412820 DOI: 10.1039/c4ob02087a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We designed niosomes based on three lipids that differed only in the polar-head group to analyze their influence on the transfection efficiency. These lipids were characterized by small-angle X-ray scattering before being incorporated into the niosomes which were characterized in terms of pKa, size, zeta potential, morphology and physical stability. Nioplexes were obtained upon the addition of a plasmid. Different ratios (w/w) were selected to analyze the influence of this parameter on size, charge and the ability to condense, release and protect the DNA. In vitro transfection experiments were performed in HEK-293, ARPE-19 and MSC-D1 cells. Our results show that the chemical composition of the cationic head-group clearly affects the physicochemical parameters of the niosomes and especially the transfection efficiency. Only niosomes based on cationic lipids with a dimethyl amino head group (lipid 3) showed a transfection capacity when compared with their counterparts amino (lipid 1) and tripeptide head-groups (lipid 2). Regarding cell viability, we clearly observed that nioplexes based on the cationic lipid 3 had a more deleterious effect than their counterparts, especially in ARPE-19 cells at 20/1 and 30/1 ratios. Similar studies could be extended to other series of cationic lipids in order to progress in the research on safe and efficient non-viral vectors for gene delivery purposes.
Collapse
Affiliation(s)
- E Ojeda
- NanoBioCel Group, University of Basque Country, Vitoria, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim SY, Lee SJ, Lim SJ. Formulation and in vitro and in vivo evaluation of a cationic emulsion as a vehicle for improving adenoviral gene transfer. Int J Pharm 2014; 475:49-59. [PMID: 25138255 DOI: 10.1016/j.ijpharm.2014.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 12/16/2022]
Abstract
Advancements in the use of adenoviral vectors in gene therapy have been limited by the need for specific receptors on targeted cell types, immunogenicity and hepatotoxicity following systemic administration. In an effort to overcome the current limitations of adenovirus-mediated gene transfer, cationic emulsions were explored as a vehicle to improve adenoviral vector-mediated gene transfer. Complexation of adenovirus with emulsions containing the cationic lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) enhanced the potency of adenoviral gene transfer as compared to DOTAP liposomes. Among the various emulsion formulations examined, those containing the iodized oil, Lipiodol, as an inner core and stabilized by DOTAP/cholesterol/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly-ethylene glycol)-5000 most efficiently enhanced adenovirus-mediated gene transfer. Optimized Lipiodol-containing emulsions appear to be more strongly associated with adenoviral particles, exhibiting higher complex stability compared to other formulations. They provide the adenovirus with an additional cellular entry mechanism through caveolae-dependent endocytosis, thereby increasing adenovirus entry into cells. Furthermore, adenovirus-emulsion complexation significantly reduced transgene expression in the liver following systemic administration. These findings indicate that emulsion complexation may be a promising strategy for overcoming many of the challenges associated with the use of adenoviruses in gene therapy. Additionally, the observation of increased transgene expression in lung together with reduced expression in liver demonstrates that the adenovirus-emulsion complex may act as a lung-targeting adenoviral gene delivery system.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Bioscience and Bioengineering, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747, Republic of Korea
| | - Sang-Jin Lee
- Genitourinary Cancer Branch, Research Institute, National Cancer Center, Goyang 410-769, Republic of Korea.
| | - Soo-Jeong Lim
- Department of Bioscience and Bioengineering, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747, Republic of Korea.
| |
Collapse
|
27
|
A novel oil-in-water emulsion as a potential adjuvant for influenza vaccine: Development, characterization, stability and in vivo evaluation. Int J Pharm 2014; 468:187-95. [DOI: 10.1016/j.ijpharm.2014.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/15/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022]
|
28
|
Andersson MP, Bennetzen MV, Klamt A, Stipp SLS. First-Principles Prediction of Liquid/Liquid Interfacial Tension. J Chem Theory Comput 2014; 10:3401-8. [DOI: 10.1021/ct500266z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M. P. Andersson
- Nano-Science
Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen
Ø DK-2100, Denmark
| | | | - A. Klamt
- COSMOlogic GmbH&CoKG, Imbacher Weg 46, D-51379 Leverkusen, Germany
- Institute
of Physical and Theoretical Chemistry, Universität Regensburg, 93053 Regensburg, Germany
| | - S. L. S Stipp
- Nano-Science
Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen
Ø DK-2100, Denmark
| |
Collapse
|
29
|
Tegenge MA, Mitkus RJ. A physiologically-based pharmacokinetic (PBPK) model of squalene-containing adjuvant in human vaccines. J Pharmacokinet Pharmacodyn 2013; 40:545-56. [PMID: 23912214 DOI: 10.1007/s10928-013-9328-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/26/2013] [Indexed: 01/01/2023]
Abstract
Squalene is used in the oil phase of certain emulsion vaccine adjuvants, but its fate as a vaccine component following intramuscular (IM) injection in humans is unknown. In this study, we constructed a physiologically-based pharmacokinetic (PBPK) model for intramuscularly injected squalene-in-water (SQ/W) emulsion, in order to make a quantitative estimation of the tissue distribution of squalene following a single IM injection in humans. The PBPK model incorporates relevant physicochemical properties of squalene; estimates of the time course of cracking of a SQ/W emulsion; anatomical and physiological parameters at the injection site and beyond; and local, preferential lymphatic transport. The model predicts that a single dose of SQ/W emulsion will be removed from human deltoid muscle within six days following IM injection. The major proportion of the injected squalene will be distributed to draining lymph nodes and adipose tissues. The model indicates slow decay from the latter compartment most likely due to partitioning into neutral lipids and a low rate of squalene biotransformation there. Parallel pharmacokinetic modeling for mouse muscle suggests that the kinetics of SQ/W emulsion correspond to the immunodynamic time course of a commercial squalene-containing adjuvant reported in that species. In conclusion, this study makes important pharmacokinetic predictions of the fate of a squalene-containing emulsion in humans. The results of this study may be relevant for understanding the immunodynamics of this new class of vaccine adjuvants and may be useful in future quantitative risk analyses that incorporate mode-of-action data.
Collapse
Affiliation(s)
- Million A Tegenge
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, Rockville, MD, 20852, USA,
| | | |
Collapse
|
30
|
Adamczak M, Para G, Simon C, Warszyński P. Natural oil nanoemulsions as cores for layer-by-layer encapsulation. J Microencapsul 2013; 30:479-89. [DOI: 10.3109/02652048.2012.752536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Ruiz-Sáenz J, Jaime J, Vera V. An inactivated vaccine from a field strain of bovine herpesvirus-1 (BoHV-1) has high antigenic mass and induces strong efficacy in a rabbit model. Virol Sin 2013; 28:36-42. [PMID: 23385353 DOI: 10.1007/s12250-013-3283-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/17/2013] [Indexed: 11/28/2022] Open
Abstract
Bovine Herpesvirus-1 (BoHV-1) is a DNA virus belonging to the family Herpesviridae, subfamily Alfaherpesvirinae; it is a worldwide pathogen, causing serious economic losses in livestock. In Colombia there have been multiple isolates of BoHV-1 that have been subjected to molecular characterization, classifying most of the country isolates as BoHV-1.1. In the present study we developed and evaluated an ethyleneimine binary inactivated isolate from the native BoHV-1 strain (Córdoba-2) in a rabbit model of vaccination and infection. The vaccine was evaluated in two phases, one of immunogenicity with vaccination and a booster after 21 days, and an evaluation phase of protection against challenge with a highly virulent reference strain. The results demonstrate optimum serum-conversion, with protective neutralizing antibody titers 28 days post vaccination and optimal protection against challenge with the reference strain with decreased clinical signs of infection, protection against the onset of fever and decrease of virus excretion post challenge. In conclusion, our results show the enormous potential that an immunogenic inactivated vaccine has produced from the native BoHV-1.1 strain, which produces a high antigen mass to the vaccine to induce optimal immunity and protection, and it is a strong candidate for evaluation and possible future use in different cattle populations.
Collapse
Affiliation(s)
- Julian Ruiz-Sáenz
- Microbiology and Epidemiology Group, Faculty of Veterinary Medicine and Animal Science, National University of Colombia, Bogotá 11001, Colombia.
| | | | | |
Collapse
|
32
|
Formulation parameters influencing the physicochemical characteristics of rosiglitazone-loaded cationic lipid emulsion. Arch Pharm Res 2012; 35:1205-13. [DOI: 10.1007/s12272-012-0711-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/21/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
|
33
|
Li G, Fan Y, Li X, Wang X, Li Y, Liu Y, Li M. In vitro and in vivo evaluation of a simple microemulsion formulation for propofol. Int J Pharm 2012; 425:53-61. [PMID: 22266535 DOI: 10.1016/j.ijpharm.2012.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 12/15/2011] [Accepted: 01/07/2012] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to develop an oil-free o/w microemulsion, composed of pluronic F68, propylene glycol and saline, which solubilized poorly soluble anesthetic drug propofol for intravenous administration. The ternary diagram was constructed to identify the regions of microemulsions, and the optimal composition of microemulsion was determined by in vitro evaluation such as globule size upon dilution and rheology. The droplet size of the diluent emulsion corresponding to oil-in-water type ranged from 200 to 300nm in diameter. Stability analysis of the microemulsions indicated that they were stable upon storage for at least 6 months. Hemolysis percent of propofol microemulsions was lower than that of commercial lipid emulsion (CLE) at 4h. Acute toxicity test showed that median lethal dose of propofol microemulsion was the same as that of CLE. No significant difference in time for unconsciousness and recovery of righting reflex was observed between the prepared microemulsions and CLE. In conclusion, microemulsion would be a promising intravenous delivery system for propofol.
Collapse
Affiliation(s)
- Guiling Li
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Spanova M, Daum G. Squalene - biochemistry, molecular biology, process biotechnology, and applications. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100203] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Fox CB, Baldwin SL, Duthie MS, Reed SG, Vedvick TS. Immunomodulatory and physical effects of oil composition in vaccine adjuvant emulsions. Vaccine 2011; 29:9563-72. [PMID: 21906648 DOI: 10.1016/j.vaccine.2011.08.089] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/06/2011] [Accepted: 08/18/2011] [Indexed: 01/25/2023]
Abstract
Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60°C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60°C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants.
Collapse
Affiliation(s)
- Christopher B Fox
- Infectious Disease Research Institute, 1124 Columbia St., Ste 400, Seattle, WA 98104, United States.
| | | | | | | | | |
Collapse
|
36
|
Tsai YH, Chang JT, Chang JS, Huang CT, Huang YB, Wu PC. The Effect of Component of Microemulsions on Transdermal Delivery of Buspirone Hydrochloride. J Pharm Sci 2011; 100:2358-65. [DOI: 10.1002/jps.22474] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/02/2010] [Accepted: 12/14/2010] [Indexed: 11/11/2022]
|
37
|
Perspectives on the use of marine and freshwater hydrobiont oils for development of drug delivery systems. Biotechnol Adv 2011; 29:548-57. [PMID: 21315143 DOI: 10.1016/j.biotechadv.2011.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/13/2023]
Abstract
Marine foods represent a unique source of poly-unsaturated fatty acids (PUFA) of the omega-3 (n-3) family. Today it is generally accepted that fish oil is important in a healthy and balanced omnivorous human diet. This favorable health perception of fish oil is however troubled by the high level of PUFA oxidation and low absorption in the gastro-intestinal tract. In this work we present and described various types of delivery systems which are used to improve PUFA and fish oil availability and oxidative stability.
Collapse
|
38
|
|
39
|
Hippalgaonkar K, Majumdar S, Kansara V. Injectable lipid emulsions-advancements, opportunities and challenges. AAPS PharmSciTech 2010; 11:1526-40. [PMID: 20976577 DOI: 10.1208/s12249-010-9526-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/20/2010] [Indexed: 12/15/2022] Open
Abstract
Injectable lipid emulsions, for decades, have been clinically used as an energy source for hospitalized patients by providing essential fatty acids and vitamins. Recent interest in utilizing lipid emulsions for delivering lipid soluble therapeutic agents, intravenously, has been continuously growing due to the biocompatible nature of the lipid-based delivery systems. Advancements in the area of novel lipids (olive oil and fish oil) have opened a new area for future clinical application of lipid-based injectable delivery systems that may provide a better safety profile over traditionally used long- and medium-chain triglycerides to critically ill patients. Formulation components and process parameters play critical role in the success of lipid injectable emulsions as drug delivery vehicles and hence need to be well integrated in the formulation development strategies. Physico-chemical properties of active therapeutic agents significantly impact pharmacokinetics and tissue disposition following intravenous administration of drug-containing lipid emulsion and hence need special attention while selecting such delivery vehicles. In summary, this review provides a broad overview of recent advancements in the field of novel lipids, opportunities for intravenous drug delivery, and challenges associated with injectable lipid emulsions.
Collapse
|
40
|
Hsu SH, Wen CJ, Al-Suwayeh SA, Chang HW, Yen TC, Fang JY. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug. NANOTECHNOLOGY 2010; 21:405101. [PMID: 20823498 DOI: 10.1088/0957-4484/21/40/405101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanostructured lipid carriers (NLCs) were prepared to investigate whether the duration of brain targeting and accumulation of drugs in the brain can be improved by intravenous delivery. NLCs were developed using cetyl palmitate as the lipid matrix, squalene as the cationic surfactant, and Pluronic F68, polysorbate 80 and polyethylene glycol as the interfacial additives. Solid lipid nanoparticles (SLNs) and lipid emulsions (LEs) were also prepared for comparison. An anti-Parkinson's drug, apomorphine, was used as the model drug. Nuclear magnetic resonance and differential scanning calorimetry showed possible interactions between the solid and liquid lipids in the inner core. The lipid nanoparticles with different compositions were characterized by mean size, zeta potential, apomorphine encapsulation and in vitro drug release. NLCs were 370-430 nm in size, which was between the sizes of the SLNs and LEs. A cationic surfactant was used to produce a positive surface charge of 42-50 mV. The base form of apomorphine was successfully entrapped by NLCs with an entrapment percentage of > 60%. The loading of apomorphine in nanoparticles resulted in a slower release behavior compared to the aqueous solution, with LEs showing the lowest release. In vivo real-time bioluminescence imaging of the rat brain revealed that NLCs could be targeted, through certain vessels, to selected brain regions. This effect was further confirmed by imaging the entire brain and brain slices. The results indicated that NLCs with moderate additives are a promising controlled-release and drug-targeting system.
Collapse
Affiliation(s)
- Shu-Hui Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Fox CB, Lin S, Sivananthan SJ, Dutill TS, Forseth KT, Reed SG, Vedvick TS. Effects of emulsifier concentration, composition, and order of addition in squalene-phosphatidylcholine oil-in-water emulsions. Pharm Dev Technol 2010; 16:511-9. [PMID: 20550484 DOI: 10.3109/10837450.2010.495397] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Development and characterization of stable and biocompatible oil-in-water emulsions is important for improved drug and vaccine delivery. In this work, two-component emulsions consisting of squalene and phosphatidylcholine have been developed. The reproducibility of the manufacturing process is established and production efficiency is improved by altering the order of component addition. The effects of emulsifier concentration and composition on emulsion stability and biocompatibility are assessed through dynamic light scattering, zeta potential measurement, viscosity, and hemolytic activity. High concentrations of egg phosphatidylcholine emulsifier decreased initial particle size and increased initial size polydispersity. However, high emulsifier concentrations also appeared to decrease long-term emulsion stability as well as absolute zeta potential values. Substitution of naturally derived egg phosphatidylcholine with synthetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) produced an emulsion with similar physicochemical properties and stability.
Collapse
Affiliation(s)
- Christopher B Fox
- Infectious Disease Research Institute, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Tros de Ilarduya C, Sun Y, Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 2010; 40:159-70. [DOI: 10.1016/j.ejps.2010.03.019] [Citation(s) in RCA: 468] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 11/28/2022]
|
43
|
Fang J, Wu P, Fang C, Chen C. Intravesical delivery of 5‐aminolevulinic acid from water‐in‐oil nano/submicron‐emulsion systems. J Pharm Sci 2010; 99:2375-85. [DOI: 10.1002/jps.22006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Zanatta CF, Sato AMCDF, Camargo Junior FBD, Campos PMBGM, Rocha-Filho PA. Rheological behavior, zeta potential, and accelerated stability tests of Buriti oil (Mauritia flexuosa) emulsions containing lyotropic liquid crystals. Drug Dev Ind Pharm 2010; 36:93-101. [DOI: 10.3109/03639040903099728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Mao C, Wan J, Chen H, Xu H, Yang X. The composition of oil phase modulates venous irritation of lipid emulsion-loaded diallyl trisulfide. Drug Dev Ind Pharm 2010; 36:698-704. [PMID: 20050725 DOI: 10.3109/03639040903449746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION In this study, a nanoemulsion system (LE) was investigated for intravenous delivery of diallyl trisulfide (DT), which was a lipophilic and venous irritant drug for systemic therapy of bacterial and fungal infection. METHODS Egg phospholipid was chosen as the only emulsifier, soybean oil, medium chain triglyceride (MCT), and olive oil were used as the oil phases, forming stable DT LEs (o/w) with small particle sizes. The venous irritation of DT LEs was evaluated by in vitro human umbilical cord endothelial cells (HUV-EC CRL 1730) tolerance model with the intracellular ATP and GTP concentrations as the indices. RESULTS The intracellular ATP and GTP reduction changed with the incorporation of a variety of oils, which were strongly related with the free DT concentration of DT LEs. DISCUSSION It was deduced that the free DT concentrations of LEs made of various oils depended on the particle sizes of the DT LEs. In conclusion, the oil phases modulated the free DT concentrations by forming DT LEs with different particle sizes, and optimization of the oil phase was an effective method to alleviate the venous irritation of DT LEs.
Collapse
Affiliation(s)
- Chengwen Mao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | |
Collapse
|
46
|
Anderson RC, Fox CB, Dutill TS, Shaverdian N, Evers TL, Poshusta GR, Chesko J, Coler RN, Friede M, Reed SG, Vedvick TS. Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids Surf B Biointerfaces 2010; 75:123-32. [DOI: 10.1016/j.colsurfb.2009.08.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/09/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
|
47
|
Tsai YH, Hsieh YH, Huang YB, Chang JS, Huang CT, Wu PC. Microemulsions for Intravesical Delivery of Gemcitabine. Chem Pharm Bull (Tokyo) 2010; 58:1461-5. [DOI: 10.1248/cpb.58.1461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yi-Hung Tsai
- Graduate Institute of Clinical Pharmacy, Kaohsiung Medical University
| | | | - Yaw-Bin Huang
- Graduate Institute of Clinical Pharmacy, Kaohsiung Medical University
| | | | - Chi-Te Huang
- School of Pharmacy, Kaohsiung Medical University
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University
| |
Collapse
|
48
|
Reddy LH, Couvreur P. Squalene: A natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 2009; 61:1412-26. [PMID: 19804806 DOI: 10.1016/j.addr.2009.09.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 01/11/2023]
Abstract
Squalene is a natural lipid belonging to the terpenoid family and a precursor of cholesterol biosynthesis. It is synthesized in humans and also in a wide array of organisms and substances, from sharks to olives and even bran, among others. Because of its significant dietary benefits, biocompatibility, inertness, and other advantageous properties, squalene is extensively used as an excipient in pharmaceutical formulations for disease management and therapy. In addition, squalene acts as a protective agent and has been shown to decrease chemotherapy-induced side-effects. Moreover, squalene alone exhibits chemopreventive activity. Although it is a weak inhibitor of tumor cell proliferation, it contributes either directly or indirectly to the treatment of cancer due to its potentiation effect. In addition, squalene enhances the immune response to various associated antigens, and it is therefore being investigated for vaccine delivery applications. Since this triterpene is well absorbed orally, it has been used to improve the oral delivery of therapeutic molecules. All of these qualities have rendered squalene a potentially interesting excipient for pharmaceutical applications, especially for the delivery of vaccines, drugs, genes, and other biological substances. This paper is the first review of its kind and offers greater insight into squalene's direct or indirect contribution to disease management and therapy.
Collapse
|
49
|
Hwang TL, Lin YK, Chi CH, Huang TH, Fang JY. Development and Evaluation of Perfluorocarbon Nanobubbles for Apomorphine Delivery. J Pharm Sci 2009; 98:3735-47. [DOI: 10.1002/jps.21687] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Fox CB. Squalene emulsions for parenteral vaccine and drug delivery. Molecules 2009; 14:3286-312. [PMID: 19783926 PMCID: PMC6254918 DOI: 10.3390/molecules14093286] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 08/25/2009] [Accepted: 08/31/2009] [Indexed: 11/17/2022] Open
Abstract
Squalene is a linear triterpene that is extensively utilized as a principal component of parenteral emulsions for drug and vaccine delivery. In this review, the chemical structure and sources of squalene are presented. Moreover, the physicochemical and biological properties of squalene-containing emulsions are evaluated in the context of parenteral formulations. Historical and current parenteral emulsion products containing squalene or squalane are discussed. The safety of squalene-based products is also addressed. Finally, analytical techniques for characterization of squalene emulsions are examined.
Collapse
|