1
|
Kayes T, Ho V. Amanita phalloides-Associated Liver Failure: Molecular Mechanisms and Management. Int J Mol Sci 2024; 25:13028. [PMID: 39684738 DOI: 10.3390/ijms252313028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Amanita phalloides is well-established as one of the most poisonous mushrooms; toxicity from ingestion was reported as early as the first century. Although native to Europe, this ectomycorrhizal fungus has been widely spread and is responsible for liver toxicity in many parts of the world. Toxicity is characterized by delayed gastrointestinal symptoms mimicking acute gastroenteritis followed by severe hepatotoxicity and liver failure with consequent multi-organ failure. The primary mechanism of liver toxicity is considered to be the inhibition of RNA polymerase II with consequent hepatocyte apoptosis. Treatment measures include supportive measures such as rehydration and correction of electrolytes on initial presentation, activated charcoal and lavage to decrease absorption, extracorporeal purification methods such as plasmapheresis, fractionated plasma separation and adsorption, and molecular adsorbent recirculating system, as well as drug therapies including antibiotics, N-acetylcysteine, and silibinin. Liver transplantation is required in those with acute liver failure and poor prognostic features. Here, we reviewed the basic biology, pathophysiology, and molecular mechanisms of Amanita phalloides liver toxicity, as well as available treatments.
Collapse
Affiliation(s)
- Tahrima Kayes
- Department of Gastroenterology and Hepatology Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Vincent Ho
- Department of Gastroenterology and Hepatology Campbelltown Hospital, Campbelltown, NSW 2560, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
2
|
Schildboeck C, Harm S, Hartmann J. In vitro Removal of Protein-Bound Retention Solutes by Extracorporeal Blood Purification Procedures. Blood Purif 2024; 53:231-242. [PMID: 38262384 DOI: 10.1159/000534906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/26/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION When the kidneys or liver fail, toxic metabolites accumulate in the patient's blood, causing cardiovascular and neurotoxic complications and increased mortality. Conventional membrane-based extracorporeal blood purification procedures cannot remove these toxins efficiently. The aim of this in vitro study was to determine whether commercial hemoperfusion adsorbers are suitable for removing protein-bound retention solutes from human plasma and whole blood as well as to compare the removal to conventional hemodialysis. METHODS For in vitro testing of the removal of protein-bound substances, whole blood and plasma were spiked with uremic retention solutes (homocysteine, hippuric acid, indoxyl sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid) and the toxins of liver failure (bilirubin, cholic acid, tryptophan, phenol). Subsequently, the protein binding of each retention solute was determined. The adsorption characteristics of the hemoperfusion adsorbers, Jafron HA and Biosky MG, both approved for the adsorption of protein-bound uremic retention solutes and Cytosorb, an adsorber recommended for adsorption of cytokines, were tested by incubating them in spiked whole blood or plasma for 1 h. Subsequently, the adsorption characteristics of the adsorbers were tested in a dynamic system. For this purpose, a 6-h in vitro hemoperfusion treatment was compared with an equally long in vitro hemodialysis treatment. RESULTS Hippuric acid, homocysteine, indoxyl sulfate, and tryptophan were most effectively removed by hemodialysis. Bilirubin and cholic acid were removed best by hemoperfusion with Cytosorb. A treatment with Jafron HA and Biosky MG showed similar results for the adsorption of the tested retention solutes and were best for removing phenol. 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid could not be removed with any treatment method. DISCUSSION/CONCLUSION A combination of hemodialysis with hemoperfusion seems promising to improve the removal of some toxic metabolites in extracorporeal therapies. However, some very strongly protein-bound metabolites cannot be removed adequately with the adsorbers tested.
Collapse
Affiliation(s)
- Claudia Schildboeck
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Stephan Harm
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Jens Hartmann
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
3
|
Bragança S, Ferraz M, Germano N. Sequential Use of High-Volume Plasma Exchange and Continuous Renal Replacement Therapy in Hepatitis B Virus-Related Acute Liver Failure: A Case Report. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2023; 30:32-38. [PMID: 38020821 PMCID: PMC10661706 DOI: 10.1159/000527584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/03/2022] [Indexed: 12/01/2023]
Abstract
Background Acute liver failure (ALF) may represent an indication for liver transplantation (LT). However, in patients who do not meet the criteria or who have contraindications for LT, support measures remain indicated since they may improve survival. Continuous renal replacement therapy (CRRT) can be considered in the presence of hyperammonemia, 3 times above the upper normal limit, and hepatic encephalopathy (HE), even in the absence of the classic indications. High-volume plasma exchange (HVPE) is an artificial liver support system with proven benefits in ALF, allowing ammonia and inflammatory mediator clearance. Both techniques, HVPE and CRRT, are associated with an increase in transplant-free survival. Case Summary We share a case of a 51-year-old male, without relevant personal history, diagnosed with severe acute hepatitis B which progressed to ALF, with grade IV HE (West-Haven criteria) and hyperammonemia (423 μg/dL). Due to the simultaneously diagnosed malignant neoplasm, he was not a candidate for LT. After refractory to medical therapy, HVPE was started, followed by CRRT. There was a significant improvement in liver tests, allowing surgical treatment of malignancy. After recovery, the patient returned to his everyday life. Conclusion The authors present a successful case in which an early and invasive approach to ALF was revealed to be a game changer. The lack of response to the measures instituted, as well as the contraindication for LT, motivated the institution of HVPE and CRRT. Both techniques proved to be an asset, allowing complete clinical recovery, reaffirming their role in ALF.
Collapse
Affiliation(s)
- Sofia Bragança
- Serviço de Gastrenterologia, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Mário Ferraz
- Unidade de Cuidados Intensivos Polivalente 7, Hospital Curry Cabral, Centro Hospitalar Lisboa Central, Lisboa, Portugal
| | - Nuno Germano
- Unidade de Cuidados Intensivos Polivalente 7, Hospital Curry Cabral, Centro Hospitalar Lisboa Central, Lisboa, Portugal
| |
Collapse
|
4
|
Butt MF, Jalan R. Review article: Emerging and current management of acute-on-chronic liver failure. Aliment Pharmacol Ther 2023; 58:774-794. [PMID: 37589507 DOI: 10.1111/apt.17659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a clinically and pathophysiologically distinct condition from acutely decompensated cirrhosis and is characterised by systemic inflammation, extrahepatic organ failure, and high short-term mortality. AIMS To provide a narrative review of the diagnostic criteria, prognosis, epidemiology, and general management principles of ACLF. Four specific interventions that are explored in detail are intravenous albumin, extracorporeal liver assist devices, granulocyte-colony stimulating factor, and liver transplantation. METHODS We searched PubMed and Cochrane databases for articles published up to July 2023. RESULTS Approximately 35% of hospital inpatients with decompensated cirrhosis have ACLF. There is significant heterogeneity in the criteria used to diagnose ACLF; different definitions identify different phenotypes with varying mortality. Criteria established by the European Association for the Study of the Liver were developed in prospective patient cohorts and are, to-date, the most well validated internationally. Systemic haemodynamic instability, renal dysfunction, coagulopathy, neurological dysfunction, and respiratory failure are key considerations when managing ACLF in the intensive care unit. Apart from liver transplantation, there are no accepted evidence-based treatments for ACLF, but several different approaches are under investigation. CONCLUSION The recognition of ACLF as a distinct entity from acutely decompensated cirrhosis has allowed for better patient stratification in clinical settings, facilitating earlier engagement with the intensive care unit and liver transplantation teams. Research priorities over the next decade should focus on exploring novel treatment strategies with a particular focus on which, when, and how patients with ACLF should be treated.
Collapse
Affiliation(s)
- Mohsin F Butt
- Centre for Neuroscience, Trauma and Surgery, Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Liver Failure Group, University College London Medical School, Royal Free Hospital Campus, London, UK
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottinghamshire, UK
| | - Rajiv Jalan
- Liver Failure Group, University College London Medical School, Royal Free Hospital Campus, London, UK
- European Association for the Study of the Liver-Chronic Liver Failure (EASL-CLIF) Consortium, Barcelona, Spain
| |
Collapse
|
5
|
Papamichalis P, Oikonomou KG, Valsamaki A, Xanthoudaki M, Katsiafylloudis P, Papapostolou E, Skoura AL, Papamichalis M, Karvouniaris M, Koutras A, Vaitsi E, Sarchosi S, Papadogoulas A, Papadopoulos D. Liver replacement therapy with extracorporeal blood purification techniques current knowledge and future directions. World J Clin Cases 2023; 11:3932-3948. [PMID: 37388799 PMCID: PMC10303607 DOI: 10.12998/wjcc.v11.i17.3932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Clinically, it is highly challenging to promote recovery in patients with acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Despite recent advances in understanding the underlying mechanisms of ALF and ACLF, standard medical therapy remains the primary therapeutic approach. Liver transplantation (LT) is considered the last option, and in several cases, it is the only intervention that can be lifesaving. Unfortunately, this intervention is limited by organ donation shortage or exclusion criteria such that not all patients in need can receive a transplant. Another option is to restore impaired liver function with artificial extracorporeal blood purification systems. The first such systems were developed at the end of the 20th century, providing solutions as bridging therapy, either for liver recovery or LT. They enhance the elimination of metabolites and substances that accumulate due to compromised liver function. In addition, they aid in clearance of molecules released during acute liver decompensation, which can initiate an excessive inflammatory response in these patients causing hepatic encephalopathy, multiple-organ failure, and other complications of liver failure. As compared to renal replacement therapies, we have been unsuccessful in using artificial extracorporeal blood purification systems to completely replace liver function despite the outstanding technological evolution of these systems. Extracting middle to high-molecular-weight and hydrophobic/protein-bound molecules remains extremely challenging. The majority of the currently available systems include a combination of methods that cleanse different ranges and types of molecules and toxins. Furthermore, conventional methods such as plasma exchange are being re-evaluated, and novel adsorption filters are increasingly being used for liver indications. These strategies are very promising for the treatment of liver failure. Nevertheless, the best method, system, or device has not been developed yet, and its probability of getting developed in the near future is also low. Furthermore, little is known about the effects of liver support systems on the overall and transplant-free survival of these patients, and further investigation using randomized controlled trials and meta-analyses is needed. This review presents the most popular extracorporeal blood purification techniques for liver replacement therapy. It focuses on general principles of their function, and on evidence regarding their effectiveness in detoxification and in supporting patients with ALF and ACLF. In addition, we have outlined the basic advantages and disadvantages of each system.
Collapse
Affiliation(s)
| | - Katerina G Oikonomou
- Intensive Care Unit, General Hospital of Larissa, Larissa 41221, Thessaly, Greece
| | - Asimina Valsamaki
- Intensive Care Unit, General Hospital of Larissa, Larissa 41221, Thessaly, Greece
| | - Maria Xanthoudaki
- Intensive Care Unit, General Hospital of Larissa, Larissa 41221, Thessaly, Greece
| | | | | | - Apostolia-Lemonia Skoura
- Department of Transfusion Medicine, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Michail Papamichalis
- Department of Cardiology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | | | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, General Hospital of Athens “ALEXANDRA”, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Eleni Vaitsi
- Intensive Care Unit, General Hospital of Larissa, Larissa 41221, Thessaly, Greece
| | - Smaragdi Sarchosi
- Department of Anesthesiology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | | | | |
Collapse
|
6
|
Wang Y, Wei R, Zhao W, Zhao C. Bilirubin Removal by Polymeric Adsorbents for Hyperbilirubinemia Therapy. Macromol Biosci 2023; 23:e2200567. [PMID: 36786125 DOI: 10.1002/mabi.202200567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Hyperbilirubinemia, presenting as jaundice, is a life-threatening critical illness in newborn babies and acute severe hepatic failure patients. Over the past few decades, extracorporeal hemoadsorption by adsorbent therapy has been widely applied in the treatment of hyperbilirubinemia. The capability of hemoadsorption depends on the adsorbents. Most of the clinically used bilirubin adsorbents are made up of styrene/divinylbenzene copolymer and quaternary ammonium salt, which usually have poor biocompatibility and weak mechanical strength. To overcome the drawbacks of commercial polymer adsorbents, advanced synthetic and natural polymers with/without nanomaterials have been designed, and novel adsorbent fabrication technologies have also been developed. In this review, the adsorption mechanism of bilirubin adsorbents has been summarized, which is the basic criterion in adsorbent development. Furthermore, the preparation method, adsorption mechanism, relative merits and practicability of the emerging bilirubin adsorbents have been evaluated. Based on the existing studies, this work highlights the future direction of the efforts on how to design and develop bilirubin adsorbents with good overall clinical performance. Perhaps this study can change traditional perspectives and propose new strategies for bilirubin clearance from the aspects of pathogenic mechanisms, metabolic pathways, and material-based innovation.
Collapse
Affiliation(s)
- Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Lamm V, Ekser B, Vagefi PA, Cooper DK. Bridging to Allotransplantation-Is Pig Liver Xenotransplantation the Best Option? Transplantation 2022; 106:26-36. [PMID: 33653996 PMCID: PMC10124768 DOI: 10.1097/tp.0000000000003722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the past 20 y, the number of patients in the United States who died while waiting for a human donor liver totaled >52 000. The median national wait time for patients with acute liver failure and the most urgent liver transplant listing was 7 d in 2018. The need for a clinical "bridge" to allotransplantation is clear. Current options for supporting patients with acute liver failure include artificial liver support devices, extracorporeal liver perfusion, and hepatocyte transplantation, all of which have shown mixed results with regard to survival benefit and are largely experimental. Progress in the transplantation of genetically engineered pig liver grafts in nonhuman primates has grown steadily, with survival of the pig graft extended to almost 1 mo in 2017. Further advances may justify consideration of a pig liver transplant as a clinical bridge to allotransplantation. We provide a brief history of pig liver xenotransplantation, summarize the most recent progress in pig-to-nonhuman primate liver transplantation models, and suggest criteria that may be considered for patient selection for a clinical trial of bridging by genetically engineered pig liver xenotransplantation to liver allotransplantation.
Collapse
Affiliation(s)
- Vladimir Lamm
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
8
|
Xiao LL, Wu XX, Chen JJ, Yan D, Shi DY, Huang JR, Xu XW, Li LJ. Progress in hepatitis B virus-related acute-on-chronic liver failure treatment in China: A large, multicenter, retrospective cohort study using a propensity score matching analysis. Hepatobiliary Pancreat Dis Int 2021; 20:535-541. [PMID: 34303609 DOI: 10.1016/j.hbpd.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) has a high short-term mortality. However, the treatment progression for HBV-ACLF in China in the past decade has not been well characterized. The present study aimed to determine whether the HBV-ACLF treatment has significantly improved during the past decade. METHODS This study retrospectively compared short-term (28/56 days) survival rates of two different nationwide cohorts (cohort I: 2008-2011 and cohort II: 2012-2015). Eligible HBV-ACLF patients were enrolled retrospectively. Patients in the cohorts I and II were assigned either to the standard medical therapy (SMT) group (cohort I-SMT, cohort II-SMT) or artificial liver support system (ALSS) group (cohort I-ALSS, cohort II-ALSS). Propensity score matching analysis was conducted to eliminate baseline differences, and multivariate logistic regression analysis was used to explore the independent factors for 28-day survival. RESULTS Short-term (28/56 days) survival rates were significantly higher in the ALSS group than those in the SMT group (P < 0.05) and were higher in the cohort II than those in the cohort I (P < 0.001). After propensity score matching, short-term (28/56 days) survival rates were higher in the cohort II than those in the cohort I for both SMT (60.7% vs. 53.0%, 50.0% vs. 39.8%, P < 0.05) and ALSS (66.1% vs. 56.5%, 53.0% vs. 44.4%, P < 0.05) treatments. The 28-day survival rate was higher in patients treated with nucleos(t)ide analogs than in patients without such treatments (P = 0.046). Multivariate logistic regression analysis revealed that ALSS (OR = 0.962, 95% CI: 0.951-0.973, P = 0.038), nucleos(t)ide analogs (OR = 0.927, 95% CI: 0.871-0.983, P = 0.046), old age (OR = 1.028, 95% CI: 1.015-1.041, P < 0.001), total bilirubin (OR = 1.002, 95% CI: 1.001-1.003, P = 0.004), INR (OR = 1.569, 95% CI: 1.044-2.358, P < 0.001), COSSH-ACLF grade (OR = 2.683, 95% CI: 1.792-4.017, P < 0.001), and albumin (OR = 0.952, 95% CI: 0.924-0.982, P = 0.002) were independent factors for 28-day mortality. CONCLUSIONS The treatment for patients with HBV-ACLF has improved in the past decade.
Collapse
Affiliation(s)
- Lan-Lan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Jia-Jia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Dong-Yan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Jian-Rong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Xiao-Wei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW While liver transplantation is an established treatment for liver failure, the number of patients with liver failure amenable to such intervention far outnumbers the donor supply of livers. Technologies serving to bridge this gap are required. Artificial livers may serve as an alternative. In this review, we discuss the development of artificial liver technologies. RECENT FINDINGS The accrued clinical data suggest that current liver assist devices may serve a role in specific liver diseases, but for the most part no survival benefit has been demonstrated. More clinical trials are expected to elucidate their utilization. Simultaneously, recent advances in materials and tissue engineering are allowing for exciting developments for novel artificial livers. SUMMARY As there continues to be more clinical data regarding the use of current liver devices, new intricate artificial liver technologies, with the use of sophisticated three-dimensional materials, are being developed that may help improve outcomes of liver failure patients.
Collapse
Affiliation(s)
- Asish C Misra
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
10
|
Durand F, Roux O, Weiss E, Francoz C. Acute-on-chronic liver failure: Where do we stand? Liver Int 2021; 41 Suppl 1:128-136. [PMID: 34155793 DOI: 10.1111/liv.14855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Acute-on-chronic liver failure (ACLF) is defined by the rapid development of organ(s) failure(s) associated with high rates of early (28-day) mortality in patients with cirrhosis. ACLF has been categorized into three grades of increasing severity according to the nature and number of organ failures. In patients with grade 3 ACLF, 28-day mortality is >70%. While the definition of ACLF has been endorsed by European scientific societies, North American and Asian Pacific associations have proposed alternative definitions. A prognostic score called the CLIF-C ACLF score provides a more precise assessment of the prognosis of patients with ACLF. Although bacterial infections and variceal bleeding are common precipitating factors, no precipitating factor can be identified in almost 60% of patients with ACLF. There is increasing evidence that cirrhosis is a condition characterized by a systemic inflammatory state and occult infections or translocation of bacteria or bacterial products from the lumen of the GUT to the systemic circulation which could play a role in the development of ACLF. Simple and readily available variables to predict the occurrence of ACLF in patients with cirrhosis have been identified and high-risk patients need careful management. Whether prolonged administration of statins, rifaximin or albumin can prevent ACLF requires further study. Patients with organ(s) failure(s) may needed to be admitted to the ICU and there should be no hesitation in admitting patients with cirrhosis to the ICU. No benefit to survival was observed with albumin dialysis and rescue transplantation is the best option in the most severe patients. One-year post-transplant survival rates exceeding 70%-75% have been reported, including in patients with grade 3 ACLF but these patients were highly selected. Criteria have been proposed to define futile transplantation (too ill to be transplanted), but these criteria need to be refined to include age, comorbidities and frailty in addition to markers of disease severity.
Collapse
Affiliation(s)
- François Durand
- Hepatology & Liver Intensive Care Hospital Beaujon, Clichy, France.,INSERM U1149, Clichy, France.,University of Paris, Clichy, France
| | - Olivier Roux
- Hepatology & Liver Intensive Care Hospital Beaujon, Clichy, France
| | - Emmanuel Weiss
- INSERM U1149, Clichy, France.,Anesthesiology and Intensive Care, Clichy, France
| | - Claire Francoz
- Hepatology & Liver Intensive Care Hospital Beaujon, Clichy, France.,INSERM U1149, Clichy, France
| |
Collapse
|
11
|
Tandon R, Froghi S. Artificial liver support systems. J Gastroenterol Hepatol 2021; 36:1164-1179. [PMID: 32918840 DOI: 10.1111/jgh.15255] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Artificial liver systems are used to bridge between transplantation or to allow a patient's liver to recover. They are used in patients with acute liver failure (ALF) and acute-on-chronic liver failure. There are five artificial systems currently in use: molecular adsorbent recirculating system (MARS), single-pass albumin dialysis (SPAD), Prometheus, selective plasma filtration therapy, and hemodiafiltration. The aim is to compare existing data on the efficiency of these devices. A literature search was conducted using online libraries. Inclusion criteria included randomized control trials or comparative human studies published after the year 2000. A systematic review was conducted for the five individual devices with a more detailed comparison of the biochemistry for the SPAD and MARS systems. Eighty-nine patients were involved in the review comparing SPAD and MARS. Results showed that there was an average reduction in bilirubin (-53 μmol/L in MARS and -50 μmol/L in SPAD), creatinine (-19.5 μmol/L in MARS and -7.5 μmol/L in SPAD), urea (-0.9 mmol/L in MARS and -0.75 mmol/L in SPAD), and gamma-glutamyl transferase (-0.215 μmol/L·s in MARS and -0.295 μmol/L·s in SPAD) in both SPAD and MARS. However, there was no significant difference between the changes in the two systems. This review demonstrated that both MARS and SPAD aid recovery of ALF. There is no difference between the efficiency of MARS and SPAD. Because of the limited data, there is a need for more randomized control trials. Evaluating cost and patient preference would aid in differentiating the systems.
Collapse
Affiliation(s)
| | - Saied Froghi
- Guys Campus, King's College London, London, UK.,Department of HPB and Liver Transplantation, Royal Free Hospital, London, UK
| |
Collapse
|
12
|
Redant S, De Bels D, Ismaili K, Honoré PM. Membrane-Based Therapeutic Plasma Exchange in Intensive Care. Blood Purif 2020; 50:290-297. [PMID: 33091920 DOI: 10.1159/000510983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/16/2020] [Indexed: 11/19/2022]
Abstract
The principles and use of plasmapheresis are often little understood by intensivists. We propose to review the principles, the main indications, and the methods of using this technique.
Collapse
Affiliation(s)
- Sebastien Redant
- Department of Intensive Care, Brugmann University Hospital, Université Libre de Bruxelles (ULB), Bruxelles, Belgium,
| | - David De Bels
- Department of Intensive Care, Brugmann University Hospital, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Khalid Ismaili
- Division of Nephrology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Patrick M Honoré
- Department of Intensive Care, Brugmann University Hospital, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
13
|
Søreide JA, Deshpande R. Post hepatectomy liver failure (PHLF) - Recent advances in prevention and clinical management. Eur J Surg Oncol 2020; 47:216-224. [PMID: 32943278 DOI: 10.1016/j.ejso.2020.09.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Posthepatectomy liver failure (PHLF) is a relatively rare but feared complication following liver surgery, and associated with high morbidity, mortality and cost implications. Significant advances have been made in detailed preoperative assessment, particularly of the liver function in an attempt to predict and mitigate this complication. METHODS A detailed search of PubMed and Medline was performed using keywords "liver failure", "liver insufficiency", "liver resection", "postoperative", and "post-hepatectomy". Only full texts published in English were considered. Particular emphasis was placed on literature published after 2015. A formal systematic review was not found feasible hence a pragmatic review was performed. RESULTS The reported incidence of PHLF varies widely in reported literature due to a historical absence of a universal definition. Incorporation of the now accepted definition and grading of PHLF would suggest the incidence to be between 8 and 12%. Major risk factors include background liver disease, extent of resection and intraoperative course. The vast majority of mortality associated with PHLF is related to sepsis, organ failure and cerebral events. Despite multiple attempts, there has been little progress in the definitive and specific management of liver failure. This review article discusses recent advances made in detailed preoperative evaluation of liver function and evidence-based targeted approach to managing PHLF. CONCLUSION PHLF remains a major cause of mortality following liver resection. In absence of a specific remedy, the best approach is mitigating the risk of it happening by detailed assessment of liver function, patient selection and general care of a critically ill patient.
Collapse
Affiliation(s)
- Jon Arne Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Rahul Deshpande
- Department of HPB Surgery, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
14
|
Messina A, Luce E, Hussein M, Dubart-Kupperschmitt A. Pluripotent-Stem-Cell-Derived Hepatic Cells: Hepatocytes and Organoids for Liver Therapy and Regeneration. Cells 2020; 9:cells9020420. [PMID: 32059501 PMCID: PMC7072243 DOI: 10.3390/cells9020420] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
The liver is a very complex organ that ensures numerous functions; it is thus susceptible to multiple types of damage and dysfunction. Since 1983, orthotopic liver transplantation (OLT) has been considered the only medical solution available to patients when most of their liver function is lost. Unfortunately, the number of patients waiting for OLT is worryingly increasing, and extracorporeal liver support devices are not yet able to counteract the problem. In this review, the current and expected methodologies in liver regeneration are briefly analyzed. In particular, human pluripotent stem cells (hPSCs) as a source of hepatic cells for liver therapy and regeneration are discussed. Principles of hPSC differentiation into hepatocytes are explored, along with the current limitations that have led to the development of 3D culture systems and organoid production. Expected applications of these organoids are discussed with particular attention paid to bio artificial liver (BAL) devices and liver bio-fabrication.
Collapse
Affiliation(s)
- Antonietta Messina
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Eléanor Luce
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Marwa Hussein
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
- Correspondence: ; Tel.: +33-145595138
| |
Collapse
|
15
|
Artificial Liver Support System Improves Short-Term Outcomes of Patients with HBV-Associated Acute-on-Chronic Liver Failure: A Propensity Score Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3757149. [PMID: 31871940 PMCID: PMC6907045 DOI: 10.1155/2019/3757149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/09/2019] [Indexed: 12/25/2022]
Abstract
Background Hepatitis B virus-associated acute-on-chronic liver failure (HBV-ALCF) is a complicated syndrome with extremely high short-term mortality. The artificial liver support system (ALSS) may improve the liver function for patients with HBV-ACLF, but the data on its short-term outcomes are insufficient in China. Methods We recruited HBV-ACLF patients in this nationwide, multicenter, retrospective study. Patients with HBV-ACLF were diagnosed by the COSSH-ACLF criteria. Propensity score matching (PSM) analysis was used to generate compared pairs. The short-term (28/90 days) survival rates between the standard medical therapy (SMT) group and ALSS group were calculated using a Kaplan–Meier graph. Result In total, 790 patients with HBV-ACLF were included in this retrospective study; 412 patients received SMT only (SMT group), and 378 patients received SMT and ALSS treatment (ALSS group). PSM generated 310 pairs and eliminated the baseline differences between the two groups (p > 0.05 for all baseline variables). The probabilities of survival on day 28 were 65.2% (205/310) in the ALSS group and 59.0% (185/310) in the SMT group; on day 90, they were 51.0% (163/310) and 42.3% (136/310). The short-term (28/90 days) survival rates of the ALSS group were significantly higher than those of the SMT group (p=0.0452 and p=0.0187, respectively). Compared to receiving SMT alone, treatment with ALSS was associated with a significant reduction in serum bilirubin levels and the model for end-stage liver disease (MELD) scores at day 7 and day 28. Multivariate logistic regression analysis revealed that older age, high total bilirubin (T-Bil), low albumin, high ALT, high MELD scores, and high COSSH-ACLF grade were independent baseline factors associated with poor prognosis. Conclusions This retrospective study found that compared to SMT, the ALSS improved the short-term (28/90 days) survival rates and laboratory parameters in HBV-ACLF patients. The ALSS had a better therapeutic effect than SMT for patients with HBV-ACLF in China.
Collapse
|
16
|
Wu J, Guo N, Zhang X, Xiong C, Liu J, Xu Y, Fan J, Yu J, Zhao X, Liu B, Wang W, Zhang J, Cao H, Li L. HEV-LF S : A novel scoring model for patients with hepatitis E virus-related liver failure. J Viral Hepat 2019; 26:1334-1343. [PMID: 31294523 DOI: 10.1111/jvh.13174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
Abstract
A noninvasive assessment method for acute or acute-on-chronic liver failure in patients with hepatitis E virus (HEV) infection is urgently needed. We aimed to develop a scoring model for diagnosing HEV patients who developed liver failure (HEV-LF) at different stages. A cross-sectional set of 350 HEV-LF patients were identified and enrolled, and the Guidelines for Diagnosis and Treatment of Liver Failure in China and the Asian Pacific Association for the Study of the Liver were adopted as references. HEV-LFS , a novel scoring model that incorporates data on cholinesterase (CHE), urea nitrogen (UREA), platelets and international normalized ratio was developed using a derived dataset. For diagnosing HEV-LF stages F1 to F3, the HEV-LFS scoring model (F1: 0.87; F2: 0.90; F3: 0.92) had a significantly higher AUROC than did the CLIF-C-ACLFs (F1: 0.65; F2: 0.56; F3: 0.51) and iMELD (F1: 0.70; F2: 0.57; F3: 0.51) scoring models, of which the HEV-LFS scoring model had the best sensitivity and specificity. In addition, the HEV-LFS scoring model was correlated with mortality, length of hospitalization and ICU stay. As the GDTLF score increased, the CHE level decreased and the UREA increased gradually. Encouragingly, a calibration curve showed good agreement between the derivation and validation sets. Notably, we also established a nomogram to facilitate the practical operability of the HEV-LFS scoring model in clinical settings. In conclusion, both CHE and UREA may be indicators for HEV-LF patients. The HEV-LFS scoring model is an efficient and accessible model for classifying HEV-LF at different stages.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Naizhou Guo
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Xueyan Zhang
- Department of Public Health, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Cunquan Xiong
- Department of Public Health, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jun Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Fan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinguo Zhao
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, China
| | - Bin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, China
| | - Wei Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Jinrong Zhang
- Department of Laboratory Medicine, The People's Hospital of Dafeng City, Yancheng, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Chen P, Wang YY, Chen C, Guan J, Zhu HH, Chen Z. The immunological roles in acute-on-chronic liver failure: An update. Hepatobiliary Pancreat Dis Int 2019; 18:403-411. [PMID: 31303562 DOI: 10.1016/j.hbpd.2019.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) refers to the acute deterioration of liver function that occurs in patients with chronic liver disease. ACLF is characterized by acute decompensation, organ failure and high short-term mortality. Numerous studies have been conducted and remarkable progress has been made regarding the pathophysiology and pathogenesis of this disease in the last decade. The present review was to summarize the advances in this field. DATA SOURCES A comprehensive search in PubMed and EMBASE was conducted using the medical subject words "acute-on-chronic liver failure", "ACLF", "pathogenesis", "predictors", and "immunotherapy" combined with free text terms such as "systemic inflammation" and "immune paralysis". Relevant papers published before October 31, 2018, were included. RESULTS ACLF has two marked pathophysiological features, namely, excessive systemic inflammation and susceptibility to infection. The systemic inflammation is mainly manifested by a significant increase in the levels of plasma pro-inflammatory factors, leukocyte count and C-reactive protein. The underlying mechanisms are unclear and may be associated with decreased immune inhibitory cells, abnormal expression of cell surface molecules and intracellular regulatory pathways in immune cells and increased damage-associated molecular patterns in circulation. However, the main cause of susceptibility to infection is immune paralysis. Immunological paralysis is characterized by an attenuated activity of immune cells. The mechanisms are related to elevations of immune inhibitory cells and the concentration of plasma anti-inflammatory molecules. Some immune biological indicators, such as soluble CD163, are used to explore the pathogenesis and prognosis of the disease, and some immunotherapies, such as glucocorticoids and granulocyte colony-stimulating factor, are effective on ACLF. CONCLUSIONS Overwhelming systemic inflammation and susceptibility to infection are two key features of ACLF. A better understanding of the state of a patient's immune system will help to guide immunotherapy for ACLF.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yun-Yun Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Hai-Hong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
18
|
Gerlach JC. Extracorporeal Mass Exchange Technology Platform for Temporary Liver Support: A Clinical Feasibility Study on a Device and the Cell Source Primary Human Liver Cells. Surg Case Rep 2019. [DOI: 10.31487/j.scr.2019.03.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical feasibility phase-I study data are discussed on the use and the safety of a modular mass exchanger for temporary extracorporeal treatment of liver failure; and the use of the cell source primary human liver cells isolated from discarded transplant organs as a metabolic module in this mass exchanger. This technology platform can be compared with the mass exchange functions of a human placenta before giving birth. The "maternal blood side" can be used with various sources/modules of metabolic support including artificial (e.g. absorber) or biological elements (e.g. cells), separated by membrane compartments. These keep the source of metabolic support from contact with the patient, including the immune cells, while allowing exchange of soluble or protein-bound plasma components for therapy. Each of the multiple independent membrane compartments are bundled towards the in/outlets but interwoven to form a decentralized multi-compartment mass exchanger within an effector module compartment. The use of liver cells as a metabolic module in this compartment results in its function as a bioreactor. A combination with further modules outside of the mass exchanger was demonstrated through a continuous SPAD for detoxification. Nine patients (5 m, 4 f) with a median age of 43 years (range 11-55 years) were treated with a total of 11 metabolic modules in 12 sessions, with overall treatment times ranging from 11 to 216 hours. Patients suffered from acute-on-chronic liver failure (AoCLF, n=3), acute liver failure (ALF, n=3) and primary non-function graft after liver transplantation (PNF, n=3). Treatment resulted in a one-year survival of 78%. The results showed a significant decrease in thrombocytes and fibrinogen. No severe adverse effects were found. One patient (AoCLF) recovered without transplantation and remained alive for the one-year follow-up. Six patients (3 ALF, 2 PNF, and 1 AoCLF) were successfully bridged to transplantation, and two (1 AoCLF, 1 PNF) died within ten days after termination of therapy. Total and conjugated bilirubin, ammonia, urea and creatinine were significantly reduced by the end of therapy, compared to baseline. The MELD score decreased significantly, whereas no significant improvements were observed in APACHE-II, APACHE-III, SOFA and Child-Pugh scores.
Conclusion: The mass exchanger technology platform, the Core Module used with primary human liver cells as Metabolic Module, proved to be clinically feasible and safe. Further clinical studies are required to prove the efficacy of such therapies. However, the clinical impact of using human liver cells as a Metabolic Module is limited and a reliable, biocompatible and effective metabolic source is in need.
Collapse
|
19
|
Chancharoenthana W, Leelahavanichkul A. Acute kidney injury spectrum in patients with chronic liver disease: Where do we stand? World J Gastroenterol 2019; 25:3684-3703. [PMID: 31391766 PMCID: PMC6676545 DOI: 10.3748/wjg.v25.i28.3684] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of liver cirrhosis and is of the utmost clinical and prognostic relevance. Patients with cirrhosis, especially decompensated cirrhosis, are more prone to develop AKI than those without cirrhosis. The hepatorenal syndrome type of AKI (HRS–AKI), a spectrum of disorders in prerenal chronic liver disease, and acute tubular necrosis (ATN) are the two most common causes of AKI in patients with chronic liver disease and cirrhosis. Differentiating these conditions is essential due to the differences in treatment. Prerenal AKI, a more benign disorder, responds well to plasma volume expansion, while ATN requires more specific renal support and is associated with substantial mortality. HRS–AKI is a facet of these two conditions, which are characterized by a dysregulation of the immune response. Recently, there has been progress in better defining this clinical entity, and studies have begun to address optimal care. The present review synopsizes the current diagnostic criteria, pathophysiology, and treatment modalities of HRS–AKI and as well as AKI in other chronic liver diseases (non-HRS–AKI) so that early recognition of HRS–AKI and the appropriate management can be established.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Immunology Unit, Department of Microbiology, Faculty of Medicine Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
20
|
A Bifunctional Adsorber Particle for the Removal of Hydrophobic Uremic Toxins from Whole Blood of Renal Failure Patients. Toxins (Basel) 2019; 11:toxins11070389. [PMID: 31277311 PMCID: PMC6669679 DOI: 10.3390/toxins11070389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023] Open
Abstract
Hydrophobic uremic toxins accumulate in patients with chronic kidney disease, contributing to a highly increased cardiovascular risk. The clearance of these uremic toxins using current hemodialysis techniques is limited due to their hydrophobicity and their high binding affinity to plasma proteins. Adsorber techniques may be an appropriate alternative to increase hydrophobic uremic toxin removal. We developed an extracorporeal, whole-blood bifunctional adsorber particle consisting of a porous, activated charcoal core with a hydrophilic polyvinylpyrrolidone surface coating. The adsorption capacity was quantified using analytical chromatography after perfusion of the particles with an albumin solution or blood, each containing mixtures of hydrophobic uremic toxins. A time-dependent increase in hydrophobic uremic toxin adsorption was depicted and all toxins showed a high binding affinity to the adsorber particles. Further, the particle showed a sufficient hemocompatibility without significant effects on complement component 5a, thrombin-antithrombin III complex, or thrombocyte concentration in blood in vitro, although leukocyte counts were slightly reduced. In conclusion, the bifunctional adsorber particle with cross-linked polyvinylpyrrolidone coating showed a high adsorption capacity without adverse effects on hemocompatibility in vitro. Thus, it may be an interesting candidate for further in vivo studies with the aim to increase the efficiency of conventional dialysis techniques.
Collapse
|
21
|
|
22
|
Wang YM, Li K, Dou XG, Bai H, Zhao XP, Ma X, Li LJ, Chen ZS, Huang YC. Treatment of AECHB and Severe Hepatitis (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498915 DOI: 10.1007/978-94-024-1603-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the general treatment and immune principles and internal management for AECHB and HBV ACLF, including ICU monitoring, general supportive medications/nutrition/nursing, immune therapy, artificial liver supportive systems, hepatocyte/stem cell, and liver transplant, management for special populations, frequently clinical complications and the utilization of Chinese traditional medicines.Early clinical indicators of severe hepatitis B include acratia, gastrointestinal symptoms, a daily increase in serum bilirubin >1 mg/dL, toxic intestinal paralysis, bleeding tendency and mild mind anomaly or character change, and the presence of other diseases inducing severe hepatitis. Laboratory indicators include T-Bil, PTA, cholinesterase, pre-albumin and albumin. The roles of immune indicators (such as IL-6, TNF-α, and fgl2), gene polymorphisms, HBV genotypes, and gene mutations as early clinical indicators. Intensive Care Unit monitor patients with severe hepatitis include intracranial pressure, infection, blood dynamics, respiratory function, renal function, blood coagulation function, nutritional status and blood purification process. Nursing care should not only include routine care, but psychological and special care (complications). Nutrition support and nursing care should be maintained throughout treatment for severe hepatitis. Common methods of evaluating nutritional status include direct human body measurement, creatinine height index (CHI) and subject global assessment of nutrition (SGA). Malnourished patients should receive enteral or parenteral nutrition support. Immune therapies for severe hepatitis include promoting hepatocyte regeneration (e.g. with glucagon, hepatocyte growth factor and prostaglandin E1), glucocorticoid suppressive therapy, and targeting molecular blocking. Corticosteroid treatment should be early and sufficient, and adverse drug reactions monitored. Treatments currently being investigated are those targeting Toll-like receptors, NK cell/NK cell receptors, macrophage/immune coagulation system, CTLA-4/PD-1 and stem cell transplantation. In addition to conventional drugs and radioiodine, corticosteroids and artificial liver treatment can also be considered for severe hepatitis patients with hyperthyreosis. Patients with gestational severe hepatitis require preventive therapy for fetal growth restriction, and it is necessary to choose the timing and method of fetal delivery. For patients with both diabetes and severe hepatitis, insulin is preferred to oral antidiabetic agents to control blood glucose concentration. Liver toxicity of corticosteroids and immune suppressors should be monitored during treatment for severe hepatitis in patients with connective tissue diseases including SLE, RA and sicca syndrome. Patient with connective tissue diseases should preferably be started after the antiviral treatment with nucleos(t)ide analogues. An artificial liver can improve patients’ liver function; remove endotoxins, blood ammonia and other toxins; correct amino acid metabolism and coagulation disorders; and reverse internal environment imbalances. Non-bioartificial livers are suitable for patients with early and middle stage severe hepatitis; for late-stage patients waiting for liver transplantation; and for transplanted patients with rejection reaction or transplant failure. The type of artificial liver should be determined by each patient’s condition and previous treatment purpose, and patients should be closely monitored for adverse reactions and complications. Bio- and hybrid artificial livers are still under development. MELD score is the international standard for choosing liver transplantation. Surgical methods mainly include the in situ classic type and the piggyback type; transplantation includes no liver prophase, no liver phase or new liver phase. Preoperative preparation, management of intraoperative and postoperative complications and postoperative long-term treatment are keys to success. Severe hepatitis belongs to the categories of “acute jaundice”, “scourge jaundice”, and “hot liver” in traditional Chinese medicine. Treatment methods include Chinese traditional medicines, acupuncture and acupoint injection, external application of drugs, umbilical compress therapy, drip, blow nose therapy, earpins, and clysis. Dietary care is also an important part of traditional Chinese medicine treatment.
Collapse
|
23
|
Piechota M, Piechota A, Misztal M, Bernas S, Pietraszek-Grzywaczewska I. An evaluation of the usefulness of extracorporeal liver support techniques in patients with severe liver dysfunction. Arch Med Sci 2019; 15:99-112. [PMID: 30697259 PMCID: PMC6348365 DOI: 10.5114/aoms.2017.67998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The mortality rate in patients with severe liver dysfunction with no option of transplantation is unacceptably high. The main aim of this study was to evaluate the usefulness of applying extracorporeal liver support (ECLS) techniques in this group of patients. MATERIAL AND METHODS Data from hospital admissions of 101 patients with severe liver dysfunction who were admitted to the department of Anaesthesiology and intensive therapy between 2006 and 2015 were retrospectively analysed. The study group was divided into two subgroups. Standard Medical therapy (SMT) was a subgroup of patients receiving standard Medical therapy, and SMT + ECLS was a subgroup containing patients receiving standard medical therapy complemented by at least one extracorporeal liver support procedure. RESULTS Significantly lower intensive care unit (ICU) mortality and 30-day mortality rates were found in the SMT + ECLS subgroup (p = 0.0138 and p = 0.0238 respectively). No difference in 3-month mortality was identified between the two groups. In a multivariate model, independent risk factors for ICU mortality proved to be the SOFA score and prothrombin time. The highest discriminatory power for ICU mortality was demonstrated for the SOFA score, followed by APACHE II, SAPS II, MELD UNOS and GCS scores. For 30-day mortality, however, the best discriminatory power was shown for the SAPS II score, followed by SOFA, APACHE II, MELD UNOS and GCS scores. CONCLUSIONS Further studies are needed to assess the contribution of non-biological extracorporeal liver support procedures to a decrease in mortality rates in the population of patients with severe liver dysfunction.
Collapse
Affiliation(s)
- Mariusz Piechota
- Department of Anaesthesiology and Intensive Therapy – Centre for Artificial Extracorporeal Kidney and Liver Support, Dr Wł. Biegański Regional Specialist Hospital, Lodz, Poland
| | - Anna Piechota
- Department of Insurance, Faculty of Economics and Sociology, University of Lodz, Lodz, Poland
| | - Małgorzata Misztal
- Faculty of Economics and Sociology, Chair of Statistical Methods, University of Lodz, Lodz, Poland
| | - Szymon Bernas
- Department of Anaesthesiology and Intensive Therapy – Centre for Artificial Extracorporeal Kidney and Liver Support, Dr Wł. Biegański Regional Specialist Hospital, Lodz, Poland
| | - Iwona Pietraszek-Grzywaczewska
- Department of Anaesthesiology and Intensive Therapy – Centre for Artificial Extracorporeal Kidney and Liver Support, Dr Wł. Biegański Regional Specialist Hospital, Lodz, Poland
| |
Collapse
|
24
|
Figaro S, Pereira U, Rada H, Semenzato N, Pouchoulin D, Legallais C. Development and validation of a bioartificial liver device with fluidized bed bioreactors hosting alginate-encapsulated hepatocyte spheroids. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:1335-8. [PMID: 26736515 DOI: 10.1109/embc.2015.7318615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute and acute-on-chronic liver failure are associated to high mortality when transplantation is not possible. The lack of donors has resulted in an important demand for liver support devices. This paper describes the design and validation of a new bioartificial liver (BAL) device including fluidized bed bioreactors hosting alginate-encapsulated hepatocytes spheroids. To ensure the efficacy of the BAL and the safety of the patients, a complex extracorporeal circulation was designed to be compatible with a commercial medical device, the Prismaflex(®) monitor, already used in intensive care units. Preclinical studies on large animal show that the treatment was well tolerated in terms of hemodynamics considerations. A method using non adhesive coating in petri dish led to the production of large amount of viable spheroids in vitro that were further encapsulated to follow up bioartificial liver activity during four days.
Collapse
|
25
|
Nardo B, Montalti R, Puviani L, Pacilè V, Beltempo P, Bertelli R, Licursi M, Pariali M, Cianciavicchia D. An experimental pilot study on controlled portal vein arterialization with an extracorporeal device in the swine model of partial liver resection and ischemia. Int J Artif Organs 2018; 29:912-8. [PMID: 17033999 DOI: 10.1177/039139880602900912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM To determine whether the physiologically oxygenated arterial blood reversed in the portal system by means of portal vein arterialization (PVA) through an extracorporeal device which we have called L.E.O2.NARDO (Liver Extracorporeal Oxygen. NARDO) is effective in treating swine with subtotal hepatectomy leading to acute liver failure (ALF). METHODS Ten swine with ALF induced by 85-90% liver resection and five minutes of ischemia-reperfusion injury were randomly divided into two groups: five animals received PVA extracorporeal treatment and five swine were not-treated (control group). Blood was withdrawn from the iliac artery and reversed in the portal venous system. An extracorporeal device was interposed between the outflow and the inflow in order to monitoring the hemodynamic parameters. Each treatment lasted 6 hours. Serum and liver samples were collected in both groups. The survival was assessed at 1 week. RESULTS The PVA-extracorporeal treatment yielded beneficial effects for subtotal hepatectomy-induced ALF swine with decreased serum ammonia, transaminases and total bilirubin as compared with the untreated group. INR recovered rapidly in the PVA-extracorporeal group remaining significantly lower than in untreated animals. The 7-day survival of PVA-extracorporeal group swine was significantly higher than that of untreated animals, with a statistically significant difference (p<0.05). Four swine in the PVA-extracorporeal group survived at 1 week while none of the swine in the control group were alive at that time; an average time of 144h+/-13h and 24.4h+/-5h was observed in the PVA-extracorporeal and control groups, respectively. CONCLUSIONS Arterial blood supply in the portal system through the extracorporeal device is easily applicable, efficacious, safe and may represent a novel approach for ALF swine induced by subtotal liver resection.
Collapse
Affiliation(s)
- B Nardo
- Department of Surgery, Intensive Care Unit and Transplantations, S. Orsola Hospital, University of Bologna, Bologna - Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- A Santoro
- Nephrology and Dialysis Unit, Policlinico Sant'Orsola-Malpighi, Bologna, Italy.
| | | |
Collapse
|
27
|
Annesini MC, Di Paola L, Marrelli L, Piemonte V, Turchetti L. Bilirubin Removal from Albumin - Containing Solution by Adsorption on Polymer Resin. Int J Artif Organs 2018; 28:686-93. [PMID: 16049902 DOI: 10.1177/039139880502800707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Adsorption equilibrium of bilirubin onto polymeric resins is studied. Solutions containing albumin are used in order to simulate the behavior of systems for removal of albumin-bound substances from blood, serum or dialysis fluids. The effect of albumin pre-loading on the resin is also analysed. Results are explained by a chemically based model that accounts for binding reaction between albumin and bilirubin in the liquid phase. Thermodynamic equilibria and physical models are essential tools for designing adsorption columns aimed at detoxification treatments.
Collapse
Affiliation(s)
- M C Annesini
- Department of Chemical Engineering, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- J P O'Beirne
- Liver Intensive Care Unit, Kings College Hospital, London, UK
| | | |
Collapse
|
29
|
Viggiano D, de Pascale E, Marinelli G, Pluvio C. A comparison among three different apheretic techniques for treatment of hyperbilirubinemia. J Artif Organs 2017; 21:110-116. [PMID: 28887736 DOI: 10.1007/s10047-017-0986-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022]
Abstract
Liver failure is associated to high mortality due to the accumulation of protein-bound metabolites, such as bilirubin, not removed by conventional hemodialysis. Different methods can efficiently remove them, such as the molecular adsorbent recirculating system (MARS), plasma exchange (PEX), and bilirubin or plasma adsorption perfusion (PAP). No direct comparison exists between MARS, PEX and PAP, and current guidelines do not specify which method (and when) to use. We have retrospectively evaluated MARS, PEX and PAP in their effectiveness in lowering plasma bilirubin concentration, and their effects on liver and kidney function. A total of 98 patients have been recruited, which comprised 68 patients treated with PAP (177 sessions), 16 patients with PEX (41 sessions) and 11 patients with MARS (21 sessions). Bilirubin, creatinine, liver enzymes were analyzed before and after the first treatment with each technique. The three methods did not differ for bilirubin lowering efficiency, with MARS showing only slightly less effective reductions. Finally, the three techniques did not differ in the amount of change of cholinesterase, but a lower reduction in AST was found using PAP. Our retrospective observation is one of the largest case series of hepatic failure treated with bilirubin absorption. The choice of the technique cannot be based on the desired reduction in bilirubin concentration. Based on costs and duration of treatment, we suggest that PAP could be considered as a first-line approach. In case of kidney involvement, MARS remains a valuable option.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Emanuela de Pascale
- AORN dei Colli, D. Cotugno Hospital, Department of Dialysis with Hepatic-Infective Complications, via L. Bianchi, 80131, Naples, Italy
| | - Gaia Marinelli
- AORN dei Colli, D. Cotugno Hospital, Department of Dialysis with Hepatic-Infective Complications, via L. Bianchi, 80131, Naples, Italy
| | - Corrado Pluvio
- AORN dei Colli, D. Cotugno Hospital, Department of Dialysis with Hepatic-Infective Complications, via L. Bianchi, 80131, Naples, Italy.
| |
Collapse
|
30
|
Abstract
Extracorporeal liver support systems (ELSS), encompassing artificial and bioartificial devices, have been used for decades, with the aim of supporting patients with acute liver failure and acute-on chronic liver failure, as a bridge to recovery (acute liver failure only) or liver transplantation, in an era of organ donation shortage. Although biochemical efficacy has been consistently demonstrated by these devices, translation into clinical and survival benefits has been unclear, due to study limitations and lack of reliable prognostic scoring in liver failure. Consequently, extracorporeal devices are not widely accepted as routine therapy in adult liver failure. Recent large multicentre trials using artificial liver systems have not revealed beneficial outcomes associated with albumin dialysis but plasma exchange practices have shown some potential. In paediatric liver failure, data on extracorporeal systems is scarce, comprising few reports on albumin dialysis (namely, Molecular Adsorbent Recirculating System; MARS) and plasma exchange. When extrapolating data from adult studies differences in disease presentation, aetiology, prognosis and the suitability, and safety of such devices in children must be considered. The aim of this review is to critically appraise current practices of extracorporeal liver support systems to help determine efficacy in paediatric liver failure.
Collapse
|
31
|
Mattei G, Magliaro C, Pirone A, Ahluwalia A. Decellularized Human Liver Is Too Heterogeneous for Designing a Generic Extracellular Matrix Mimic Hepatic Scaffold. Artif Organs 2017; 41:E347-E355. [PMID: 28543403 DOI: 10.1111/aor.12925] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Decellularized human livers are considered the perfect extracellular matrix (ECM) surrogate because both three-dimensional architecture and biological features of the hepatic microenvironment are thought to be preserved. However, donor human livers are in chronically short supply, both for transplantation or as decellularized scaffolds, and will become even scarcer as life expectancy increases. It is hence of interest to determine the structural and biochemical properties of human hepatic ECM to derive design criteria for engineering biomimetic scaffolds. The intention of this work was to obtain quantitative design specifications for fabricating scaffolds for hepatic tissue engineering using human livers as a template. To this end, hepatic samples from five patients scheduled for hepatic resection were decellularized using a protocol shown to reproducibly conserve matrix composition and microstructure in porcine livers. The decellularization outcome was evaluated through histological and quantitative image analyses to evaluate cell removal, protein, and glycosaminoglycan content per unit area. Applying the same decellularization protocol to human liver samples obtained from five different patients yielded five different outcomes. Only one liver out of five was completely decellularized, while the other four showed different levels of remaining cells and matrix. Moreover, protein and glycosaminoglycan content per unit area after decellularization were also found to be patient- (or donor-) dependent. This donor-to-donor variability of human livers thus precludes their use as templates for engineering a generic "one-size fits all" ECM-mimic hepatic scaffold.
Collapse
Affiliation(s)
| | | | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | |
Collapse
|
32
|
Optimizing the fluidized bed bioreactor as an external bioartificial liver. Int J Artif Organs 2017; 40:196-203. [PMID: 28362045 DOI: 10.5301/ijao.5000567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Our team previously designed and validated a new bioartificial liver (BAL) called Suppliver based on a Prismaflex™ device, including fluidized bed bioreactors hosting alginate-encapsulated hepatocytes. To ensure correct fluidization within the bioreactor, the beads need to become heavier with the addition of inert glass microspheres. METHODS In this study, we assessed the impact of this additional component on the bead production process, bed fluidization, mass transfer and the mechanical properties of the beads, as well as cell viability and basic metabolic function. RESULTS A concentration of 20 mg (1% v/v) of microspheres for 15-20 million cells per milliliter of alginate solution appears to be the best configuration. The filling ratio for the beads in the bioreactors can reach 60%. Four 250-mL bioreactors represent approximately 15% of the hepatocytes in a liver, which is a reasonable target for extracorporeal liver supply. CONCLUSIONS Increasing bead density clearly maintained the performances of the fluidized bed with plasma of different compositions, without any risk of release out of the bioreactor. A 1% (v/v)-concentration of microspheres in alginate solution did not result in any alteration of the mechanical or biological behavior. This concentration can thus be applied to the production of large-scale encapsulated biomass for further use of the Suppliver setup in human scale preclinical studies.
Collapse
|
33
|
Gonzalez HC, Jafri SM, Gordon SC. Management of Acute Hepatotoxicity Including Medical Agents and Liver Support Systems. Clin Liver Dis 2017; 21:163-180. [PMID: 27842770 DOI: 10.1016/j.cld.2016.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug-induced liver injury (DILI) can be predictable or idiosyncratic and has an estimated incidence of approximately 20 cases per 100,000 persons per year. DILI is a common cause of acute liver failure in the United States. No accurate tests for diagnosing DILI exist, and its diagnosis is based on exclusion of other conditions. Managing DILI includes discontinuing the suspected causative agent and in selected cases administering an antidote. Liver support systems are used for long-term support or as a bridge to transplantation and are effective for improving encephalopathy, hyperbilirubinemia, and other liver-related conditions, but whether they improve survival remains uncertain.
Collapse
Affiliation(s)
- Humberto C Gonzalez
- Department of Transplant Surgery/Center of Advanced Liver Disease, Methodist University Hospital, University of Tennessee Health Science Center, 1211 Union Avenue, Suite 340, Memphis, TN 38104, USA
| | - Syed-Mohammed Jafri
- Division of Gastroenterology and Hepatology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Stuart C Gordon
- Division of Gastroenterology and Hepatology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| |
Collapse
|
34
|
Lee JS, Yoon H, Yoon D, Kim GH, Yang HT, Chun W. Development of hepatic blocks using human adipose tissue-derived stem cells through three-dimensional cell printing techniques. J Mater Chem B 2017; 5:1098-1107. [DOI: 10.1039/c6tb03055f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, most acute liver diseases are treated through liver transplantation.
Collapse
Affiliation(s)
- Ji-Seon Lee
- Burn Institute
- Hangang Sacred Heart Hospital
- College of Medicine
- Hallym University
- Seoul
| | - Hyeon Yoon
- Burn Institute
- Hangang Sacred Heart Hospital
- College of Medicine
- Hallym University
- Seoul
| | - Dajeong Yoon
- Burn Institute
- Hangang Sacred Heart Hospital
- College of Medicine
- Hallym University
- Seoul
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering
- Sungkyunkwan University
- Suwon
- South Korea
| | - Hyeong Tae Yang
- Department of Surgery
- Hangang Sacred Heart Hospital
- College of Medicine
- Hallym University
- Youngdeungpo-dong
| | - Wook Chun
- Burn Institute
- Hangang Sacred Heart Hospital
- College of Medicine
- Hallym University
- Seoul
| |
Collapse
|
35
|
van Mierlo KMC, Schaap FG, Dejong CHC, Olde Damink SWM. Liver resection for cancer: New developments in prediction, prevention and management of postresectional liver failure. J Hepatol 2016; 65:1217-1231. [PMID: 27312944 DOI: 10.1016/j.jhep.2016.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatic failure is a feared complication that accounts for up to 75% of mortality after extensive liver resection. Despite improved perioperative care, the increasing complexity and extensiveness of surgical interventions, in combination with an expanding number of resections in patients with compromised liver function, still results in an incidence of postresectional liver failure (PLF) of 1-9%. Preventive measures aim to enhance future remnant liver size and function. Numerous non-invasive techniques to assess liver function and predict remnant liver volume are being developed, along with introduction of novel surgical strategies that augment growth of the future remnant liver. Detection of PLF is often too late and treatment is primarily symptomatic. Current therapeutic research focuses on ([bio]artificial) liver function support and regenerative medicine. In this review we discuss the current state and new developments in prediction, prevention and management of PLF, in light of novel insights into the aetiology of this complex syndrome. LAY SUMMARY Liver failure is the main cause of death after partial liver resection for cancer, and is presumably caused by an insufficient quantity and function of the liver remnant. Detection of liver failure is often too late, and current treatment focuses on relieve of symptoms. New research initiatives explore artificial support of liver function and stimulation of regrowth of the remnant liver.
Collapse
Affiliation(s)
- Kim M C van Mierlo
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Frank G Schaap
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cornelis H C Dejong
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Centre & NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Department of Surgery, Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom.
| |
Collapse
|
36
|
Lee KCL, Stadlbauer V, Jalan R. Extracorporeal liver support devices for listed patients. Liver Transpl 2016; 22:839-48. [PMID: 26785141 DOI: 10.1002/lt.24396] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023]
Abstract
An alternative to liver transplantation for patients with liver failure remains an unmet need. In acute liver failure, the ideal extracorporeal liver support device (ELSD) would replace the functions of the failing liver in order to permit spontaneous recovery, given the incredible regenerative potential of the liver, negating the need for transplantation. In acute-on-chronic liver failure, an ELSD would ideally support hepatic function until a recovery to liver function before acute decompensation or until liver transplantation. In decompensated cirrhosis, an ELSD could again be used to support hepatic function until transplant. In addition, ELSDs may have the potential to treat the multiorgan failure that accompanies liver failure including hepatic encephalopathy, renal failure, and immune dysfunction or indeed potential to promote liver regeneration. Creation of an extracorporeal bioartificial liver able to completely replace liver function remains an unmet need. This review will describe a number of technologies suitable for clinical trials in humans, which have resulted from decades of engineering and biological research to develop a bioreactor able to adequately sustain functional hepatocytes. In addition, this review will describe artificial liver support devices that are primarily designed to replace the detoxifying functions of the liver and will consider the current data available or studies required to support their use in liver failure patients on the transplant waiting list. Liver Transplantation 22 839-848 2016 AASLD.
Collapse
Affiliation(s)
- Karla C L Lee
- Department of Clinical Science and Services, The Royal Veterinary College, Hertfordshire, UK
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London Medical School Royal Free Campus, London, UK
| |
Collapse
|
37
|
Schmuck RB, Nawrot GH, Fikatas P, Reutzel-Selke A, Pratschke J, Sauer IM. Single Pass Albumin Dialysis-A Dose-Finding Study to Define Optimal Albumin Concentration and Dialysate Flow. Artif Organs 2016; 41:153-161. [DOI: 10.1111/aor.12736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/29/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Rosa Bianca Schmuck
- General, Visceral and Transplantation Surgery, & Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum; Germany
| | - Gesa-Henrike Nawrot
- General, Visceral and Transplantation Surgery, & Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum; Germany
| | - Panagiotis Fikatas
- General, Visceral and Transplantation Surgery, & Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum; Germany
| | - Anja Reutzel-Selke
- General, Visceral and Transplantation Surgery, & Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum; Germany
| | - Johann Pratschke
- General, Visceral and Transplantation Surgery, & Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum; Germany
| | - Igor Maximilian Sauer
- General, Visceral and Transplantation Surgery, & Experimental Surgery and Regenerative Medicine, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum; Germany
| |
Collapse
|
38
|
Tsipotis E, Shuja A, Jaber BL. Albumin Dialysis for Liver Failure: A Systematic Review. Adv Chronic Kidney Dis 2015; 22:382-90. [PMID: 26311600 DOI: 10.1053/j.ackd.2015.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/30/2022]
Abstract
Albumin dialysis is the best-studied extracorporeal nonbiologic liver support system as a bridge or destination therapy for patients with liver failure awaiting liver transplantation or recovery of liver function. We performed a systematic review to examine the efficacy and safety of 3 albumin dialysis systems (molecular adsorbent recirculating system [MARS], fractionated plasma separation, adsorption and hemodialysis [Prometheus system], and single-pass albumin dialysis) in randomized trials for supportive treatment of liver failure. PubMed, Ovid, EMBASE, Cochrane's Library, and ClinicalTrials.gov were searched. Two authors independently screened citations and extracted data on patient characteristics, quality of reports, efficacy, and safety end points. Ten trials (7 of MARS and 3 of Prometheus) were identified (620 patients). By meta-analysis, albumin dialysis achieved a net decrease in serum total bilirubin level relative to standard medical therapy of 8.0 mg/dL (95% confidence interval [CI], -10.6 to -5.4) but not in serum ammonia or bile acids. Albumin dialysis achieved an improvement in hepatic encephalopathy relative to standard medical therapy with a risk ratio of 1.55 (95% CI, 1.16-2.08) but had no effect survival with a risk ratio of 0.95 (95% CI, 0.84-1.07). Because of inconsistency in the reporting of adverse events, the safety analysis was limited but did not demonstrate major safety concerns. Use of albumin dialysis as supportive treatment for liver failure is successful at removing albumin-bound molecules, such as bilirubin and at improving hepatic encephalopathy. Additional experience is required to guide its optimal use and address safety concerns.
Collapse
|
39
|
Zhou N, Li J, Zhang Y, Lu J, Chen E, Du W, Wang J, Pan X, Zhu D, Yang Y, Chen Y, Cao H, Li L. Efficacy of coupled low-volume plasma exchange with plasma filtration adsorption in treating pigs with acute liver failure: A randomised study. J Hepatol 2015; 63:378-387. [PMID: 25814048 DOI: 10.1016/j.jhep.2015.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Extracorporeal blood purification systems for supportive therapy of liver failure are widely used. We developed a novel blood purification system, named Li's artificial liver system (Li-ALS), which couples low-volume plasma exchange (low-volume PE) with plasma filtration adsorption (PFA). This study aims to evaluate the efficacy of our novel system in pigs with acute liver failure (ALF). METHODS Thirty-two pigs were infused with D-galactosamine (1.3g/kg) to induce ALF. All animals were equally and randomly divided into four groups: the ALF control group received intensive care, the PFA group underwent five hour plasma recycling filtration and adsorption purification, the low-volume PE group received one hour low-volume PE, and the Li-ALS group underwent one hour low-volume PE, followed by five hour PFA. Intervention was initiated 36hours after drug administration. The efficacy of each treatment was assessed by survival time and improvement in hematological, biochemical, and immunohistological parameters. RESULTS Pigs in the Li-ALS group survived longer than those in the other groups (p<0.001, ALF control: 60±2h; PFA group: 74±2h; low-volume PE group: 75±2h; and Li-ALS group: 90±3h). Liver enzyme, bilirubin, bile acid and blood ammonia levels were decreased significantly after Li-ALS treatment, and increases in inflammatory cytokines were ameliorated. A higher hepatocyte regeneration index was also observed in the Li-ALS group. CONCLUSION Our novel Li-ALS could expedite liver regeneration and improve survival time; hence, it could be promising for treating ALF.
Collapse
Affiliation(s)
- Ning Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Jianzhou Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Ermei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Weibo Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Xiaoping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Yu Chen
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infection Diseases, Zhejiang University, Hangzhou, China.
| |
Collapse
|
40
|
Bernsmeier C, Singanayagam A, Patel VC, Wendon J, Antoniades CG. Immunotherapy in the treatment and prevention of infection in acute-on-chronic liver failure. Immunotherapy 2015; 7:641-54. [PMID: 26065379 DOI: 10.2217/imt.15.27] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic liver disease, depicted by gradual destruction and fibrosis of the liver, is a condition with high and probably increasing prevalence worldwide. Its deterioration, acute-on-chronic liver failure (ACLF), is characterized by an in-hospital mortality of up to 65%. Infectious complications are the main precipitants eliciting ACLF and concurrently the main cause of death from ACLF. Patients have a marked susceptibility to bacterial infections, which is thought to arise a consequence of an inadequate immune response to microbial challenge, termed immuneparesis. The pathophysiologic mechanisms remain poorly understood. Treatments aimed at restoring the patients' immune function may prevent onset of ACLF and death from secondary infections. A number of drugs approved for patients with liver disease bear immunomodulatory potential such as albumin, glucocorticoids, N-acetylcysteine. Specific targets have been defined that may lead to development of new immunotherapeutic agents. Here, we summarize the pathophysiology of immuneparesis in ACLF and drug candidates to restore immune function and improve survival in the future.
Collapse
Affiliation(s)
- Christine Bernsmeier
- Institute of Liver Studies, King's College Hospital, King's College London, London SE5 9RS, UK
| | - Arjuna Singanayagam
- Institute of Liver Studies, King's College Hospital, King's College London, London SE5 9RS, UK
| | - Vishal C Patel
- Institute of Liver Studies, King's College Hospital, King's College London, London SE5 9RS, UK
| | - Julia Wendon
- Institute of Liver Studies, King's College Hospital, King's College London, London SE5 9RS, UK
| | - Charalambos G Antoniades
- Institute of Liver Studies, King's College Hospital, King's College London, London SE5 9RS, UK.,Section of Hepatology, St Mary's Hospital, Imperial College London, London W2 1NY, UK
| |
Collapse
|
41
|
Abstract
BACKGROUND In a liver transplant (LT) center, treatments with Prometheus were evaluated. The main outcome considered was 1 and 6 months survival. METHODS During the study period, 74 patients underwent treatment with Prometheus; 64 were enrolled, with a mean age of 51 ± 13 years; 47 men underwent 212 treatments (mean, 3.02 per patient). The parameters evaluated were age, sex, laboratorial (liver enzymes, ammonia) and clinical (model for end-stage liver disease and Child-Turcotte-Pugh score) data. RESULTS Death was verified in 23 patients (35.9%) during the hospitalization period, 20 patients (31.3%) were submitted to liver transplantation, and 21 were discharged. LT was performed in 4 patients with acute liver failure (ALF, 23.7%), in 7 patients with acute on chronic liver failure (AoCLF, 43.7%), and in 6 patients with liver disease after LT (30%). Seven patients who underwent LT died (35%). In the multivariate analysis, older age (P = .015), higher international normalized ratio (INR) (P = .019), and acute liver failure (P = .039) were independently associated with an adverse 1-month clinical outcome. On the other hand, older age (P = .011) and acute kidney injury (P = .031) at presentation were both related to worse 6-month outcome. For patients with ALF and AoCLF we did not observe the same differences. CONCLUSIONS In this cohort, older age was the most important parameter defining 1- and 6-month survival, although higher INR and presence of ALF were important for 1-month survival and AKI for 6-month survival. No difference was observed between patients who underwent LT or did not have LT.
Collapse
|
42
|
Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells 2015; 8:36-47. [PMID: 26019753 PMCID: PMC4445708 DOI: 10.15283/ijsc.2015.8.1.36] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
The liver is the largest organ in the body; it has a complex architecture, wide range of functions and unique regenerative capacity. The growing incidence of liver diseases worldwide requires increased numbers of liver transplant and leads to an ongoing shortage of donor livers. To meet the huge demand, various alternative approaches are being investigated including, hepatic cell transplantation, artificial devices and bioprinting of the organ itself. Adult hepatocytes are the preferred cell sources, but they have limited availability, are difficult to isolate, propagate poor and undergo rapid functional deterioration in vitro. There have been efforts to overcome these drawbacks; by improving culture condition for hepatocytes, providing adequate extracellular matrix, co-culturing with extra-parenchymal cells and identifying other cell sources. Differentiation of human stem cells to hepatocytes has become a major interest in the field of stem cell research and has progressed greatly. At the same time, use of decellularized organ matrices and 3 D printing are emerging cutting-edge technologies for tissue engineering, opening up new paths for liver regenerative medicine. This review provides a compact summary of the issues, and the locations of liver support systems and tissue engineering, with an emphasis on reproducible and useful sources of hepatocytes including various candidates formed by differentiation from stem cells.
Collapse
Affiliation(s)
- Soo Young Lee
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Han Joon Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Lexmond WS, Van Dael CML, Scheenstra R, Goorhuis JF, Sieders E, Verkade HJ, Van Rheenen PF, Kömhoff M. Experience with molecular adsorbent recirculating system treatment in 20 children listed for high-urgency liver transplantation. Liver Transpl 2015; 21:369-80. [PMID: 25366362 DOI: 10.1002/lt.24037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Abstract
For more than 10 years, children at our national center for pediatric liver transplantation (LT) have been treated with Molecular Adsorbent Recirculating System (MARS) liver dialysis as a bridging therapy to high-urgency LT. Treatment was reserved for 20 patients with the highest degrees of hepatic encephalopathy (HE; median grade = 3.5). Death from neurological sequelae was considered imminent for these patients, and this was further reflected in significantly higher international normalized ratios and ammonia levels and worse prognostic liver indices (Model for End-Stage Liver Disease/Pediatric End-Stage Liver Disease scores and liver injury units) in comparison with 32 wait-listed patients who did not receive MARS dialysis. MARS therapy was generally well tolerated, with a reduction in thrombocytes and hemorrhaging as the most common side effects. HE improvement was documented in 30% of the treated patients, but progression to grade IV encephalopathy occurred in 45% of the patients despite the treatment. Serum ammonia, bilirubin, bile acid, and creatinine levels significantly decreased during treatment. Eighty percent of MARS-treated patients survived to undergo LT, and their survival was equivalent to that of non-MARS-treated patients with severe liver failure (69%, P = 0.52). The heterogeneity between MARS-treated patients and non-MARS-treated patients in our cohort precluded a statistical evaluation of a benefit from MARS for patient survival. Our data demonstrate the safety of MARS even in the most severely ill patients awaiting LT, but strategies that promote the more rapid and widespread availability of high-quality donor organs remain of critical importance for improving patient survival in cases of severe acute liver failure.
Collapse
Affiliation(s)
- Willem S Lexmond
- Division of Pediatric Nephrology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fiaccadori E, Pistolesi V, Mariano F, Mancini E, Canepari G, Inguaggiato P, Pozzato M, Morabito S. Regional citrate anticoagulation for renal replacement therapies in patients with acute kidney injury: a position statement of the Work Group “Renal Replacement Therapies in Critically Ill Patients” of the Italian Society of Nephrology. J Nephrol 2015; 28:151-64. [DOI: 10.1007/s40620-014-0160-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/18/2014] [Indexed: 01/15/2023]
|
45
|
Portal blood arterialization with an extracorporeal device to treat toxic acute hepatic failure in a swine model. Int J Artif Organs 2014; 37:847-53. [PMID: 25501739 DOI: 10.5301/ijao.5000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to determine whether a controlled portal blood arterialization by a liver extracorporeal device (L.E.O2 NARDO) is effective in treating acute hepatic failure (AHF) induced through CCl4 administration in a swine model. METHODS 20 swine with AHF induced by intraperitoneal injection of carbon tetrachloride (CCl4) in oil solution, were randomly divided into two groups: animals receiving L.E.O2 NARDO treatment 48 h after the intoxication (study group); animals sham operated 48 h after the intoxication (control group). Blood was withdrawn from the iliac artery and reversed in the portal venous system by an interposed extracorporeal device. Each treatment lasted 6 h. The survival was assessed at 5 days after L.E.O2 NARDO treatment or sham operation. In both groups blood samples were collected for biochemical analysis at different time points and liver biopsies were collected 48 h after intoxication and at sacrifice. RESULTS We observed decreased transaminases levels and a more rapid INR recovery in the study group, as compared to the control group. Eight animals of the study group vs. two animals of the control group survived at five days after surgery with a statistically significant difference (p<0.05). Liver biopsies performed at sacrifice showed a reduction of the damaged hepatic areas in the study group as compared to the control group. CONCLUSIONS Arterial blood supply in the portal system through the L.E.O2 NARDO device is easily applicable, efficacious, and safe in a swine model of AHF induced by CCl4 intoxication.
Collapse
|
46
|
Klammt S, Mitzner SR, Reisinger EC, Stange J. No sustained impact of intermittent extracorporeal liver support on thrombocyte time course in a randomized controlled albumin dialysis trial. Ther Apher Dial 2014; 18:502-8. [PMID: 25195684 DOI: 10.1111/1744-9987.12124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reduction of platelets is a common finding in patients with liver disease and can be aggravated by extracorporeal therapies, e.g. artificial liver support. The impact of extracorporeal albumin dialysis on the time count and time course of platelets in liver failure patients was evaluated in a randomized controlled clinical trial. Mean thrombocyte reduction during a single extracorporeal liver support therapy was -15.1% [95%CI: -17.7; -12.5]. No differences were found between treatments of patients with a more reduced platelet count (<100 GPT/L: -15.6% [-19.5; -11.7%]; n = 43) compared to patients with normal or slightly decreased thrombocytes (-14.6% [-18.3%; -11.0%]; n = 43; P = 0.719). The variation of platelet count within 24 h after onset of extracorporeal therapy treatment was less, albeit significant (-3.5% [-6.3%; -0.7%], P < 0.016). Absolute thrombocyte variability was comparable between both groups (with extracorporeal therapy -5.6 GPT/L [-9.7; -1.4], without extracorporeal therapy -1.3 GPT/L [-7.3; 4.7]; P = 0.243), whereas relative decrease of thrombocytes within a 24-h period of extracorporeal therapy was greater than the changes in patients without extracorporeal therapy (-3.5% [-6.3%; -0.7%] vs. 2.0% [-2.0%; 5.9%]; P = 0.026]. Within a period of two weeks after enrollment, no significant differences of platelet count were observed either between the two groups or in the time course (P(group) = 0.337, P(time) = 0.277). Reduction of platelets during intermittent extracorporeal liver support was less pronounced within a 24-h period as before and after a single treatment and was comparable to variations in the control group without extracorporeal therapy.
Collapse
Affiliation(s)
- Sebastian Klammt
- Division of Nephrology, University Rostock, Rostock, Germany; Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine II, University Rostock, Rostock, Germany
| | | | | | | |
Collapse
|
47
|
Abstract
Despite the tremendous hurdles presented by the complexity of the liver's structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.
Collapse
Affiliation(s)
- Sangeeta N Bhatia
- Institute for Medical Engineering & Science at MIT, Department of Electrical Engineering and Computer Science, David H. Koch Institute at MIT, and the Howard Hughes Medical Institute, Cambridge, MA 02139, USA. Division of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, and McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
48
|
Parés A, Mas A. Extracorporeal liver support in severe alcoholic hepatitis. World J Gastroenterol 2014; 20:8011-8017. [PMID: 25009371 PMCID: PMC4081670 DOI: 10.3748/wjg.v20.i25.8011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/27/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
The severity of alcoholic hepatitis (AH) which may coexist with cirrhosis varies greatly, from asymptomatic forms which are detected in alcoholic patients without any sign of liver disease, except laboratory abnormalities, to severe forms characterised by deep jaundice, ascites, hepatic encephalopathy and low prothrombin index. In hospitalized patients the mortality could be as high as 75%. The elevated number of therapeutic proposals reported for more than forty years reveals the lack of efficacy of a particular modality. Even in the most favorable trials, the survival is already very poor and in some cases related to the development of renal failure or hepatorenal syndrome. There are some motivating reports concerning albumin dialysis as a support treatment in patients with severe AH, either alone or in combination with other pharmacological therapies. The favorable effects of albumin dialysis in patients with severe AH suggest that the procedure used alone or in combination with other therapies may have a role in this clinical condition. This will be particularly relevant to offer an alternative therapy in these patients, thus being a potential bridge to recovery or to be listed for liver transplantation.
Collapse
|
49
|
Annesni MC, Piemonte V, Turchetti L. Artificial liver support systems: a patient-device model. ASIA-PAC J CHEM ENG 2014. [DOI: 10.1002/apj.1808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Vincenzo Piemonte
- University Campus Bio-Medico of Rome; via Alvaro del Portillo 21 00128 Rome Italy
| | - Luca Turchetti
- University Campus Bio-Medico of Rome; via Alvaro del Portillo 21 00128 Rome Italy
| |
Collapse
|
50
|
Komura T, Taniguchi T, Sakai Y, Yamashita T, Mizukoshi E, Noda T, Okajima M, Kaneko S. Efficacy of continuous plasma diafiltration therapy in critical patients with acute liver failure. J Gastroenterol Hepatol 2014; 29:782-6. [PMID: 24224755 DOI: 10.1111/jgh.12440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is a critical illness with high mortality. Plasma diafiltration (PDF) is a blood purification therapy that is useful for ALF patients, but it is difficult to use when those patients have multiple organ failure or unstable hemodynamics. In these patients, symptoms are also likely to exacerbate immediately after PDF therapy. We developed continuous PDF (CPDF) as a new concept in PDF therapy, and assessed its efficacy and safety in ALF patients. METHODS Ten ALF patients (gender: M/F 6/4, Age: 47 ± 14) were employed CPDF therapy. The primary outcomes were altered liver function, measured by the model for end-stage liver disease (MELD) score, and total bilirubin and prothrombin time international normalized ratios (PT-INR), 5 days after CPDF therapy. Secondary outcomes included sequential organ failure assessment (SOFA) scores, 5 days after CPDF therapy, and the survival rate 14 days after this therapy. RESULTS The MELD score (34.5-28.0; P = 0.005), total bilirubin (10.9-7.25 mg/dL; P = 0.048), PT-INR (1.89-1.31; P = 0.084), and SOFA score (10.0-7.5; P < 0.039) were improved 5 days after CPDF therapy. Nine patients were alive, and one patient died because of acute pancreatitis, complicated by ALF. There were no major adverse events related to this therapy under hemodynamic stability. CONCLUSION In the present study, CPDF therapy safely supported liver function and generally improved the condition of critically ill patients with ALF.
Collapse
Affiliation(s)
- Takuya Komura
- Intensive Care Unit, Kanazawa University Hospital, Kanazawa, Japan; Disease Control and Homeostasis, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|