1
|
Hussein MA, Abdel-Gawad SM. Protective effect of Jasonia montana against ethinylestradiol-induced cholestasis in rats. Saudi Pharm J 2010; 18:27-33. [PMID: 23960717 PMCID: PMC3731018 DOI: 10.1016/j.jsps.2009.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/11/2009] [Indexed: 11/22/2022] Open
Abstract
Estrogens, and particularly glucuronides such as ethinylestradiol (EE), have been shown to cause cholestasis in animal studies, by reducing bile acid uptake by hepatocytes. The aim of the present article is to investigate anticholestatic activity of the ethanolic extract of the aerial parts of Jasonia montana against liver cholestasis induced by EE in adult female rats in an attempt to understand its mechanism of action, which may pave the way for possible therapeutic applications. Subcutaneous administration of 100 μg/kg b.w. ethinylestradiol to rats induced hepatocellular cholestasis with a significant decrease in serum cholesterol, bile acids and bilirubin levels as well as in hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) activities and hepatic total, protein-bound and non-protein sulfhydryl groups. Also, treatment with EE produced significant increase in serum Pi-glutathione-s-transferase (Pi-GST), gamma glutamyl transpeptidase (γ-GT) and alpha-glutathione-s-transferase (α-GST) activities as well as serum nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) level and hepatic malondialdehyde (MDA) level as compare to control group. Oral administration of the aerial parts of ethanolic extract at a concentration of 150 mg/kg b.w. daily to rats treated with EE for 15 days showed a significant protection against-induced decrease in serum cholesterol, bile acids and bilirubin levels. The treatment also resulted in a significant increase in hepatic SOD, GPx and GR activities as well as hepatic total, protein-bound and non-protein sulfhydryl groups. In addition, the extract could inhibit serum Pi-GST, γ-GT and α-GST activities as well as reduce serum TNF-α, NO and hepatic MDA as compare to ethinylestradiol treated rats. High content of flavonoids and phenolic compounds was found in ethanolic extract, which may be responsible for free radical activity. The results clearly suggest that the aerial parts of J. montana extract may effectively normalize the impaired antioxidant status in ethinylestradiol (EE)-cholestatic model. Thus the extract may have a therapeutic value in drug-induced biliary cholestasis as well as in hormonal therapy.
Collapse
Affiliation(s)
- Mohammed A. Hussein
- Department of Biochemistry, Faculty of Pharmacy, October 6th University, Cairo, Egypt
| | - Soad M. Abdel-Gawad
- Department of Chemistry, Faculty of Science (Girl’s), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Smith A, Contreras C, Ko KH, Chow J, Dong X, Tuo B, Zhang HH, Chen DB, Dong H. Gender-specific protection of estrogen against gastric acid-induced duodenal injury: stimulation of duodenal mucosal bicarbonate secretion. Endocrinology 2008; 149:4554-66. [PMID: 18499763 PMCID: PMC2553385 DOI: 10.1210/en.2007-1597] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Because human duodenal mucosal bicarbonate secretion (DMBS) protects duodenum against acid-peptic injury, we hypothesize that estrogen stimulates DMBS, thereby attributing to the clinically observed lower incidence of duodenal ulcer in premenopausal women than the age-matched men. We found that basal and acid-stimulated DMBS responses were 1.5 and 2.4-fold higher in female than male mice in vivo, respectively. Acid-stimulated DMBS in both genders was abolished by ICI 182,780 and tamoxifen. Estradiol-17beta (E2) and the selective estrogen receptor (ER) agonists of ERalpha [1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole] and ERbeta [2,3-bis(4-hydroxyphenyl) propionitrile], but not progesterone, rapidly stimulated ER-dependent murine DMBS in vivo. E2 dose dependently stimulated murine DMBS, which was attenuated by a Cl(-)/HCO3(-) anion exchanger inhibitor 4,4'-didsothio- cyanostilbene-2, 2'-disulfonic acid, removal of extracellular Cl(-), and in cystic fibrosis transmembrane conductance regulator knockout female mice. E2 stimulated murine DMBS in vitro in both genders with significantly greater response in female than male mice (female to male ratio = 4.3). ERalpha and ERbeta mRNAs and proteins were detected in murine duodenal epithelium of both genders; however, neither ERalpha nor ERbeta mRNA and protein expression levels differed according to gender. E2 rapidly mobilized intracellular calcium in a duodenal epithelial SCBN cell line that expresses ERalpha and ERbeta, whereas BAPTA-AM abolished E2-stimulated murine DMBS. Thus, our data show that E2 stimulates DMBS via ER dependent mechanisms linked to intracellular calcium, cystic fibrosis transmembrane conductance regulator, and Cl(-)/HCO3(-) anion exchanger. Gender-associated differences in basal, acid- and E2-stimulated DMBS may have offered a reasonable explanation for the clinically observed lower incidence of duodenal ulcer in premenopausal women than age-matched men.
Collapse
Affiliation(s)
- Anders Smith
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Carreras FI, Lehmann GL, Ferri D, Tioni MF, Calamita G, Marinelli RA. Defective hepatocyte aquaporin-8 expression and reduced canalicular membrane water permeability in estrogen-induced cholestasis. Am J Physiol Gastrointest Liver Physiol 2007; 292:G905-12. [PMID: 17110522 DOI: 10.1152/ajpgi.00386.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous work supports a role for aquaporin-8 (AQP8) water channels in rat hepatocyte bile formation mainly by facilitating the osmotically driven canalicular secretion of water. In this study, we tested whether a condition with compromised canalicular bile secretion, i.e., the estrogen-induced intrahepatic cholestasis, displays defective hepatocyte AQP8 functional expression. After 17alpha-ethinylestradiol administration (5 mg x kg body wt(-1).day(-1) for 5 days) to rats, the bile flow was reduced by 58% (P < 0.05). By subcellular fractionation and immunoblotting analysis, we found that 34 kDa AQP8 was significantly decreased by approximately 70% in plasma (canalicular) and intracellular (vesicular) liver membranes. However, 17alpha-ethinylestradiol-induced cholestasis did not significantly affect the protein level or the subcellular localization of sinusoidal AQP9. Immunohistochemistry for liver AQPs confirmed these observations. Osmotic water permeability (P(f)) of canalicular membranes, measured by stopped-flow spectrophotometry, was significantly reduced (73 +/- 1 vs. 57 +/- 2 microm/s) in cholestasis, consistent with defective canalicular AQP8 functional expression. By Northern blotting, we found that AQP8 mRNA expression was increased by 115% in cholestasis, suggesting a posttranscriptional mechanism of protein level reduction. Accordingly, studies in primary cultured rat hepatocytes indicated that the lysosomal protease inhibitor leupeptin prevented the estrogen-induced AQP8 downregulation. In conclusion, hepatocyte AQP8 protein expression is downregulated in estrogen-induced intrahepatic cholestasis, presumably by lysosomal-mediated degradation. Reduced canalicular membrane AQP8 expression is associated with impaired osmotic membrane water permeability. Our data support the novel notion that a defective expression of canalicular AQP8 contributes as a mechanism for bile secretory dysfunction of cholestatic hepatocytes.
Collapse
Affiliation(s)
- Flavia I Carreras
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000 Rosario, Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. The excretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl- channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl-/HCO3- exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl- and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl- channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes). cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrocholeresis.
Collapse
Affiliation(s)
- Jesús-M Banales
- Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clinica Universitaria and CIMA, Avda. Pio XII 55, E-31008 Pamplona, Spain
| | | | | |
Collapse
|
5
|
Crocenzi FA, Pellegrino JM, Catania VA, Luquita MG, Roma MG, Mottino AD, Pozzi EJS. Galactosamine prevents ethinylestradiol-induced cholestasis. Drug Metab Dispos 2006; 34:993-7. [PMID: 16554370 DOI: 10.1124/dmd.106.009308] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethinylestradiol (EE) induces intrahepatic cholestasis in experimental animals being its derivative, ethinylestradiol 17beta-glucuronide, a presumed mediator of this effect. To test whether glucuronidation is a relevant step in the pathogenesis of cholestasis induced by EE (5 mg/kg b.wt. s.c. for 5 consecutive days), the effect of simultaneous administration of galactosamine (200 mg/kg b.wt. i.p.) on biliary secretory function was studied. A single injection of this same dose of galactosamine was able to decrease hepatic UDP-glucuronic acid (UDP-GA) levels by 85% and excretion of EE-17beta-glucuronide after administration of a tracer dose of [3H]EE by 40%. Uridine (0.9 g/kg b.wt. i.p.) coadministration reverted the effect of galactosamine on hepatic UDP-GA levels and restored the excretion of [3H]EE-17beta-glucuronide. When administered for 5 days, galactosamine itself did not alter any of the serum markers of liver injury studied (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) or biliary secretory function. When coadministered with EE, galactosamine partially prevented the impairment induced by this estrogen in total bile flow, the bile-salt-independent fraction of bile flow, basal bile salt secretion, and the secretory rate maximum of tauroursodeoxycholate. Uridine coadministration partially prevented galactosamine from exerting its anticholestatic effects. In conclusion, galactosamine administration partially prevented EE-induced cholestasis by a mechanism involving decreased UDP-GA availability for subsequent formation of EE 17beta-glucuronide. The evidence thus supports the hypothesis that EE 17beta-glucuronide is involved in the pathogenesis of EE cholestasis.
Collapse
Affiliation(s)
- Fernando A Crocenzi
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 570 (2000) Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
6
|
Geier A, Dietrich CG, Gerloff T, Haendly J, Kullak-Ublick GA, Stieger B, Meier PJ, Matern S, Gartung C. Regulation of basolateral organic anion transporters in ethinylestradiol-induced cholestasis in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:87-94. [PMID: 12507762 DOI: 10.1016/s0005-2736(02)00657-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND/AIMS Estrogen-mediated cholestasis is an important clinical entity, but its molecular pathophysiology is still not fully understood. Impaired sodium-dependent uptake of bile acids has been associated with diminished expression of a basolateral Na(+)/bile acid cotransporter (Ntcp), whereas sodium-independent uptake is maintained despite a down-regulation of the organic anion transporter Oatp1. Thus, expression of the two other rat Oatps (Oatps2 and -4) was determined in estrogen-induced cholestasis. In addition, known transactivators of Oatp2 and Ntcp were studied to further characterize transcriptional regulation of these transporter genes. METHODS Hepatic protein and mRNA expression of various Oatps (1, 2, 4) in comparison to Ntcp were analyzed after 0.5, 1, 3 and 5 days of ethinylestradiol (EE) treatment (5 mg/kg) in rats. Binding activities of Oatp2 and Ntcp transactivators were assessed by electrophoretic mobility shift assays. RESULTS All basolateral Oatps (1, 2 and 4) were specifically down-regulated at the protein level by 30-40% of controls, but less pronounced than Ntcp (minus 70-80%). In contrast to unaltered Oatp4 mRNA levels, Oatp1 and Oatp2 mRNAs were reduced to various extents (minus 40-90% of controls). Binding activity of known transactivators of Ntcp and Oatp2 such as hepatocyte nuclear factor 1 (HNF1), CAAT enhancer binding protein alpha (C/EBPalpha) and pregnane X receptor (PXR) were also diminished during the time of cholestasis. CONCLUSIONS Estrogen-induced cholestasis results in a down-regulation of all basolateral organic anion transporters. The moderate decline in expression of Oatp1, -2 and -4 may explain the unchanged sodium-independent transport of bile acids due to overlapping substrate specificity. Reduction in transporter gene expression seems to be mediated by a diminished nuclear binding activity of transactivators such as HNF1, C/EBP and PXR by estrogens.
Collapse
Affiliation(s)
- Andreas Geier
- Department of Internal Medicine III, University of Technology Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Alvaro D, Alpini G, Onori P, Franchitto A, Glaser S, Le Sage G, Gigliozzi A, Vetuschi A, Morini S, Attili AF, Gaudio E. Effect of ovariectomy on the proliferative capacity of intrahepatic rat cholangiocytes. Gastroenterology 2002; 123:336-44. [PMID: 12105861 DOI: 10.1053/gast.2002.34169] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS We evaluated the effects of ovariectomy (OVX) and estrogen replacement treatment on cholangiocyte proliferation induced by bile duct ligation (BDL). METHODS BDL (2 weeks) was performed in ovariectomized rats and the proliferative and apoptotic activity compared with normal, with BDL control rats, and with BDL +/- OVX rats treated with 17-beta estradiol. RESULTS OVX induced a significant (P < 0.01) reduction of bile duct mass in BDL rats. The reduction of bile duct mass induced by OVX was associated with a decreased expression of estrogen receptor (ER)-alpha (2.5-fold) and, mainly, ER-beta (35-fold). Proliferating cellular nuclear antigen (PCNA) expression in cholangiocytes was impaired by OVX, indicating depression of proliferation, whereas terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and Fas positivity were markedly enhanced, indicating activation of Fas-mediated apoptosis. Administration of 17-beta estradiol during BDL in OVX rats induced a normalization of bile duct mass, ER expression, cholangiocyte proliferation, and apoptosis (Fas and TUNEL) in comparison with untreated BDL rats. CONCLUSIONS Our findings support the role of endogenous estrogens in sustaining the enhanced proliferative and secretory activities of cholangiocytes in cholestasis. On the basis of these data, the hypothesis of an estrogenic functional deficiency in chronic cholestatic liver diseases should merit careful attention.
Collapse
Affiliation(s)
- Domenico Alvaro
- Division of Gastroenterology, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Cuevas MJ, Almar M, González-Gallego J. Effects of epomediol on ethinyloestradiol-induced changes in glutathione homeostasis in the rat. PHARMACOLOGY & TOXICOLOGY 2002; 90:121-6. [PMID: 12071332 DOI: 10.1034/j.1600-0773.2002.900302.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epomediol is a synthetic terpenoid compound that has been reported to reduce ethinyloestradiol-induced cholestasis. The choleretic action of epomediol is related to an increase in both the bile acid-dependent and independent fractions of bile flow, but the role of glutathione metabolism and transport is still unknown. This study was aimed to evaluate if changes in glutathione homeostasis could contribute to the beneficial effects of epomediol in rats with ethinyloestradiol-induced cholestasis. When compared to control animals, ethinyloestradiol treatment resulted in a significant decrease in the liver concentration of reduced (GSH) and oxidized glutathione. Both GSH and oxidized glutathione concentrations returned to normal in animals receiving ethinyloestradiol plus epomediol. Ethinyloestradiol administration induced a significant decrease in plasma and renal GSH and the tripeptide was almost absent from bile. Combined treatment with epomediol plus ethinyloestradiol normalised renal GSH and both biliary and liver cysteine were significantly increased. Liver and kidney gamma-glutamyltranspeptidase activities were higher in rats receiving ethinyloestradiol and still remained elevated in animals with the combined treatment. Liver gamma-glutamylcysteine synthetase activity rose significantly by administration of ethinyloestradiol plus epomediol but the corresponding mRNA levels were not modified. Changes in glutathione homeostasis and higher biliary levels of GSH amino acid constituents could contribute to the beneficial effects of epomediol in rats with ethinyloestradiol-induced cholestasis.
Collapse
|
9
|
Cuevas MJ, Mauriz JL, Almar M, Collado PS, González-Gallego J. Effect of epomediol on ethinyloestradiol-induced changes in bile acid and cholesterol metabolism in rats. Clin Exp Pharmacol Physiol 2001; 28:637-42. [PMID: 11473529 DOI: 10.1046/j.1440-1681.2001.03496.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Epomediol is a terpenoid compound that has been reported to stimulate bile acid synthesis and to reverse 17alpha- ethinyloestradiol-induced cholestasis. The aim of the present study was to investigate the contribution of changes in bile acid and cholesterol metabolism to the protective effects of epomediol in ethinyloestradiol-treated rats. Animals received epomediol for 5 days at 100 mg/kg daily, i.p., ethinyloestradiol for 5 days at 5 mg/kg, s.c., or a combination of both drugs. 2. When compared with control animals, epomediol treatment resulted in a significant increase in bile flow (+42%) and in the secretion of bile acids (+74%) and cholesterol (+42%). Ethinyloestradiol administration caused a significant decrease in bile flow (-43%), bile acid secretion (-37%) and cholesterol secretion (-45%). Bile flow, bile acid secretion and cholesterol secretion were significantly increased in animals receiving ethinyloestradiol plus epomediol compared with ethinyloestradiol-treated rats (+13, +29 and +31%, respectively). 3. Both cholesterol 7alpha-hydroxylase and hydroxy-3- methylglutaryl coenzyme A reductase activities were significantly increased in epomediol-treated rats (+30 and +96%, respectively). Cholesterol 7alpha-hydroxylase activity was significantly reduced by ethinyloestradiol (-22%) and did not differ from control values in animals receiving epomediol plus ethinyloestradiol. Levels of cholesterol 7alpha-hydroxylase mRNA were elevated (+41%) by epomediol, but were not significantly modified by ethinyloestradiol or ethinyloestradiol plus epomediol. 4. It is concluded that epomediol enhances bile acid secretion by increasing the expression of cholesterol 7alpha-hydroxylase. Changes in bile acid metabolism contribute to the effects of epomediol in rats with ethinyloestradiol-induced cholestasis.
Collapse
Affiliation(s)
- M J Cuevas
- Department of Physiology, University of León, University Campus, 24071 León, Spain
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- M Trauner
- Department of Medicine, Karl Franzens University, Graz, Austria
| | | | | |
Collapse
|
11
|
Koopen NR, Wolters H, Havinga R, Vonk RJ, Jansen PL, Müller M, Kuipers F. Impaired activity of the bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat. Hepatology 1998; 27:537-45. [PMID: 9462655 DOI: 10.1002/hep.510270231] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To test the hypothesis that impaired activity of the bile canalicular organic anion transporting system mrp2 (cmoat) is a key event in the etiology of 17alpha-ethinylestradiol (EE)-induced intrahepatic cholestasis in rats, EE (5 mg/kg subcutaneously daily) was administered to male normal Wistar (NW) and mrp2-deficient Groningen Yellow/Transport-deficient Wistar (GY/TR-) rats. Elevated plasma bilirubin levels in GY/TR- rats increased upon EE-treatment from 65 +/- 8.4 micromol/L to 183 +/- 22.7 micromol/L within 3 days, whereas bilirubin levels remained unaffected in NW rats. Biliary bilirubin secretion was 1.5-fold increased in NW rats but remained unaltered in GY/TR- rats. Plasma bile salt concentrations remained unchanged in both strains, although hepatic levels of the sinusoidal Na+-taurocholate cotransporting protein (ntcp) were markedly reduced. Biliary secretion of endogenous bile salt was not affected in either strain. A clear reduction of mrp2 levels in liver plasma membranes of NW rats was found after 3 days of treatment. The bile salt-independent fraction of bile flow (BSIF) was reduced from 2.6 to 2.0 microL/min/100 g body weight in NW rats with a concomitant 62% reduction of biliary glutathione secretion. The absence of mrp2 and biliary glutathione in GY/TR- rats did not prevent induction of EE-cholestasis; a similar absolute reduction of BSIF, i.e., from 1.1 to 0.6 microL/min/100 g bodyweight, was found in these animals. EE treatment caused a reduction of the maximal biliary secretory rate (S(RM)) of the mrp2 substrate, dibromosulphthalein (DBSP), from 1,040 to 695 nmol/min/100 g body weight (-38%) in NW rats and from 615 to 327 nmol/min/100 g body weight (-46%) in GY/TR- rats. These results demonstrate that inhibition of mrp2 activity and/or biliary glutathione secretion is not the main cause of EE-induced cholestasis in rats. The data indicate that alternative pathways exist for the biliary secretion of bilirubin and related organic anions that are also affected by EE.
Collapse
Affiliation(s)
- N R Koopen
- Groningen Institute for Drug Studies, Laboratory of Nutrition and Metabolism, University Hospital Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|