1
|
Reydellet L, Le Saux A, Blasco V, Nafati C, Harti-Souab K, Armand R, Lannelongue A, Gregoire E, Hardwigsen J, Albanese J, Chopinet S. Impact of Hyperoxia after Graft Reperfusion on Lactate Level and Outcomes in Adults Undergoing Orthotopic Liver Transplantation. J Clin Med 2023; 12:jcm12082940. [PMID: 37109276 PMCID: PMC10145037 DOI: 10.3390/jcm12082940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Hyperoxia is common during liver transplantation (LT), without being supported by any guidelines. Recent studies have shown the potential deleterious effect of hyperoxia in similar models of ischemia-reperfusion. Hyperoxia after graft reperfusion during orthotopic LT could increase lactate levels and worsen patient outcomes. METHODS We conducted a retrospective and monocentric pilot study. All adult patients who underwent LT from 26 July 2013 to 26 December 2017 were considered for inclusion. Patients were classified into two groups according to oxygen levels before graft reperfusion: the hyperoxic group (PaO2 > 200 mmHg) and the nonhyperoxic group (PaO2 < 200 mmHg). The primary endpoint was arterial lactatemia 15 min after graft revascularization. Secondary endpoints included postoperative clinical outcomes and laboratory data. RESULTS A total of 222 liver transplant recipients were included. Arterial lactatemia after graft revascularization was significantly higher in the hyperoxic group (6.03 ± 4 mmol/L) than in the nonhyperoxic group (4.81 ± 2 mmol/L), p < 0.01. The postoperative hepatic cytolysis peak, duration of mechanical ventilation and duration of ileus were significantly increased in the hyperoxic group. CONCLUSIONS In the hyperoxic group, the arterial lactatemia, the hepatic cytolysis peak, the mechanical ventilation and the postoperative ileus were higher than in the nonhyperoxic group, suggesting that hyperoxia worsens short-term outcomes and could lead to increase ischemia-reperfusion injury after liver transplantation. A multicenter prospective study should be performed to confirm these results.
Collapse
Affiliation(s)
- Laurent Reydellet
- Department of Anaesthesia and Intensive Care, Hôpital la Timone, 13005 Marseille, France
| | - Audrey Le Saux
- Department of Anaesthesia and Intensive Care, Hôpital la Timone, 13005 Marseille, France
| | - Valery Blasco
- Department of Anaesthesia and Intensive Care, Hôpital la Timone, 13005 Marseille, France
| | - Cyril Nafati
- Department of Anaesthesia and Intensive Care, Hôpital la Timone, 13005 Marseille, France
| | - Karim Harti-Souab
- Department of Anaesthesia and Intensive Care, Hôpital la Timone, 13005 Marseille, France
| | - Romain Armand
- Department of Anaesthesia and Intensive Care, Hôpital la Timone, 13005 Marseille, France
| | - Ariane Lannelongue
- Department of Anaesthesia and Intensive Care, Carémeau Hospital, 30029 Nîmes, France
| | - Emilie Gregoire
- Department of Digestive Surgery and Liver Transplantation, Hôpital la Timone, 13005 Marseille, France
- European Center for Medical Imaging Research CERIMED/LIIE, Aix-Marseille Université, 13385 Marseille, France
| | - Jean Hardwigsen
- Department of Digestive Surgery and Liver Transplantation, Hôpital la Timone, 13005 Marseille, France
- École de Médecine, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Jacques Albanese
- Department of Anaesthesia and Intensive Care, Hôpital la Timone, 13005 Marseille, France
- École de Médecine, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Sophie Chopinet
- Department of Digestive Surgery and Liver Transplantation, Hôpital la Timone, 13005 Marseille, France
- European Center for Medical Imaging Research CERIMED/LIIE, Aix-Marseille Université, 13385 Marseille, France
- École de Médecine, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| |
Collapse
|
2
|
Nakanuma S, Tajima H, Takamura H, Sakai S, Gabata R, Okazaki M, Shinbashi H, Ohbatake Y, Makino I, Hayashi H, Miyashita T, Fushida S, Ohta T. Pretreatment with a Phosphodiesterase-3 Inhibitor, Milrinone, Reduces Hepatic Ischemia-Reperfusion Injury, Minimizing Pericentral Zone-Based Liver and Small Intestinal Injury in Rats. Ann Transplant 2020; 25:e922306. [PMID: 32661218 PMCID: PMC7380127 DOI: 10.12659/aot.922306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Severe pericentral zone (zone 3)-based liver injury (LI) may become intractable, with allograft dysfunction after liver transplantation. The phosphodiesterase-3 inhibitor, milrinone, has been reported to attenuate hepatic ischemia-reperfusion injury (IRI). This study clarified how hepatic IRI involved zone 3-based LI, in which zone milrinone was effective, and whether milrinone could improve small intestinal injury (SII) with hepatic IRI. MATERIAL AND METHODS Rats were divided into sham, ischemia-reperfusion (IR), or IR+milrinone groups (n=13 per group). Milrinone was administered intraportally via intrasplenic injection, and whole hepatic ischemia was induced for 30 min. Five hours after reperfusion, serum chemistry and histopathological findings were compared. Expression of CD34 for the detection of altered sinusoidal endothelium as sinusoidal capillarization and cleaved caspase-3 as an apoptosis marker were analyzed via immunohistochemistry. Survival rates were examined after 45 min of whole hepatic ischemia. RESULTS Serum aspartate aminotransferase and direct bilirubin levels were significantly decreased in the IR+milrinone group compared with those of the IR group. The degree of LI, sinusoidal capillarization and apoptosis at zone 3 in the IR group was significantly increased compared with those at the periportal zone (zone 1). These findings at zone 3 in the IR group were improved in the IR+milrinone group. SII with villus congestion and apoptosis in the IR group was significantly attenuated in the IR+milrinone group. The 7-day survival rate was significantly elevated in the IR+milrinone group as compared with that of the IR group. CONCLUSIONS A hepatic IRI model caused zone 3-based LI and SII, which were attenuated by intraportal administration of milrinone.
Collapse
Affiliation(s)
- Shinichi Nakanuma
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hidehiro Tajima
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Seisho Sakai
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ryosuke Gabata
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsuyoshi Okazaki
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Shinbashi
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshinao Ohbatake
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Isamu Makino
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hironori Hayashi
- Department of Surgery, Toyama Prefectural Central Hospital, Toyama City, Toyama, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sachio Fushida
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuo Ohta
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
3
|
Iwasaki J, Afify M, Bleilevens C, Klinge U, Weiskirchen R, Steitz J, Vogt M, Yagi S, Nagai K, Uemoto S, Tolba RH. The Impact of a Nitric Oxide Synthase Inhibitor (L-NAME) on Ischemia⁻Reperfusion Injury of Cholestatic Livers by Pringle Maneuver and Liver Resection after Bile Duct Ligation in Rats. Int J Mol Sci 2019; 20:ijms20092114. [PMID: 31035686 PMCID: PMC6539833 DOI: 10.3390/ijms20092114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
The Pringle maneuver (PM) has been widely used to control blood loss during liver resection. However, hepatic inflow occlusion can also result in hepatic ischemia–reperfusion injury (IRI), especially in patients with a cholestatic, fibrotic, or cirrhotic liver. Here we investigate a nitric oxide synthase (NOS) inhibitor N-Nitroarginine methyl ester (L-NAME) on IRI after the PM and partial hepatectomy of cholestatic livers induced by bile duct ligation (BDL) in rats. Control group (non-BDL/no treatment), BDL + T group (BDL/L-NAME treatment) and BDL group (BDL/no treatment) were analyzed. Cholestasis was induced by BDL in the L-NAME and BDL group and a 50% partial hepatectomy with PM was performed. L-NAME was injected before PM in the BDL + T group. Hepatocellular damage, portal venous flow, microcirculation, endothelial lining, and eNOS, iNOS, interleukin (IL)-6, and transforming growth factor-β (TGF-β) were evaluated. Microcirculation of the liver in the BDL + T group tended to be higher. Liver damage and apoptotic index were significantly lower and Ki-67 labeling index was higher in the BDL + T group while iNOS and TGF-β expression was decreased. This was corroborated by a better preserved endothelial lining. L-NAME attenuated IRI following PM and improved proliferation/regeneration of cholestatic livers. These positive effects were considered as the result of improved hepatic microcirculation, prevention of iNOS formation, and TGF-β mRNA upregulation.
Collapse
Affiliation(s)
- Junji Iwasaki
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Two Photon Imaging Facility of the Interdisciplinary Center for Clinical Research (IZKF), RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Mamdouh Afify
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza Square 12211, Egypt.
| | - Christian Bleilevens
- Department of Anesthesiology, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Uwe Klinge
- Department of General, Visceral and Transplantation Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Julia Steitz
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Michael Vogt
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
- Two Photon Imaging Facility of the Interdisciplinary Center for Clinical Research (IZKF), RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| | - Shintaro Yagi
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Kazuyuki Nagai
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Shinji Uemoto
- Division of Hepatobiliary Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Rene H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Medical Faculty, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Wrobeln A, Laudien J, Groß-Heitfeld C, Linders J, Mayer C, Wilde B, Knoll T, Naglav D, Kirsch M, Ferenz KB. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur J Pharm Biopharm 2017; 115:52-64. [DOI: 10.1016/j.ejpb.2017.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/28/2023]
|
5
|
Zhou H, Jiang C, Gu L, Liu YE, Sun L, Xu Q. Influence of melatonin on IL-1Ra gene and IL-1 expression in rats with liver ischemia reperfusion injury. Biomed Rep 2016; 4:667-672. [PMID: 27284404 PMCID: PMC4887919 DOI: 10.3892/br.2016.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to explore the influence of melatonin (MT) on rats with liver ischemia reperfusion injury (IRI) and its mechanism. A total of 66 male Sprague-Dawley rats were randomly divided into 3 groups: i) Normal control group, ii) ischemia reperfusion group (IR group) and iii) melatonin treatment group (MT group). Rats in the MT group were administered an intraperitoneal injection of MT (10 mg/kg, 1 ml) at 70 and 35 min before ischemia, early reperfusion, and 1 and 2 h after reperfusion, respectively. Blood was removed at the normal time-point (prior to any processes), 35 min before ischemia, 2, 4, 8 and 24 h after reperfusion. Subsequently the rats were sacrificed. The pathological changes of liver tissues, interleukin-1 receptor antagonist (IL-1Ra) gene and IL-1 expression levels were detected. There were no evident differences between the immediate reperfusion and 2 h IR group and MT group. The liver structure injury of the 4, 8 and 24 h MT groups were improved to various differences compared to the corresponding IR group; liver IL-1β of the MT group at 35 min after ischemia, and 2, 4, 8 and 24 h after reperfusion was evidently lower than that of the IR group (P<0.05); IL-1Ra mRNA expression in the 2 h MT group was higher compared to the 2 h IR group by 4.85-fold; and IL-1Ra mRNA expression in the 4 h MT group was higher compared to the 4 h IR group by 9.34-fold. Differences between two groups at other time-points were <2-fold. In conclusion, MT can upregulate IL-1Ra gene expression by reducing generation of IL-1 thus reducing IRI.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Y E Liu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Longci Sun
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qing Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
6
|
Toshihiro W, Kurata S, Takuro S, Ichiro O, Yasuaki S, Ikeda T, Ureshino H, Ayuse T. Protective Effect of Nitric Oxide on Liver Circulation from Ischemia Reperfusion Injury. J INVEST SURG 2015; 28:236-44. [PMID: 26290958 DOI: 10.3109/08941939.2015.1024357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The reduction of endogenous nitric oxide (NO) production during hepatic ischemia-reperfusion injury, generally via a reduction in endothelial NO synthase activity, leads to liver injury. We hypothesized that administration of an exogenous NO donor into the portal vein may ameliorate hepatic blood flow reduction after a period of ischemia. MATERIAL AND METHODS A total of 90 min of ischemia (portal vein and hepatic artery) was applied in 15 anesthetized pigs, using the Pringle method under sevoflurane anesthesia. All animals were administered either saline (control group, n = 8) or sodium nitroprusside (SNP, n = 7) as exogenous NO donor drugs into the portal vein, 30 min before and after ischemia. The portal venous blood flow and hepatic artery blood flow were measured continuously using transonic flow probes attached to each vessel. Endogenous NO (NOx = NO2- + NO3-) production was measured every 10 min using a microdialysis probe placed in the left lobe of the liver. RESULTS In the SNP group, portal venous flow remained unchanged and hepatic artery flow significantly increased compared to baseline. Although the production of liver tissue NOx transiently decreased to 60% after ischemia, its level in the SNP group remained higher than the control saline group. CONCLUSION Regional administration of SNP into the portal vein increases hepatic arterial flow during ischemia reperfusion periods without altering mean systemic arterial pressure. We speculate that administration of an exogenous NO donor may be effective in preventing liver injury via preservation of total hepatic blood flow.
Collapse
Affiliation(s)
- Watanabe Toshihiro
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Shinji Kurata
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Sanuki Takuro
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Okayasu Ichiro
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Shibata Yasuaki
- b Oral Pathology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Toru Ikeda
- b Oral Pathology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Hiroyuki Ureshino
- c Anesthesiology, Course of Medical and Dental Sciences, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Takao Ayuse
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| |
Collapse
|
7
|
Changes in ADMA/DDAH pathway after hepatic ischemia/reperfusion injury in rats: the role of bile. BIOMED RESEARCH INTERNATIONAL 2014; 2014:627434. [PMID: 25243167 PMCID: PMC4160639 DOI: 10.1155/2014/627434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022]
Abstract
We investigated the effects of hepatic ischemia/reperfusion (I/R) injury on asymmetric dimethylarginine (ADMA, a nitric oxide synthase inhibitor), protein methyltransferase (PRMT) and dimethylarginine dimethylaminohydrolase (DDAH) (involved, resp., in ADMA synthesis and degradation), and the cationic transporter (CAT). Male Wistar rats were subjected to 30 or 60 min hepatic ischemia followed by 60 min reperfusion. ADMA levels in serum and bile were determined. Tissue ADMA, DDAH activity, DDAH-1 and CAT-2 protein, DDAH-1 and PRMT-1 mRNA expression, GSH/GSSG, ROS production, and lipid peroxidation were detected. ADMA was found in bile. I/R increased serum and bile ADMA levels while an intracellular decrease was detected after 60 min ischemia. Decreased DDAH activity, mRNA, and protein expression were observed at the end of reperfusion. No significant difference was observed in GSH/GSSG, ROS, lipid peroxidation, and CAT-2; a decrease in PRMT-1 mRNA expression was found after I/R. Liver is responsible for the biliary excretion of ADMA, as documented here for the first time, and I/R injury is associated with an oxidative stress-independent alteration in DDAH activity. These data are a step forward in the understanding of the pathways that regulate serum, tissue, and biliary levels of ADMA in which DDAH enzyme plays a crucial role.
Collapse
|
8
|
Chrzanowska A, Graboń W, Mielczarek-Puta M, Barańczyk-Kuźma A. Significance of arginase determination in body fluids of patients with hepatocellular carcinoma and liver cirrhosis before and after surgical treatment. Clin Biochem 2014; 47:1056-9. [PMID: 24713397 DOI: 10.1016/j.clinbiochem.2014.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To assess the utility of arginase activity and expression in diagnosis of liver diseases. DESIGN AND METHODS Arginase activity, sensitivity and specificity were determined in serum of 140 patients including 50 with HCC, 60 with LC, 30 with choledocholithiasis (CDL) and 90 healthy controls. In HCC and LC arginase activity in serum was studied before and after tumor resection or liver transplantation. Arginase sensitivity in HCC was compared to that of alpha-fetoprotein (AFP) and aminotransferases (AST, ALT). In LC the activity was determined also in bile before and after transplantation. The expression of arginase isoenzymes in serum was studied by Western blotting. RESULTS In HCC and LC the preoperative arginase activity was significantly higher compared to controls, and it decreased after surgery. The sensitivity of arginase in HCC was much higher than that of AFP, AST and ALT (96, 40, 20 and 18%, respectively). In HCC it was higher than in LC (93%) and CDL (33%). The specificity of arginase was above 80%. In bile of cirrhotic patients the highest activity was immediately after liver transplantation. It decreased with time but increased dramatically at the time of the graft rejection. Arginase AII was present in serum of HCC and LC but not the control cases. CONCLUSIONS The increase of arginase activity in serum accompanied by the presence of isoenzyme AII can be useful in HCC and LC diagnosis. The determination of arginase activity in bile may be helpful in monitoring liver graft recipients.
Collapse
Affiliation(s)
- Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Wojciech Graboń
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Magdalena Mielczarek-Puta
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland
| | - Anna Barańczyk-Kuźma
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Banacha 1, Poland.
| |
Collapse
|
9
|
Lentsch AB. Regulatory mechanisms of injury and repair after hepatic ischemia/reperfusion. SCIENTIFICA 2012; 2012:513192. [PMID: 24278708 PMCID: PMC3820555 DOI: 10.6064/2012/513192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/12/2012] [Indexed: 06/02/2023]
Abstract
Hepatic ischemia/reperfusion injury is an important complication of liver surgery and transplantation. The mechanisms of this injury as well as the subsequent reparative and regenerative processes have been the subject of thorough study. In this paper, we discuss the complex and coordinated responses leading to parenchymal damage after liver ischemia/reperfusion as well as the manner in which the liver clears damaged cells and regenerates functional mass.
Collapse
Affiliation(s)
- Alex B. Lentsch
- Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, ML 0558, Cincinnati, OH 45267-0558, USA
| |
Collapse
|
10
|
Fukazawa K, Pretto EA. The effect of methylene blue during orthotopic liver transplantation on post reperfusion syndrome and postoperative graft function. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2011; 18:406-13. [PMID: 21104279 DOI: 10.1007/s00534-010-0344-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/PURPOSE In orthotopic liver transplantation (OLT), a major component of the post-reperfusion syndrome is hypotension, which may lead to additional graft liver ischemia-reperfusion injury. A proposed mechanism of reperfusion hypotension is the massive induction of oxidative stress triggering the release of pro-inflammatory mediators, including nitric oxide (NO). Methylene blue (MB) is an inhibitor of inducible NO synthase and an NO scavenger that has been shown to attenuate reperfusion hypotension. Of note, recent reports have shown that the exogenous administration of NO during OLT significantly improved the recovery of the graft liver. Therefore, we sought to investigate the effects of MB on the functional recovery of the graft liver following OLT. METHODS We analyzed retrospective data from 715 patients who underwent OLT between 2003 and 2008. We classified patients into those who received a 1-1.5 mg/kg intravenous bolus of MB immediately prior to reperfusion (MB group) and those who did not (control group). Propensity score matching was used to adjust for differences between patients who received intraoperative MB and those who did not, and these data were used to determine the association between a single MB bolus during OLT and postoperative graft dysfunction. RESULTS Our study cohort consisted of 715 OLT patients, of whom 105 received MB and 610 did not. After propensity score matching, demographic and donor data were similar in the two groups, except for the older age of recipients in the MB group (55.5 ± 0.9 vs 53.1 ± 0.8 years, p = 0.026). No differences were seen in mean arterial pressure changes after reperfusion and no differences were found in vasopressor requirements (bolus or infusion) or transfusion requirements. In addition, there was no significant difference in the incidence of primary nonfunction, retransplantation within 60 days, acute rejection, or graft survival between the groups by multivariate analysis or Kaplan-Meier survival analysis. CONCLUSIONS In our study, the administration of MB at 1-1.5 mg/kg immediately prior to reperfusion did not prevent post-reperfusion hypotension and did not decrease vasopressor usage or transfusion requirements after reperfusion. Also, MB did not have any impact on postoperative graft function. These findings may argue against the routine use of MB during OLT.
Collapse
Affiliation(s)
- Kyota Fukazawa
- Division of Solid Organ Transplantation, Department of Anesthesiology, Preoperative and Pain Management, Leonard Miller School of Medicine, University of Miami, 1611 NW 12th Avenue, D318, Miami, FL 33136, USA.
| | | |
Collapse
|
11
|
Theodoraki K, Arkadopoulos N, Fragulidis G, Vassiliou I, Markatou M, Pafiti A, Kostopanagiotou G, Smyrniotis V. Ischemic preconditioning attenuates lactate release by the liver during hepatectomies under vascular control: a case-control study. J Gastrointest Surg 2011; 15:589-97. [PMID: 21312069 DOI: 10.1007/s11605-011-1439-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/26/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND We have previously demonstrated lactate release by the liver itself in hepatectomies performed under selective hepatic vascular exclusion. We hypothesized that ischemic preconditioning applied in this setting might lead to a reduction of hepatic lactate production. METHODS Twenty-one patients underwent hepatectomy under inflow and outflow occlusion combined with ischemic preconditioning (IP group, n = 21). These patients were matched 1:1 with patients subjected to the same technique of hepatectomy under vascular occlusion without ischemic preconditioning (control group, n = 21). The transhepatic lactate gradient (hepatic vein-portal vein) was calculated before liver dissection and 60 min post-reperfusion. RESULTS In the control group, the transhepatic lactate gradient before liver resection was negative indicating consumption by the liver. After 60 min post-reperfusion, this gradient became positive, indicating net lactate production by the liver (0.2 ± 0.3 vs. -0.3 ± 0.2 mmol/L, P < 0.001). In the IP group, the liver consumed lactate both before resection and 60 min post-reperfusion (gradients -0.2 ± 1.1 and -0.1 ± 0.6 mmol/L, respectively). The magnitude of lactate release by the liver correlated with systemic hyperlactatemia post-reperfusion and 24 h postoperatively (r(2) = 0.54, P < 0.001 and r(2) = 0.67, P < 0.001, respectively). Significant correlations between the transhepatic lactate gradient post-reperfusion and peak postoperative AST as well as the apoptotic response of the liver remnant were also demonstrated (r(2) = 0.72, P < 0.001 and r(2) = 0.66, P < 0.001, respectively). CONCLUSION The microcirculatory derangement and cellular aerobic metabolism breakdown elicited by ischemia-reperfusion insults can be prevented with hepatoprotective measures such as ischemic preconditioning. The transhepatic lactate gradient could act as a monitoring and prognostic tool of the efficacy of ischemic preconditioning.
Collapse
Affiliation(s)
- Kassiani Theodoraki
- First Department of Anesthesiology, Areteion Hospital, University of Athens School of Medicine, Lambaki 61-63, Athens 111 43, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hoffmann K, Büchler MW, Schemmer P. Supplementation of amino acids to prevent reperfusion injury after liver surgery and transplantation--where do we stand today? Clin Nutr 2011; 30:143-147. [PMID: 20965621 DOI: 10.1016/j.clnu.2010.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/19/2010] [Accepted: 09/15/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIMS Functional liver failure remains one of the major complications after liver surgery. Ischemia/reperfusion injury (IRI) is strongly associated with increased morbidity and mortality after liver resection and transplantation. An ischemia induced activation of Kupffer cells with subsequent release of toxic mediators leads to disturbance of intrahepatic microcirculation, increased oxygen consumption of the liver and depletion of hepatic glycogen reserves. Aim of this review was to summarize the evidence for prevention of IRI by amino acid supplement and to give an overview on potential clinical use in liver surgery. METHODS A systematic literature search (Medline, Embase, and The Cochrane Central Register of Controlled Trials) was performed to identify the relevant literature. RESULTS Amino acid supplement has hepatoprotective effects and is non-toxic. Up to now heterogenic results have been reported from clinical trials. However, positive effects on microcirculation, leukoycte-endothelial interaction, Kupffer cells and pro-inflammatory mediator release have been described in trials investigating glycine supplementation. The data for N-acetylcysteine remain heterogenic. CONCLUSION An effective protection against IRI by amino acid supplementation has been demonstrated in experimental and several clinical studies. However, further clinical trials are warranted to identify the most promising approach for a routine clinical application.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of General and Transplantation Surgery, Ruprecht-Karls-University, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
13
|
Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Pharmacological Preconditioning Using Intraportal Infusion of L-Arginine Protects Against Hepatic Ischemia Reperfusion Injury. J Surg Res 2009; 155:244-53. [DOI: 10.1016/j.jss.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/06/2008] [Accepted: 07/02/2008] [Indexed: 02/08/2023]
|
14
|
Taha M, Simões M, Haddad M, Capelato R, Budny N, Matsumoto A, Soares P, Santos W, Armeato G, Araki C, Gomes J, Magalhães K, Tersariol I, Monteiro H, Oliveira I, Jurkiewicz A, Caricati-Neto A. l-Arginine Supplementation Protects Against Hepatic Ischemia–Reperfusion Lesions in Rabbits. Transplant Proc 2009; 41:816-9. [DOI: 10.1016/j.transproceed.2009.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Hightower CM, Intaglietta M. Early iNOS impairment and late eNOS enhancement during reperfusion following 2.49 MHz continuous ultrasound exposure after ischemia. ULTRASONICS SONOCHEMISTRY 2009; 16:197-203. [PMID: 18595762 PMCID: PMC2579745 DOI: 10.1016/j.ultsonch.2008.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 05/03/2008] [Accepted: 05/17/2008] [Indexed: 05/25/2023]
Abstract
OBJECTIVE Ischemia reperfusion (IR) injury, occurring during heart attacks, hemorrhagic shock, and bypass and transplant surgeries, impairs microcirculatory function and nitric oxide (NO) synthesis. We report the regulation of endothelial and inducible NO synthase (eNOS and iNOS) proteins as a consequence of the application of continuous mode diagnostic frequency ultrasound application following IR injury. METHODS Animals were assigned to one of five groups for microcirculatory assessment or Western blot analysis (WB) as follows: (1) IR+iNOS inhibition (1400W); and (2) IR+1400W+ultrasound for microcirculatory assessment, (3) Control; (4) IR; and (5) IR+ultrasound for WB. Functional capillary density and microvascular diameter, flow velocity, and flow were monitored for microcirculatory assessment. Skin tissue samples were harvested for WB. 2.49MHz continuous ultrasound was used for application. RESULTS Both the inhibition of iNOS alone and iNOS inhibition with ultrasound irradiation positively influenced the microcirculation of observed animals relative to baseline values. Ultrasound exposure resulted in a significant production of eNOS protein in skin tissue harvested 24h into reperfusion (p<0.01). iNOS levels from the same tissue of ultrasound exposed animals were found to be significantly decreased 0.5h into reperfusion (p<0.05). CONCLUSION Protection from lasting IR injury effects in the microcirculation, with continuous mode diagnostic frequency ultrasound, results from augmented eNOS protein levels during late reperfusion. Ultrasound inhibited iNOS protein production during early reperfusion may also confer protection from IR injury.
Collapse
Affiliation(s)
- C Makena Hightower
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, United States.
| | | |
Collapse
|
16
|
Becker T, Mevius I, de Vries DK, Schaapherder AFM, zu Vilsendorf AM, Klempnauer J, Frölich JC, Tsikas D. The L-arginine/NO pathway in end-stage liver disease and during orthotopic liver and kidney transplantation: biological and analytical ramifications. Nitric Oxide 2008; 20:61-7. [PMID: 18948222 DOI: 10.1016/j.niox.2008.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 08/08/2008] [Accepted: 10/03/2008] [Indexed: 12/21/2022]
Abstract
The L-arginine/nitric oxide (L-Arg/NO) pathway is altered in liver and kidney diseases. However, the status of the L-Arg/NO pathway during and after orthotopic transplantation is insufficiently investigated and findings are uncertain because of analytical shortcomings. Also, most human studies have focused on individual members of the L-Arg/NO pathway such as nitrate or asymmetric dimethylarginine (ADMA). In the present article we report on a pilot study investigating extensively the status of the L-Arg/NO pathway before and during orthotopic liver transplantation (OLT). By using fully validated, highly sensitive and specific GC-MS and GC-MS/MS methods nitrite, nitrate, ADMA and its hydrolysis product dimethylamine (DMA), L-arginine and L-ornithine were measured in blood and urine. Our study gives strong evidence of the exceptional importance of hepatic dimethylarginine dimethylaminohydrolase (DDAH) activity for the elimination of systemic ADMA. In end-stage liver disease the synthesis of NO and ADMA as well as the DDAH activity are elevated. However, increase in DDAH activity is insufficient to efficiently eliminate overproduced ADMA. The transplanted liver graft is capable of clearing ADMA in a rapid and sufficient manner. In contrast to studies from other groups, our study shows that in OLT as well as in living donor kidney transplantation, the second study reported here, reperfusion of the graft does not cause drastic alterations to the L-Arg/NO pathway with regard to NO synthesis. In the OLT study the concentration of circulating L-arginine fell temporally dramatically, while L-ornithine levels increased diametrically, most likely due to elevation of arginase activity. However, the relatively long-lasting decrease in plasmatic L-arginine in OLT seems not to have affected NO synthesis after reperfusion. Our OLT study suggests that liver reperfusion is associated with greatly elevated activity of proteolytic and hydrolytic enzymes including DDAH and arginase. Suppression of proteolytic and hydrolytic activity in transplantation could be a useful measure to improve outcome and remains to be investigated in further studies on larger patient collectives. The importance of analytical chemistry in this area of research is also discussed in this article.
Collapse
Affiliation(s)
- Thomas Becker
- Department of Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee SH, Culberson C, Korneszczuk K, Clemens MG. Differential mechanisms of hepatic vascular dysregulation with mild vs. moderate ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1219-26. [PMID: 18325981 DOI: 10.1152/ajpgi.00527.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endotoxemia produces hepatic vascular dysregulation resulting from inhibition of endothelin (ET)-stimulated NO production. Mechanisms include overexpression of caveolin-1 (Cav-1) and altered phosphorylation of endothelial nitric oxide (NO) synthase (NOS; eNOS) in sinusoidal endothelial cells. Since ischemia-reperfusion (I/R) also causes vascular dysregulation, we tested whether the mechanisms are the same. Rats were exposed to either mild (30 min) or moderate (60 min) hepatic ischemia in vivo followed by reperfusion (6 h). Livers were harvested and prepared into precision-cut liver slices for in vitro analysis of NOS activity and regulation. Both I/R injuries significantly abrogated both the ET-1 (1 microM) and the ET(B) receptor agonist (IRL-1620, 0.5 microM)-mediated stimulation of NOS activity. 30 min I/R resulted in overexpression of Cav-1 and loss of ET-stimulated phosphorylation of Ser1177 on eNOS, consistent with an inflammatory response. Sixty-minute I/R also resulted in loss of ET-stimulated Ser1177 phosphorylation, but Cav-1 expression was not altered. Moreover, expression of ET(B) receptors was significantly decreased. This suggests that the failure of ET to activate eNOS following 60-min I/R is associated with decreased protein expression consistent with ischemic injury. Thus hepatic vascular dysregulation following I/R is mediated by inflammatory mechanisms with mild I/R whereas ischemic mechanisms dominate following more severe I/R stress.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
18
|
The Effects of Arginine and Selective Inducible Nitric Oxide Synthase Inhibitor on Pathophysiology of Sepsis in a CLP Model. J Surg Res 2008; 146:298-303. [DOI: 10.1016/j.jss.2007.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/22/2007] [Accepted: 07/17/2007] [Indexed: 01/15/2023]
|
19
|
Fas/FasL-dependent apoptosis of hepatocytes induced in rat and patients with Clonorchis sinensis infection. Parasitol Res 2008; 103:393-9. [DOI: 10.1007/s00436-008-0985-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
20
|
Hightower CM, Intaglietta M. The use of diagnostic frequency continuous ultrasound to improve microcirculatory function after ischemia-reperfusion injury. Microcirculation 2007; 14:571-82. [PMID: 17710628 PMCID: PMC2597308 DOI: 10.1080/10739680701410280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Damage to the circulatory system resulting from ischemia-reperfusion injury (I/R injury) occurs during heart attacks and hemorrhagic shock. The authors report a method for mitigating microcirculatory injury, using diagnostic frequency continuous-mode ultrasound and how effects are influenced by nitric oxide production impairment. METHODS Five groups of hamsters were studied using the dorsal skin fold window chamber: (1) I/R; (2) I/R + ultrasound during ischemia; (3) I/R + ultrasound after ischemia; (4) I/R + N(omega)-nitro-L-arginine methyl ester (L-NAME); and (5) I/R + L-NAME + ultrasound. Functional capillary density (FCD) and microvascular diameter, flow velocity, and flow were monitored. During the exposures 2.49 MHz continuous ultrasound was used. RESULTS Significant improvements in animals exposed to ultrasound after ischemia were found at 24 h of reperfusion in FCD, arteriolar diameter, and arteriolar and venular flow velocity and flow. Animals exposed to ultrasound during ischemia showed significantly improved FCD. L-NAME treatment reduced the improvement of microvascular function, compared to animals exposed after ischemia. CONCLUSIONS The use of continuous-mode diagnostic frequency ultrasound is beneficial in preventing long-term ischemia-reperfusion effects in the microcirculation as shown by the return of microvascular parameters to baseline values, an effect not attained in the absence of ultrasound treatment. The effects may be in part due to the production of nitric oxide consequent to locally induced shear stress effects by ultrasound exposure.
Collapse
Affiliation(s)
- C Makena Hightower
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA.
| | | |
Collapse
|
21
|
Nickkholgh A, Schneider H, Encke J, Büchler MW, Schmidt J, Schemmer P. PROUD: effects of preoperative long-term immunonutrition in patients listed for liver transplantation. Trials 2007; 8:20. [PMID: 17723147 PMCID: PMC2018725 DOI: 10.1186/1745-6215-8-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 08/27/2007] [Indexed: 01/27/2023] Open
Abstract
Background Patients with end stage liver disease are characteristically malnourished which is associated with poor outcome. Formulas enriched with arginine, ω-3 fatty acids, and nucleotides, "immunonutrients", potentially improve their nutritional status. This study is designed to evaluate the clinical outcome of long-term "immunonutrition" of patients with end-stage liver disease while on the waiting list for liver transplantation. Methods/design A randomized controlled double blind multi-center clinical trial with two parallel groups comprising a total of 142 newly registered patients for primary liver transplantation has been designed to assess the safety and efficacy of the long-term administration of ORAL IMPACT®, an "immunonutrient" formula, while waiting for a graft. Patients will be enrolled the day of registration on the waiting list for liver transplantation. Study ends on the day of transplantation. Primary endpoints include improved patients' nutritional and physiological status, as measured by mid-arm muscle area, triceps skin fold thickness, grip strength, and fatigue score, as well as patients' health related quality of life. Furthermore, patients will be followed for 12 postoperative weeks to evaluate anabolic recovery after transplantation as shown by reduced post-transplant mechanical ventilation, hospital stay, wound healing, infectious morbidities (pneumonia, intraabdominal abscess, sepsis, line sepsis, wound infection, and urinary tract infection), acute and chronic rejection, and mortality. Discussion Formulas enriched with arginine, ω-3 fatty acids, and nucleotides have been proven to be beneficial in reducing postoperative infectious complications and length of hospital stay among the patients undergoing elective gastrointestinal surgery. Possible mechanisms include downregulation of the inflammatory responses to surgery and immune modulation rather than a sole nutritional effect. Trial registration ClinicalTrials.gov NCT00495859
Collapse
Affiliation(s)
- Arash Nickkholgh
- Department of General Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | | | - Jens Encke
- Department of Internal Medicine, Ruprecht-Karls University, Heidelberg, Germany
| | - Markus W Büchler
- Department of General Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Jan Schmidt
- Department of General Surgery, Ruprecht-Karls University, Heidelberg, Germany
| | - Peter Schemmer
- Department of General Surgery, Ruprecht-Karls University, Heidelberg, Germany
| |
Collapse
|
22
|
Miranda LC, Viaro F, Ceneviva R, Evora PRB. Endothelium-dependent and -independent hepatic artery vasodilatation is not impaired in a canine model of liver ischemia-reperfusion injury. Braz J Med Biol Res 2007; 40:857-65. [PMID: 17581686 DOI: 10.1590/s0100-879x2007000600016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Accepted: 04/09/2007] [Indexed: 11/22/2022] Open
Abstract
We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 +/- 1056 U/L and AST = 1268 +/- 371 U/L; P < 0.01), LDH = 2887 +/- 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 +/- 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.
Collapse
Affiliation(s)
- L C Miranda
- Departamento de Cirurgia e Anatomia, de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | |
Collapse
|
23
|
Mochizuki K, Ohno Y, Kanematsu T, Sakurai-Yamashita Y, Niwa M, Hishikawa Y, Koji T. Possible protection of sinusoidal endothelial cells by endothelin B receptor during hepatic warm ischemia-reperfusion. Surg Today 2007; 37:460-7. [PMID: 17522762 DOI: 10.1007/s00595-006-3411-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Accepted: 11/13/2006] [Indexed: 12/31/2022]
Abstract
PURPOSE Endothelins (ETs) are important regulators of the hepatic microcirculation. We investigated the pure biological roles of endothelin B receptors (ETB-Rs) on hepatic warm ischemia-reperfusion (I/R) injury using ETB-R deficient spotting lethal (sl) rats. METHODS Homozygous (sl/sl) and wild-type (+/+) rats were exposed to 60 min of 92% partial hepatic ischemia and then were killed at 2, 6, and 24 h, and 3 and 7 days after reperfusion. We measured the serum alanine aminotransferase (ALT) levels to assess hepatocyte injury, and the serum hyaluronic acid (HA) levels and factor VIII-related antigen (FVIIIRAg) staining to assess sinusoidal endothelial cell (SEC) injury. We also measured the concentrations of ET-1 and nitrite (NO2-) and nitrate (NO3-) of liver tissue samples. RESULTS Although no significant difference was observed in the ALT levels, the HA levels were significantly elevated at an early stage after reperfusion in the sl/sl rats. Regarding FVIIIRAg staining, positive SECs were enhanced in the sl/sl rats. The ET-1 levels were also significantly elevated at an early stage after reperfusion in the sl/sl rats. Regarding the NO2- and NO3- levels, no significant difference was observed. CONCLUSION Endothelin B receptor was shown to have a protective effect on SECs through the inhibition of ET-1 during hepatic warm I/R injury.
Collapse
Affiliation(s)
- Kyoko Mochizuki
- Department of Transplantation and Digestive Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Perioperative kinetics of the nitric oxide derivatives nitrite/nitrate during orthotopic liver transplantation. Nitric Oxide 2007; 16:177-80. [DOI: 10.1016/j.niox.2006.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/20/2006] [Accepted: 07/06/2006] [Indexed: 11/21/2022]
|
25
|
Theodoraki K, Arkadopoulos N, Fragulidis G, Voros D, Karapanos K, Markatou M, Kostopanagiotou G, Smyrniotis V. Transhepatic lactate gradient in relation to liver ischemia/reperfusion injury during major hepatectomies. Liver Transpl 2006; 12:1825-31. [PMID: 17031827 DOI: 10.1002/lt.20911] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatectomies performed under selective hepatic vascular exclusion are associated with a series of events culminating in ischemia/reperfusion injury, a state that shares common characteristics with situations known to result in global or regional hyperlactatemia. Accordingly, we sought to determine whether lactate is released by the liver during hepatic resections performed under blood flow deprivation and what relation this has to a possible systemic hyperlactatemic state. After ethical approval, 14 consecutive patients with resectable liver tumors subjected to hepatectomy under inflow and outflow occlusion of the liver were studied. Lactate concentrations were assessed in simultaneously drawn arterial, portal venous, and hepatic venous blood before liver dissection and 50 minutes postreperfusion. Moreover, the transhepatic lactate gradient (hepatic vein - portal vein) was calculated to see if there was net production or consumption of lactate. Before hepatic dissection, the transhepatic lactate gradient was negative, suggesting consumption by the liver. Fifty minutes after reperfusion, this gradient became significantly positive, demonstrating release of lactate by the liver (0.12 +/- 0.31 vs. -0.38 +/- 0.30 mmol/L, P < 0.05). The magnitude of lactate release correlated with systemic arterial lactate levels at the same time point (r(2) = 0.63, P < 0.001). A weaker but significant correlation was demonstrated between the transhepatic lactate gradient postreperfusion and systemic arterial lactate levels 24 hours postoperatively (r(2) = 0.41, P = 0.013). A strong correlation between the transhepatic lactate gradient postreperfusion and peak postoperative aspartate aminotransferase values was also demonstrated (r(2) = 0.73, P < 0.001). The liver becomes a net producer of lactate in hepatectomies performed under blood flow deprivation. This lactate release can explain some of the systemic hyperlactatemia seen in this context and relates to the extent of ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Kassiani Theodoraki
- First Department of Anesthesiology, Areteion Hospital, University of Athens School of Medicine, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ben Mosbah I, Roselló-Catafau J, Franco-Gou R, Abdennebi HB, Saidane D, Ramella-Virieux S, Boillot O, Peralta C. Preservation of steatotic livers in IGL-1 solution. Liver Transpl 2006; 12:1215-1223. [PMID: 16724331 DOI: 10.1002/lt.20788] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new Institut Georges Lopez (IGL-1) solution was used to preserve steatotic livers. Steatotic (obese [Ob]) and nonsteatotic (lean [Ln]) livers from Zücker rats (n = 16, 8 Ln and 8 Ob) were preserved for 24 hours at 4 degrees C in University of Wisconsin (UW) or IGL-1 solution, respectively, and then perfused ex vivo for 2 hours at 37 degrees C. Additionally, Ob and Ln livers (n = 16, 8 Ln and 8 Ob) were preserved in IGL-1 plus Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME). Hepatic injury and function (aminotransferases, bile production, bromosulfophthalein clearance), and factors potentially involved in the susceptibility of steatotic livers to ischemia-reperfusion injury, such as oxidative stress, mitochondrial damage, and vascular resistance, were studied. Nitric oxide (NO) production and constitutive and inducible NO synthase were also measured. Steatotic and nonsteatotic livers preserved in IGL-1 solution showed lower transaminases, malondialdehyde, glutamate dehydrogenase levels, and higher bile production than UW-solution-preserved livers. IGL-1 solution protected against oxidative stress, mitochondrial damage and the alterations in vascular resistance associated with cold ischemia-reperfusion. Thus, at the end of reperfusion period, aspartate aminotransferase levels in steatotic livers were 281 +/- 6 U/L in UW vs. 202 +/- 10 U/L in IGL-1 solution. Glutamate dehydrogenase was 463 +/- 75 U/L in UW vs. 111 +/- 4 U/L in IGL-1 solution, and oxidative stress was 3.0 +/- 0.1 nmol/mg prot in UW vs. 2.0 +/- 0.1 nmol/mg prot in IGL-1 solution. These beneficial effects of IGL-1 solution were abolished by the addition of L-NAME, which implicates NO in the benefits of IGL-1. In conclusion, IGL-1 solution provided steatotic livers with better protection against the deleterious effects of cold ischemia-reperfusion injury than did UW solution.
Collapse
Affiliation(s)
- Ismail Ben Mosbah
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ramalho FS, Fernandez-Monteiro I, Rosello-Catafau J, Peralta C. Hepatic microcirculatory failure. Acta Cir Bras 2006; 21 Suppl 1:48-53. [PMID: 17013514 DOI: 10.1590/s0102-86502006000700012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Liver ischemia has been considered a frequent problem in medical practice, and can be associated to a number of surgical and clinical situations, such as massive hepatic resections, sepsis, liver trauma, circulatory shock and liver transplantation. After restoring blood flow, the liver is further subjected to an additional injury more severe than that induced by ischemia. On account of the complexity of mechanisms related to pathophysiology of ischemia and reperfusion (I/R) injury, this review deals with I/R effects on sinusoidal microcirculation, especially when steatosis is present. Alterations in hepatic microcirculation are pointed as a main factor to explain lower tolerance of fatty liver to ischemia-reperfusion insult. The employment of therapeutic strategies that interfere directly with vasoactive mediators (nitric oxide and endothelins) acting on the sinusoidal perfusion seem to be determinant for the protection of the liver parenchyma against I/R. These approaches could be very suitable to take advantage of marginal specimens as fatty livers, in which the microcirculatory disarrangements hamper its employment in liver transplantation.
Collapse
|
28
|
Smyrniotis V, Arkadopoulos N, Kostopanagiotou G, Theodoropoulos T, Theodoraki K, Farantos C, Kairi E, Paphiti A. Attenuation of ischemic injury by N-acetylcysteine preconditioning of the liver. J Surg Res 2005; 129:31-7. [PMID: 16140340 DOI: 10.1016/j.jss.2005.07.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 07/20/2005] [Accepted: 07/23/2005] [Indexed: 01/02/2023]
Abstract
BACKGROUND Numerous previous studies have established the hepatoprotective properties of N-acetylcysteine (NAC). The present study was designed to investigate the effects of NAC on a warm hepatic ischemia-reperfusion rat model with a focus on the role of cAMP. MATERIALS AND METHODS Fifty-six male Wistar rats were allocated randomly into the control group (n = 28) or the study group (group NAC, n = 28). Group NAC animals received an intravenous bolus dose of 0.3 mg/g NAC, whereas control animals were given an equal volume of normal saline. Subsequently, 60-min partial liver ischemia was induced by occlusion of blood inflow to the left and middle liver lobes. Aspartate aminotransferase, alanine aminotransferase, and alpha-glutathione S-transferase levels, platelet aggregation, and ischemic tissue cyclic adenosine 5-monophosphate (cAMP) levels were examined at 30, 60, and 120 min after reperfusion. Parts of the ischemic liver were sampled at the same time-points. Measurements were obtained from seven animals at each time point. RESULTS The administration of NAC resulted in lower levels of aspartate aminotransferase, alanine aminotransferase, and alpha-glutathione S-transferase, decreased platelet aggregation, and increased levels of ischemic tissue cAMP at all time points after reperfusion. Histologically, fewer necrotic changes were observed in the NAC group at 60 and 120 min after reperfusion. All differences were statistically significant (P < 0.05). CONCLUSIONS In the present study, NAC seems to attenuate hepatic ischemia-reperfusion damage, as demonstrated by liver function tests and liver histology. The effects of NAC appear to be mediated by the decrease in platelet aggregation and increase in the levels of cAMP observed in ischemic liver tissue.
Collapse
Affiliation(s)
- Vassilios Smyrniotis
- Second Department of Surgery, University of Athens School of Medicine, Aretaeion Hospital, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Jiang Y, Gu XP, Qiu YD, Sun XM, Chen LL, Zhang LH, Ding YT. Ischemic preconditioning decreases C-X-C chemokine expression and neutrophil accumulation early after liver transplantation in rats. World J Gastroenterol 2003; 9:2025-9. [PMID: 12970899 PMCID: PMC4656667 DOI: 10.3748/wjg.v9.i9.2025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Polymorphonuclear neutrophil (PMN) plays a major role in liver ischemia/reperfusion injury. Protective effect of ischemic preconditioning (IP) has been confirmed in liver ischemia/reperfusion injury. The purpose of this study was to investigate the effect of IP on C-X-C chemokine expression and PMNs recruitment early after liver transplantation.
METHODS: Male Sprague-Dawley rats were used as donors and recipients of orthotopic liver transplantation (OLT). The donor liver was stored 24 h in University of Wisconsin (UW) solution at 4 °C pre-implantation. IP was done by clamp of the portal vein and hepatic artery of the donor liver for 10 minutes followed by reperfusion for 10 minutes before harvesting. The neutrophilic infiltration in liver was quantified using a myeloperoxidase (MPO) assay. Intragraft expression of macrophage inflammatory protein-2 (MIP-2) mRNA was investigated with in situ hybridization. The serum levels of MIP-2 and tumor necrosis factor (TNF)-α were also monitored.
RESULTS: After liver transplantation without IP, the hepatic MPO increased significantly compared with sham operated group. In IP group, PMN in liver indicated by MPO was reduced significantly. In situ hybridization showed no MIP-2 mRNA in sham group but dramatic expression in hepatocytes in non-IP group. In IP group, MIP-2 mRNA was significantly down-regulated. Similarly, serum MIP-2 and TNF-α levels were significantly elevated in non-IP group and both were reduced in IP group.
CONCLUSION: IP might protect graft liver from preservation-reperfusion injury after OLT through down-regulating C-X-C chemokine expression of hepatocytes, and alleviating PMNs recruitment after reperfusion.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Hepatobiliary Surgery, Gulou Hospital, Medical Department of Nanjing University, Jiangsu Province, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Noguchi S, Nakatsuka M, Konishi H, Kamada Y, Chekir C, Kudo T. Nafamostat mesilate suppresses NF-kappaB activation and NO overproduction in LPS-treated macrophages. Int Immunopharmacol 2003; 3:1335-44. [PMID: 12890431 DOI: 10.1016/s1567-5769(03)00146-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nafamostat mesilate (NM), a clinically used serine protease inhibitor, suppressed the overproduction of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) in RAW264.7 murine macrophages treated with lipopolysaccharide (LPS, 100 ng/ml); however, it had little effect on endothelial NOS (eNOS) in human umbilical vein endothelial cells (HUVEC). Electrophoretic mobility shift assay (EMSA) revealed that LPS activated nuclear factor-kappaB (NF-kappaB) in RAW264.7 cells and that this activation was suppressed by nafamostat mesilate. Western blotting showed that nafamostat mesilate suppressed the phosphorylation and degradation of inhibitor kappaB-alpha (IkappaB-alpha), which holds NF-kappaB in the cytoplasm in an inactivated state. Our observations suggest that nafamostat mesilate is a candidate agent for various diseases such as ischemia-reperfusion, graft rejection, inflammatory diseases, and autoimmune diseases, in which iNOS and/or NF-kappaB are upregulated.
Collapse
Affiliation(s)
- Soichi Noguchi
- Department of Obstetrics and Gynecology, Okayama University Medical School, 2-5-1 Shikata, Okayama Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol 2003; 18:891-902. [PMID: 12859717 DOI: 10.1046/j.1440-1746.2003.03056.x] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights recent advances in our understanding of mechanisms underlying reperfusion injury to the liver after warm hepatic ischemia. Sinusoidal endothelial cells and hepatocytes are targets of injury in the early 'cytotoxic' phase, although participation of apoptosis in the cell-death process remains contentious. Kupffer cells may play an important role as the initial cytotoxic cell type and are likely a source of reactive oxygen species and proinflammatory mediators, particularly tumor necrosis factor (TNF)-alpha. The latter are involved with subsequent neutrophil activation and recruitment. Microcirculatory disruption results from an imbalance between the actions of vasoconstrictors and vasodilators, such as nitric oxide, and also has a major impact on reperfusion injury. There is growing evidence that a brief prior ischemia-reperfusion period, termed 'ischemic preconditioning', is hepatoprotective. This can be mimicked by drugs that produce oxidative stress, and by interleukin-6 and TNF-alpha; both these cytokines are involved with priming hepatocytes to enter the cell cycle. Several mechanisms have been implicated including mobilization of adenosine and activation of adenosine type 2 receptors, nitric oxide, abrogation of TNF synthesis, preservation of energy metabolism, protection of the microcirculation and accelerated cell-cycle entry. A better understanding of preconditioning mechanisms will lead to novel approaches to improve outcomes of liver surgery.
Collapse
Affiliation(s)
- Narci C Teoh
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | | |
Collapse
|
32
|
Serracino-Inglott F, Virlos IT, Habib NA, Williamson RCN, Mathie RT. Differential nitric oxide synthase expression during hepatic ischemia-reperfusion. Am J Surg 2003; 185:589-95. [PMID: 12781892 DOI: 10.1016/s0002-9610(03)00075-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND In recent years the important role of nitric oxide in hepatic ischemia-reperfusion injury has been increasingly recognised. The prevailing consensus is that reperfusion injury may be partly the result of decreased production of nitric oxide from endothelial nitric oxide synthase and excessive production of nitric oxide from the inducible isoform. We therefore undertook this study to characterize the expression of different nitric oxide synthase isoforms during hepatic reperfusion. METHODS Male Wistar rats (n = 6) were subjected to 45 minutes of partial hepatic ischemia (left lateral and median lobes) followed by 6 hours of reperfusion. Control animals (n = 6) were subjected to sham laparotomy. The expression of endothelial and inducible nitric oxide synthase was examined using immunohistochemistry and Western blotting. Liver sections were also stained with nitrotyrosine antibody, a specific marker of protein damage induced by peroxynitrite (a highly reactive free radical formed from nitric oxide). RESULTS Liver sections from all the control animals showed normal expression of the endothelial isoform and no expression of inducible nitric oxide synthase. Livers from all the animals subjected to hepatic ischemia showed decreased expression of endothelial nitric oxide synthase, and all but one animal from this group showed expression of the inducible isoform both in inflammatory cells and in hepatocytes. Western blotting confirmed these findings. Staining with the antinitrotyrosine antibody was also confined to five liver sections from animals subjected to hepatic ischemia. CONCLUSIONS During the reperfusion period after hepatic ischemia, endothelial nitric oxide synthase is downregulated while inducible nitric oxide synthase is expressed in both hepatocytes and inflammatory cells. The presence of nitrotyrosine in livers subjected to hepatic ischemia-reperfusion suggests that the expression of inducible nitric oxide synthase plays an important role in mediating reperfusion injury in this model.
Collapse
Affiliation(s)
- Ferdinand Serracino-Inglott
- Division of Surgery, Anesthetics and Intensive Care, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
33
|
Hines IN, Kawachi S, Harada H, Pavlick KP, Hoffman JM, Bharwani S, Wolf RE, Grisham MB. Role of nitric oxide in liver ischemia and reperfusion injury. Mol Cell Biochem 2003. [PMID: 12162439 DOI: 10.1023/a:1015952926016] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.
Collapse
Affiliation(s)
- Ian N Hines
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ikeda F, Terajima H, Shimahara Y, Kondo T, Yamaoka Y. Reduction of hepatic ischemia/reperfusion-induced injury by a specific ROCK/Rho kinase inhibitor Y-27632. J Surg Res 2003; 109:155-60. [PMID: 12643858 DOI: 10.1016/s0022-4804(02)00081-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND The low-molecular-weight GTPase Rho is known to act as a molecular switch by activating several downstream effectors, one of which is Rho-associated coiled-coil forming protein kinase (ROCK). ROCK/Rho kinase mediates cytoskeleton-dependent cell functions, such as actomyosin-based smooth muscle contraction and integrin-mediated cell adhesion. A specific inhibitor of ROCK/Rho kinase, Y-27632, was recently developed. The present study examined whether Y-27632 could provide a beneficial effect on hepatic ischemia/reperfusion (I/R)-induced injury through the attenuation of microcirculatory disturbance. MATERIALS AND METHODS In male Sprague-Dawley rats, normothermic partial ischemia was induced by clamping the hepatic pedicle to the left and median lobes for 90 min, followed by 2 h of reperfusion. In the treatment group, Y-27632 was intravenously administered prior to ischemic insult. Hepatic microcirculation was investigated by using intravital fluorescence microscopy. Liver enzyme release and histological changes of the liver tissue were also evaluated. RESULTS Y-27632 significantly improved sinusoidal perfusion and reduced the number of leukocytes sticking in hepatic sinusoids and adhering in postsinusoidal venules. The postischemic narrowing of both sinusoids and postsinusoidal venules was also markedly suppressed. Consequently, liver enzyme release was reduced and postischemic histological damage was suppressed. CONCLUSIONS A specific ROCK/Rho kinase inhibitor, Y-27632, was useful to alleviate hepatic I/R-induced injury through ameliorating postischemic microcirculation. The administration of Y-27632 may be a novel strategy for conquering hepatic I/R-induced injury.
Collapse
Affiliation(s)
- Fusao Ikeda
- Department of Gastroenterological Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
35
|
Koti RS, Yang W, Dashwood MR, Davidson BR, Seifalian AM. Effect of ischemic preconditioning on hepatic microcirculation and function in a rat model of ischemia reperfusion injury. Liver Transpl 2002; 8:1182-91. [PMID: 12474159 DOI: 10.1053/jlts.2002.36846] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemic preconditioning (IPC) may protect the liver from ischemia reperfusion injury by nitric oxide formation. This study has investigated the effect of ischemic preconditioning on hepatic microcirculation (HM), and the relationship between nitric oxide metabolism and HM in preconditioning. Rats were allocated to 5 groups: 1. sham laparotomy; 2. 45 minutes lobar ischemia followed by 2-hour reperfusion (IR); 3. IPC with 5 minutes ischemia and 10 minutes reperfusion before IR; 4. L-arginine before IR; and 5. L-NAME + IPC before IR. HM was monitored by laser Doppler flowmeter. Liver transaminases, adenosine triphosphate, nitrites + nitrates, and guanosine 3'5'-cyclic monophosphate (cGMP) were measured. Nitric oxide synthase (NOS) distribution was studied using nicotinamide adeninine dinucleotide phosphate (NADPH) diaphorase histochemistry. At the end of reperfusion phase, in the IR group, flow in the HM recovered partially to 25.8% of baseline (P < .05 versus sham), whereas IPC improved HM to 49.5% of baseline (P < .01 versus IR). With L-arginine treatment, HM was 31.6% of baseline (NS versus IR), showing no attenuation of liver injury. In the preconditioned group treated with L-NAME, HM declined to 10.2% of baseline, suggesting not only a blockade of the preconditioning effect, but also an exacerbated liver injury. Hepatocellular injury was reduced by IPC, and L-arginine and was increased by NO inhibition with L-NAME. IPC also increased nitrate + nitrate (NOx) and cGMP concentrations. NOS detected by NADPH diaphorase staining was associated with hepatocytes and vascular endothelium, and was induced by IPC. IPC induced NOS and attenuated HM impairment and hepatocellular injury. These data strongly suggest a role for nitric oxide in IPC.
Collapse
Affiliation(s)
- Rahul S Koti
- Hepatic Haemodynamic Unit, University Department of Surgery, Royal Free and University College Medical School, University College London Royal Free Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Yagnik GP, Takahashi Y, Tsoulfas G, Reid K, Murase N, Geller DA. Blockade of the L-arginine/NO synthase pathway worsens hepatic apoptosis and liver transplant preservation injury. Hepatology 2002; 36:573-581. [PMID: 12198649 DOI: 10.1053/jhep.2002.35058] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organ graft preservation injury is a major problem complicating liver transplantation. The L-arginine/nitric oxide pathway has protective effects in several models of liver injury. The purpose of this study was to evaluate the role of the L-arginine/NO synthase (NOS) pathway on liver preservation injury and to characterize endogenous inducible NOS (iNOS) expression. Orthotopic liver transplantation was performed with 18-hour University of Wisconsin preservation solution in syngeneic rats. Recipient rats were either untreated or treated with L-arginine, D-arginine, nonspecific NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), or iNOS selective inhibitor L-N(6)-(1-imino-ethyl)lysine (L-NIL) after revascularization. As early as 1 hour following reperfusion, circulating arginine levels decreased 10-fold and ornithine levels increased 4-fold. A corresponding increase in arginase I protein was detected in serum. To address the profound arginine deficiency, we supplemented recipients with arginine after transplantation. L-arginine (but not D-arginine) supplementation significantly reduced preservation injury 12 hours after reperfusion, suggesting that the protective effect of L-arginine was mediated through the generation of NO. iNOS protein expression peaked in the liver 6 to 12 hours following reperfusion. Blockade of the L-arginine/NO pathway with L-NAME significantly increased necrotic and apoptotic cell death in the transplanted graft. Addition of the iNOS selective inhibitor L-NIL mildly increased liver transaminase levels and also increased apoptosis in the liver graft. In conclusion, transplant recipients are profoundly arginine deficient postreperfusion due to arginase release. L-Arginine supplementation and NO synthesis decrease necrotic and apoptotic cell death and ameliorate liver transplant preservation injury.
Collapse
Affiliation(s)
- Gautam P Yagnik
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Research on the free radical gas, nitric oxide (NO), during the past twenty years is one of the most rapid growing areas in biology. NO seems to play a part in almost every organ and tissue. However, there is considerable controversy and confusion in understanding its role. The liver is one organ that is clearly influenced by NO. Acute versus chronic exposure to NO has been associated with distinct patterns of liver disease. In this paper we review and discuss the involvement of NO in various liver diseases collated from observations by various researchers. Overall, the important factors in determining the beneficial versus harmful effects of NO are the amount, duration, and site of NO production. A low dose of NO serves to maximize blood perfusion, prevent platelet aggregation and thrombosis, and neutralize toxic oxygen radicals in the liver during acute sepsis and reperfusion events. NO also demonstrates antimicrobial and antiapoptosis properties during acute hepatitis infection and other inflammatory processes. However, in the setting of chronic liver inflammation, when a large sustained amount of NO is present, NO might become genotoxic and lead to the development of liver cancer. Additionally, during prolonged ischemia, high levels of NO may have cytotoxic effects leading to severe liver injury. In view of the various possible roles that NO plays, the pharmacologic modulation of NO synthesis is promising in the future treatment of liver diseases, especially with the emergence of selective NO synthase inhibitors and cell-specific NO donors.
Collapse
Affiliation(s)
- Wei Min Hon
- Department of Medicine, National University of Singapore, Singapore.
| | | | | |
Collapse
|
38
|
Aiba M, Takeyoshi I, Ohwada S, Kawashima Y, Iwanami K, Sunose Y, Yamada T, Tsutsumi H, Matsumoto K, Morishita Y. Novel nitric oxide donor (FK409) ameliorates liver damage during extended liver resection with warm ischemia in dogs. J Am Coll Surg 2001; 193:264-71. [PMID: 11548796 DOI: 10.1016/s1072-7515(01)01002-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Nitric oxide attenuates ischemia-reperfusion injury by maintaining organ circulation through its actions as a vasoregulator, an inhibitor of platelet aggregation, and an attenuator of leukocyte adhesion. Otherwise, the harmful effects of enhanced nitric oxide production induced by inducible nitric oxide synthase mediate ischemia-reperfusion injury. FK409 has been characterized as a spontaneous nitric oxide donor. The aim of this study was to evaluate the effects of FK409 on extended liver resection with ischemia using a canine model. STUDY DESIGN Adult mongrel dogs were subjected to 60 minutes of warm ischemia by partial inflow occlusion. After reperfusion the nonischemic lobes were resected and the remnant liver function was evaluated. The dogs were divided into two groups: the control group (n = 7) and the FK409 group (n = 6), which was given FK409 through the portal vein. RESULTS The hepatic tissue blood flow, serum liver enzymes levels, and serum endothelin-1 level after reperfusion were significantly better in the FK409 group than in the control group. Electron microscopy demonstrated that endothelial cells and Ito cells were well-preserved in the FK409 group. The 3-day survival rate was statistically better in the FK409 group (67%) than in the control group (14%). CONCLUSIONS FK409 appears to have protective effects during extended liver resection with ischemia.
Collapse
Affiliation(s)
- M Aiba
- Second Department of Surgery, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hines IN, Harada H, Bharwani S, Pavlick KP, Hoffman JM, Grisham MB. Enhanced post-ischemic liver injury in iNOS-deficient mice: a cautionary note. Biochem Biophys Res Commun 2001; 284:972-6. [PMID: 11409889 DOI: 10.1006/bbrc.2001.5069] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The objective of this study was to assess the role of inducible nitric oxide synthase (iNOS) in ischemia- and reperfusion (I/R)-induced liver injury. We found that partial hepatic ischemia involving 70% of the liver resulted in a time-dependent increase in serum alanine aminotransferase (ALT) levels at 1-6 h following reperfusion. Liver injury at 1, 3, and 6 h post-ischemia was not due to the infiltration of neutrophils as assessed by tissue myeloperoxidase (MPO) activity and histopathology. iNOS-deficient mice subjected to the same duration of ischemia and reperfusion showed dramatic and significant increases in liver injury at 3 but not 6 h following reperfusion compared to their wild type controls. Paradoxically, iNOS mRNA expression was not detected in the livers of wild type mice at any point during the reperfusion period and pharmacological inhibition of iNOS using L-N(6)(iminoethyl)-lysine (L-NIL) did not exacerbate post-ischemic liver injury at any time post-reperfusion. These data suggest that iNOS deficiency produces unanticipated genetic alterations that renders these mice more sensitive to liver I/R-induced injury.
Collapse
Affiliation(s)
- I N Hines
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nilsson B, Delbro D, Wallin M, Friman S. Protective effect of nitric oxide and prostaglandin E(2) in ischemia/reperfusion injury of the liver. Transplant Proc 2001; 33:2518-20. [PMID: 11406233 DOI: 10.1016/s0041-1345(01)02083-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- B Nilsson
- Department of Surgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | |
Collapse
|
41
|
Peralta C, Rull R, Rimola A, Deulofeu R, Roselló-Catafau J, Gelpí E, Rodés J. Endogenous nitric oxide and exogenous nitric oxide supplementation in hepatic ischemia-reperfusion injury in the rat. Transplantation 2001; 71:529-536. [PMID: 11258432 DOI: 10.1097/00007890-200102270-00008] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although nitric oxide (NO) is thought to be beneficial in hepatic ischemia-reperfusion (I/R), the mechanisms for this effect are not well established. METHODS To investigate the effects of endogenous NO and exogenous NO supplementation on hepatic I/R injury and their pathogenic mechanisms, serum ALT and hyaluronic acid (endothelial cell damage), and hepatic malondialdehyde and H2O2 (oxidative stress), myeloperoxidase activity (leukocyte accumulation), and endothelin (vasoconstrictor peptide opposite to NO) were determined at different reperfusion periods in untreated rats and rats receiving L-NAME, L-NAME+L-arginine, and spermine NONOate (exogenous NO donor). RESULTS After reperfusion every parameter increased in untreated animals. Endogenous NO synthesis inhibition by L-NAME increased hepatocyte and endothelial damage as compared to untreated rats, which was reverted and even improved by the addition of L-arginine. Spermine NONOate also improved this damage. However, different mechanisms account for the beneficial effect of endogenous and exogenous NO. Oxidative stress decreased by both L-NAME and L-NAME+L-arginine, but remained unmodified by spermine NONOate. Myeloperoxidase increased by L-NAME and this effect was reverted by the addition of L-arginine, whereas no change was observed with spermine NONOate. Endothelin levels were not modified by L-NAME and L-NAME+L-arginine, but decreased with spermine NONOate. CONCLUSIONS These results suggest that, although both endogenous and exogenous NO exert a protective role in experimental hepatic I/R injury, the mechanisms of the beneficial effect of the two sources of NO are different.
Collapse
Affiliation(s)
- C Peralta
- Department of Medical Bioanalysis, IIBB-CSIC, Hospital Clínic, University of Barcelona, Villarroel, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND The morbidity associated with liver transplantation and major hepatic resections is partly a result of ischemia-reperfusion injury. DATA SOURCES The entire world literature on the subject was searched via Medline. Keywords included reperfusion injury, transplantation, liver resection, nitric oxide, endothelin, cytokines, Kupffer cells, ischemic/ischaemic preconditioning, and nuclear factor-kappa B. CONCLUSIONS An imbalance between endothelin and nitric oxide levels results in failure of the hepatic microcirculation at the onset of reperfusion. Activation of nuclear factor-kappa B in the liver promotes proinflammatory cytokine and adhesion molecule synthesis. These result in oxygen-derived free radical production and neutrophil recruitment, further contributing to cellular injury. Various therapeutic modalities acting on the above mediators have been successfully used to attenuate reperfusion injury in animal models of hepatic transplantation and resection. Application of the knowledge gained from animal models of hepatic ischemia-reperfusion to the clinical setting will improve the outcome of hepatic surgery.
Collapse
Affiliation(s)
- F Serracino-Inglott
- Division of Surgery, Anaesthetics, and Intensive Care, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | |
Collapse
|
43
|
Kawachi S, Hines IN, Laroux FS, Hoffman J, Bharwani S, Gray L, Leffer D, Grisham MB. Nitric oxide synthase and postischemic liver injury. Biochem Biophys Res Commun 2000; 276:851-4. [PMID: 11027558 DOI: 10.1006/bbrc.2000.3559] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The objective of this study was to determine what roles the endothelial cell and inducible isoforms of nitric oxide synthase (eNOS, iNOS) play in ischemia and reperfusion (I/R)-induced liver injury in vivo in mice genetically deficient in each isoform of NOS. We found that 45 min of partial (70%) liver ischemia and 5 h of reperfusion induced substantial liver injury as assessed by the release of large and significant amounts of the liver-specific enzyme alanine aminotransferase (ALT) into the serum of wild-type (wt) mice. The enhanced ALT levels were not due to increased recruitment of potentially damaging PMNs, which could mediate hepatocyte injury, as neither histopathological inspection nor quantitative MPO determinations revealed the presence of PMNs in the liver at this time point. In addition, we observed a significant enhancement in liver injury in eNOS-deficient but not iNOS-deficient mice subjected to liver I/R compared to postischemic wt mice. Taken together, these data suggest that eNOS- but not iNOS-derived NO plays an important role in limiting or downregulating I/R-induced liver injury in vivo following 5 h of reperfusion.
Collapse
Affiliation(s)
- S Kawachi
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, Louisiana, 71130, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Valero R, García-Valdecasas JC, Net M, Beltran J, Ordi J, González FX, López-Boado MA, Almenara R, Taurá P, Elena M, Capdevila L, Manyalich M, Visa J. L-arginine reduces liver and biliary tract damage after liver transplantation from non-heart-beating donor pigs. Transplantation 2000; 70:730-7. [PMID: 11003349 DOI: 10.1097/00007890-200009150-00004] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND To evaluate whether L-arginine reduces liver and biliary tract damage after transplantation from non heart-beating donor pigs. METHODS Twenty-five animals received an allograft from non-heart-beating donors. After 40 min of cardiac arrest, normothermic recirculation was run for 30 min. The animals were randomly treated with L-arginine (400 mg x kg(-1) during normothermic recirculation) or saline (control group). Then, the animals were cooled and their livers were transplanted after 6 hr of cold ischemia. The animals were killed on the 5th day, liver damage was assessed on wedged liver biopsies by a semiquantitative analysis and by morphometric analysis of the necrotic areas, and biliary tract damage by histological examination of the explanted liver. RESULTS Seventeen animals survived the study period. The histological parameters assessed (sinusoidal congestion and dilatation, sinusoidal infiltration by polymorphonuclear cells and lymphocytes, endothelitis, dissociation of liver cell plates, and centrilobular necrosis) were significantly worse in the control group. The necrotic area affected 15.9 +/- 14.5% of the liver biopsies in the control group and 3.7 +/- 3.1% in the L-arginine group (P<0.05). Six of eight animal in the control group and only one of eight survivors in the L-arginine group developed ischemic cholangitis (P<0.01). L-Arginine administration was associated with higher portal blood flow (676.9 +/- 149.46 vs. 475.2 +/- 205.6 ml x min x m(-2); P<0.05), higher hepatic hialuronic acid extraction at normothermic recirculation (38.8 +/- 53.7% vs. -4.2 +/- 18.2%; P<0.05) and after reperfusion (28.6 +/- 55.5% vs. -10.9 +/- 15.5%; P<0.05) and lower levels of alpha-glutation-S-transferase at reperfusion (1325 +/- 1098% respect to baseline vs. 6488 +/- 5612%; P<0.02). CONCLUSIONS L-Arginine administration during liver procurement from non heart beating donors prevents liver and biliary tract damage.
Collapse
Affiliation(s)
- R Valero
- Department of Anesthesiology, Hospital Clínic of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tanahashi Y, Takeyoshi I, Aiba M, Ohwada S, Matsumoto K, Morishita Y. The effects of FK409 on pulmonary ischemia–reperfusion injury in dogs. Transpl Int 1999. [DOI: 10.1111/j.1432-2277.1999.tb00766.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Isobe M, Katsuramaki T, Hirata K, Kimura H, Nagayama M, Matsuno T. Beneficial effects of inducible nitric oxide synthase inhibitor on reperfusion injury in the pig liver. Transplantation 1999; 68:803-13. [PMID: 10515381 DOI: 10.1097/00007890-199909270-00013] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although inhibition of endothelial nitric oxide synthase (eNOS) has been reported to aggravate hepatic ischemia-reperfusion (I/R) injury, the role of inducible nitric oxide synthase (iNOS) has been still unknown. We investigated the role of NO produced by iNOS, and evaluated the effect of an iNOS inhibitor on prolonged warm I/R injury in the pig liver. METHODS Pigs were subjected to 120 min of hepatic warm I/R under the extracorporeal circulation. We investigated the time course of changes in serum and hepatic microdialysate NO2- + NO3- (NOx) and the cellular distribution of eNOS and iNOS by immunohistochemistry, including a double-immunofluorescence technique in combination with confocal laser scanning microscopy. The effect of iNOS inhibitor was also investigated. RESULTS Hepatic I/R induced new nitric oxide production in serum and hepatic microdialysate NOx after reperfusion and severe hepatic damage in the centrilobular region where nitrotyrosine was strongly expressed. Diffuse eNOS expression in sinusoidal endothelium did not differ before and after reperfusion. In contrast, strong iNOS expression in Kupffer cells and neutrophils appeared strongly in the centrilobular region after reperfusion. Pigs with intraportal administration of N(G)-nitro-L-arginine (10 mg/kg) died during the period of ischemia or early in the period of reperfusion with a high mortality rate (80.0%). Intraportal administration of aminoguanidine hemisulfate (10 mg/kg) significantly suppressed nitric oxide production and serum aspartate aminotransferase after reperfusion, inhibited nitrotyrosine expression, and attenuated hepatic damage. CONCLUSIONS These results indicate that hepatic I/R injury is triggered by centrilobular iNOS expression; and attenuated by inhibition of iNOS.
Collapse
Affiliation(s)
- M Isobe
- Department of Surgery, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Shimamura T, Zhu Y, Zhang S, Jin MB, Ishizaki N, Urakami A, Totsuka E, Kishida A, Lee R, Subbotin V, Furukawa H, Starzl TE, Todo S. Protective role of nitric oxide in ischemia and reperfusion injury of the liver. J Am Coll Surg 1999; 188:43-52. [PMID: 9915241 PMCID: PMC3018864 DOI: 10.1016/s1072-7515(98)00259-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The suppressed production of nitric oxide (NO), associated with endothelial dysfunction, is thought to be a cause of ischemia and reperfusion injury of the liver. But findings of the salutary effects of NO enhancement on such injury have been conflicting. In this study, we tested our hypothesis that NO enhancement would attenuate ischemic liver injury. For this purpose, an NO precursor, L-arginine, and a novel NO donor, FK409, were applied to a 2-hour total hepatic vascular exclusion model in dogs. STUDY DESIGN L-arginine was administered IV at a dose of 100 mg/kg twice (n = 5), while 300 mg/kg twice of FK409 was infused continuously into the portal vein (n = 5). The drugs were given to the animals for 30 and 60 minutes before and after ischemia, respectively. Non-treated animals were used as the control (n = 10). Two-week survival, systemic and hepatic hemodynamics indices, liver function tests, energy metabolism, and histopathology were analyzed. RESULTS Both treatments comparably augmented hepatic tissue blood flow, decreased liver enzyme release, and increased high-energy phosphate restoration during the reperfusion period, all of which contributed to rescuing all of the treated animals from the 2-hour total hepatic ischemia. In contrast, ischemia caused 70% mortality in the control group. Histologically, structural abnormality and neutrophil infiltration were markedly attenuated by the treatments. Systemic hypotension was observed in the animals treated with FK409, however. CONCLUSIONS Our data demonstrate that NO enhancement alleviates the liver injury caused by ischemia and reperfusion. The supplementation of L-arginine, rather than FK409, is considered more applicable to clinical use because of the absence of systemic adverse effects.
Collapse
Affiliation(s)
- T Shimamura
- First Department of Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- S Massberg
- Institute for Surgical Research, University of Munich, Germany
| | | |
Collapse
|
49
|
Ohmori H, Dhar DK, Nakashima Y, Hashimoto M, Masumura S, Nagasue N. Beneficial effects of FK409, a novel nitric oxide donor, on reperfusion injury of rat liver. Transplantation 1998; 66:579-85. [PMID: 9753335 DOI: 10.1097/00007890-199809150-00005] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Nitric oxide (NO) seems to play an important role in modulating tissue injury during reperfusion of the liver. In this study, we have evaluated and compared the effects of FK409 (FK), a potent spontaneous NO releaser, and L-arginine in ischemia-reperfusion injury of the rat liver. METHODS Male Sprague-Dawley rats underwent 90 min of hepatic ischemia followed by reperfusion. FK or L-arginine was used (intravenously) in two different doses for each drug (group I, 3.2 mg/kg FK; group II, 1.6 mg/kg FK; group IV, 100 mg/kg L-arginine; and group V, 300 mg/kg L-arginine). Saline was used in control animals (group III). Hepatic enzyme status, microcirculation, serum nitrite (NO2-) and nitrate (NO3-) and tissue injury score were evaluated at predetermined times. RESULTS Serum NO2-/NO3- was elevated immediately by FK treatment dose-dependently but not by L-arginine. However, L-arginine caused late (6-24 hr) elevation of the NO metabolites dose-dependently. The elevation of serum aspartate aminotransferase and alanine aminotransferase was suppressed and hepatic microcirculation was improved in the FK-treated groups dose-dependently. L-Arginine also improved the microcirculation, but hepatic enzymes at 24 hr of reperfusion were significantly higher in group V than in the control group. These findings were well reflected by the extent of tissue injury in respective groups. CONCLUSION FK treatment in the immediate reperfusion period improves hepatic microcirculation and confers a significant protective effect on hepatic ischemia-reperfusion injury in the rat.
Collapse
Affiliation(s)
- H Ohmori
- Second Department of Surgery, Shimane Medical University, Izumo, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Dunne JB, Alexander B, Williams R, Tredger JM. Evidence that S-adenosyl-L-methionine diastereoisomers may reduce ischaemia-reperfusion injury by interacting with purinoceptors in isolated rat liver. Br J Pharmacol 1998; 125:225-33. [PMID: 9776364 PMCID: PMC1565596 DOI: 10.1038/sj.bjp.0702043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Mechanisms underlying the haemodynamic activity of diastereoisomers of S-adenosyl-L-methionine (SAM) were investigated using inhibitors of purinoceptors and nitric oxide (NO) synthase in perfused rat livers damaged by sequential 24 h cold and 20 min rewarming ischaemia + reperfusion. 2. Stored livers were flushed with 10 ml saline alone (control) or with added (R,S) or (S,S) SAM (100 microM) and reperfused in the absence (control) or presence of 10 microM 8-phenyltheophylline (8-PT) or 100 microM L-N-monomethylarginine (L-NMMA). 3. Both SAM diastereoisomers rapidly increased blood flow and bile production versus controls (P<0.001) but the (R,S) isomer induced greater increases in blood flow and the (S,S) isomer greater increases in bile production: 625 versus 596 versus 518 ml blood flow and 100 versus 119 versus 56 mg bile production per g liver over 3 h in (R,S), (S,S) and control, respectively. 4. 8-PT prevented the enhancement of blood flow by (S,S) SAM (529 versus 596 ml g(-1) liver over 3 h for (S,S) SAM alone, P<0.001), but was without effect in control livers. 8-PT also reduced SAM-enhanced bile production: 51 versus 119 mg g(-1) liver over 3 h, P<0.001. L-NMMA reduced blood flow and bile production similarly in the absence or presence of (S,S) SAM. 5. Thus, SAM may improve liver perfusion after ischaemia-reperfusion injury via stimulation of P, (A2) purinoceptors at which SAM shows activity. The choleretic activity of (S,S) SAM is disproportionately greater than enhanced blood flow and may occur independently of a NO-dependent component of bile production.
Collapse
Affiliation(s)
- J B Dunne
- Institute of Liver Studies, Academic Department of Surgery, King's College Hospital and School of Medicine and Dentistry, London
| | | | | | | |
Collapse
|