1
|
Koller J, Herzog H, Zhang L. The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 2021; 90:102198. [PMID: 34534716 DOI: 10.1016/j.npep.2021.102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.
Collapse
Affiliation(s)
- Julia Koller
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, UNSW Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lei Zhang
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Hu KL, Chang HM, Li R, Yu Y, Qiao J. Regulation of LH secretion by RFRP-3 - From the hypothalamus to the pituitary. Front Neuroendocrinol 2019; 52:12-21. [PMID: 29608929 DOI: 10.1016/j.yfrne.2018.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022]
Abstract
RFamide-related peptides (RFRPs) have long been identified as inhibitors of the hypothalamus-pituitary-gonad axis in mammals. However, less progress has been made in the detailed roles of RFRPs in the control of LH secretion. Recent studies have suggested that RFRP-3 neurons in the hypothalamus can regulate the secretion of LH at different levels, including kisspeptin neurons, GnRH neurons, and the pituitary. Additionally, conflicting results regarding the effects of RFRP-3 on these levels exist. In this review, we collect the latest evidence related to the effects of RFRP-3 neurons in regulating LH secretion by acting on kisspeptin neurons, GnRH neurons, and the pituitary and discuss the potential role of the timely reduction of RFRP-3 signaling in the modulation of the preovulatory LH surge.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Department of Obstetrics and Gynaecology, University of British Columbia, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
Liu X, Herbison AE. Kisspeptin Regulation of Neuronal Activity throughout the Central Nervous System. Endocrinol Metab (Seoul) 2016; 31:193-205. [PMID: 27246282 PMCID: PMC4923402 DOI: 10.3803/enm.2016.31.2.193] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 12/30/2022] Open
Abstract
Kisspeptin signaling at the gonadotropin-releasing hormone (GnRH) neuron is now relatively well characterized and established as being critical for the neural control of fertility. However, kisspeptin fibers and the kisspeptin receptor (KISS1R) are detected throughout the brain suggesting that kisspeptin is involved in regulating the activity of multiple neuronal circuits. We provide here a review of kisspeptin actions on neuronal populations throughout the brain including the magnocellular oxytocin and vasopressin neurons, and cells within the arcuate nucleus, hippocampus, and amygdala. The actions of kisspeptin in these brain regions are compared to its effects upon GnRH neurons. Two major themes arise from this analysis. First, it is apparent that kisspeptin signaling through KISS1R at the GnRH neuron is a unique, extremely potent form or neurotransmission whereas kisspeptin actions through KISS1R in other brain regions exhibit neuromodulatory actions typical of other neuropeptides. Second, it is becoming increasingly likely that kisspeptin acts as a neuromodulator not only through KISS1R but also through other RFamide receptors such as the neuropeptide FF receptors (NPFFRs). We suggest likely locations of kisspeptin signaling through NPFFRs but note that only limited tools are presently available for examining kisspeptin cross-signaling within the RFamide family of neuropeptides.
Collapse
Affiliation(s)
- Xinhuai Liu
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| |
Collapse
|
4
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
5
|
Shahjahan M, Doi H, Ando H. Differential expression patterns of PQRFamide peptide and its two receptor genes in the brain and pituitary of grass puffer during the reproductive cycle. Gen Comp Endocrinol 2015; 210:152-60. [PMID: 25034121 DOI: 10.1016/j.ygcen.2014.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/01/2014] [Accepted: 07/05/2014] [Indexed: 12/19/2022]
Abstract
Pain-modulatory neuropeptides, PQRFamide (PQRFa) peptides, have recently been implicated in the regulation of reproduction in fish. As a first step toward investigating the role of PQRFa peptides on reproductive function in the grass puffer Takifugu niphobles, which is a semilunar spawner, we cloned genes encoding PQRFa peptide precursor (pqrfa) and its two types of receptors (pqrfa-r1 and pqrfa-r2), and examined changes in their expression levels in the brain and pituitary over several months during the reproductive cycle. The grass puffer PQRFa peptide precursor of 126 amino acid residues contains two putative PQRFa peptides, PQRFa-1 and PQRFa-2, which correspond to NPFF and NPAF in other vertebrates, respectively. The grass puffer PQRFa-R1 and PQRFa-R2 consist of 426 and 453 amino acid residues, respectively, and contain distinct characteristics of G-protein coupled receptors. These three genes were exclusively expressed in the brain and pituitary. The expression levels of pqrfa and pqrfa-r1 were significantly increased during the late stage of sexual maturation, but low in the spawning fish just after releasing sperms and eggs. Therefore, the grass puffer PQRFa peptide may have a role in the late stage of sexual maturation before spawning via PQRFa-R1. In contrast, the pqrfa-r2 expression showed maximum levels in the spawning fish and in the post-spawning period. The present results provide fundamental data suggesting that the grass puffer PQRFa peptide may have multiple roles in the control of reproduction that are dependent on the reproductive stages.
Collapse
Affiliation(s)
- Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Hiroyuki Doi
- Shimonoseki Marine Science Museum "Kaikyokan", Shimonoseki Academy of Marine Science, Yamaguchi 750-0036, Japan
| | - Hironori Ando
- Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
6
|
Sukhbaatar U, Kanasaki H, Mijiddorj T, Oride A, Miyazaki K. Expression of gonadotropin-inhibitory hormone receptors in mouse pituitary gonadotroph LβT2 cells and hypothalamic gonadotropin-releasing hormone-producing GT1-7 cells. Endocr J 2014; 61:25-34. [PMID: 24088662 DOI: 10.1507/endocrj.ej13-0238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) was first identified in quail as a novel neurohormone that acts directly on the anterior pituitary to inhibit gonadotropin release. GnIH inhibits not only gonadotropin release from the pituitary gland but also inhibits the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus. In this study, we examined how GnIH receptors were regulated in pituitary gonadotroph cells and GnRH-producing neurons in the hypothalamus. In the mouse pituitary gonadotroph cell line LβT2, GnRH increased expression of the GnIH receptor, G-protein coupled receptor 74 (GPR74). GnRH also stimulated the expression of GPR74 and GPR147 in primary cultures of rat anterior pituitary cells. In addition, when GnRH was administered to LβT2 cells in a pulsatile manner, low frequency GnRH pulse stimulation stimulated GPR74 and GPR147 expression more than did high frequency GnRH pulses. In the mouse hypothalamic GnRH-producing cell line GT1-7, hypothalamic kisspeptin did not significantly increase the expression of GnIH receptors. However, the intermittent administration of kisspeptin to GT1-7 cells significantly increased GPR74 and GPR147 mRNA expression. The overexpression of either constitutively active MEK kinase (MEKK) or protein kinase A (PKA) in LβT2 cells increased the expression of GPR74 mRNA. Conversely, in GT1-7 cells, although the overexpression of either MEKK or PKA failed to stimulate GnIH receptor expression, the combined overexpression of both kinases together increased GPR74 and GPR147 mRNA levels. Our current observations suggest that two central controllers of reproductive function, GnRH and kisspeptin, stimulate the expression of GnIH receptors in pituitary gonadotroph cells and hypothalamic GnRH neurons.
Collapse
Affiliation(s)
- Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
7
|
Parhar I, Ogawa S, Kitahashi T. RFamide peptides as mediators in environmental control of GnRH neurons. Prog Neurobiol 2012; 98:176-96. [DOI: 10.1016/j.pneurobio.2012.05.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
|
8
|
Oishi H, Klausen C, Bentley GE, Osugi T, Tsutsui K, Gilks CB, Yano T, Leung PCK. The human gonadotropin-inhibitory hormone ortholog RFamide-related peptide-3 suppresses gonadotropin-induced progesterone production in human granulosa cells. Endocrinology 2012; 153:3435-45. [PMID: 22691551 DOI: 10.1210/en.2012-1066] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RFamide-related peptide-3 (RFRP-3), a mammalian ortholog of avian gonadotropin-inhibitory hormone, has pronounced inhibitory effects on reproduction in a number of species. RFRP-3 suppresses gonadotropin release at the hypothalamic and/or pituitary levels; however, increasing evidence also suggests putative functions within the ovary. We have now demonstrated the expression of both RFRP and its receptor (GPR147) in primary cultures of human granulosa-lutein cells. Immunohistochemical analysis of normal human ovaries from premenopausal women showed that RFRPs and GPR147 were primarily localized in the granulosa cell layer of large preovulatory follicles as well as in the corpus luteum. Treatment of human granulosa-lutein cells with RFRP-3 reduced FSH-, LH- and forskolin-stimulated progesterone production and steroidogenic acute regulatory protein expression but did not affect basal or 8-bromoadenosine 3'5'-cyclic monophosphate stimulated levels. In addition, RFRP-3 inhibited gonadotropin- and forskolin-induced intracellular cAMP accumulation, and these effects were abolished by pretreatment with an inhibitor of inhibitory G(i/o) proteins (pertussis toxin). Importantly, the effects of RFRP-3 on FSH-, LH-, and forskolin-induced cAMP and progesterone accumulation were completely eliminated by cotreatment with the bifunctional GPR147/GPR74 antagonist RF9 or by pretreatment with GPR147 small interfering RNA. These results suggest that RFRP-3 is expressed in human granulosa cells in which it acts via its receptor, GPR147, to inhibit gonadotropin signaling at the level of adenylyl cyclase via activation of a pertussis toxin-sensitive Gα(i/o) protein. This leads to reduced gonadotropin-stimulated cAMP accumulation and progesterone synthesis, likely via reduced steroidogenic acute regulatory protein expression. Thus, ovarian RFRP-3/GPR147 signaling could contribute to normal ovarian function.
Collapse
Affiliation(s)
- Hajime Oishi
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, 4490 Oak Street, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Son YL, Ubuka T, Millar RP, Kanasaki H, Tsutsui K. Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells. Endocrinology 2012; 153:2332-43. [PMID: 22374973 DOI: 10.1210/en.2011-1904] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A neuropeptide that directly inhibits gonadotropin secretion from the pituitary was discovered in quail and named gonadotropin-inhibitory hormone (GnIH). The presence and functional roles of GnIH orthologs, RF-amide-related peptides (RFRP), that possess a common C-terminal LPXRF-amide (X = L or Q) motif have also been demonstrated in mammals. GnIH orthologs inhibit gonadotropin synthesis and release by acting on pituitary gonadotropes and GnRH neurons in the hypothalamus via its receptor (GnIH receptor). It is becoming increasingly clear that GnIH is an important hypothalamic neuropeptide controlling reproduction, but the detailed signaling pathway mediating the inhibitory effect of GnIH on target cells is still unknown. In the present study, we investigated the pathway of GnIH cell signaling and its possible interaction with GnRH signaling using a mouse gonadotrope cell line, LβT2. First, we demonstrated the expression of GnIH receptor mRNA in LβT2 cells by RT-PCR. We then examined the inhibitory effects of mouse GnIH orthologs [mouse RFRP (mRFRP)] on GnRH-induced cell signaling events. We showed that mRFRP effectively inhibited GnRH-induced cAMP signaling by using a cAMP-sensitive reporter system and measuring cAMP levels, indicating that mRFRP function as an inhibitor of adenylate cyclase. We further showed that mRFRP inhibited GnRH-stimulated ERK phosphorylation, and this effect was mediated by the inhibition of the protein kinase A pathway. Finally, we demonstrated that mRFRP inhibited GnRH-stimulated gonadotropin subunit gene transcriptions and also LH release. Taken together, the results indicate that mRFRP function as GnIH to inhibit GnRH-induced gonadotropin subunit gene transcriptions by inhibiting adenylate cyclase/cAMP/protein kinase A-dependent ERK activation in LβT2 cells.
Collapse
Affiliation(s)
- You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | |
Collapse
|
10
|
Hunt SC, Hasstedt SJ, Xin Y, Dalley BK, Milash BA, Yakobson E, Gress RE, Davidson LE, Adams TD. Polymorphisms in the NPY2R gene show significant associations with BMI that are additive to FTO, MC4R, and NPFFR2 gene effects. Obesity (Silver Spring) 2011; 19:2241-7. [PMID: 21818152 PMCID: PMC3733173 DOI: 10.1038/oby.2011.239] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuropeptide Y (NPY) is an appetite hormone that acts centrally to control feeding behavior. The 5' and exon 2 regions of NPY2R, one of five NPY receptor genes, have been weakly and inconsistently implicated with obesity. With the ATG start site of the gene at the beginning of exon 2, single-nucleotide polymorphisms (SNPs) across intron 1 may show stronger associations with obesity than expected. Two 5' SNPs, three intron 1 SNPs, and one synonymous exon 2 SNP were genotyped on 2,985 white Utah subjects. Previously associated FTO, NPY, NPY1R, MC4R, PPARGC1A, OR7D4, and four NPFFR2 SNPs were also genotyped and related to BMI. One NPY2R 5' SNP (rs12649641, P = 0.008), an exon 2 SNP (rs2880415, P = 0.009), and an intron 1 SNP (rs17376826, P = 7 × 10(-6)) were each significantly associated with BMI. All three SNPs, plus FTO (rs9939609, P = 1.5 × 10(-6)) and two NPFFR2 SNPs (rs4129733, P = 3.7 × 10(-13) and rs11940196, 4.2 × 10(-10)) remained significant in a multiple regression additive model. Diplotypes using the estimated haplotypes of NPY2R, NPFFR2, and MC4R were significantly associated with BMI (P = 1.0 × 10(-10), 3.2 × 10(-8), and 1.1 × 10(-4), respectively). Haplotypes of NPY2R, NPFFR2, and MC4R, plus the FTO SNP, explained 9.6% of the BMI variance. SNP effect sizes per allele for the four genes ranged from 0.8 to 3.5 kg/m(2). We conclude that haplotypes containing the rs17376826 SNP in intron 1 of NPY2R have strong associations with BMI, some NPFFR2 haplotypes are strongly protective against or increase risk of obesity, and both NPY2R and NPFFR2 play important roles in obesity predisposition independent of FTO and MC4R.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Alleles
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO
- Body Mass Index
- Female
- Gene Frequency
- Genetic Loci
- Genetic Predisposition to Disease
- Genotype
- Haplotypes
- Humans
- Introns
- Linear Models
- Male
- Middle Aged
- Obesity/genetics
- Pedigree
- Polymorphism, Single Nucleotide
- Proteins/genetics
- Proteins/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/metabolism
- Utah
- White People/genetics
- Young Adult
Collapse
Affiliation(s)
- Steven C Hunt
- Cardiovascular Genetics Division, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Findeisen M, Rathmann D, Beck-Sickinger AG. RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058657 DOI: 10.3390/ph4091248] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Collapse
|
12
|
Bentley GE, Tsutsui K, Kriegsfeld LJ. Recent studies of gonadotropin-inhibitory hormone (GnIH) in the mammalian hypothalamus, pituitary and gonads. Brain Res 2010; 1364:62-71. [PMID: 20934414 DOI: 10.1016/j.brainres.2010.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 10/19/2022]
Abstract
The hypothalamo-pituitary-gonadal (HPG) axis integrates internal and external cues via a balance of stimulatory and inhibitory neurochemical systems to time reproductive activity. The cumulative output of these positive and negative modulators drives secretion of gonadotropin-releasing hormone (GnRH), a neuropeptide that causes pituitary gonadotropin synthesis and secretion. Ten years ago, Tsutsui and colleagues discovered a peptide in quail hypothalamus that is capable of inhibiting gonadotropin secretion in cultured quail pituitary cells. Later studies by a variety of researchers examined the presence and functional role for the mammalian ortholog of GnIH. To date, GnIH exhibits a similar distribution and functional role in all mammals investigated, including humans. This overview summarizes the role of GnIH in modulation of mammalian reproductive physiology and suggests avenues for further study by those interested in the neuroendocrine control of reproductive physiology and sexual behavior.
Collapse
Affiliation(s)
- George E Bentley
- Laboratory of Reproductive Neuroendocrinology, Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| | | | | |
Collapse
|
13
|
Talmont F, Moulédous L, Piedra-Garcia L, Schmitt M, Bihel F, Bourguignon JJ, Zajac JM, Mollereau C. Pharmacological characterization of the mouse NPFF2 receptor. Peptides 2010; 31:215-20. [PMID: 19944730 DOI: 10.1016/j.peptides.2009.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
This study presents the binding and functional properties of the mouse NPFF(2) (mNPFF(2)) receptor, in comparison with its human counterpart (hNPFF(2)). Binding experiments were performed by using the NPFF(2) selective radioligand [(3)H]-EYF in membranes from CHO cells transfected with mouse and human NPFF(2) receptors and compared to membranes from mouse olfactory bulb, the brain region expressing the highest density of NPFF(2) receptors in mouse. mNPFF(2) receptors exhibited a high affinity (Kd=0.2-0.4 nM) for [(3)H]-EYF, comparable to that of hNPFF(2) receptors. Also, the binding selectivity profile of mNPFF(2) receptors was comparable to that of hNPFF(2) receptors, except for three ligands (NPSF, NPVF, RF9) that were about tenfold more potent and active on mouse receptors than on human receptors. In particular, compared to hNPFF(2) receptors, mNPFF(2) receptors were less discriminative towards the proNPFF(B)-derived peptide. This suggests some species-related differences in the binding properties of NPFF(2) receptors that could have repercussion when evaluating the pharmacological properties of drugs in vivo.
Collapse
Affiliation(s)
- Franck Talmont
- CNRS/IPBS (Institut de Pharmacologie et Biologie Structurale), 205 route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao S, Zhu E, Yang C, Bentley GE, Tsutsui K, Kriegsfeld LJ. RFamide-related peptide and messenger ribonucleic acid expression in mammalian testis: association with the spermatogenic cycle. Endocrinology 2010; 151:617-27. [PMID: 20051487 PMCID: PMC2817627 DOI: 10.1210/en.2009-0978] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RFamide-related peptide (RFRP), the mammalian homolog of avian gonadotropin-inhibitory hormone, has a pronounced suppressive action on the reproductive axis across species. In mammals, RFRP acts directly on GnRH neurons, and likely at the level of the pituitary, to inhibit gonadotropin secretion. In the present study, we examined whether RFRP might act outside of mammalian brain on reproductive tissues directly. Using RT-PCR and in situ hybridization, we found that both RFRP and its receptors [G protein-coupled receptor (GPR) 147 and GPR74] are expressed in the testis of Syrian hamster. These results were confirmed and extended using double- and triple-label immunohistochemistry. RFRP expression was observed in spermatocytes and in round to early elongated spermatids. Significant expression of RFRP was not seen in Leydig cells. GPR147 protein was observed in myoid cells in all stages of spermatogenesis, pachytene spermatocytes, maturation division spermatocytes, and in round and late elongated spermatids. GPR74 proteins only appeared in late elongated spermatids. Additionally, we found that RFRP and its receptor mRNA are markedly altered by day length and reproductive condition. These findings highlight a possible novel autocrine and/or paracrine role for RFRP in Syrian hamster testis, potentially contributing to the differentiation of spermatids during spermiogenesis.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720-1650, USA
| | | | | | | | | | | |
Collapse
|
15
|
Dahlman I, Dicker A, Jiao H, Kere J, Blomqvist L, van Harmelen V, Hoffstedt J, Borch-Johnsen K, Jorgensen T, Hansen T, Pedersen O, Laakso M, Arner P. A common haplotype in the G-protein-coupled receptor gene GPR74 is associated with leanness and increased lipolysis. Am J Hum Genet 2007; 80:1115-24. [PMID: 17503329 PMCID: PMC1867099 DOI: 10.1086/518445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 03/21/2007] [Indexed: 11/03/2022] Open
Abstract
The G-protein-coupled receptor GPR74 is a novel candidate gene for body weight regulation. In humans, it is predominantly expressed in brain, heart, and adipose tissue. We report a haplotype in the GPR74 gene, ATAG, with allele frequency ~4% in Scandinavian cohorts, which was associated with protection against obesity in two samples selected for obese and lean phenotypes (odds ratio for obesity 0.48 and 0.62; nominal P=.0014 and .014; n=1,013 and 1,423, respectively). In a population-based sample, it was associated with lower waist (P=.02) among 3,937 men and with obesity protection (odds ratio 0.36; P=.036) among those selected for obese or lean phenotypes. The ATAG haplotype was associated with increased adipocyte lipid mobilization (lipolysis) in vivo and in vitro. In human fat cells, GPR74 receptor stimulation and inhibition caused a significant and marked decrease and increase, respectively, of lipolysis, which could be linked to catecholamine stimulation of adipocytes through beta -adrenergic receptors. These findings suggest that a common haplotype in the GPR74 gene protects against obesity, which, at least in part, is caused by a relief of inhibition of lipid mobilization from adipose tissue. The latter involves a cross-talk between GPR74 and beta -adrenoceptor signaling to lipolysis in fat cells.
Collapse
Affiliation(s)
- Ingrid Dahlman
- Department of Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ankö ML, Ostergård M, Lintunen M, Panula P. Alternative splicing of human and mouse NPFF2 receptor genes: Implications to receptor expression. FEBS Lett 2006; 580:6955-60. [PMID: 17157836 DOI: 10.1016/j.febslet.2006.11.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 11/26/2022]
Abstract
Alternative splicing has an important role in the tissue-specific regulation of gene expression. Here we report that similar to the human NPFF2 receptor, the mouse NPFF2 receptor is alternatively spliced. In human the presence of three alternatively spliced receptor variants were verified, whereas two NPFF2 receptor variants were identified in mouse. The alternative splicing affected the 5' untranslated region of the mouse receptor and the variants in mouse were differently distributed. The mouse NPFF system may also have species-specific features since the NPFF2 receptor mRNA expression differs from that reported for rat.
Collapse
Affiliation(s)
- Minna-Liisa Ankö
- Department of Biology, Abo Akademi University, Tykistökatu 6A, 2nd floor, FI-20520 Turku, Finland
| | | | | | | |
Collapse
|
17
|
Splinter PL, Lazaridis KN, Dawson PA, LaRusso NF. Cloning and expression of SLC10A4, a putative organic anion transport protein. World J Gastroenterol 2006; 12:6797-805. [PMID: 17106928 PMCID: PMC4087434 DOI: 10.3748/wjg.v12.i42.6797] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if novel bile acid transporters may be expressed in human tissues.
METHODS: SLC10A1 (NTCP) was used as a probe to search the NCBI database for homology to previously uncharacterized ESTs. The homology search identified an EST (termed SLC10A4) that shares sequence identity with SLC10A1 and SLC10A2 (ASBT). We performed Northern blot analysis and RT-PCR to determine the tissue distribution of SLC10A4. SLC10A4 was cloned in frame with an epitope tag and overexpressed in CHO cells to determine cellular localization and functional analysis of bile acid uptake.
RESULTS: Northern analysis revealed that SLC10A4 mRNA is ubiquitously expressed in human tissues with the highest levels of mRNA expression in brain, placenta, and liver. In SLC10A4-transfected CHO cells, immunoblotting analysis and immunofluorescence staining demonstrated a 49-kDa protein that is expressed at the plasma membrane and intracellular compartments. Functional analysis of SLC10A4 showed no significant taurocholate uptake in the presence of sodium when compared to untransfected CHO cells.
CONCLUSION: To date, we have shown that this protein has no capacity to transport taurocholate relative to SLC10A1; however, given its ubiquitous tissue distribution, it may play a more active role in transporting other endogenous organic anions.
Collapse
Affiliation(s)
- Patrick-L Splinter
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
18
|
Fukusumi S, Fujii R, Hinuma S. Recent advances in mammalian RFamide peptides: the discovery and functional analyses of PrRP, RFRPs and QRFP. Peptides 2006; 27:1073-86. [PMID: 16500002 DOI: 10.1016/j.peptides.2005.06.031] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/24/2005] [Indexed: 11/24/2022]
Abstract
Since the first discovery of a peptide with RFamide structure at its C-terminus (i.e., an RFamide peptide) from an invertebrate in 1977, numerous studies on RFamide peptides have been conducted, and a variety have been identified in various phyla throughout the animal kingdom. The first reported mammalian RFamide peptides were neuropeptide FF (NPFF) and neuropeptide AF (NPAF) in 1985. However, for many years after this, no new novel RFamide peptides were identified in mammals. A breakthrough in discovering mammalian RFamide peptides was made possible by reverse pharmacology on the basis of orphan G protein-coupled receptor (GPCR) research. The first report of an RFamide peptide identified from orphan GPCR research was prolactin (PRL)-releasing peptide (PrRP) in 1998. To date, a total of five RFamide peptide genes have been discovered in mammals. Orphan GPCR research has contributed considerably to the identification of these peptides and their receptor genes. This paper examines these mammalian RFamide peptides focusing especially on PrRP, RFamide-related peptides (RFRPs) and, the most recently identified, pyroglutamylated RFamide peptide (QRFP), the discovery of all of which the authors were at least partly involved in. We review here the strategies employed for the identification of these peptides and examine their characteristics, tissue distribution, receptors and functions.
Collapse
Affiliation(s)
- Shoji Fukusumi
- Frontier Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Wadai 10, Tsukuba-shi, Ibaraki 300-4293, Japan
| | | | | |
Collapse
|
19
|
Ankö ML, Panula P. Regulation of endogenous human NPFF2 receptor by neuropeptide FF in SK-N-MC neuroblastoma cell line. J Neurochem 2005; 96:573-84. [PMID: 16336216 DOI: 10.1111/j.1471-4159.2005.03581.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuropeptide FF has many functions both in the CNS and periphery. Two G protein-coupled receptors (NPFF1 and NPFF2 receptors) have been identified for neuropeptide FF. The expression analysis of the peptide and receptors, together with pharmacological and physiological data, imply that NPFF2 receptor would be the primary receptor for neuropeptide FF. Here, we report for the first time a cell line endogenously expressing hNPFF2 receptor. These SK-N-MC neuroblastoma cells also express neuropeptide FF. We used the cells to investigate the hNPFF2 receptor function. The pertussis toxin-sensitive inhibition of adenylate cyclase activity upon receptor activation indicated coupling to Gi/o proteins. Upon agonist exposure, the receptors were internalized and the mitogen-activated protein kinase cascade was activated. Upon neuropeptide FF treatment, the actin cytoskeleton was reorganized in the cells. The expression of hNPFF2 receptor mRNA was up-regulated by neuropeptide FF. Concomitant with the receptor mRNA, the receptor protein expression was increased. The homologous regulation of hNPFF2 receptor correlates with our previous results in vivo showing that during inflammation, the up-regulation of neuropeptide FF mRNA precedes that of NPFF2 receptor. The regulation of hNPFF2 receptor by NPFF could also be important in the periphery where neuropeptide FF has been suggested to function as a hormone.
Collapse
Affiliation(s)
- Minna-Liisa Ankö
- Department of Biology, Abo Akademi University, Tykistökatu, Turku, Finland
| | | |
Collapse
|
20
|
Laemmle B, Schindler M, Beilmann M, Hamilton BS, Doods HN, Wieland HA. Characterization of the NPGP receptor and identification of a novel short mRNA isoform in human hypothalamus. REGULATORY PEPTIDES 2003; 111:21-9. [PMID: 12609745 DOI: 10.1016/s0167-0115(02)00220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recently, an orphan G protein coupled receptor (GPCR) termed NPGPR was described. A shorter variant of this receptor lacking exon 1 was shown to have subnanomolar affinity for neuropeptide FF (NPFF), a pain modulatory peptide, and therefore was named NPFF(2) receptor. Here, we characterize the full-length cloned NPGPR and identify a novel short form lacking exon 2 with a differential pattern of mRNA abundance in several tissues and organs. The NPGPR is most similar to the recently cloned neuropeptide FF (NPFF) receptor which lacks exon 1, but also shows high homology to the orexin and neuropeptide Y (NPY) receptor families, two neuropeptides involved in food intake regulation. Therefore, we used binding studies to examine the interaction of NPFF, orexin and NPY with the NPGPR. [125I] NPFF was displaced by NPFF with an IC(50) of 14.7 +/- 8.8 nM, whereas [125I] Orexin B was displaced by Orexin B with an IC(50) of 415 +/- 195 nM. We conclude that orexins interact with the NPGPR and that the affinity of NPFF for NPGPR is approximately 100-fold lower than for the NPFF2 receptor. We postulate that NPGPR is a splice variant of the family of NPFF receptors and displays a binding profile different from the other members of the NPFF receptor family due to the presence of exon 1. In order to evaluate whether NPGPR levels are affected by the feeding status, we examined the mRNA level using real-time PCR in two feeding models, i.e. before and after diet-induced body weight increase as well as after chronic food restriction in rats. However, hypothalamic NPGPR mRNA was unchanged in both models. Therefore, our evidence does not support the hypothesis that NPGPR is involved in feeding regulation.
Collapse
Affiliation(s)
- Baerbel Laemmle
- Department of Cardiovascular Research, Boehringer Ingelheim Pharma KG, 88397 Biberach, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Mollereau C, Mazarguil H, Marcus D, Quelven I, Kotani M, Lannoy V, Dumont Y, Quirion R, Detheux M, Parmentier M, Zajac JM. Pharmacological characterization of human NPFF1 and NPFF2 receptors expressed in CHO cells by using NPY Y1 receptor antagonists. Eur J Pharmacol 2002; 451:245-56. [PMID: 12242085 DOI: 10.1016/s0014-2999(02)02224-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuropeptide FF (NPFF) belongs to an opioid-modulatory system including two precursors (pro-NPFF(A) and pro-NPFF(B)) and two G-protein coupled receptors (NPFF(1) and NPFF(2)). The pharmacological and functional profiles of human NPFF(1) and NPFF(2) receptors expressed in Chinese hamster ovary (CHO) cells were compared by determining the affinity of several peptides derived from both NPFF precursors and by measuring their abilities to inhibit forskolin-induced cAMP accumulation. Each NPFF receptor recognizes peptides from both precursors with nanomolar affinities, however, with a slight preference of pro-NPFF(A) peptides for NPFF(2) receptors and of pro-NPFF(B) peptides for NPFF(1) receptors. BIBP3226 ((R)-N(2)-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-argininamide) and BIBO3304 ((R)-N(2)-(diphenylacetyl)-N-[4-(aminocarbonylaminomethyl)-benzyl]-argininamide trifluoroacetate), two selective neuropeptide Y (NPY) Y(1) receptor antagonists, display relative high affinities for NPFF receptors and exhibit antagonist properties towards hNPFF(1) receptors. The structural determinants responsible for binding of these molecules to NPFF receptors were investigated and led to the synthesis of hNPFF(1) receptor antagonists with affinities from 40 to 80 nM. Our results demonstrate differences in pharmacological characteristics between NPFF(1) and NPFF(2) receptors and the feasibility of subtype-selective antagonists.
Collapse
Affiliation(s)
- Catherine Mollereau
- Institut de Pharmacologie et de Biologie Structurale (CNRS, UMR5089), 205 route de Narbonne, 31077 Toulouse cedex 04, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chamorro S, Della-Zuana O, Fauchère JL, Félétou M, Galizzi JP, Levens N. Appetite suppression based on selective inhibition of NPY receptors. Int J Obes (Lond) 2002; 26:281-98. [PMID: 11896483 DOI: 10.1038/sj.ijo.0801948] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2001] [Revised: 07/01/2001] [Accepted: 11/07/2001] [Indexed: 11/08/2022]
Abstract
AIM The aim of this review is to critically assess available evidence that blockade of the actions of NPY at one of the five NPY receptor subtypes represents an attractive new drug discovery target for the development of an appetite suppressant drug. RESULTS Blockade of the central actions of NPY using anti-NPY antibodies, antisense oligodeoxynucleotides against NPY and NPY receptor antagonists results in a decrease in food intake in energy-deprived animals. These results appear to show that endogenous NPY plays a role in the control of appetite. The fact that NPY receptors exist as at least five different subtypes raises the possibility that the actions of endogenous NPY on food intake can be adequately dissociated from other effects of the peptide. Current drug discovery has produced a number of highly selective NPY receptor antagonists which have been used to establish the NPY Y(1) receptor subtype as the most critical in regulating short-term food intake. However, additional studies are now needed to more clearly define the relative contribution of NPY acting through the NPY Y2 and NPY Y5 receptors in the complex sequence of physiological and behavioral events that underlie the long-term control of appetite. CONCLUSIONS Blockade of the NPY receptor may produce appetite-suppressing drugs. However, it is too early to state with certainty whether a single subtype selective drug used alone or a combination of NPY receptor selective antagonists used in combination will be necessary to adequately influence appetite regulation.
Collapse
Affiliation(s)
- S Chamorro
- Division of Metabolic Diseases, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | |
Collapse
|
23
|
Kask A, Vasar E, Heidmets LT, Allikmets L, Wikberg JE. Neuropeptide Y Y(5) receptor antagonist CGP71683A: the effects on food intake and anxiety-related behavior in the rat. Eur J Pharmacol 2001; 414:215-24. [PMID: 11239922 DOI: 10.1016/s0014-2999(01)00768-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of neuropeptide Y Y(5) receptor antagonist (trans-naphtalene-1-sulphonic acid [4-[(4-amino-quinazolin-2-ylamino)-methyl]-cyclohexylmethyl]-amide hydrochloride; CGP71683A), on food intake, anxiety and locomotor activity were studied. CGP71683A (1-10 mg/kg, i.p.) dose-dependently decreased nocturnal and fasting-induced food intake. CGP71683A did not have an anxiogenic-like effect in the rat social interaction test. In the elevated plus-maze test, where novel neuropeptide Y Y(1) receptor antagonist (2R)-5-([amino(imino)methyl)amino)-2-[(2.2-diphenylacetyl)-amino]-N-[(1R)-1-(4-hydroxyphenyl)ethyl-pentanamide (H 409/22) had anxiogenic-like effect, CGP71683A was inactive. In the open-field test, carried out immediately after the elevated plus-maze test, CGP71683A inhibited horizontal and vertical activity. CGP71683A did modify the habituation of locomotor response in novel environment. These data show that the inhibition of food intake induced by CGP71683A could not be explained by increased fearfulness, a state that is induced by neuropeptide Y Y(1) receptor antagonists. Thus, our data, obtained with first neuropeptide Y Y(5) receptor antagonist CGP71683A, suggest that in contrast to the neuropeptide Y Y(1) receptor, Y(5) receptor is not involved in tonic neuropeptide Y-induced anxiolysis.
Collapse
Affiliation(s)
- A Kask
- Department of Pharmacology, University of Tartu, Ravila 19, Tartu 50090, Estonia.
| | | | | | | | | |
Collapse
|
24
|
Abstract
The Y(2) receptor is the predominant neuropeptide Y (NPY) receptor subtype in the brain. Y(2) receptor mRNA is discretely distributed in the brain, including specific subregions of the hippocampus and the hypothalamus, and is largely consistent with the distribution of Y(2) receptor protein demonstrated by radioligand-binding methods. Y(2) receptor-mediated effects have been reported principally based on the observations using the C-terminal fragments of NPY. Recent studies indicate an involvement of the receptor in food intake, gastrointestinal motility, cardiovascular regulation, and neuronal excitability. Very recently, Y(2) receptor selective antagonist has been developed and Y(2) receptor-deficient animals have been created. These new pharmacological tools will help to clarify the roles of this receptor in brain functions.
Collapse
Affiliation(s)
- T Kaga
- Second Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | | | | |
Collapse
|
25
|
|