1
|
Classification of Visual Cortex Plasticity Phenotypes following Treatment for Amblyopia. Neural Plast 2019; 2019:2564018. [PMID: 31565045 PMCID: PMC6746165 DOI: 10.1155/2019/2564018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/04/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Abstract
Monocular deprivation (MD) during the critical period (CP) has enduring effects on visual acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has become a model for studying the mechanisms, especially glutamatergic and GABAergic receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to those receptors and if those changes differentiate treatments that support the recovery of acuity versus persistent acuity deficits. Here, we use an animal model to explore the effects of 3 visual treatments started during the CP (n = 24, 10 male and 14 female): binocular vision (BV) that promotes good acuity versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity deficits. We measured the recovery of a collection of glutamatergic and GABAergic receptor subunits in the V1 and modeled recovery of kinetics for NMDAR and GABAAR. There was a complex pattern of protein changes that prompted us to develop an unbiased data-driven approach for these high-dimensional data analyses to identify plasticity features and construct plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports adaptive plasticity while RO and BD promote a maladaptive pattern. The RO plasticity phenotype appeared more similar to adults with a high expression of GluA2, and the BD phenotypes were dominated by GABAA α1, highlighting that multiple plasticity phenotypes can underlie persistent poor acuity. After 2-4 days of BV, the plasticity phenotypes resembled normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the recovery of vision.
Collapse
|
2
|
Metzbower SR, Joo Y, Benavides DR, Blanpied TA. Properties of Individual Hippocampal Synapses Influencing NMDA-Receptor Activation by Spontaneous Neurotransmission. eNeuro 2019; 6:ENEURO.0419-18.2019. [PMID: 31110134 PMCID: PMC6541874 DOI: 10.1523/eneuro.0419-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/05/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
NMDA receptor (NMDAR) activation is critical for maintenance and modification of synapse strength. Specifically, NMDAR activation by spontaneous glutamate release has been shown to mediate some forms of synaptic plasticity as well as synaptic development. Interestingly, there is evidence that within individual synapses each release mode may be segregated such that postsynaptically there are distinct pools of responsive receptors. To examine potential regulators of NMDAR activation because of spontaneous glutamate release in cultured hippocampal neurons, we used GCaMP6f imaging at single synapses in concert with confocal and super-resolution imaging. Using these single-spine approaches, we found that Ca2+ entry activated by spontaneous release tends to be carried by GluN2B-NMDARs. Additionally, the amount of NMDAR activation varies greatly both between synapses and within synapses, and is unrelated to spine and synapse size, but does correlate loosely with synapse distance from the soma. Despite the critical role of spontaneous activation of NMDARs in maintaining synaptic function, their activation seems to be controlled factors other than synapse size or synapse distance from the soma. It is most likely that NMDAR activation by spontaneous release influenced variability in subsynaptic receptor position, release site position, vesicle content, and channel properties. Therefore, spontaneous activation of NMDARs appears to be regulated distinctly from other receptor types, notably AMPARs, within individual synapses.
Collapse
Affiliation(s)
| | - Yuyoung Joo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - David R Benavides
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | |
Collapse
|
3
|
Josa-Prado F, Luo J, Rubin P, Henley JM, Wilkinson KA. Developmental profiles of SUMOylation pathway proteins in rat cerebrum and cerebellum. PLoS One 2019; 14:e0212857. [PMID: 30794696 PMCID: PMC6386258 DOI: 10.1371/journal.pone.0212857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Protein SUMOylation regulates multiple processes involved in the differentiation and maturation of cells and tissues during development. Despite this, relatively little is known about the spatial and temporal regulation of proteins that mediate SUMOylation and deSUMOylation in the CNS. Here we monitor the expression of key SUMO pathway proteins and levels of substrate protein SUMOylation in the forebrain and cerebellum of Wistar rats during development. Overall, the SUMOylation machinery is more highly-expressed at E18 and decreases thereafter, as previously described. All of the proteins investigated are less abundant in adult than in embryonic brain. Furthermore, we show for first time that the profiles differ between cerebellum and cerebrum, indicating differential regional regulation of some of the proteins analysed. These data provide further basic observation that may open a new perspective of research about the role of SUMOylation in the development of different brain regions.
Collapse
Affiliation(s)
- Fernando Josa-Prado
- Universidad Alfonso X el Sabio, Avda, de la Universidad, Madrid, España
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- * E-mail: (FJP); (KAW)
| | - Jia Luo
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Philip Rubin
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Jeremy M. Henley
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
| | - Kevin A. Wilkinson
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, United Kingdom
- * E-mail: (FJP); (KAW)
| |
Collapse
|
4
|
Larsen B, Luna B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci Biobehav Rev 2018; 94:179-195. [PMID: 30201220 PMCID: PMC6526538 DOI: 10.1016/j.neubiorev.2018.09.005] [Citation(s) in RCA: 403] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
The transition from adolescence to adulthood is characterized by improvements in higher-order cognitive abilities and corresponding refinements of the structure and function of the brain regions that support them. Whereas the neurobiological mechanisms that govern early development of sensory systems are well-understood, the mechanisms that drive developmental plasticity of association cortices, such as prefrontal cortex (PFC), during adolescence remain to be explained. In this review, we synthesize neurodevelopmental findings at the cellular, circuit, and systems levels in PFC and evaluate them through the lens of established critical period (CP) mechanisms that guide early sensory development. We find remarkable correspondence between these neurodevelopmental processes and the mechanisms driving CP plasticity, supporting the hypothesis that adolescent development is driven by CP mechanisms that guide the rapid development of neurobiology and cognitive ability during adolescence and their subsequent stability in adulthood. Critically, understanding adolescence as a CP not only provides a mechanism for normative adolescent development, it provides a framework for understanding the role of experience and neurobiology in the emergence of psychopathology that occurs during this developmental period.
Collapse
Affiliation(s)
- Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States.
| | - Beatriz Luna
- Center for the Neural Basis of Cognition, Pittsburgh, PA, 15213, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
5
|
Antonioli-Santos R, Lanzillotta-Mattos B, Hedin-Pereira C, Serfaty CA. The fine tuning of retinocollicular topography depends on reelin signaling during early postnatal development of the rat visual system. Neuroscience 2017; 357:264-272. [PMID: 28602919 DOI: 10.1016/j.neuroscience.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
During postnatal development, neural circuits are extremely dynamic and develop precise connection patterns that emerge as a result of the elimination of synaptic terminals, a process instructed by molecular cues and patterns of electrical activity. In the rodent visual system, this process begins during the first postnatal week and proceeds during the second and third postnatal weeks as spontaneous retinal activity and finally use-dependent fine tuning takes place. Reelin is a large extracellular matrix glycoprotein able to affect several steps of brain development, from neuronal migration to the maturation of dendritic spines and use-dependent synaptic development. In the present study, we investigated the role of reelin on the topographical refinement of primary sensory connections studying the development of retinal ganglion cell axon terminals in the rat superior colliculus. We found that reelin levels in the visual layers of the superior colliculus are the highest between the second and third postnatal weeks. Blocking reelin signaling with a neutralizing antibody (CR-50) from PND 7 to PND 14 induced a non-specific sprouting of ipsilateral retinocollicular axons outside their typical distribution of discrete patches of axon terminals. Also we found that reelin blockade resulted in reduced levels of phospho-GAP43, increased GluN1 and GluN2B-NMDA subunits and decreased levels of GAD65 content in the visual layers of the superior colliculus. The results suggest that reelin signaling is associated with the maturation of excitatory and inhibitory synaptic machinery influencing the development and fine tuning of topographically organized neural circuits during postnatal development.
Collapse
Affiliation(s)
- Rachel Antonioli-Santos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil; Institute of Biomedical Research, Marcílio Dias Navy Hospital, Rio de Janeiro, Brazil
| | - Bruna Lanzillotta-Mattos
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil
| | - Cecília Hedin-Pereira
- Federal University of Rio de Janeiro, Institute of Biomedical Sciences, Laboratory of Cellular Neuroanatomy - Rio de Janeiro, Brazil; Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neuroplasticity - Niteroi, PO Box: 100180, Brazil.
| |
Collapse
|
6
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
7
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Laskowska-Macios K, Nys J, Hu TT, Zapasnik M, Van der Perren A, Kossut M, Burnat K, Arckens L. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat. Mol Brain 2015; 8:48. [PMID: 26271461 PMCID: PMC4536594 DOI: 10.1186/s13041-015-0137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/31/2015] [Indexed: 12/03/2022] Open
Abstract
Background Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. Results In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Conclusions Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0137-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karolina Laskowska-Macios
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland. .,Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Monika Zapasnik
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Kalina Burnat
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven - University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
|
10
|
Jin J, Gong K, Zou X, Wang R, Lin Q, Chen J. The blockade of NMDA receptor ion channels by ketamine is enhanced in developing rat cortical neurons. Neurosci Lett 2013; 539:11-5. [PMID: 23395831 DOI: 10.1016/j.neulet.2013.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/03/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Ketamine is a non-competitive antagonist of NMDA receptors (NMDARs) commonly used as a dissociative anesthetic in many pediatric procedures. Ketamine acts primarily by blocking NMDA ligand-gated channels. Experimental studies indicate that ketamine administration used for inducing clinically relevant anesthesia can lead to neurotoxic effects, such as apoptosis, selectively on immature brain neurons. However, the underlying mechanisms remain unclear. This study used whole-cell patch-clamp recordings in an in vitro preparation of forebrain slices to analyze pharmacologically the differences in the effects of ketamine administration on the NMDAR channel activity between immature and mature neurons. NMDAR channel activity was recorded in the form of evoked NMDAR-mediated excitatory postsynaptic currents (eEPSCs) from the forebrain of both neonatal and adult rats. Results show that ketamine inhibited eEPSCs in a dose-dependent manner in both immature and mature neurons. However, at each concentration of ketamine applied to the brain slice, a more extensive inhibition could be seen in neonatal neurons than in adult neurons. Further, the blocking effect of ketamine on eEPSCs was measured during the period of 1, 3, and 6h after ketamine washout. Inhibition of eEPSCs in immature neurons was still evident 6h after washout. In contrast, the blockade of eEPSCs in mature neurons recovered completely from the inhibition by ketamine in a time-dependent manner. These results indicate that ketamine produces a greater and longer blocking effect on NMDAR channels in immature neurons than in mature neurons. This differential effect is likely to be a critical link to the higher vulnerability to ketamine-induced neurotoxicity in neurons of the developing brain.
Collapse
Affiliation(s)
- Jianhui Jin
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
11
|
Experience-dependent switch in sign and mechanisms for plasticity in layer 4 of primary visual cortex. J Neurosci 2012; 32:10562-73. [PMID: 22855806 DOI: 10.1523/jneurosci.0622-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits are extensively refined by sensory experience during postnatal development. How the maturation of recurrent cortical synapses may contribute to events regulating the postnatal refinement of neocortical microcircuits remains controversial. Here we show that, in the main input layer of rat primary visual cortex, layer 4 (L4), recurrent excitatory synapses are endowed with multiple, developmentally regulated mechanisms for induction and expression of excitatory synaptic plasticity. Maturation of L4 synapses and visual experience lead to a sharp switch in sign and mechanisms for plasticity at recurrent excitatory synapses in L4 at the onset of the critical period for visual cortical plasticity. The state of maturation of excitatory pyramidal neurons allows neurons to engage different mechanisms for plasticity in response to the same induction paradigm. Experience is determinant for the maturation of L4 synapses, as well as for the transition between forms of plasticity and the mechanisms they may engage. These results indicate a tight correlation between the effects of sensory drive and maturation on cortical neurons and provide a new set of cellular mechanisms engaged in the postnatal refinement of cortical circuits.
Collapse
|
12
|
Jaffer S, Vorobyov V, Kind PC, Sengpiel F. Experience-dependent regulation of functional maps and synaptic protein expression in the cat visual cortex. Eur J Neurosci 2012; 35:1281-94. [PMID: 22512257 DOI: 10.1111/j.1460-9568.2012.08044.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although the basis of our knowledge of experience-dependent plasticity comes from studies on carnivores and primates, studies examining the physiological and molecular mechanisms that underlie development and plasticity have increasingly employed mice. We have used several common rearing paradigms, such as dark-rearing and monocular deprivation (MD), to examine the timing of the physiological and molecular changes to altered experience in the cat primary visual cortex. Dark-rearing from birth or for 1 week starting at 4 weeks of age produced a similar reduction in the amplitude of responses measured through intrinsic signal imaging and a reduction in orientation selectivity. One week of visual experience following dark-rearing until 4 weeks of age yielded normal responses in both amplitude and orientation selectivity. The depression of deprived-eye responses was similar in magnitude after 2 and 7 days of MD. In contrast, non-deprived-eye responses almost doubled in magnitude after 7 days compared with 2 days of MD. These changes in the functional properties of primary visual cortex neurons were mirrored by specific changes in synaptic protein expression. Changes in proteins such as the NR2A and NR2B subunits of the N-methyl-D-aspartate receptor, postsynaptic density protein 95, alpha-CA(2+) /calmodulin-dependent protein kinase II (αCaMKII), and GABA(A) α1a indicated that the levels of sensory activity regulated mechanisms associated with both excitatory (NR2A and NR2B) and inhibitory (GABA(A) α1a) transmission so as to maintain response homeostasis. Additionally, we found that MD regulated the AMPA receptor glutamate (GluR1) subunit as well as signalling molecules (αCaMKII and synaptic Ras GTPase activating protein, SynGAP) downstream of N-methyl-D-aspartate receptors. Proteins in a common signalling pathway appeared to have similar developmental expression profiles that were broadly similar between cats and rodents.
Collapse
Affiliation(s)
- Sajjida Jaffer
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | | | | |
Collapse
|
13
|
Zhang Z, Sun QQ. Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons. Dev Neurobiol 2011; 71:221-45. [PMID: 20936660 DOI: 10.1002/dneu.20844] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The goals of this research are to (1) determine the changes in the composition of NMDA receptor (NMDAR) subunits in GABAergic interneurons during critical period (CP); and (2) test the effect of chronic blockage of specific NR2 subunits on the maturation of specific GABAergic interneurons. Our data demonstrate that: (1) The amplitude of NMDAR mediated EPSCs (EPSCs(NMDAR) ) was significantly larger in the postCP group. (2) The coefficient of variation (CV), τ(decay) and half-width of EPSCs(NMDAR) were significantly larger in the preCP group. (3) A leftward shift in the half-activation voltages in the postCP vs. preCP group. (4) Using subunit-specific antagonists, we found a postnatal shift in NR2 composition towards more NR2A mediated EPSCs(NMDAR) . These changes occurred within a two-day narrow window of CP and were similar between fast-spiking (FS) and regular spiking (RSNP) interneurons. (5) Chronic blockage of NR2A, but not NR2B, decreased the expression of parvalbumin (PV), but not other calcium binding proteins in layer 2/3 and 4 of barrel cortex. (6) Chronic blockage of NR2A selectively affected the maturation of IPSCs mediated by FS cells. In summary, we have reported, for the first time, developmental changes in the molecular composition of NMDA NR2 subunits in interneurons during CP, and the effects of chronic blockage of NR2A but not NR2B on PV expression and inhibitory synaptic transmission from FS cells. These results support an important role of NR2A subunits in developmental plasticity of fast-spiking GABAergic circuits during CP.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
14
|
Carrasco MM, Mao YT, Balmer TS, Pallas SL. Inhibitory plasticity underlies visual deprivation-induced loss of receptive field refinement in the adult superior colliculus. Eur J Neurosci 2010; 33:58-68. [PMID: 21050281 DOI: 10.1111/j.1460-9568.2010.07478.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence shows that sensory experience is not necessary for initial patterning of neural circuitry but is essential for maintenance and plasticity. We have investigated the role of visual experience in development and plasticity of inhibitory synapses in the retinocollicular pathway of an altricial rodent, the Syrian hamster. We reported previously that visual receptive field (RF) refinement in superior colliculus (SC) occurs with the same time course in long-term dark-reared (LTDR) as in normally-reared hamsters, but RFs in LTDR animals become unrefined in adulthood. Here we provide support for the hypothesis that this failure to maintain refined RFs into adulthood results from inhibitory plasticity at both pre- and postsynaptic levels. Iontophoretic application of gabazine, a GABA(A) receptor antagonist, or muscimol, a GABA(A) receptor agonist, had less of an effect on RF size and excitability of adult LTDR animals than in short-term DR animals or normal animals. Consistent with these physiological observations, the percentage of GABA-immunoreactive neurons was significantly decreased in the SC of LTDR animals compared to normal animals and to animals exposed to a normal light cycle early in development, before LTDR. Thus GABAergic inhibition in the SC of LTDR animals is reduced, weakening the inhibitory surround and contributing significantly to the visual deprivation-induced enlargement of RFs seen. Our results argue that early visually-driven activity is necessary to maintain the inhibitory circuitry intrinsic to the adult SC and to protect against the consequences of visual deprivation.
Collapse
Affiliation(s)
- María M Carrasco
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | |
Collapse
|
15
|
Beston BR, Jones DG, Murphy KM. Experience-dependent changes in excitatory and inhibitory receptor subunit expression in visual cortex. Front Synaptic Neurosci 2010; 2:138. [PMID: 21423524 PMCID: PMC3059668 DOI: 10.3389/fnsyn.2010.00138] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/06/2010] [Indexed: 02/01/2023] Open
Abstract
Experience-dependent development of visual cortex depends on the balance between excitatory and inhibitory activity. This activity is regulated by key excitatory (NMDA, AMPA) and inhibitory (GABAA) receptors. The composition of these receptors changes developmentally, affecting the excitatory–inhibitory (E/I) balance and synaptic plasticity. Until now, it has been unclear how abnormal visual experience affects this balance. To examine this question, we measured developmental changes in excitatory and inhibitory receptor subunits in visual cortex following normal visual experience and monocular deprivation. We used Western blot analysis to quantify expression of excitatory (NR1, NR2A, NR2B, GluR2) and inhibitory (GABAAα1, GABAAα3) receptor subunits. Monocular deprivation promoted a complex pattern of changes in receptor subunit expression that varied with age and was most severe in the region of visual cortex representing the central visual field. To characterize the multidimensional pattern of experience-dependent change in these synaptic mechanisms, we applied a neuroinformatics approach using principal component analysis. We found that monocular deprivation (i) causes a large portion of the normal developmental trajectory to be bypassed, (ii) shifts the E/I balance in favor of more inhibition, and (iii) accelerates the maturation of receptor subunits. Taken together, these results show that monocularly deprived animals have an abnormal balance of the synaptic machinery needed for functional maturation of cortical circuits and for developmental plasticity. This raises the possibility that interventions intended to treat amblyopia may need to address multiple synaptic mechanisms to produce optimal recovery.
Collapse
Affiliation(s)
- Brett R Beston
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
16
|
Abstract
Optimal function of neuronal networks requires interplay between rapid forms of Hebbian plasticity and homeostatic mechanisms that adjust the threshold for plasticity, termed metaplasticity. Numerous forms of rapid synapse plasticity have been examined in detail. However, the rules that govern synaptic metaplasticity are much less clear. Here, we demonstrate a local subunit-specific switch in NMDA receptors that alternately primes or prevents potentiation at single synapses. Prolonged suppression of neurotransmitter release enhances NMDA receptor currents, increases the number of functional NMDA receptors containing NR2B, and augments calcium transients at single dendritic spines. This local switch in NMDA receptors requires spontaneous glutamate release but is independent of action potentials. Moreover, single inactivated synapses exhibit a lower induction threshold for both long-term synaptic potentiation and plasticity-induced spine growth. Thus, spontaneous glutamate release adjusts plasticity threshold at single synapses by local regulation of NMDA receptors, providing a novel spatially delimited form of synaptic metaplasticity.
Collapse
Affiliation(s)
- Ming-Chia Lee
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
17
|
Early APV chronic blocked alters experience-dependent plasticity of auditory spatial representation in rat auditory cortical neurons. Neurosci Lett 2010; 478:119-23. [DOI: 10.1016/j.neulet.2010.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 04/15/2010] [Accepted: 05/01/2010] [Indexed: 11/20/2022]
|
18
|
Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. J Neurosci 2009; 29:11891-903. [PMID: 19776275 DOI: 10.1523/jneurosci.5250-08.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bursts of action potentials are important information-bearing signals in the brain, although the neuronal specializations underlying burst generation and detection are only partially understood. In apical dendrites of neocortical pyramidal neurons, calcium spikes are known to contribute to burst generation, but a comparable understanding of basal dendritic mechanisms is lacking. Here we show that NMDA spikes in basal dendrites mediate both detection and generation of bursts through a postsynaptic mechanism. High-frequency inputs to basal dendrites markedly facilitated NMDA spike initiation compared with low-frequency activation or single inputs. Unlike conventional temporal summation effects based on voltage, however, NMDA spike facilitation depended mainly on residual glutamate bound to NMDA receptors from previous activations. Once triggered by an input burst, we found that NMDA spikes in turn reliably trigger output bursts under in vivo-like stimulus conditions. Through their unique biophysical properties, NMDA spikes are thus ideally suited to promote the propagation of bursts through the cortical network.
Collapse
|
19
|
Cui Y, Zhang J, Cai R, Sun X. Early auditory experience-induced composition/ratio changes of N-methyl-D-aspartate receptor subunit expression and effects of D-2-amino-5-phosphonovaleric acid chronic blockade in rat auditory cortex. J Neurosci Res 2009; 87:1123-34. [PMID: 19025773 DOI: 10.1002/jnr.21936] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Auditory function can be affected by many factors, including environment and experience. In this study, we investigated whether early auditory experience mediates the regulation of the composition/ratio changes of the N-methyl-D-aspartic acid (NMDA) receptor subunits during development of the rat auditory cortex. We found that early sound exposure can increase expression of the NMDA receptor subunits and increase the composition/ratios of NMDA receptor subunits during the postnatal critical period. D-2-amino-5-phosphonovaleric acid (D-APV) could block and reverse the auditory experience-mediated changes, and there were marked reductions in expression levels and the composition/ratios of NMDA receptor subunits. These results indicate that the experience-dependent plasticity of the auditory cortex in the critical period during postnatal development has a marked influence on NMDA receptor expression in the rat and that changes in NMDA receptor subunit composition/ratios might mediate the early auditory experience-dependent plasticity crucial to auditory function.
Collapse
Affiliation(s)
- Yilei Cui
- School of Life Science, Institute of Cognitive Neuroscience and Shanghai Key Laboratory of Functional Magnetic Resonance Imaging, East China Normal University, Shanghai, China
| | | | | | | |
Collapse
|
20
|
Yashiro K, Philpot BD. Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008; 55:1081-94. [PMID: 18755202 DOI: 10.1016/j.neuropharm.2008.07.046] [Citation(s) in RCA: 499] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 01/26/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) mediate many forms of synaptic plasticity. These tetrameric receptors consist of two obligatory NR1 subunits and two regulatory subunits, usually a combination of NR2A and NR2B. In the neonatal neocortex NR2B-containing NMDARs predominate, and sensory experience facilitates a developmental switch in which NR2A levels increase relative to NR2B. In this review, we clarify the roles of NR2 subunits in synaptic plasticity, and argue that a primary role of this shift is to control the threshold, rather than determining the direction, for modifying synaptic strength. We also discuss recent studies that illuminate the mechanisms regulating NR2 subunits, and suggest that the NR2A/NR2B ratio is regulated by multiple means, which may control the ratio both locally at individual synapses and globally in a cell-wide manner. Finally, we use the visual cortex as a model system to illustrate how activity-dependent modifications in the NR2A/NR2B ratio may contribute to the development of cortical functions.
Collapse
Affiliation(s)
- Koji Yashiro
- Department of Cell and Molecular Physiology, Neuroscience Center, and Neurobiology Curriculum, University of North Carolina, Neuroscience Research Building, Campus Box 7545, 115 Mason Farm Road, Chapel Hill, NC 27599-7545, USA.
| | | |
Collapse
|
21
|
de Marchena J, Roberts AC, Middlebrooks PG, Valakh V, Yashiro K, Wilfley LR, Philpot BD. NMDA receptor antagonists reveal age-dependent differences in the properties of visual cortical plasticity. J Neurophysiol 2008; 100:1936-48. [PMID: 18667547 DOI: 10.1152/jn.90290.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The suggestion that NMDA receptor (NMDAR)-dependent plasticity is subunit specific, with NR2B-types required for long-term depression (LTD) and NR2A-types critical for the induction of long-term potentiation (LTP), has generated much attention and considerable debate. By investigating the suggested subunit-specific roles of NMDARs in the mouse primary visual cortex over development, we report several important findings that clarify the roles of NMDAR subtypes in synaptic plasticity. We observed that LTD was not attenuated by application of ifenprodil, an NR2B-type antagonist, or NVP-AAM007, a less selective NR2A-type antagonist. However, we were surprised that NVP-AAM007 completely blocked adult LTP (postnatal day (P) 45-90), while only modestly affecting juvenile LTP (P21-28). To assess whether this developmental transition reflected an increasing role for NR2A-type receptors with maturity, we characterized the specificity of NVP-AAM007. We found not only that NVP-AAM007 lacks discernable subunit specificity but also that the effects of NVP-AAM077 on LTP could be mimicked using subsaturating concentrations of APV, a global NMDAR antagonist. These results indicate that the effects of NVP-AAM077 on synaptic plasticity are largely explained by nonspecific blockade of NMDARs. Moreover our findings are the first to reveal a developmental increase in the sensitivity of LTP to NMDAR antagonism. We suggest that discrepant reports describing the effect of NVP-AAM077 on LTP may be partially explained by this developmental shift in the properties of LTP. These results indicate that the degree of NMDAR activation required for LTP increases with development, providing insight into a novel underlying mechanism governing the properties of synaptic plasticity.
Collapse
Affiliation(s)
- Jacqueline de Marchena
- Neuroscience Center, Department of Cell and Molecular Physiology, University of North Carolina, 5109E Neuroscience Research Bldg., Campus Box 7545, 115 Mason Farm Rd., Chapel Hill, NC 27599-7545, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lu J, Cui Y, Cai R, Mao Y, Zhang J, Sun X. Early auditory deprivation alters expression of NMDA receptor subunit NR1 mRNA in the rat auditory cortex. J Neurosci Res 2008; 86:1290-6. [PMID: 18041094 DOI: 10.1002/jnr.21577] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of NMDA receptor NR1 subunit mRNA was studied in rat auditory cortex (AC) on different postnatal days using digoxigenin-labeled oligonucleotide probes. The results showed that NR1 expression increased from birth to postnatal day 35 (P35) and remained constant until P56. The most significant increases occurred between P7 and P14. Changes in NR1 mRNA expression in rats subjected to monaural hearing deprivation on P7, P21, P35, and P49 were examined on P56. Between P7 and P21, when the rat auditory system was still in a critical period of development, NR1 mRNA expression was lower in the contralateral AC, which received auditory signals from the plugged ear, than in the ipsilateral AC. However, no significant difference was observed between the rats deprived of hearing on P35 and those deprived of hearing on P42, the end of the critical period of auditory development. These results showed that monaural hearing deprivation during early postnatal development was associated with decreased NR1 mRNA expression in the contralateral AC and suggested the involvement of NR1 in auditory function during development. They also indicated that, during postnatal development, environmental factors changed the functional plasticity of neurons in the AC through NR1 receptor expression. Taken together, these findings provide a possible underlying mechanism for the development of postnatal auditory function.
Collapse
Affiliation(s)
- Jingping Lu
- College of Life Sciences, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
23
|
Huxlin KR, Williams JM, Price T. A neurochemical signature of visual recovery after extrastriate cortical damage in the adult cat. J Comp Neurol 2008; 508:45-61. [PMID: 18300259 DOI: 10.1002/cne.21658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In adult cats, damage to the extrastriate visual cortex on the banks of the lateral suprasylvian (LS) sulcus causes severe deficits in motion perception that can recover as a result of intensive direction discrimination training. The fact that recovery is restricted to trained visual field locations suggests that the neural circuitry of early visual cortical areas, with their tighter retinotopy, may play an important role in attaining perceptual improvements after damage to higher level visual cortex. The present study tests this hypothesis by comparing the manner in which excitatory and inhibitory components of the supragranular circuitry in an early visual cortical area (area 18) are affected by LS lesions and postlesion training. First, the proportion of LS-projecting pyramidal cells as well as calbindin- and parvalbumin-positive interneurons expressing each of the four AMPA receptor subunits was estimated in layers II and III of area 18 in intact animals. The degree to which LS lesions and visual retraining altered these expression patterns was then assessed. Both LS-projecting pyramidal cells and inhibitory interneurons exhibited long-term, differential reductions in the expression of glutamate receptor (GluR)1, -2, -2/3, and -4 following LS lesions. Intensive visual training post lesion restored normal AMPAR subunit expression in all three cell-types examined. Furthermore, for LS-projecting and calbindin-positive neurons, this restoration occurred only in portions of the ipsi-lesional area 18 representing trained visual field locations. This supports our hypothesis that stimulation of early visual cortical areas-in this case, area 18-by training is an important factor in restoring visual perception after permanent damage to LS cortex.
Collapse
Affiliation(s)
- Krystel R Huxlin
- Department of Ophthalmology, University of Rochester, Rochester, New York 14642.
| | | | | |
Collapse
|
24
|
Udin SB. Isthmotectal axons maintain normal arbor size but fail to support normal branch numbers in dark-reared Xenopus laevis. J Comp Neurol 2008; 507:1559-70. [PMID: 18219666 DOI: 10.1002/cne.21633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing binocular projections to the Xenopus tectum require visual input in order to establish matching topographic maps. In dark-reared Xenopus, the ipsilateral eye's map, relayed via the retino-tecto-isthmotectal pathway, fails initially to acquire normal rostrocaudal order. Moreover, with extended time in the dark, the ipsilateral map becomes progressively less well organized. This phenomenon showed that without binocular cues, the isthmotectal axons are unable to locate proper sites for their terminal zones but left open the issue of whether the axons are able to establish arbors of normal dimensions and/or to sustain normal numbers of branches. In order to test whether dark-rearing modifies isthmotectal axon branching, we have used horseradish peroxidase to examine axons of Xenopus after dark-rearing for periods from 3 to 298 weeks. The results demonstrate that these axons never acquire more than about half the normal numbers of terminals. Surprisingly, however, the dark-reared axons' terminal zones are normal in mediolateral and rostrocaudal extent despite the lack of binocular cues that normally could constrain arbor size by inducing pruning of branches in regions with mismatched visual inputs. The effects of dark-rearing are reversible. After a return to normal lighting conditions, the recovery process begins quickly, with a significant increase in branch numbers within 4 weeks. The terminal zone remains of normal dimensions. These results support the hypothesis that correlated binocular visual input is essential for the maintenance of normal numbers of isthmotectal branches but that normal termination zone size can be established in the absence of visual cues.
Collapse
Affiliation(s)
- Susan B Udin
- Department of Physiology and Biophysics, Program in Neuroscience, State University of New York, Buffalo, New York 14214, USA.
| |
Collapse
|
25
|
Henson MA, Roberts AC, Salimi K, Vadlamudi S, Hamer RM, Gilmore JH, Jarskog LF, Philpot BD. Developmental regulation of the NMDA receptor subunits, NR3A and NR1, in human prefrontal cortex. ACTA ACUST UNITED AC 2008; 18:2560-73. [PMID: 18296432 DOI: 10.1093/cercor/bhn017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subunit composition of N-methyl-D-aspartate-type glutamate receptors (NMDARs) dictates their function, yet the ontogenic profiles of human NMDAR subunits from gestation to adulthood have not been determined. We examined NMDAR mRNA and protein development in human dorsolateral prefrontal cortex (DLPFC), an area in which NMDARs are critical for higher cognitive processing and NMDAR hypofunction is hypothesized in schizophrenia. Using quantitative reverse transcriptase-polymerase chain reaction and western blotting, we found NR1 expression begins low prenatally, peaks in adolescence, yet remains high throughout life, suggesting lifelong importance of NMDAR function. In contrast, NR3A levels are low during gestation, surge soon after birth, and decline progressively through adolescence and into adulthood. Because NR3A subunits uniquely attenuate NMDAR-mediated currents, limit calcium influx, and suppress dendritic spine formation, high levels during early childhood may be important for regulating neuroprotection and activity-dependent sculpting of synapses. We also examined whether subunit changes underlie reduced NMDAR activity in schizophrenia. Our results reveal normal NR1 and NR3A protein levels in DLPFC from schizophrenic patients, indicating that NMDAR hypofunction is unlikely to be maintained by gross changes in NR3A-containing NMDARs or overall NMDAR numbers. These data provide insights into NMDAR functions in the developing CNS and will contribute to designing pharmacotherapies for neurological disorders.
Collapse
Affiliation(s)
- Maile A Henson
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27705, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Functional maps arise in developing visual cortex as response selectivities become organized into columnar patterns of population activity. Recent studies of developing orientation and direction maps indicate that both are sensitive to visual experience, but not to the same degree or duration. Direction maps have a greater dependence on early vision, while orientation maps remain sensitive to experience for a longer period of cortical maturation. There is also a darker side to experience: abnormal vision through closed lids produces severe impairments in neuronal selectivity, rendering these maps nearly undetectable. Thus, the rules that govern their formation and the construction of the underlying neural circuits are modulated-for better or worse-by early vision. Direction maps, and possibly maps of other properties that are dependent upon precise conjunctions of spatial and temporal signals, are most susceptible to the potential benefits and maladaptive consequences of early sensory experience.
Collapse
Affiliation(s)
- Leonard E White
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
27
|
Cnops L, Hu TT, Burnat K, Arckens L. Influence of binocular competition on the expression profiles of CRMP2, CRMP4, Dyn I, and Syt I in developing cat visual cortex. Cereb Cortex 2007; 18:1221-31. [PMID: 17951599 DOI: 10.1093/cercor/bhm157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The visual cortex is vulnerable to changes in visual input, especially during the critical period when numerous molecules drive the refinement of the circuitry. From a list of potential actors identified in a recent proteomics study, we selected 2 collapsin response mediator proteins (CRMP2/CRMP4) and 2 synaptic proteins, Dynamin I (Dyn I) and Synaptotagmin I (Syt I), for in-depth analysis of their developmental expression profile in cat visual cortex. CRMP2 and CRMP4 levels were high early in life and clearly declined toward adulthood. In contrast, Dyn I expression levels progressively augmented during maturation. Syt I showed low levels at eye opening and in adults, high levels around the peak of the critical period, and maximal levels at juvenile age. We further determined a role for each molecule in ocular dominance plasticity. CRMP2 and Syt I levels decreased in area 17 upon monocular deprivation, whereas CRMP4 and Dyn I levels remained unaffected. In contrast, binocular removal of pattern vision had no influence on CRMP2 and Syt I expression in kitten area 17. This study illustrates that not the loss of quality of vision through visual deprivation, but disruption of normal binocular visual experience is crucial to induce the observed molecular changes.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
28
|
Fitzgibbon T. Do first order and higher order regions of the thalamic reticular nucleus have different developmental timetables? Exp Neurol 2007; 204:339-54. [PMID: 17234184 DOI: 10.1016/j.expneurol.2006.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 12/20/2022]
Abstract
The thalamic reticular nucleus (TRN) can been subdivided into sectors based on thalamic and cortical input. Additionally, in carnivores the visual sector of the TRN can be subdivided into first order (perigeniculate nucleus: PGN) and higher order (TRN) regions. This report examines whether TRN development reflects the nature of its higher order visual connections. 170 cells from 12 kittens aged between postnatal day 0 (P0) and P125 were fully analysed after single cell injections in 400-500 microm fixed brain slices. TRN cells have a period of exuberant dendritic branching that peaks between P3 and P12, around the time of eye opening (P7), followed by branch pruning until P68. Similarly, most dendritic appendages are added between P12 and P22 followed by pruning, which is also largely complete by P68. Most branch points occur within the first 10-30% of the dendritic arbor, peaking between 10 and 20% (roughly equivalent to 100 mum from the soma), while appendages were concentrated between 20 and 30% of the arbour; appendages tend to be distributed over a larger proportion of the arbor up to P14 compared to later ages. TRN and PGN maturation were not significantly different. The present data suggest that clear distinctions cannot be made between the maturation of first and higher order pathways and indicate that GABAergic cells of the ventral thalamus may mature earlier than relay cells of the dorsal thalamus. Furthermore, dendritic development in the TRN may be less dependent on extrinsic factors than an intrinsic growth pattern or factors other than a functional hierarchy within the visual pathway.
Collapse
Affiliation(s)
- Thomas Fitzgibbon
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
29
|
Carpenter-Hyland EP, Chandler LJ. Adaptive plasticity of NMDA receptors and dendritic spines: implications for enhanced vulnerability of the adolescent brain to alcohol addiction. Pharmacol Biochem Behav 2007; 86:200-8. [PMID: 17291572 PMCID: PMC2662130 DOI: 10.1016/j.pbb.2007.01.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 01/11/2007] [Accepted: 01/15/2007] [Indexed: 12/16/2022]
Abstract
It is now known that brain development continues into adolescence and early adulthood and is highly influenced by experience-dependent adaptive plasticity during this time. Behaviorally, this period is also characterized by increased novelty seeking and risk-taking. This heightened plasticity appears to be important in shaping behaviors and cognitive processes that contribute to proper development of an adult phenotype. However, increasing evidence has linked these same experience-dependent learning mechanisms with processes that underlie drug addiction. As such, the adolescent brain appears to be particularly susceptible to experience-dependent learning processes associated with consumption of alcohol and addictive drugs. At the level of the synapse, homeostatic changes during ethanol consumption are invoked to counter the destabilizing effects of ethanol on neural networks. This homeostatic response may be especially pronounced in the adolescent and young adult brain due to its heightened capacity to undergo experience-dependent changes, and appears to involve increased synaptic targeting of NMDA receptors. Interestingly, recent work from our lab also indicates that the enhanced synaptic localization of NMDA receptors promotes increases in the size of dendritic spines. This increase may represent a structural-based mechanism that supports the formation and stabilization of maladapted synaptic connections that, in a sense, "fix" the addictive behavior in the adolescent and young adult brain.
Collapse
Affiliation(s)
| | - L. Judson Chandler
- Corresponding author: Department of Neurosciences and Center for Drug and Alcohol Problems, 67 President St, Medical University of South Carolina, Charleston SC, USA 29425, Tel.: 843-792-5224; Fax: 843-792-7353, E-mail address:
| |
Collapse
|
30
|
Razak KA, Pallas SL. Dark rearing reveals the mechanism underlying stimulus size tuning of superior colliculus neurons. Vis Neurosci 2006; 23:741-8. [PMID: 17020630 DOI: 10.1017/s0952523806230062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 03/30/2006] [Indexed: 11/07/2022]
Abstract
Neurons in the superficial layers of the midbrain superior colliculus (SC) exhibit distinct tuning properties for visual stimuli, but, unlike neurons in the geniculocortical visual pathway, most respond best to visual stimuli that are smaller than the classical receptive field (RF). The mechanism underlying this size selectivity may depend on the number and pattern of feedforward retinal inputs and/or the balance between inhibition and excitation within the RF. We have previously shown that chronic blockade of NMDA receptors (NMDA-R), which increases the convergence of retinal afferents onto SC neurons, does not alter size selectivity in the SC. This suggests that the number of retinal inputs does not determine size selectivity. Here we show, using single unit extracellular recordings from the SC of normal hamsters, that size selectivity in neurons selective for small stimulus size is correlated with the strength of inhibition within the RF. We also show that dark rearing causes concomitant reductions in both inhibition and size selectivity. In addition, dark rearing increases the percentage of neurons non-selective for stimulus size. Finally, we show that chronic blockade of NMDA-R, a procedure that does not alter size tuning, also does not change the strength of inhibition within the RF. Taken together, these results argue that inhibition within the RF underlies selectivity for small stimulus size and that inhibition must be intact for size tuning to be preserved after developmental manipulations of activity. In addition, these results suggest that regulation of the balance between excitation and inhibition within the RF does not require NMDA-R activity but does depend on visual experience. These results suggest that developmental experience influences neural response properties through an alteration of inhibitory circuitry.
Collapse
Affiliation(s)
- Khaleel A Razak
- Graduate Program in Neurobiology and Behavior, Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | |
Collapse
|
31
|
Bi C, Cui Y, Mao Y, Dong S, Zhang J, Sun X. The effect of early auditory deprivation on the age-dependent expression pattern of NR2B mRNA in rat auditory cortex. Brain Res 2006; 1110:30-8. [PMID: 16857177 DOI: 10.1016/j.brainres.2006.06.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/15/2006] [Accepted: 06/19/2006] [Indexed: 11/19/2022]
Abstract
NMDA receptors have been well shown to be involved in neuronal plasticity. In order to understand the role of NR2B subtype NMDA receptors in auditory function development, the present study investigated the effect of early auditory deprivation on the expression of NR2B mRNA in rat auditory cortex (AC) during postnatal development. For normal rats, the NR2B mRNA expression was highest at birth (postnatal day 1 [P1]) and declined rapidly to low level during adulthood. However, during the critical period of rat auditory development (two to three weeks after birth), there was a transient NR2B expression peak on postnatal day 21 (P21). For the auditory-deprived rats, the general declining trend of NR2B mRNA expression from birth to adult was similar to that observed in the normal group, whereas the expression level from P15 to P27 was significantly lower than normal and the transient peak on P21 disappeared. In both groups, the distribution pattern of NR2B mRNA-positive neurons was also examined in various layers and dorsal, medial and ventral subdistricts of AC. There is no significant effect on the spatial expression of the NR2B mRNA in the AC between normal and deprived group. Our results indicated that the early auditory deprivation decreased the expression levels of NR2B mRNA in AC during the critical period of rat auditory development, suggesting that NR2B plays an important role in the developmental plasticity of auditory function in rats.
Collapse
Affiliation(s)
- Caixia Bi
- Research Centre for Brain Science, East China Normal University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
32
|
Cao Z, Liu L, Lickey M, Graves A, Pham T, Gordon B. Virally mediated knock-down of NR2 subunits ipsilateral to the deprived eye blocks ocular dominance plasticity. Exp Brain Res 2006; 177:64-77. [PMID: 16944113 DOI: 10.1007/s00221-006-0647-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 07/24/2006] [Indexed: 11/28/2022]
Abstract
NMDA receptors (NMDARs) are important in developmental plasticity in the visual cortex. The NR2A and NR2B subunits of this receptor develop with different time courses, suggesting that they play different roles in plasticity. To understand the role of the NR2B subunit, we knocked-down NR2B gene expression in visual cortex by injecting a recombinant adenovirus containing an antisense NR2B oligonucleotide. To assess knock-down, we injected the recombinant adenovirus into the right visual cortex of rats (p22) or mice (p30). Eight days later we perfused the animals and processed the visual cortex for NMDAR subunit immunoreactivity (IR). NR2B-IR was depleted dramatically in the neuropil near the injection. Depletion was more modest in the neuronal somata. Surprisingly, NR2A-IR was also reduced, but NR1-IR was not reduced. To assess the functional effects of depletion, we measured ocular dominance plasticity with monocular deprivation (MD). We compared mice receiving the NR2B antisense virus with mice receiving virus containing only the GFP sequence and mice receiving no injection. All injections were between p26 and p29 in the right cortex and bilateral recordings were performed 6-8 days later. Animals receiving the antisense virus lost plasticity if the right eye was deprived. If the left eye was deprived, the cortex was normally plastic bilaterally. Injection of control virus had no effect on plasticity. The data indicate that ocular dominance plasticity requires normal NMDARs in the hemisphere ipsilateral to the deprived eye but not in the hemisphere contralateral to the deprived eye.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiology
- Dominance, Ocular/genetics
- Dominance, Ocular/physiology
- Evoked Potentials, Visual/physiology
- Genetic Vectors
- Green Fluorescent Proteins/metabolism
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Neuropil/physiology
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Rats
- Rats, Long-Evans
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/physiology
- Transduction, Genetic
- Visual Cortex/physiology
Collapse
Affiliation(s)
- Zhiping Cao
- Portland VA Medical Center, PO Box 1034/P3ANES, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
33
|
Yang CB, Zheng YT, Kiser PJ, Mower GD. Identification of disabled-1 as a candidate gene for critical period neuroplasticity in cat and mouse visual cortex. Eur J Neurosci 2006; 23:2804-8. [PMID: 16817883 DOI: 10.1111/j.1460-9568.2006.04799.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rearing in darkness slows the time course of the critical period in visual cortex, such that at 5 weeks of age normal cats are more plastic than dark-reared cats, whereas at 20 weeks dark-reared cats are more plastic [G. D. Mower (1991)Dev. Brain Res., 58, 151-158]. Thus, a stringent criterion is that genes that are important for plasticity in visual cortex will show differences in expression between normal and dark-reared visual cortex that are of opposite direction in young vs. older animals. The present study reports the identification by differential display PCR of Dab-1, the mammalian homolog of the drosophila disabled-1 gene, as a candidate gene for critical period neuronal plasticity, expression of which is regulated according to this criterion in cat visual cortex. Evidence for this bidirectional direction regulation is extended to Dab-1 protein in cat and mouse visual cortex and shown to be specific to visual cortex, not occurring in frontal cortex. The Reelin/Dab-1 pathway has well-documented functions in cell migration during prenatal life and increasing evidence indicates that in postnatal brain the pathway plays a role in synaptic plasticity. The present results extend this evidence by directly implicating Dab-1 in postnatal critical period plasticity of visual cortex.
Collapse
Affiliation(s)
- Cui Bo Yang
- Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
34
|
Haddad JJ. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 2006; 77:252-82. [PMID: 16343729 DOI: 10.1016/j.pneurobio.2005.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/10/2004] [Accepted: 10/27/2005] [Indexed: 12/30/2022]
Abstract
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by the release of glutamate from presynaptic terminals onto postsynaptic channels gated by N-methyl-D-aspartate (NMDA) and non-NMDA (AMPA and KA) receptors. Extracellular signals control diverse neuronal functions and are responsible for mediating activity-dependent changes in synaptic strength and neuronal survival. Influx of extracellular calcium ([Ca(2+)](e)) through the NMDA receptor (NMDAR) is required for neuronal activity to change the strength of many synapses. At the molecular level, the NMDAR interacts with signaling modules, which, like the mitogen-activated protein kinase (MAPK) superfamily, transduce excitatory signals across neurons. Recent burgeoning evidence points to the fact that MAPKs play a crucial role in regulating the neurochemistry of NMDARs, their physiologic and biochemical/biophysical properties, and their potential role in pathophysiology. It is the purpose of this review to discuss: (i) the MAPKs and their role in a plethora of cellular functions; (ii) the role of MAPKs in regulating the biochemistry and physiology of NMDA receptors; (iii) the kinetics of MAPK-NMDA interactions and their biologic and neurochemical properties; (iv) how cellular signaling pathways, related cofactors and intracellular conditions affect NMDA-MAPK interactions and (v) the role of NMDA-MAPK pathways in pathophysiology and the evolution of disease conditions. Given the versatility of the NMDA-MAPK interactions, the NMDA-MAPK axis will likely form a neurochemical target for therapeutic interventions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Lebanon.
| |
Collapse
|
35
|
Dumas TC. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog Neurobiol 2005; 76:189-211. [PMID: 16181726 DOI: 10.1016/j.pneurobio.2005.08.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/14/2005] [Accepted: 08/09/2005] [Indexed: 01/18/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) act as molecular coincidence detectors and allow for association or dissociation between pre- and postsynaptic neurons. NMDA receptors are central to remodeling of synaptic connections during postnatal development and associative learning abilities in adults. The ability to remodel neural networks is altered during postnatal development, possibly due to a change in the composition of NMDARs. That is, as forebrain systems (and cerebellum) develop, synaptic NR2B-containing NMDARs (NR2B-NMDARs) are replaced by NR2A-containing NMDARs (NR2A-NMDARs) and NR2B-NMDARs move to extrasynaptic sites. During the initial phase of the switch, synapses contain both NR2A- and NR2B-NMDARs and both long-term potentiation and long-term depression are enhanced. As NMDAR subunit expression decreases and NR2A-NMDARs come to predominate in the synapse, channel function and synaptic plasticity are reduced, and remodeling ability dissipates. The end result is a balance of plasticity and stability that is optimal for information processing and storage. Associative learning abilities involving different sensory modalities emerge sequentially, in accordance with synaptic maturation in related cortical and underlying brain structures. Thus, developmental alterations in NMDAR composition that occur at different ages in various brain structures may explain the protracted nature of the maturation of various associative learning abilities.
Collapse
Affiliation(s)
- Theodore C Dumas
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| |
Collapse
|
36
|
Murphy KM, Beston BR, Boley PM, Jones DG. Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms. Dev Psychobiol 2005; 46:209-21. [PMID: 15772972 DOI: 10.1002/dev.20053] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Formation of neural circuitry in the developing visual cortex is shaped by experience during the critical period. A number of mechanisms, including N-methyl-D-aspartate (NMDA) receptor activation and gamma-aminobutyric acid (GABA)-mediated inhibition, are crucial in determining onset and closure of the critical period for visual plasticity. Animal models have shown that a threshold level of tonic inhibition must be reached for critical period plasticity to occur and that NMDA receptors contribute to Hebbian synaptic plasticity in the developing visual cortex. There are a number of developmental changes in these glutamatergic and GABAergic mechanisms that have been linked to plasticity; however, those changes have been shown only in animal models, and their development in the human visual cortex is not known. We have addressed this question by studying the expression of the major glutamatergic receptors, GABA(A) receptors, and glutamic acid decarboxylase (GAD) isoforms during the first 6 years of postnatal development of human visual cortex. There are significant changes in the expression of these proteins during postnatal development of human visual cortex. The time course of the changes is quite prolonged and suggests that it may set the pace for the prolonged critical period in human visual development. The changes also affect the nature of spatial and temporal integration in visual cortical neurons and thereby contribute to the maturation of visual functions.
Collapse
Affiliation(s)
- Kathryn M Murphy
- Department of Psychology and Medical Physics and Applied Radiation Sciences Unit, McMaster University, 1280 Main St. W. Hamilton, ON L8S 4K1, Canada.
| | | | | | | |
Collapse
|
37
|
Murphy KM, Duffy KR, Jones DG. Experience-dependent changes in NMDAR1 expression in the visual
cortex of an animal model for amblyopia. Vis Neurosci 2004; 21:653-70. [PMID: 15579228 DOI: 10.1017/s0952523804214146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Indexed: 11/05/2022]
Abstract
When normal binocular visual experience is disrupted during postnatal
development, it affects the maturation of cortical circuits and often
results in the development of poor visual acuity known as amblyopia.
Two main factors contribute to the development of amblyopia: visual
deprivation and reduced binocular competition. We investigated the
affect of these two amblyogenic factors on the expression of the NMDAR1
subunit in the visual cortex because activation of the NMDA receptor is
a key mechanism of developmental neural plasticity. We found that
disruption of binocular correlations by monocular deprivation promoted
a topographic loss of NMDAR1 expression within the cortical
representations of the central visual field and the vertical and
horizontal meridians. In contrast, binocular deprivation, which
primarily affects visual deprivation, promoted an increase in NMDAR1
expression throughout the visual cortex. These different changes in
NMDAR1 expression can be described as topographic and homeostatic
plasticity of NMDA expression, respectively. In addition, the changes
in NMDA expression in the visual cortex provide a greater understanding
of the neural mechanisms that underlie the development of amblyopia and
the potential for visual recovery.
Collapse
Affiliation(s)
- Kathryn M Murphy
- Department of Psychology, McMaster University, Hamilton ON, Canada.
| | | | | |
Collapse
|
38
|
Abstract
In vitro long-term depression (LTD) is thought to be a model for the loss of cortical responsiveness to an eye deprived of vision during the critical period. Using whole cell recording, the present study investigates the mechanisms of LTD in vitro across layers in developing rat visual cortex. LTD was induced in layers II/III, V, and VI but not layer IV with 10-min 1-Hz stimulation paired with postsynaptic depolarization. LTD in layers II/III and V could be blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist D-aminophosphonovaleric acid (D-AP5) but not by 100 microM (2S)-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), a metabotropic glutamate receptor inhibitor. In contrast, LTD in layer VI was blocked by 100 microM LY341495 and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) but not D-AP5 and partially blocked by application of guanosine 5'-O-(2-thiodiphosphate) thilothium salt (GDP-beta-S) in patch pipette, suggesting an involvement of postsynaptic group I metabotropic glutamate receptors (mGluRs). These results indicate that LTD in developing rat visual cortex varies with layer: LTD was absent in layer IV, suggesting a unique plasticity mechanism at geniculocortical synapses; LTD in layers II/III and V depends on NMDA receptors but not mGluRs, and LTD in layer VI requires mGluRs but not NMDA receptors.
Collapse
Affiliation(s)
- Yan Rao
- Department of Ophthalmology and Visual Science, Yale University Medical School, 330 Cedar St., New Haven, CT 06520-8061, USA.
| | | |
Collapse
|
39
|
Mower GD, Chen L. Laminar distribution of NMDA receptor subunit (NR1, NR2A, NR2B) expression during the critical period in cat visual cortex. ACTA ACUST UNITED AC 2003; 119:19-27. [PMID: 14597226 DOI: 10.1016/j.molbrainres.2003.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in NMDA subunit composition may be part of the molecular basis for critical period plasticity. The present study used immunohistochemistry to determine developmental changes in the laminar distribution of the three major cortical NMDA subunits (NR2A, NR2B, NR1) during the critical period in cat visual cortex. For all three subunits, at 1 week staining was concentrated in two bands: an upper band consisting of layer I, the compact zone and the upper half of the cortical plate; a lower band consisting of layers V and VI. In the lower part of the cortical plate (immature layer IV) staining was very low. For NR2A and NR2B, immunoreactivity in layer IV remained low until 10 weeks of age. At 20 weeks and adult, layer IV filled in and NR2A and NR2B label was rather uniform across all layers. NR1 showed a developmental pattern of expression different from NR2A and NR2B after 1 week. At 5 and 10 weeks, label was prominent in layer IV and superficial layers, but low in layers V and VI. The main change after 10 weeks was a progressive decrease in staining, such that in older animals label was markedly densest in superficial layers. Thus, during the rise of the critical period, NR1 is the dominant subtype in layer IV and could play a role in anatomical ocular dominance column formation and plasticity. At the same time, NR2A and NR2B subunits are concentrated outside layer IV, and could be related to physiological plasticity in extragranular layers, which precedes and outlasts plasticity in layer IV. For all three NMDA receptor subunits, the laminar distribution was similar in normal and dark reared visual cortex at 20 weeks, indicating that the developmental changes in laminar pattern of expression are independent of visual input.
Collapse
Affiliation(s)
- George D Mower
- Department of Anatomical Sciences and Neurobiology, Health Sciences Center, University of Louisville School of Medicine, 500 South Preston St., A Bldg., Rm. 902, Louisville, KY 40202, USA.
| | | |
Collapse
|
40
|
Tongiorgi E, Ferrero F, Cattaneo A, Domenici L. Dark-rearing decreases NR2A N-methyl-D-aspartate receptor subunit in all visual cortical layers. Neuroscience 2003; 119:1013-22. [PMID: 12831860 DOI: 10.1016/s0306-4522(03)00196-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Maturation of the visual cortex is a visual experience-dependent process. It has been shown that visual input triggers changes in N-methyl-D-aspartate receptor (NMDAR) subunit expression in the visual cortex. However, no data are available on the layer distribution of these molecular changes. Here we describe the laminar distribution of the cells expressing the NMDAR subunits NR2A and NR2B in the rat primary visual cortex at postnatal day (P) 21 and 37 using anti-NR2A and anti-NR2B antibodies and a stereological method to count labelled neurons. The percentage of neurons expressing the NR2A subunit in the layers II-VI remained unchanged between P21 and P37 with a slight decrease in layer V. Dark-rearing from P21 to P37 induced a pronounced decrease of the staining intensity and a significant decrease in the percentage of NR2A-expressing neurons. The changes in NR2A expression caused by dark rearing occur at similar levels in layers II-VI. The percentage of NR2B-positive cells in the different cortical layers remains unchanged from P21 to P37. The NR2B pattern was not significantly affected by dark-rearing. Thusly, the expression of NR2A depends upon visual experience after P21.
Collapse
Affiliation(s)
- E Tongiorgi
- BRAIN Centre for Neuroscience, Department of Biology, University of Trieste, 34127, Trieste, Italy
| | | | | | | |
Collapse
|
41
|
Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. J Neurosci 2003. [PMID: 12832545 DOI: 10.1523/jneurosci.23-12-05208.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The specific composition of NMDA receptor subunits is thought to underlie the developmental plasticity of the cortex revealed by unbalanced binocular stimulation. However, evidence that NR2 subunits change in correlation with the critical period at locations that are relevant to visual plasticity has been missing. Using preembedding and postembedding immunostaining, as well as electron microscopy, we quantified the volumetric densities of NR1-, NR2A-, and NR2B-containing synapses in layers 4 and 2/3 of the ferret visual cortex at different postnatal ages. Before eye opening, NR2A is encountered infrequently at postsynaptic sites in layer 4, but it increases sharply by postnatal day 34. In the subsequent weeks, postsynaptic NR2A labeling increases gradually in both layers 4 and 2/3 to become the most prevalent subunit in the adult animal. The NR2B subunit is the more prevalent subunit at the onset of the critical period of cortical plasticity. However, it displays different developmental patterns in layers 4 and 2/3. Although no change occurs in synaptic NR2B density in layer 2/3, in layer 4, NR2B maintains its high levels through the peak of the critical period and then becomes significantly reduced by the end of the peak of the critical period. This low level is maintained throughout adulthood. Our results demonstrate a correlation between the loss of NR2B subunits from layer 4 synaptic sites and the decline of the critical period, suggesting that the presence of NR2B subunits at synaptic sites could be a permissive factor regulating the ocular dominance plasticity of the developing cortex.
Collapse
|
42
|
Fagiolini M, Katagiri H, Miyamoto H, Mori H, Grant SGN, Mishina M, Hensch TK. Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proc Natl Acad Sci U S A 2003; 100:2854-9. [PMID: 12591944 PMCID: PMC151430 DOI: 10.1073/pnas.0536089100] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How individual receptive field properties are formed in the maturing sensory neocortex remains largely unknown. The shortening of N-methyl-d-aspartate (NMDA) receptor currents by 2A subunit (NR2A) insertion has been proposed to delimit the critical period for experience-dependent refinement of circuits in visual cortex. In mice engineered to maintain prolonged NMDA responses by targeted deletion of NR2A, the sensitivity to monocular deprivation was surprisingly weakened but restricted to the typical critical period and delayed normally by dark rearing from birth. Orientation preference instead failed to mature, occluding further effects of dark rearing. Interestingly, a full ocular dominance plasticity (but not orientation bias) was selectively restored by enhanced inhibition, reflecting an imbalanced excitation in the absence of NR2A. Many of the downstream pathways involved in NMDA signaling are coupled to the receptor through a variety of protein-protein interactions and adaptor molecules. To further investigate a mechanistic dissociation of receptive field properties in the developing visual system, mice carrying a targeted disruption of the NR2A-associated 95-kDa postsynaptic density (PSD95) scaffolding protein were analyzed. Although the development and plasticity of ocular dominance was unaffected, orientation preference again failed to mature in these mice. Taken together, our results demonstrate that the cellular basis generating individual sensory response properties is separable in the developing neocortex.
Collapse
Affiliation(s)
- Michela Fagiolini
- Neuronal Circuit Development, Institute of Physical and Chemical Research, RIKEN, Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Corvetti L, Capsoni S, Cattaneo A, Domenici L. Postnatal development of GFAP in mouse visual cortex is not affected by light deprivation. Glia 2003; 41:404-14. [PMID: 12555207 DOI: 10.1002/glia.10194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mammalian visual cortex is immature at birth and develops gradually during defined postnatal temporal windows. In the present work, we studied the maturation of astrocytes in developing mouse visual cortex (VC). The cellular distribution and the level of glial fibrillary acidic protein (GFAP) were analyzed by immunohistochemistry and Western blotting. Experiments were performed at different postnatal ages: postnatal day 12 (P12), before eye opening; P24, corresponding roughly to the peak of the critical period for monocular deprivation, and P60, after the end of the critical period. At P12, GFAP immunoreactivity (IR) was distributed throughout all cortical layers. At P24, there was a prominent localization of GFAP IR in layers I, II, and VI, while cortical layers III, IV, and V contained no longer GFAP IR cells. No differences were found in GFAP IR between P24 and P60. Western blot analysis revealed a reduction of GFAP expression in the VC at P24 with respect to P12 and no significant difference between P60 and P24. These results show that GFAP expression is modulated during early postnatal development. To know whether visual experience influences the maturation pattern of GFAP expression, mice were dark-reared from P12 to P24. Dark rearing did not change the distribution and the expression of GFAP. Our results indicate that maturation of GFAP expression occurs early in postnatal development in mouse VC. In addition, we showed that GFAP development is not affected by visual deprivation.
Collapse
Affiliation(s)
- Luigi Corvetti
- Neuroscience Program, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | |
Collapse
|
44
|
Heinrich JE, Singh TD, Nordeen KW, Nordeen EJ. NR2B downregulation in a forebrain region required for avian vocal learning is not sufficient to close the sensitive period for song learning. Neurobiol Learn Mem 2003; 79:99-108. [PMID: 12482684 DOI: 10.1016/s1074-7427(02)00016-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neural changes that limit the sensitive period for avian song development are unknown, but neurons in a forebrain region critical for song learning, the lMAN, exhibit experience-driven changes in NMDAR subunit expression that could regulate sensitive period closure. Specifically, NR2B levels in lMAN decrease during song acquisition, potentially reducing synaptic plasticity by decreasing NMDAR EPSC duration and/or affecting NMDAR-coupled intracellular cascades. While rearing birds in isolation extends the sensitive period and also delays the developmental changes in NR2B expression and NMDAR physiology, recent work indicates that a transition to faster NMDAR currents does not preclude further song learning. However, NR2B mRNA expression in isolates remains elevated beyond the age at which NMDAR currents shorten, leaving open the possibility that NR2B levels regulate closure of the sensitive period through effects other than those mediated by NMDAR current duration. To determine whether the experience-driven decrease in NR2B expression in lMAN closes the sensitive period, we promoted this change in gene expression either by treating isolation-reared zebra finches briefly with testosterone (T-isolates) or by allowing males limited access to conspecific song (pre-exposed isolates). We then assessed if these birds could acquire song from tutors after the normal close of the sensitive period. Despite a normal decline in NR2B expression, T-isolate and pre-exposed isolate birds learned tutor songs heard from d65-90, while normally reared birds did not. These findings suggest that the normal decline in NR2B expression with lMAN is not sufficient for sensitive period closure.
Collapse
Affiliation(s)
- J E Heinrich
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The first several months of life are a critical period for neuronal plasticity in the visual cortex during which anatomic and physiological development depends on visual experience. In cats, electrophysiologically assessed neuronal plasticity is minimal until approximately 3 weeks, peaks at 5 weeks, gradually declines to low levels at 20 weeks, and disappears at approximately 1 year of age (Daw, 1994). Rearing in darkness slows the entire time course of this critical period, such that at 5 weeks of age, normal cats are more plastic than dark-reared cats, whereas at 20 weeks, dark-reared cats are more plastic (Mower, 1991; Beaver et al., 2001). Thus, a stringent criterion is that genes that are important for plasticity in visual cortex will show differences in expression between normal rearing and dark rearing that are of opposite direction in young versus older animals. The present study reports the identification by differential display PCR of Munc13-3, a mammalian homolog of the Caenorhabditis elegans "uncoordinated" gene (unc-13), as a candidate gene for critical-period neuronal plasticity, the expression of which is regulated according to this criterion specifically in visual cortex and not in frontal cortex. Other members of the Munc13 family (Munc13-1 and Munc13-2) do not meet this criterion in visual cortex, indicating that Munc13-3 is the only family member that is regulated by age and dark rearing in the same manner as physiological plasticity during the visual cortical critical period.
Collapse
|
46
|
Margotti E, Covaceuszach S, Tongiorgi E, Cattaneo A, Domenici L. TRKB signalling controls the expression of N-methyl-d-aspartate receptors in the visual cortex. Eur J Neurosci 2002; 16:1067-74. [PMID: 12383235 DOI: 10.1046/j.1460-9568.2002.02183.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NMDA receptors (NMDARs) are multimeric proteins, the biological and functional characteristics of which depend on differential subunit assembly during postnatal development. In the present paper, we investigated whether the expression of NMDAR subunits NR1, NR2A, NR2B is influenced by neurotrophins in rat visual cortex. We used a soluble form of the TrkB receptor engineered as an immunoadhesin (TrkB-IgG) in order to block TrkB ligands. TrkB-IgG was released through a cannula implanted in the occipital pole and connected to a mini-osmotic pump. TrkB-IgG was continuously released from postnatal day 20-21 (P20-21) to P36-37. In a different group of animals used as controls, osmotic pumps were filled with saline. Different antibodies were used to stain neurons expressing NR1, NR2A and NR2B. We counted the number of neurons stained for NR2A and NR2B subunits and expressed this as percentage with respect to the total number of cresyl-violet stained neurons in each cortical layer. In the visual cortex of TrkB-IgG-treated rats, the percentage of neurons expressing NR2A was significantly increased in all cortical layers. Concerning the NR2B subunit, the percentage of stained neurons was not significantly different between TrkB-IgG-treated and control rats. The staining level for both NR2A and NR2B, but not NR1, was reduced in all cortical layers in TrkB-IgG-treated animals. In agreement with this result, the endogenous levels of NR2A and NR2B subunits were reduced in TrkB-IgG-treated animals as shown by Western blotting. Thus, TrkB signalling controls the cellular expression of NMDAR subunits in visual cortical neurons during postnatal development.
Collapse
Affiliation(s)
- Elisa Margotti
- Neuroscience Program, International School for Advanced Studies (S.I.S.S.A), via Beirut 2-4, 34014, Trieste, Italy
| | | | | | | | | |
Collapse
|
47
|
Shaffery JP, Sinton CM, Bissette G, Roffwarg HP, Marks GA. Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats. Neuroscience 2002; 110:431-43. [PMID: 11906784 DOI: 10.1016/s0306-4522(01)00589-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During rapid eye movement (REM) sleep, activity of non-retinal origin is propagated into central visual-system pathways in a manner similar, in pattern and intensity, to central visual-system activity that is exogenously generated in waking. It has been hypothesized that REM sleep, which is more abundantly represented early in life than later, functions to provide adjunct 'afferent' input for shaping synaptic connectivity during brain maturation. Here we present data that support this proposal. Recent studies have described a developmentally regulated form of in vitro long-term potentiation (LTP) in the visual cortex that is experience- and age-dependent. In immature rats, suppression of retinal activation of the visual system by removal of visual experience (dark rearing) extends the age when the developmentally regulated form of LTP can be produced. This study tests whether suppression of REM-state activation of the visual system also lengthens the developmental period in which this specific form of LTP can be elicited. Young rats were deprived of REM sleep by the multiple-small-platforms-over-water method during the typically latest week for induction of such LTP in slices of visual cortex. After this week, we could still induce LTP in slices from nearly all the REM-sleep-deprived rats (8/9) but not from age-matched rats that had not lost REM sleep (0/5). The control rats had been housed on large platforms that allow the animals to obtain REM sleep. Only body weights and the concentration of thyrotrophin-releasing hormone in the hypothalamus distinguished home-caged, normal-sleeping controls from both groups of platform animals. On all measures, stress levels were not dissimilar in the two platforms groups. After 7 days of behavioral suppression of REM sleep in immature rats, and consequent reduction of the intense, extra-retinal activity endogenously generated during this sleep state, we found that the period was extended in which developmentally regulated synaptic plasticity (LTP) could be elicited in slices of visual neocortex. These studies support the role of REM sleep and its associated neuronal activity in brain maturation.
Collapse
Affiliation(s)
- J P Shaffery
- Department of Psychiatry and Human Behavior, Division of Neurobiology and Behavior Research, University of Mississipi Medical Center, Jackson 39216-4505, USA.
| | | | | | | | | |
Collapse
|
48
|
Heinrich JE, Singh TD, Sohrabji F, Nordeen KW, Nordeen EJ. Developmental and hormonal regulation of NR2A mRNA in forebrain regions controlling avian vocal learning. JOURNAL OF NEUROBIOLOGY 2002; 51:149-59. [PMID: 11932956 DOI: 10.1002/neu.10046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Developmental changes in the composition of NMDA receptors can alter receptor physiology as well as intracellular signal transduction cascades, potentially shifting thresholds for neural and behavioral plasticity. During song learning in zebra finches, NMDAR currents become faster, and transcripts for the modulatory NR2B subunit of this receptor decrease in lMAN, a region in which NMDAR activation is critical for vocal learning. Using in situ hybridization, we found that NR2A transcripts change reciprocally, increasing significantly in both lMAN (59%) and in another song region, Area X (38%), between posthatch day (PHD) 20 and 40, but not changing further at PHD60 or 80. In adjacent areas not associated with song learning, NR2A mRNA did not change between PHD20-80. Although early song deprivation (which extends the sensitive period for song learning) delays changes in NR2B gene expression and NMDAR physiology within the lMAN, it did not alter NR2A mRNA levels measured at PHD40, 45, or 60. Early testosterone (T) treatment, which disrupts vocal development and accelerates the maturation of both NR2B levels and NMDAR physiology in lMAN, also significantly increased NR2A transcripts measured at PHD35 in lMAN. In Area X, a similar effect of T approached significance. Together with our previous studies, these results show that in a pathway critical for vocal plasticity, the ratio of NR2A:NR2B mRNA rises abruptly early during the sensitive period for song learning. Furthermore, androgen regulation of NMDAR gene expression may alter thresholds for experience-dependent synaptic change.
Collapse
Affiliation(s)
- J E Heinrich
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | |
Collapse
|
49
|
Medina AE, Liao DS, Mower AF, Ramoa AS. Do NMDA receptor kinetics regulate the end of critical periods of plasticity? Neuron 2001; 32:553-5. [PMID: 11719195 DOI: 10.1016/s0896-6273(01)00514-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increasing NR2A subunit expression and the associated shortening of the NMDA-EPSC are thought to underlie the loss of diverse types of sensory cortical plasticity. Lu and colleagues (Lu et al., 2001 [this issue of Neuron]) now report that mice lacking the NR2A subunit display normal duration of critical periods of barrel cortex plasticity. Shortening of the NMDA-EPSC is therefore not responsible for the end of these critical periods.
Collapse
Affiliation(s)
- A E Medina
- Department of Anatomy, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
50
|
Philpot BD, Weisberg MP, Ramos MS, Sawtell NB, Tang YP, Tsien JZ, Bear MF. Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex. Neuropharmacology 2001; 41:762-70. [PMID: 11640931 DOI: 10.1016/s0028-3908(01)00136-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The NMDA receptor (NMDAR) is a heteromer comprised of NR1 and NR2 subunits. Mice that overexpress the NR2B subunit exhibit enhanced hippocampal LTP, prolonged NMDAR currents, and improved memory ( Tang et al., 1999). In the current study, we explored visual cortex plasticity and NMDAR function in NR2B overexpressing transgenic mice. Unlike the hippocampus, in vitro synaptic plasticity of the visual cortex was unaltered by NR2B overexpression. Consistent with the plasticity findings, NMDAR excitatory postsynaptic current (EPSC) durations from layer 2/3 pyramidal cells were similar in wild-type (wt) and transgenic (tg) mice. Furthermore, temporal summation of NMDAR EPSCs to 10, 20, and 40 Hz stimulation did not differ between cells from wt and tg mice. Finally, although in situ studies clearly demonstrate overexpression of NR2B mRNA in visual cortex, we failed to observe a significant elevation in the synaptic expression of NR2B protein. We conclude that the synaptic ratio of NR2B over NR2A in the NMDA receptor complex in the visual cortex is not significantly influenced by the transgene overexpression. These data suggest that mRNA availability is not a limiting factor for the synthesis of NR2B protein in the visual cortex, and support the hypothesis that levels of NR2A, rather than NR2B, normally determine the subunit composition of NMDARs in visual cortex.
Collapse
Affiliation(s)
- B D Philpot
- Howard Hughes Medical Institute, Department of Neuroscience, Brown University, Box 1953, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|