1
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
2
|
Nikolac Perkovic M, Borovecki F, Filipcic I, Vuic B, Milos T, Nedic Erjavec G, Konjevod M, Tudor L, Mimica N, Uzun S, Kozumplik O, Svob Strac D, Pivac N. Relationship between Brain-Derived Neurotrophic Factor and Cognitive Decline in Patients with Mild Cognitive Impairment and Dementia. Biomolecules 2023; 13:biom13030570. [PMID: 36979505 PMCID: PMC10046678 DOI: 10.3390/biom13030570] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In the last decade, increasing evidence has emerged linking alterations in the brain-derived neurotrophic factor (BDNF) expression with the development of Alzheimer's disease (AD). Because of the important role of BDNF in cognition and its association with AD pathogenesis, the aim of this study was to evaluate the potential difference in plasma BDNF concentrations between subjects with mild cognitive impairment (MCI; N = 209) and AD patients (N = 295) and to determine the possible association between BDNF plasma levels and the degree of cognitive decline in these individuals. The results showed a significantly higher (p < 0.001) concentration of plasma BDNF in subjects with AD (1.16; 0.13-21.34) compared with individuals with MCI (0.68; 0.02-19.14). The results of the present study additionally indicated a negative correlation between cognitive functions and BDNF plasma concentrations, suggesting higher BDNF levels in subjects with more pronounced cognitive decline. The correlation analysis revealed a significant negative correlation between BDNF plasma levels and both Mini-Mental State Examination (p < 0.001) and Clock Drawing test (p < 0.001) scores. In conclusion, the results of our study point towards elevated plasma BDNF levels in AD patients compared with MCI subjects, which may be due to the body's attempt to counteract the early and middle stages of neurodegeneration.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Fran Borovecki
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Filipcic
- Psychiatric Hospital "Sveti Ivan", 10090 Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Suzana Uzun
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
3
|
Kim GW, Kim BC, Park KS, Jeong GW. A pilot study of brain morphometry following donepezil treatment in mild cognitive impairment: volume changes of cortical/subcortical regions and hippocampal subfields. Sci Rep 2020; 10:10912. [PMID: 32616841 PMCID: PMC7331573 DOI: 10.1038/s41598-020-67873-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
The efficacy of donepezil is well known for improving the cognitive performance in patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Most of the recent neuroimaging studies focusing on the brain morphometry have dealt with the targeted brain structures, and thus it remains unknown how donepezil treatment influences the volume change over the whole brain areas including the cortical and subcortical regions and hippocampal subfields in particular. This study aimed to evaluate overall gray matter (GM) volume changes after donepezil treatment in MCI, which is a prodromal phase of AD, using voxel-based morphometry. Patients with MCI underwent the magnetic resonance imaging (MRI) before and after 6-month donepezil treatment. The cognitive function for MCI was evaluated using the questionnaires of the Korean version of the mini-mental state examination (K-MMSE) and Alzheimer’s disease assessment scale-cognitive subscale (ADAS-Cog). Compared with healthy controls, patients with MCI showed significantly lower GM volumes in the hippocampus and its subfields, specifically in the right subiculum and left cornu ammonis (CA3). The average scores of K-MMSE in patients with MCI improved by 8% after donepezil treatment. Treated patients showed significantly higher GM volumes in the putamen, globus pailldus, and inferior frontal gyrus after donepezil treatment (p < 0.001). However, whole hippocampal volume in the patients decreased by 0.6% after 6-month treatment, and the rate of volume change in the left hippocampus was negatively correlated with the period of treatment. These findings will be useful for screening and tracking MCI, as well as understanding of the pathogenesis of MCI in connection with brain morphometric change.
Collapse
Affiliation(s)
- Gwang-Won Kim
- Advanced Institute of Aging Science, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, 02129, USA
| | - Byeong-Chae Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Kwang Sung Park
- Advanced Institute of Aging Science, Chonnam National University, Gwangju, 61186, Republic of Korea.,Department of Urology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Gwang-Woo Jeong
- Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-Ro, Donggu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
4
|
Ampofo E, Nalbach L, Menger MD, Laschke MW. Regulatory Mechanisms of Somatostatin Expression. Int J Mol Sci 2020; 21:ijms21114170. [PMID: 32545257 PMCID: PMC7312888 DOI: 10.3390/ijms21114170] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been studied intensively. However, little attention has been paid to the regulatory mechanisms that control its expression. This review provides an up-to-date overview of these mechanisms. In particular, it focuses on the role of enhancers and silencers within the promoter region as well as on the binding of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors, which trigger key signaling pathways, leading to an enhanced somatostatin expression in health and disease.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Correspondence: ; Tel.: +49-6841-162-6561; Fax: +49-6841-162-6553
| | | | | | | |
Collapse
|
5
|
Laube C, van den Bos W, Fandakova Y. The relationship between pubertal hormones and brain plasticity: Implications for cognitive training in adolescence. Dev Cogn Neurosci 2020; 42:100753. [PMID: 32072931 PMCID: PMC7005587 DOI: 10.1016/j.dcn.2020.100753] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Adolescence may mark a sensitive period for the development of higher-order cognition through enhanced plasticity of cortical circuits. At the same time, animal research indicates that pubertal hormones may represent one key mechanism for closing sensitive periods in the associative neocortex, thereby resulting in decreased plasticity of cortical circuits in adolescence. In the present review, we set out to solve some of the existing ambiguity and examine how hormonal changes associated with pubertal onset may modulate plasticity in higher-order cognition during adolescence. We build on existing age-comparative cognitive training studies to explore how the potential for change in neural resources and behavioral repertoire differs across age groups. We review animal and human brain imaging studies, which demonstrate a link between brain development, neurochemical mechanisms of plasticity, and pubertal hormones. Overall, the existent literature indicates that pubertal hormones play a pivotal role in regulating the mechanisms of experience-dependent plasticity during adolescence. However, the extent to which hormonal changes associated with pubertal onset increase or decrease brain plasticity may depend on the specific cognitive domain, the sex, and associated brain networks. We discuss implications for future research and suggest that systematical longitudinal assessments of pubertal change together with cognitive training interventions may be a fruitful way toward a better understanding of adolescent plasticity. As the age of pubertal onset is decreasing across developed societies, this may also have important educational and clinical implications, especially with respect to the effects that earlier puberty has on learning.
Collapse
Affiliation(s)
- Corinna Laube
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
6
|
Murueta-Goyena A, Ortuzar N, Lafuente JV, Bengoetxea H. Enriched Environment Reverts Somatostatin Interneuron Loss in MK-801 Model of Schizophrenia. Mol Neurobiol 2019; 57:125-134. [PMID: 31506899 DOI: 10.1007/s12035-019-01762-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 02/02/2023]
Abstract
Dysregulation of the inhibitory drive has been proposed to be a central mechanism to explain symptoms and pathophysiological hallmarks in schizophrenia. A number of recent neuroanatomical studies suggest that certain types of inhibitory cells are deficient in schizophrenia, including somatostatin-immunoreactive interneurons (SST+). The present study sought to use stereological methods to investigate whether the number of SST+ interneurons decreased after repeated injections of NMDA receptor antagonist MK-801 (0.5 mg/kg) and to determine the effect of limited exposure to an enriched environment (EE) in adult life on this sub-population of inhibitory cells. Considering that somatostatin expression is highly dependent on neurotrophic support, we explored the changes in the relative expression of proteins related to brain-derived neurotrophic factor-tyrosine kinase B (BDNF-TrkB) signaling between the experimental groups. We observed that early-life MK-801 treatment significantly decreased the number of SST+ interneurons in the medial prefrontal cortex (mPFC) and the hippocampus (HPC) of adult Long Evans rats. Contrarily, short-term exposure to EE increased the number of SST+ interneurons in MK-801-injected animals, except in the CA1 region of the hippocampus, whereas this increase was not observed in vehicle-injected rats. We also found upregulated BDNF-TrkB signaling after EE that triggered an increase in the pERK/ERK ratio in mPFC and HPC, and the pAkt/Akt ratio in HPC. Thus, the present results support the notion that SST+ interneurons are markedly affected after early-life NMDAR blockade and that EE promotes SST+ interneuron expression, which is partly mediated through the BDNF-TrkB signaling pathway. These results may have important implications for schizophrenia, as SST+ interneuron loss is also observed in the MK-801 pre-clinical model, and its expression can be rescued by non-pharmacological approaches.
Collapse
Affiliation(s)
- Ane Murueta-Goyena
- Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain. .,Neurodegenerative Diseases group, BioCruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain.
| | - Naiara Ortuzar
- Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| | - José Vicente Lafuente
- Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain.,Nanoneurosurgery Group, BioCruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903, Barakaldo, Bizkaia, Spain
| | - Harkaitz Bengoetxea
- Laboratory of Clinical and Experimental Neuroscience, Department of Neuroscience, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
7
|
Maduna T, Lelievre V. Neuropeptides shaping the central nervous system development: Spatiotemporal actions of VIP and PACAP through complementary signaling pathways. J Neurosci Res 2016; 94:1472-1487. [PMID: 27717098 DOI: 10.1002/jnr.23915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tando Maduna
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Vincent Lelievre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
8
|
Purves-Tyson TD, Allen K, Fung S, Rothmond D, Noble PL, Handelsman DJ, Shannon Weickert C. Adolescent testosterone influences BDNF and TrkB mRNA and neurotrophin-interneuron marker relationships in mammalian frontal cortex. Schizophr Res 2015; 168:661-70. [PMID: 26088421 DOI: 10.1016/j.schres.2015.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/11/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
Late adolescence in males is a period of increased susceptibility for the onset of schizophrenia, coinciding with increased circulating testosterone. The cognitive deficits prevalent in schizophrenia may be related to unhealthy cortical interneurons, which are trophically dependent on brain derived neurotrophic factor. We investigated, under conditions of depleted (monkey and rat) and replaced (rat) testosterone over adolescence, changes in gene expression of cortical BDNF and TrkB transcripts and interneuron markers and the relationships between these mRNAs and circulating testosterone. Testosterone removal by gonadectomy reduced gene expression of some BDNF transcripts in monkey and rat frontal cortices and the BDNF mRNA reduction was prevented by testosterone replacement. In rat, testosterone replacement increased the potential for classical TrkB signalling by increasing the full length to truncated TrkB mRNA ratio, whereas in the monkey cortex, circulating testosterone was negatively correlated with the TrkB full length/truncated mRNA ratio. We did not identify changes in interneuron gene expression in monkey frontal cortex in response to gonadectomy, and in rat, we showed that only somatostatin mRNA was decreased by gonadectomy but not restored by testosterone replacement. We identified complex and possibly species-specific, relationships between BDNF/TrkB gene expression and interneuron marker gene expression that appear to be dependent on the presence of testosterone at adolescence in rat and monkey frontal cortices. Taken together, our findings suggest there are dynamic relationships between BDNF/TrkB and interneuron markers that are dependent on the presence of testosterone but that this may not be a straightforward increase in testosterone leading to changes in BDNF/TrkB that contributes to interneuron health.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Institute, Sydney 2021, Australia; Neuroscience Research Australia, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia
| | - Katherine Allen
- Schizophrenia Research Institute, Sydney 2021, Australia; Neuroscience Research Australia, Sydney 2031, Australia; School of Psychiatry, University of New South Wales, Sydney 2031, Australia
| | - Samantha Fung
- Schizophrenia Research Institute, Sydney 2021, Australia; Neuroscience Research Australia, Sydney 2031, Australia; School of Psychiatry, University of New South Wales, Sydney 2031, Australia
| | - Debora Rothmond
- Schizophrenia Research Institute, Sydney 2021, Australia; Neuroscience Research Australia, Sydney 2031, Australia
| | | | | | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney 2021, Australia; Neuroscience Research Australia, Sydney 2031, Australia; School of Psychiatry, University of New South Wales, Sydney 2031, Australia
| |
Collapse
|
9
|
Pettersson LME, Geremia NM, Ying Z, Verge VMK. Injury-associated PACAP expression in rat sensory and motor neurons is induced by endogenous BDNF. PLoS One 2014; 9:e100730. [PMID: 24968020 PMCID: PMC4072603 DOI: 10.1371/journal.pone.0100730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
Peripheral nerve injury results in dramatic upregulation in pituitary adenylate cyclase activating polypeptide (PACAP) expression in adult rat dorsal root ganglia and spinal motor neurons mirroring that described for the neurotrophin brain derived neurotrophic factor (BDNF). Thus, we posited that injury-associated alterations in BDNF expression regulate the changes in PACAP expression observed in the injured neurons. The role of endogenous BDNF in induction and/or maintenance of PACAP mRNA expression in injured adult rat motor and sensory neurons was examined by intrathecally infusing or intraperitoneally injecting BDNF-specific antibodies or control IgGs immediately at the time of L4-L6 spinal nerve injury, or in a delayed fashion one week later for 3 days followed by analysis of impact on PACAP expression. PACAP mRNA in injured lumbar sensory and motor neurons was detected using in situ hybridization, allowing quantification of relative changes between experimental groups, with ATF-3 immunofluorescence serving to identify the injured subpopulation of motor neurons. Both the incidence and level of PACAP mRNA expression were dramatically reduced in injured sensory and motor neurons in response to immediate intrathecal anti-BDNF treatment. In contrast, neither intraperitoneal injections nor delayed intrathecal infusions of anti-BDNF had any discernible impact on PACAP expression. This impact on PACAP expression in response to BDNF immunoneutralization in DRG was confirmed using qRT-PCR or by using BDNF selective siRNAs to reduce neuronal BDNF expression. Collectively, our findings support that endogenous injury-associated BDNF expression is critically involved in induction, but not maintenance, of injury-associated PACAP expression in sensory and motor neurons.
Collapse
Affiliation(s)
- Lina M. E. Pettersson
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| | - Nicole M. Geremia
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zhengxin Ying
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valerie M. K. Verge
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Zaben MJ, Gray WP. Neuropeptides and hippocampal neurogenesis. Neuropeptides 2013; 47:431-8. [PMID: 24215800 DOI: 10.1016/j.npep.2013.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022]
Abstract
Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.
Collapse
Affiliation(s)
- M J Zaben
- Neuroscience and Mental Health Research Institute, Cardiff University, Institute of Psychological Medicine and Clinical Neurosciences, 3rd Floor, Room 3.33, The Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, United Kingdom.
| | | |
Collapse
|
11
|
Sonali N, Tripathi M, Sagar R, Vivekanandhan S. Val66Met polymorphism and BDNF levels in Alzheimer's disease patients in North Indian population. Int J Neurosci 2013; 123:409-16. [DOI: 10.3109/00207454.2012.762515] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Higher BDNF serum levels predict slower cognitive decline in Alzheimer's disease patients. Int J Neuropsychopharmacol 2011; 14:399-404. [PMID: 20860877 DOI: 10.1017/s1461145710001008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays a critical role in neuronal survival, synaptic plasticity, and memory. Several recent studies have demonstrated altered BDNF serum levels in Alzheimer's disease (AD) patients. However, the association of BDNF serum levels with the rate of cognitive decline in AD patients is still unclear. We demonstrate that BDNF serum levels are significantly decreased in AD patients with fast cognitive decline [decrease of Mini-Mental State Examination (MMSE) score >4/yr; n=12] compared to AD patients with slow cognitive decline (decrease of MMSE score ≤4/yr, n=28) and show a significant correlation with the rate of cognitive decline during 1 yr follow-up. These results suggest that higher BDNF serum levels are associated with a slower rate of cognitive decline in AD patients. Further longitudinal studies are necessary to elucidate the kinetics and the potential role of serum BDNF as a surrogate marker of disease progression in AD patients.
Collapse
|
13
|
Wong J, Hyde TM, Cassano HL, Deep-Soboslay A, Kleinman JE, Weickert CS. Promoter specific alterations of brain-derived neurotrophic factor mRNA in schizophrenia. Neuroscience 2010; 169:1071-84. [PMID: 20553817 PMCID: PMC3118308 DOI: 10.1016/j.neuroscience.2010.05.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/04/2010] [Accepted: 05/17/2010] [Indexed: 02/07/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) gene contains multiple 5' promoters which generate alternate transcripts. Previously, we found that pan-BDNF mRNA and protein are reduced in the dorsolateral prefrontal cortex (DLPFC) from patients with schizophrenia. In this study, we determined which of the four most abundant and best characterized BDNF alternate transcripts, I-IX, II-IX, IV-IX, and VI-IX are altered in schizophrenia. Using a cohort from the NIMH, USA, we found that BDNF II-IX mRNA was significantly reduced in the DLPFC of patients with schizophrenia, and we replicated this finding using a second cohort from Sydney, Australia. Moreover, we show that BDNF protein expression [including prepro ( approximately 32 kDa), pro ( approximately 28 kDa) and mature ( approximately 14 kDa) BDNF] is reduced in the DLPFC of patients with schizophrenia. We next determined the regional specificity of the BDNF mRNA reduction by measuring BDNF transcripts in the parietal cortex and hippocampus and found no significant changes. The effect of antipsychotics on BDNF alternate transcript expression was also examined and we found no relationship between BDNF mRNA expression and antipsychotic use. As schizophrenic patients are often prescribed antidepressants which can up-regulate expression of BDNF, we investigated the relationship between antidepressant treatment and BDNF transcript expression. All four BDNF transcripts were significantly up-regulated in schizophrenic patients treated with antidepressants. Moreover, we found significant reductions in BDNF transcripts II-IX and IV-IX in the parietal cortex and VI-IX in the hippocampus of patients with schizophrenia who did not have a history of treatment with antidepressants. This suggests that down-regulation of at least one out of four major BDNF transcripts occurs in various brain regions of patients with schizophrenia, particularly in the DLPFC which appears to have the most robust BDNF deficit in schizophrenia.
Collapse
Affiliation(s)
- Jenny Wong
- Schizophrenia Research Institute, Sydney, Australia
- Schizophrenia Research Laboratory, Prince of Wales Medical Research Institute, Randwick NSW 2031, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Thomas M. Hyde
- Section on Neuropathology of the Clinical Brain Disorders Branch, GCAP, IRP, NIMH, NIH, Bethesda, MD 20892, USA
| | - Hope L. Cassano
- Section on Neuropathology of the Clinical Brain Disorders Branch, GCAP, IRP, NIMH, NIH, Bethesda, MD 20892, USA
| | - Amy Deep-Soboslay
- Section on Neuropathology of the Clinical Brain Disorders Branch, GCAP, IRP, NIMH, NIH, Bethesda, MD 20892, USA
| | - Joel E. Kleinman
- Section on Neuropathology of the Clinical Brain Disorders Branch, GCAP, IRP, NIMH, NIH, Bethesda, MD 20892, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia
- Schizophrenia Research Laboratory, Prince of Wales Medical Research Institute, Randwick NSW 2031, Australia
- Section on Neuropathology of the Clinical Brain Disorders Branch, GCAP, IRP, NIMH, NIH, Bethesda, MD 20892, USA
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
14
|
Morris HM, Hashimoto T, Lewis DA. Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cereb Cortex 2008; 18:1575-87. [PMID: 18203698 PMCID: PMC2888087 DOI: 10.1093/cercor/bhm186] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alterations in the inhibitory circuitry of the dorsolateral prefrontal cortex (DLPFC) in schizophrenia include reduced expression of the messenger RNA (mRNA) for somatostatin (SST), a neuropeptide present in a subpopulation of gamma-aminobutyric acid (GABA) neurons. However, neither the cellular substrate nor the causal mechanisms for decreased SST mRNA levels in schizophrenia are known. We used in situ hybridization to quantify the compartmental, laminar, and cellular levels of SST mRNA expression in the DLPFC of 23 pairs of schizophrenia or schizoaffective disorder and control subjects. We also explored potential causal mechanisms by utilizing similar methods to analyze SST mRNA expression in 2 animal models. The expression of SST mRNA was significantly decreased in layers 2-superficial 6 of subjects with schizophrenia, but not in layer 1, deep 6 or the white matter. At the cellular level, both the density of cortical SST mRNA-positive neurons and the expression of SST mRNA per neuron were reduced in the subjects with schizophrenia. These alterations were not due to potential confounds and appeared to be a downstream consequence of impaired neurotrophin signaling through the trkB receptor. These findings support the hypothesis that a marked reduction in SST mRNA expression in a subset of GABA neurons contributes to DLPFC dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Harvey M. Morris
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Takanori Hashimoto
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A. Lewis
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Leyhe T, Stransky E, Eschweiler GW, Buchkremer G, Laske C. Increase of BDNF serum concentration during donepezil treatment of patients with early Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 2008; 258:124-8. [PMID: 17990049 DOI: 10.1007/s00406-007-0764-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 09/11/2007] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) can be treated with inhibitors of the enzyme acetylcholinesterase (AChE). Recent pre-clinical and clinical studies gave evidence that AChE-inhibitors have neuroprotective effects and thereby a disease-modifying potential. The mechanism of this action is still discussed. In an animal model oral administration of an AChE-inhibitor lead to an increase of brain derived neurotrophic factor (BDNF) in hippocampus and cortex. Recent studies have found a decrease of BDNF in the serum and brain of AD patients with potentially consecutive lack of neurotrophic support and contribution to progressive neurodegeneration. BDNF serum concentrations were assessed by ELISA in 19 AD patients and 20 age-matched healthy controls at baseline and in the AD patients after 15 months of treatment with donepezil 10 mg per day (one patient received just 5 mg). Before treatment with donepezil we found in AD significantly decreased BDNF serum concentrations (19.2 +/- 3.7 ng/ml) as compared to healthy controls (23.2 +/- 6.0 ng/ml, P = 0.015). After 15 months of treatment the BDNF serum concentration increased significantly in the AD patients (23.6 +/- 7.0 ng/ml, P = 0.001) showing no more difference to the healthy controls (P = 0.882). The results of the present study confirm data of prior investigations that a down-regulation of BDNF in serum and brain of AD patients seems to begin with the first clinical symptoms and to be persistent. A treatment with the AChE-inhibitor donepezil is accompanied with an increase of BDNF serum concentration in AD patients reaching the level of healthy controls. Thus, up-regulation of BDNF might be part of a neuroprotective effect of AChE-inhibitors. The molecular mechanism of this potentially disease-modifying mechanism of action of donepezil should be clarified.
Collapse
Affiliation(s)
- T Leyhe
- Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstrasse 24, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
16
|
Laske C, Stransky E, Leyhe T, Eschweiler GW, Maetzler W, Wittorf A, Soekadar S, Richartz E, Koehler N, Bartels M, Buchkremer G, Schott K. BDNF serum and CSF concentrations in Alzheimer's disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res 2007; 41:387-94. [PMID: 16554070 DOI: 10.1016/j.jpsychires.2006.01.014] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/10/2006] [Accepted: 01/16/2006] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) and normal pressure hydrocephalus (NPH) are common forms of dementia in the elderly. Recent findings have suggested an involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of AD. BDNF is an endogenous protein involved in the maintenance of neuronal function, synaptic plasticity and structural integrity in the adult brain. BDNF serum and cerebrospinal fluid (CSF) concentrations were assessed by a sensitive ELISA in 27 AD patients in comparison to 9 NPH patients and 28 age-matched healthy controls (10 CSF samples). We found a significant decrease of BDNF serum concentration in AD (18.6ng/ml) and NPH patients (18.1ng/ml) as compared to healthy controls (21.3ng/ml; p=0.041/p=0.017). BDNF serum concentrations did not correlate with CSF levels, age or MMSE scores both in AD and NPH patients. In unconcentrated CSF samples, BDNF could be detected in AD patients in 8/27 cases (29.6%; mean of 4.6pg/ml), in NPH patients in 1/9 cases (11.1%; mean of 6.4pg/ml) and in the control subjects in 5/10 cases (50%; mean of 1.6pg/ml) with no significant differences as regards mean concentration and frequency of detectable BDNF in CSF. The decrease of BDNF serum levels in AD and NPH may reflect a lack of trophic support and thus contribute to progressive degeneration in both diseases. In contrast to serum, CSF seems to be no useful source to determine BDNF in AD or NPH because of too low concentrations. Further examinations have to follow to elucidate the potential sources and the meaning of reduced BDNF levels in the blood in AD and NPH.
Collapse
Affiliation(s)
- Christoph Laske
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Osianderstr. 24, D-72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Carter CJ. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 2007; 50:461-90. [PMID: 17239488 DOI: 10.1016/j.neuint.2006.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 02/06/2023]
Abstract
Famine and viral infection, as well as interferon therapy have been reported to increase the risk of developing bipolar disorder. In addition, almost 100 polymorphic genes have been associated with this disease. Several form most of the components of a phosphatidyl-inositol signalling/AKT1 survival pathway (PIK3C3, PIP5K2A, PLCG1, SYNJ1, IMPA2, AKT1, GSK3B, TCF4) which is activated by growth factors (BDNF, NRG1) and also by NMDA receptors (GRIN1, GRIN2A, GRIN2B). Various other protein products of genes associated with bipolar disorder either bind to or are affected by phosphatidyl-inositol phosphate products of this pathway (ADBRK2, HIP1R, KCNQ2, RGS4, WFS1), are associated with its constituent elements (BCR, DUSP6, FAT, GNAZ) or are downstream targets of this signalling cascade (DPYSL2, DRD3, GAD1, G6PD, GCH1, KCNQ2, NOS3, SLC6A3, SLC6A4, SST, TH, TIMELESS). A further pathway relates to endoplasmic reticulum-stress (HSPA5, XBP1), caused by problems in protein glycosylation (ALG9), growth factor receptor sorting (PIK3C3, HIP1R, SYBL1), or aberrant calcium homoeostasis (WFS1). Key processes relating to these pathways appear to be under circadian control (ARNTL, CLOCK, PER3, TIMELESS). DISC1 can also be linked to many of these pathways. The growth factor pathway promotes protein synthesis, while the endoplasmic reticulum stress pathway, and other stress pathways activated by viruses and cytokines (IL1B, TNF, Interferons), oxidative stress or starvation, all factors associated with bipolar disorder risk, shuts down protein synthesis via control of the EIF2 alpha and beta translation initiation complex. For unknown reasons, oligodendrocytes appear to be particularly prone to defects in the translation initiation complex (EIF2B) and the convergence of these environmental and genomic signalling pathways on this area might well explain their vulnerability in bipolar disorder.
Collapse
|
18
|
Laske C, Stransky E, Leyhe T, Eschweiler GW, Wittorf A, Richartz E, Bartels M, Buchkremer G, Schott K. Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm (Vienna) 2005; 113:1217-24. [PMID: 16362629 DOI: 10.1007/s00702-005-0397-y] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 09/30/2005] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline and loss of neurons in specific brain regions. Recent findings have suggested an involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of AD. BDNF is an endogenous protein involved in the maintenance of neuronal function, synaptic plasticity and structural integrity in the adult brain. To our knowledge, the present pilot study assessed for the first time BDNF serum and CSF concentrations in 30 patients with different stages of AD in comparison to 10 age-matched non-demendet controls. AD patients were divided in two groups according to their MMSE score: Group 1 (n = 15) in early stages with MMSE scores >or=21 (mean of 25.5) and Group 2 (n = 15) with more severe stages of dementia with MMSE scores <21 (mean of 13.3). As main results, we found in patients with early stages of probable AD significantly increased BDNF serum concentrations as compared to more severe stages of AD (p < 0.0001) and age-matched healthy controls (p = 0.028). BDNF serum values in all AD patients correlated significantly with MMSE scores (r = 0.486; p < 0.0001). Levels of BDNF were below the detection limit of the assay in unconcentrated CSF samples of AD patients and non-demendet controls.In summary, BDNF serum values are increased in early stages of Alzheimer's disease, which may reflect a compensatory repair mechanism in early neurodegeneration and could also contribute to increased degradation of beta-amyloid (Abeta). During the course of the disease, BDNF is decreasing, which correlates with the severity of dementia. The decrease of BDNF may constitute a lack of trophic support with an increase of Abeta accumulation and thus contribute to progressive degeneration of specific regions in the AD-affected brain. BDNF should be further evaluated as a candidate marker for clinical diagnosis and therapeutic monitoring in Alzheimer's disease.
Collapse
Affiliation(s)
- C Laske
- Department of Psychiatry and Psychotherapy, University of Tübinger, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Grosse G, Djalali S, Deng DR, Höltje M, Hinz B, Schwartzkopff K, Cygon M, Rothe T, Stroh T, Hellweg R, Ahnert-Hilger G, Hörtnag H. Area-specific effects of brain-derived neurotrophic factor (BDNF) genetic ablation on various neuronal subtypes of the mouse brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:111-26. [PMID: 16099299 DOI: 10.1016/j.devbrainres.2004.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 12/10/2004] [Accepted: 12/11/2004] [Indexed: 01/19/2023]
Abstract
The effects of brain-derived neurotrophic factor (BDNF) on the development of presynaptic terminals and of neuronal subtypes in various brain areas were studied in BDNF-knockout (BDNF-/-) mice at postnatal days 15-17. Western analysis revealed no changes in the overall amount of a variety of synaptic proteins in BDNF-/- mice as compared to wild type mice. In addition, the complex between the vesicular proteins, synaptophysin and synaptobrevin, as well as their respective homodimers were unaltered. Moreover, no changes in the density of neurons were found in, e.g., the CA3 region of the hippocampus and the nucleus nervi facialis of BDNF-/- mice. However, cholinergic cells were reduced by 20% in the medial septum of BDNF-/- mice associated with a decrease in the activity of choline acetyltransferase and protein levels of nerve growth factor in the hippocampus by 16% and 44%, respectively. In the striatum, however, the total number of cholinergic cells were comparable in both groups, although the activity of choline acetyltransferase was decreased by 46%. In GABAergic interneurons, the expression of neuropeptides in various brain areas was differentially affected by BDNF deletion as revealed by immunohistochemistry. In the hippocampus and cortex of BDNF-/- mice, the density of neuropeptide Y-, somatostatin-, and parvalbumin-immunoreactive cells was drastically reduced, whereas the density of calretinin-positive cells was increased. The extent of these changes in neuropeptide-containing cells varied among hippocampal subregions. In the striatum, only the density of parvalbumin-immunoreactive cells was decreased by approximately 45%. In conclusion, BDNF deficiency is accompanied by a differential dysregulation in the expression of neuropeptides and calcium-binding proteins in otherwise intact GABAergic and glutamatergic neurons in a region-specific manner.
Collapse
Affiliation(s)
- Gisela Grosse
- Centre for Anatomy, Functional Cell Biology, Charité-Medical Faculty, Free University and Humboldt University, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Spada A, Beck-Peccoz P. Editorial: New strategy to solve the etiopathogenetic conundrum of pituitary adenomas. Endocrinology 2002; 143:343-6. [PMID: 11796485 DOI: 10.1210/endo.143.2.8703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|