1
|
Novick AM, Scott AT, Neill Epperson C, Schneck CD. Neuropsychiatric effects of tamoxifen: Challenges and opportunities. Front Neuroendocrinol 2020; 59:100869. [PMID: 32822707 PMCID: PMC7669724 DOI: 10.1016/j.yfrne.2020.100869] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 02/08/2023]
Abstract
Epidemiological, clinical, and basic research over the past thirty years have described the benefits of estrogen on cognition, mood, and brain health. Less is known about tamoxifen, a selective estrogen receptor modifier (SERM) commonly used in breast cancer which is able to cross the blood-brain barrier. In this article, we review the basic pharmacology of tamoxifenas well as its effects on cognition and mood. The literature reveals an overall impairing effect of tamoxifen on cognition in breast cancer patients, hinting at central antiestrogen activity. On the other hand, tamoxifen demonstrates promising effects in psychiatric disorders, like bipolar disorder, where its therapeutic action may be independent of interaction with estrogen receptors. Understanding the neuropsychiatric properties of SERMs like tamoxifen can guide future research to ameliorate unwanted side-effects and provide novel options for difficult to treat disorders.
Collapse
Affiliation(s)
- Andrew M Novick
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States.
| | - Anthony T Scott
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| | - Christopher D Schneck
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| |
Collapse
|
2
|
Ebrahimzadeh-Bideskan AR, Mansouri S, Ataei ML, Jahanshahi M, Hosseini M. The effects of soy and tamoxifen on apoptosis in the hippocampus and dentate gyrus in a pentylenetetrazole-induced seizure model of ovariectomized rats. Anat Sci Int 2018; 93:218-230. [PMID: 28283880 DOI: 10.1007/s12565-017-0398-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The effects of tamoxifen and soy on apoptosis of the hippocampus and dentate gyrus of ovariectomized rats after repeated seizures were investigated. Female rats were divided into: (1) Control, (2) Sham, (3) Sham-Tamoxifen (Sham-T), (4) Ovariectomized (OVX), (5) OVX-Tamoxifen (OVX-T), (6)OVX-Soy(OVX-S) and (7) OVX-S-T. The animals in the OVX-S, OVX-T and OVX-S-T groups received soy extract (60 mg/kg; i.p.), tamoxifen (10 mg/kg) or both for 2 weeks before induction of seizures. The animals in these groups additionally received the mentioned treatments before each injection of pentylenetetrazole (PTZ; 40 mg/kg) for 6 days. The animals in the Sham and OVX groups received a vehicle of tamoxifen and soy. A significant decrease in the seizure score and TUNEL-positive neurons was seen in the OVX group compared to the Sham (P < 0.001). The animals in both the OVX-T and OVX-S groups had a significantly higher seizure score as well as number of TUNEL-positive neurons compared to the OVX group (P < 0.01-P < 0.001). Co-treatment of the OVX rats by the extract and tamoxifen decreased the seizure score and number of TUNEL-positive neurons compared to OVX-S (P < 0.001). Treatment of the OVX rats by either soy or tamoxifen increased the seizure score as well as the number of TUNEL-positive neurons in the hippocampal formation. Co-administration of tamoxifen and soy extract inhibited the effects of the soy extract and tamoxifen when they were administered alone. It might be suggested that both soy and tamoxifen have agonistic effects on estrogen receptors by changing the seizure severity.
Collapse
Affiliation(s)
- Ali Reza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaieh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mariam Lale Ataei
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Jahanshahi
- Department of Anatomy, School of Medicine, Golestan University of Medical Sciences, Grogan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, Mashhad, Iran.
| |
Collapse
|
3
|
Pandey D, Banerjee S, Basu M, Mishra N. Memory enhancement by Tamoxifen on amyloidosis mouse model. Horm Behav 2016; 79:70-3. [PMID: 26435474 DOI: 10.1016/j.yhbeh.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/05/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Tamoxifen (TMX) is a selective estrogen receptor modulator (SERM) used in the treatment of breast cancer. Earlier studies show its neuroprotection via regulating apoptosis, microglial functions, and synaptic plasticity. TMX also showed memory enhancement in ovariectomized mice, and protection from amyloid induced damage in hippocampal cell line. These reports encouraged us to explore the role of TMX in relevance to Alzheimer's disease (AD). We report here, the effect of TMX treatment a) on memory, and b) levels of neurotransmitters (acetylcholine (ACh) and dopamine (DA)) in breeding-retired-female mice injected with beta amyloid1-42 (Aβ1-42). Mice were treated with TMX (10mg/kg, i.p.) for 15 days. In Morris water maze test, the TMX treated mice escape latency decreased during training trials. They also spent longer time in the platform quadrant on probe trial, compared to controls. In Passive avoidance test, TMX treated mice avoided stepping on the shock chamber. This suggests that TMX protects memory from Aβ induced toxicity. In frontal cortex, ACh was moderately increased, with TMX treatment. In striatum, dopamine was significantly increased, 3,4-dihydroxyphenylacetic acid (DOPAC) level and DOPAC/DA ratio was decreased post TMX treatment. Therefore, TMX enhances spatial and contextual memory by reducing dopamine metabolism and increasing ACh level in Aβ1-42 injected-breeding-retired-female mice.
Collapse
Affiliation(s)
- Deepika Pandey
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra 835215, Ranchi, India
| | - Sugato Banerjee
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra 835215, Ranchi, India
| | - Mahua Basu
- St. Xavier's College 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Nibha Mishra
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra 835215, Ranchi, India.
| |
Collapse
|
4
|
Karimi S, Hejazian SH, Alikhani V, Hosseini M. The effects of tamoxifen on spatial and nonspatial learning and memory impairments induced by scopolamine and the brain tissues oxidative damage in ovariectomized rats. Adv Biomed Res 2015; 4:196. [PMID: 26601084 PMCID: PMC4620616 DOI: 10.4103/2277-9175.166132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/06/2015] [Indexed: 12/16/2022] Open
Abstract
Background: Modulatory effects of tamoxifen (TAM) on the central nervous system have been reported. The effects of TAM on spatial and nonspatial learning and memory impairments induced by scopolamine and the brain tissues oxidative damage was investigated. Materials and Methods: The ovariectomized (OVX) rats were divided and treated: (1) Control (saline), (2) scopolamine (Sco; 2 mg/kg, 30 min before behavioral tests), (3–5) Sco-TAM 1, Sco-TAM 3 and Sco-TAM 10. TAM (1, 3 or 10 mg/kg; i.p.) was daily administered for 6 weeks. Results: In Morris water maze (MWM), both the latency and traveled distance in the Sco-group were higher than control (P < 0.001) while, in the Sco-TAM 10 group it was lower than Sco-group (P < 0.05). In passive avoidance test, the latency to enter the dark compartment was higher than control (P < 0.05 – P < 0.01). Pretreatment by all three doses of TAM prolonged the latency to enter the dark compartment compared to Sco-group (P < 0.05 – P < 0.001). The brain tissues malondialdehyde (MDA) concentration was increased while, superoxide dismutase activity (SOD) decreased in the Sco-group compared to control (P < 0.05 – P < 0.01). Pretreatment by TAM lowered the concentration of MDA while, increased SOD compared to Sco-group (P < 0.05 – P < 0.001). Conclusions: It is suggested that TAM prevents spatial and nonspatial learning and memory impairments induced by scopolamine in OVX rats. The possible mechanism(s) might at least in part be due to protection against the brain tissues oxidative damage.
Collapse
Affiliation(s)
- Sareh Karimi
- Department of Physiology, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | | | - Vajiheh Alikhani
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
|
6
|
Ebrahimzadeh Bideskan AR, Lale Ataei M, Mansouri S, Hosseini M. The effects of tamoxifen and soy on dark neuron production in hippocampal formation after pentylenetetrazole-induced repeated seizures in rats. PATHOPHYSIOLOGY 2015; 22:125-135. [DOI: 10.1016/j.pathophys.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 04/10/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
|
7
|
Newhouse P, Albert K, Astur R, Johnson J, Naylor M, Dumas J. Tamoxifen improves cholinergically modulated cognitive performance in postmenopausal women. Neuropsychopharmacology 2013; 38:2632-43. [PMID: 23867982 PMCID: PMC3828534 DOI: 10.1038/npp.2013.172] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Abstract
Tamoxifen (TMX) is a selective estrogen receptor modulator that is used as an estrogen receptor antagonist for the treatment and prevention of breast cancer. Whether TMX has antagonist activities in the human brain is less clear and its effects on cognitive function have not been experimentally explored. This study examined how TMX affected cognitive performance in older women using a model of anticholinergic drug-induced cognitive dysfunction. Twenty-one postmenopausal women were administered 20 mg of oral TMX or placebo for 3 months. Participants then took part in five drug challenges using the anticholinergic antinicotinic agent mecamylamine (MECA) and antimuscarinic agent scopolamine (SCOP) and were tested on a comprehensive battery including tasks of attention and psychomotor function, verbal episodic memory, and spatial navigation. After a 3-month placebo washout, participants were then crossed over to the alternate treatment and repeated the drug challenges after 3 months. Compared with placebo treatment, TMX significantly attenuated the impairment from cholinergic blockade on tasks of verbal episodic memory and spatial navigation, but effects on attentional/psychomotor tasks were more variable. Analysis by APOE genotype showed that APO ɛ4+ women showed a greater beneficial effect of TMX on reversing the cholinergic impairment than APO ɛ4- women on most tasks. This study provides evidence that TMX may act as an estrogen-like agonist to enhance cholinergic system activity and hippocampally mediated learning.
Collapse
Affiliation(s)
- Paul Newhouse
- Vanderbilt Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA,Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA,Vanderbilt Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University School of Medicine, 1601 23rd Avenue, Nashville, TN 37212, USA, Tel: +1 615 936 0928, Fax: +1 615 875 0686, E-mail:
| | - Kimberly Albert
- Vanderbilt Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert Astur
- Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Julia Johnson
- Department of Obstetrics and Gynecology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Magdalena Naylor
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Julie Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
8
|
Mansouri S, Ataei ML, Hosseini M, Bideskan ARE. Tamoxifen mimics the effects of endogenous ovarian hormones on repeated seizures induced by pentylenetetrazole in rats. Exp Neurobiol 2013; 22:116-23. [PMID: 23833560 PMCID: PMC3699672 DOI: 10.5607/en.2013.22.2.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
In the present study, the effects of tamoxifen on pentylenetetrazole (PTZ)-induced repeated seizures and hippocampal neuronal damage in ovariectomized rats were investigated. Thirty seven virgin female Wistar rats were divided to: (1) control, (2) sham-PTZ, (3) sham-PTZ-tamoxifen (sham-PTZ-T), (4) Ovariectomized -PTZ (OVX-PTZ) and (5) OVX-PTZ-tamoxifen (OVX-PTZ-T) groups. The animals of groups 3 and 5 were injected by tamoxifen (10 mg/kg) on 7 consecutive days. After 7 days of tamoxifen injection, they also were then injected by tamoxifen 30 min prior each PTZ injection. PTZ (40 mg/kg) was injected on 6 consecutive days and the animal behaviors were observed for 60 min. The histological methods were then used to determine dark neurons in hippocampus. A significant decrease in the seizure score was seen in OVX-PTZ group compared to Sham-PTZ. The animals of OVX-PTZ-T group had a significant higher seizure score compared to OVX-PTZ group. The dark neurons in DG of OVX group were lower than sham group (p<0.01). The numbers of dark neurons in CA1 area of OVX-PTZ-T group was higher than OVX-PTZ group (p<0.05) compared to control, the numbers of dark neurons in CA3 area showed a significant increase in Sham-PTZ and OVX-PTZ group (p<0.05 and p<0.01 respectively). Dark neurons in OVX-PTZ-T group were higher than OVX-PTZ group (p<0.05). It is concluded that pretreatment of the ovariectomized rats by tamoxifen increased PTZ-induced seizure score and dark neurons. It might be suggested that tamoxifen has agonistic effects for estrogen receptors to change the seizure severity.
Collapse
Affiliation(s)
- Somaeh Mansouri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran
| | | | | | | |
Collapse
|
9
|
Buwalda B, Schagen SB. Is basic research providing answers if adjuvant anti-estrogen treatment of breast cancer can induce cognitive impairment? Life Sci 2013; 93:581-8. [PMID: 23353876 DOI: 10.1016/j.lfs.2012.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Accepted: 12/21/2012] [Indexed: 12/23/2022]
Abstract
Adjuvant treatment of cancer by chemotherapy is associated with cognitive impairment in some cancer survivors. Breast cancer patients are frequently also receiving endocrine therapy with selective estrogen receptor modulators (SERMs) and/or aromatase inhibitors (AIs) to suppress the growth of estradiol sensitive breast tumors. Estrogens are well-known, however, to target brain areas involved in the regulation of cognitive behavior. In this review clinical and basic preclinical research is reviewed on the actions of estradiol, SERMs and AIs on brain and cognitive functioning to see if endocrine therapy potentially induces cognitive impairment and in that respect may contribute to the detrimental effects of chemotherapy on cognitive performance in breast cancer patients. Although many clinical studies may be underpowered to detect changes in cognitive function, current basic and clinical reports suggest that there is little evidence that AIs may have a lasting detrimental effect on cognitive performance in breast cancer patients. The clinical data on SERMs are not conclusive, but some studies do suggest that tamoxifen administration may form a risk for cognitive functioning particularly in older women. An explanation may come from basic preclinical research which indicates that tamoxifen often acts agonistic in the absence of estradiol but antagonistic in the presence of endogenous estradiol. It could be hypothesized that the negative effects of tamoxifen in older women is related to the so-called window of opportunity for estrogen. Administration of SERMs beyond this so-called window of opportunity may not be effective or might even have detrimental effects similar to estradiol.
Collapse
Affiliation(s)
- Bauke Buwalda
- Behavioral Physiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | | |
Collapse
|
10
|
Abstract
Hormonal Regulation of Absence SeizuresPersad V, Ting Wong CG, Cortez MA, Wang YT, Snead OC 3rdAnn Neurol 2004;44:353–361A time course study that examined the effects of the female estrous cycle on the chronic slow spike-and-wave discharges (SSWDs), GABAB-receptor (GABABR) binding, and GABABR protein expression was conducted in Long-Evans hooded rats treated during development with a cholesterol synthesis inhibitor AY9944 (AY). In addition, a pharmacologic study using the hormones progesterone, 17 β-estradiol, mifepristone (intracellular progesterone-receptor antagonist), tamoxifen (intracellular estrogen-receptor antagonist), and allopregnanolone (progesterone metabolite) was performed to determine their effects on AY-induced seizures. The data indicate that a significant increase occurs in both the duration of SSWDs and GABABR binding in the AY model during the proestrus stage of the estrous cycle, the stage during which the levels of progesterone are at their highest. No changes in GABABR1a or R2 protein levels were observed. In addition, the administration of both progesterone and allopregnanolone exacerbated seizures in the AY model, whereas 17 β-estradiol attenuated the SSWD duration. Neither mifepristone nor tamoxifen blocked the effects of progesterone and 17 β-estradiol, respectively, on SSWD duration in the AY model, suggesting that these two sex hormones are working in a manner independent of their intracellular receptors. These data suggest an important role for steroid hormones in the regulation and maintenance of AY-induced atypical absence seizures.
Collapse
|
11
|
Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA, McEwen BS. Uncovering the mechanisms of estrogen effects on hippocampal function. Front Neuroendocrinol 2008; 29:219-37. [PMID: 18078984 PMCID: PMC2440702 DOI: 10.1016/j.yfrne.2007.08.006] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 08/14/2007] [Indexed: 01/06/2023]
Abstract
Estrogens have direct effects on the brain areas controlling cognition. One of the most studied of these regions is the dorsal hippocampal formation, which governs the formation of spatial and episodic memories. In laboratory animals, most investigators report that estrogen enhances synaptic plasticity and improves performance on hippocampal-dependent cognitive behaviors. This review summarizes work conducted in our laboratory and others toward identifying estrogen's actions in the hippocampal formation, and the mechanisms for these actions. Physiologic and pharmacologic estrogen affects cognitive behavior in mammals, which may be applicable to human health and disease. The effects of estrogen in the hippocampal formation that lead to modulation of hippocampal function include effects on cell morphology, synapse formation, signaling, and excitability that have been studied in laboratory mice, rats, and primates. Finally, estrogen may signal through both nuclear and extranuclear hippocampal estrogen receptors to achieve its downstream effects.
Collapse
Affiliation(s)
- Joanna L Spencer
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
12
|
McEwen BS, Milner TA. Hippocampal formation: shedding light on the influence of sex and stress on the brain. ACTA ACUST UNITED AC 2007; 55:343-55. [PMID: 17395265 PMCID: PMC2101766 DOI: 10.1016/j.brainresrev.2007.02.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/12/2007] [Accepted: 02/20/2007] [Indexed: 02/05/2023]
Abstract
The hippocampus is a malleable brain region that responds to external agents such as hormones and stressors. Investigations that began in our laboratories with the Golgi technique and an appreciation of hippocampal neuroanatomy at the light and electron microscopic levels have led us down a path that has uncovered unexpected structural plasticity in the adult brain along with unanticipated cellular and molecular mechanisms of this plasticity and of hormone mediation of these effects. This chapter reviews the history of discoveries in our two laboratories involving the actions of estradiol and stress hormones on neuronal structure and function and then discusses the insight to hormone-brain interactions that this has engendered. These discoveries have led us to a new view of brain structural plasticity and the role and mechanism of steroid hormone action involving both genomic and non-genomic pathways. This new view is consistent with the predictions of Cajal in his book "The Structure of Ammon's horn", 1892.
Collapse
Affiliation(s)
- Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1300 York Ave., New York, NY 10021
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1300 York Ave., New York, NY 10021
- Department of Neurology and Neuroscience, Weill-Cornell Medical College, 411 East 69th St., New York, NY 10021
| |
Collapse
|
13
|
Dhandapani KM, Wade FM, Mahesh VB, Brann DW. Astrocyte-derived transforming growth factor-{beta} mediates the neuroprotective effects of 17{beta}-estradiol: involvement of nonclassical genomic signaling pathways. Endocrinology 2005; 146:2749-59. [PMID: 15746252 DOI: 10.1210/en.2005-0014] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17beta-Estradiol (E2) and selective estrogen receptor modulators (SERMs), such as tamoxifen, mediate numerous effects in the brain, including neurosecretion, neuroprotection, and the induction of synaptic plasticity. Astrocytes, the most abundant cell type in the brain, influence many of these same functions and thus may represent a mediator of estrogen action. The present study examined the regulatory effect and underlying cell signaling mechanisms of E2-induced release of neurotropic growth factors from primary rat cortical astrocyte cultures. The results revealed that E2 (0.5, 1, and 10 nm) and tamoxifen (1 mum) increased both the expression and release of the neuroprotective cytokines, TGF-beta1 and TGF-beta2 (TGF-beta), from cortical astrocytes. The stimulatory effect of E2 was attenuated by the estrogen receptor (ER) antagonist, ICI182,780, suggesting ER dependency. The effect of E2 also appeared to involve mediation by the phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway, because E2 rapidly induced Akt phosphorylation, and pharmacological or molecular inhibition of the PI3K/Akt pathway prevented E2-induced release of TGF-beta. Additionally, the membrane-impermeant conjugate, E2-BSA, stimulated the release of TGF-beta, suggesting the potential involvement of a membrane-bound ER. Finally, E2, tamoxifen, and E2-BSA were shown to protect neuronal-astrocyte cocultures from camptothecin-induced neuronal cell death, effects that were attenuated by ICI182,780, Akt inhibition, or TGF-beta immunoneutralization. As a whole, these studies suggest that E2 induction of TGF-beta release from cortical astrocytes could provide a mechanism of neuroprotection, and that E2 stimulation of TGF-beta expression and release from astrocytes occurs via an ER-dependent mechanism involving mediation by the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Krishnan M Dhandapani
- Institute of Molecular Medicine and Genetics, Program in Developmental Neurobiology, 1120 15th Street, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
14
|
Bryant DN, Bosch MA, Rønnekleiv OK, Dorsa DM. 17-Beta estradiol rapidly enhances extracellular signal-regulated kinase 2 phosphorylation in the rat brain. Neuroscience 2005; 133:343-52. [PMID: 15893655 DOI: 10.1016/j.neuroscience.2005.02.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/23/2005] [Accepted: 02/12/2005] [Indexed: 11/25/2022]
Abstract
Physiological doses of 17-beta Estradiol (E2) rapidly induce mitogen-activated protein kinase (MAPK) phosphorylation in a variety of cell culture and tissue explant preparations. Rapid MAPK phosphorylation has been implicated as a critical step in estrogen's effects on neuronal activity, gene transcription and neuroprotection. The present series of in vivo experiments were designed to determine whether acute administration of estrogen rapidly increased extracellular signal-regulated protein kinase (ERK) 2 phosphorylation. Brains were harvested 20 min after a single i.p. injection of 15 microg/kg of 17-beta or 17-alpha estradiol. Twelve brain structures were micro-dissected, homogenized and processed for Western blotting. E2-treated rats exhibited a statistically significant increase in ERK2 phosphorylation in the diagonal band of Broca, rostral nucleus accumbens, paraventricular nucleus, arcuate nucleus and anteromedial visual cortex. Administration of the same dose of 17-alpha estradiol did not enhance ERK phosphorylation in any of the brain regions examined. The in vivo data presented here extend previously published in vitro data indicating that E2 rapidly activates MAPK in primary neuronal cultures, explants and cell lines. These data also indicate that MAPK activation is a potential mediator of estrogens effects in some but not all estrogen receptor containing regions of the brain.
Collapse
Affiliation(s)
- D N Bryant
- Department of Physiology and Pharmacology (L334), Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
15
|
Ciriza I, Carrero P, Azcoitia I, Lundeen SG, Garcia-Segura LM. Selective estrogen receptor modulators protect hippocampal neurons from kainic acid excitotoxicity: differences with the effect of estradiol. ACTA ACUST UNITED AC 2005; 61:209-21. [PMID: 15389604 DOI: 10.1002/neu.20043] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroprotective effects of estradiol are well characterized in animal experimental models. However, in humans, the outcome of estrogen treatment for cognitive function and neurological diseases is very controversial. Selective estrogen receptor modulators (SERMs) may represent an alternative to estrogen for the treatment or the prevention of neurodegenerative disorders. SERMs interact with the estrogen receptors and have tissue-specific effects distinct from those of estradiol, acting as estrogen agonists in some tissues and as antagonists in others. In this study we have assessed the effect of tamoxifen, raloxifene, lasofoxifene (CP-336,156), bazedoxifene (TSE-424), and 17beta-estradiol on the hippocampus of adult ovariectomized rats, after the administration of the excitotoxin kainic acid. Administration of kainic acid induced the expression of vimentin in reactive astroglia and a significant neuronal loss in the hilus. SERMs did not affect vimentin immunoreactivity in the hilus, while 17beta-estradiol significantly reduced the surface density of vimentin immunoreactive profiles. Estradiol, tamoxifen (0.4-2 mg/kg), raloxifene (0.4-2 mg/kg), and bazedoxifene (2 mg/kg) prevented neuronal loss in the hilus after the administration of kainic acid. Lasofoxifene (0.4-2 mg/kg) was not neuroprotective. These findings indicate that SERMs present different dose-dependent neuroprotective effects. Furthermore, the mechanisms of neuroprotection by SERMs and estradiol are not identical, because SERMs do not significantly affect reactive gliosis while neuroprotection by estradiol is associated with a strong down-regulation of reactive astroglia.
Collapse
|
16
|
O'Neill K, Chen S, Diaz Brinton R. Impact of the selective estrogen receptor modulator, tamoxifen, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer's disease. Exp Neurol 2004; 188:268-78. [PMID: 15246826 DOI: 10.1016/j.expneurol.2004.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 09/29/2003] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
We investigated the estrogen agonist/antagonist properties of the selective estrogen receptor modulators (SERMs), tamoxifen (TMX) and 4-hydroxy-tamoxifen (OHT), using an in vitro neuron model system to determine the impact of the neuroprotective and neurotrophic properties of these SERMs. Low concentrations of TMX or OHT were without effect on a marker of neuronal viability, basal release of lactate dehydrogenase (LDH), whereas high concentrations of both SERMs (2500 ng/ml) induced a significant increase in LDH, indicating the potential toxicity of both SERMs at high concentrations. Subsequent experiments revealed that subtoxic concentrations of both TMX and OHT induced significant neuroprotection against beta-amyloid(25-35)-induced toxicity; 15-20% and 10-15% (P < 0.05), respectively and also against glutamate-induced toxicity; 25-30% and 20-40% (P < 0.05 and P < 0.01), respectively. Additional in vitro experiments included analysis of neuron survival to determine whether the SERM, OHT, acted competitively or synergistically with the endogenous estrogen, 17 beta-estradiol (E2). These revealed that neuron survival following exposure to the neurotoxins beta-amyloid and excitotoxic glutamate was significantly increased in cultures treated with OHT (50 ng/ml) (10%, P < 0.01) and that the magnitude of survival was equivalent to E2 (10 ng/ml). The combined presence of OHT and E2 significantly protected against both beta-amyloid(25-35) and excitotoxic glutamate-induced neuron death (10%, P < 0.01) but was not significantly different from either OHT or E2 alone. To assess neurotrophic effects of these same SERMs, cultured neurons from brain regions involved in memory function and Alzheimer's disease were evaluated by morphological analysis of individual neurons. Results of these analyses demonstrated that TMX treatment did not significantly increase the process outgrowth or morphological complexity of cortical, hippocampal, or basal forebrain neurons. Similar analyses showed that OHT also failed to significantly increase the neuronal outgrowth of either cortical or hippocampal neurons. Results of these studies predict that TMX and OHT could exert a neuroprotective function but would not promote estrogen-dependent memory function.
Collapse
Affiliation(s)
- Kathleen O'Neill
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Pharmaceutical Sciences Center, Los Angeles 90033, USA
| | | | | |
Collapse
|
17
|
Abstract
The central nervous system (CNS) is one of the main target tissues for sex steroid hormones, which act both through genomic mechanisms, modulating synthesis, release, and metabolism of many neuropeptides and neurotransmitters, and through nongenomic mechanisms, influencing electrical excitability, synaptic function, and morphological features. The identification of the brain as a de novo source of neurosteroids modulating cerebral function, suggests that the modifications in mood and cognitive performances occurring in postmenopausal women could also be related to a modification in the levels of neurosteroids, particularly allopregnanolone and DHEA, GABA-A agonist, and antagonist, respectively. The selective estrogen receptor modulators (SERMs) are compounds that activate the estrogen receptors with different estrogenic and antiestrogenic tissue-specific effects. In addition to the effects of the classic steroid hormones on the CNS, the study of selective estrogen receptor modulators impact on the neuroendocrine system has recently provided encouraging results, indicating that raloxifene analog LY 117018 and the new generation SERM EM-652 have an estrogen-like action on beta-endorphin and on allopregnanolone in ovariectomized rats, while they exert an anti-estrogenic effect in fertile rats and in ovariectomized rats treated with estrogens. In addition, raloxifene administration in postmenopausal women plays an estrogen-like effect on circulating beta-EP and allopregnanolone levels, and it restores the response of beta-EP and allopregnanolone to neuroendocrine tests. In conclusion, the positive effects of HRT on mood and cognition in postmenopausal women occur via the modulation of neuroendocrine pathways and probably also of neurosteroidogenesis. The effects of raloxifene on mood and cognition encourage the efforts in the research of an ideal estrogen replacement therapy, showing all the positive effects of estrogens and fewer side effects.
Collapse
Affiliation(s)
- F Bernardi
- Department of Reproductive Medicine and Child Development, Division of Obstetrics and Gynecology P. Fioretti, University of Pisa, Via Roma 35, 56100 Pisa, Italy
| | | | | | | | | |
Collapse
|
18
|
Dhandapani K, Brann D. Neuroprotective effects of estrogen and tamoxifen in vitro: a facilitative role for glia? Endocrine 2003; 21:59-66. [PMID: 12777704 DOI: 10.1385/endo:21:1:59] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 01/27/2003] [Accepted: 02/06/2003] [Indexed: 11/11/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are steroidal or nonsteroidal compounds that can exhibit either estrogen-like agonistic effects or estrogen-antagonistic effects depending on the target tissue. While SERM actions in the breast, bone, and uterus have been well characterized, their effects in the brain are considerably less well understood. Previous work by our laboratory has demonstrated a beneficial effect of tamoxifen in the reduction of ischemic stroke damage in ovariectomized female rats. The present study utilized neuronal cell culture models to attempt to understand the mechanisms of tamoxifen-mediated neuroprotection. Neither physiologic doses of 17beta-E2 nor clinically therapeutic doses of tamoxifen directly protected GT1-7 neurons or purified cultures of rat cerebrocortical neurons from several forms of cell death. Reverse transcriptase polymerase chain reaction and Western blot analysis revealed that GT1-7 neurons possessed both estrogen receptor-alpha (ERalpha) and ERbeta mRNA and protein, whereas purified embryonic rat cortical neurons only expressed appreciable levels of ERalpha transcript and protein, with little to no expression of ERbeta. In contrast to the lack of protection in the purified neuronal cultures, both 17beta- E2 and tamoxifen significantly protected mixed glial/ neuronal cortical cultures from cell death, suggesting that glia may facilitate 17beta-E2-and tamoxifen-mediated neuroprotection. Furthermore, astrocyte-conditioned media and exogenous transforming growth factor-beta1, a documented astrocyte-derived cytokine, were shown to rescue purified cortical neurons from cell death. Together, these findings support a role for astrocytes in neuroprotection and raise the intriguing possibility that astrocytes may help mediate the neuroprotective effect of 17beta-E2 and tamoxifen.
Collapse
Affiliation(s)
- Krishnan Dhandapani
- Institute of Molecular Medicine and Genetics, Department of Neurology, Program in Developmental Neurobiology, School of Medicine, Medical College of Georgia, Augusta 30912, USA
| | | |
Collapse
|
19
|
Murphy S, McCullough L, Littleton-Kearney M, Hurn P. Estrogen and selective estrogen receptor modulators: neuroprotection in the Women's Health Initiative era. Endocrine 2003; 21:17-26. [PMID: 12777699 DOI: 10.1385/endo:21:1:17] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 02/04/2003] [Accepted: 02/11/2003] [Indexed: 11/11/2022]
Abstract
Estrogen has been comprehensively studied as a neuroprotective agent in women, animals, and a variety of in vitro models of neural injury and degeneration. Most data suggest that estrogen can benefit the ischemic brain and reduce cell death. However, recent data from the Women's Health Initiative have raised concerns about the utility and safety of chronic estrogen use in women. While estrogen is a potent and reproducible neuroprotectant in animals and in vitro, its current administration in women has had unanticipated and paradoxical effects. Nonetheless, estrogen's diverse actions make it an ideal prototype for developing new neuroprotectants such as selective estrogen receptor modulators (SERMs). SERMs represent a class of drugs with mixed estrogen agonistic and antagonistic activity. Experimental and clinical data suggest a neuroprotective role for SERMs in normal and injured brain. The discrepancy among observational studies, preclinical data, and clinical trials emphasizes the need for further study of the mechanisms leading to the increased incidence of stroke observed in postmenopausal women. Research is still needed to optimize combined or estrogen alone hormone replacement therapy options as well as the prevention/management of cerebrovascular/ central nervous system disorders. This review critiques estrogen and SERMs' neuroprotective potential in experimental and clinical studies of stroke and cerebrovascular disease.
Collapse
Affiliation(s)
- Stephanie Murphy
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | |
Collapse
|