1
|
Pawar N, Dudhabhate BB, Borade V, Sahare DK, Bhute YV, Subhedar NK, Kokare DM, Sakharkar AJ. CREB-Binding Protein Regulates Cocaine- and Amphetamine-Regulated Transcript Peptide Expression in the Lateral Hypothalamus: Implication in Reward and Reinforcement. Mol Neurobiol 2025; 62:1388-1403. [PMID: 38987488 DOI: 10.1007/s12035-024-04338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) is known to play an important role in reward processing. The rats conditioned to intra-cranial self-stimulation (ICSS) showed massive upregulation of CART protein and mRNA in the vicinity of the electrode implanted to deliver the electric current directly at the lateral hypothalamus (LH)-medial forebrain bundle (MFB) area. However, the underlying mechanisms leading to the upregulation of CART in ICSS animals remain elusive. We tested the putative role of CREB-binding protein (CBP), an epigenetic enzyme with intrinsic histone acetyltransferase (HAT) activity, in regulating CART expression during ICSS. An electrode was implanted in LH-MFB and the rats were conditioned to self-stimulation in an operant chamber. CBP siRNA was delivered ipsilaterally in the LH-MFB to knock-down CBP and the effects on lever press activity were monitored. While ICSS-conditioned rats showed distinct increase in CART, CBP and pCREB levels, enhanced CBP binding and histone acetylation (H3K9ac) were noticed on the CART promoter in chromatin immunoprecipitation assay. Direct infusion of CBP siRNA in the LH-MFB lowered lever press activity, CBP levels, histone acetylation at the CART promoter, and CART mRNA and peptide expression. Co-infusion of CARTp in LH-MFB rescued the waning effects of CBP siRNA on self-stimulation. We suggest that CBP-mediated histone acetylation may play a causal role in CART expression in LH, which in turn may drive the positive reinforcement of lever press activity.
Collapse
Affiliation(s)
- Namrata Pawar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Vaishnavi Borade
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Dipak K Sahare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Yogesh V Bhute
- Department of Zoology, DRB Sindhu Mahavidyalaya, Nagpur, 440 017, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Pune, 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India.
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
2
|
Prieto JP, González B, Muñiz J, Bisagno V, Scorza C. Molecular changes in the nucleus accumbens and prefrontal cortex associated with the locomotor sensitization induced by coca paste seized samples. Psychopharmacology (Berl) 2020; 237:1481-1491. [PMID: 32034449 DOI: 10.1007/s00213-020-05474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/28/2020] [Indexed: 02/02/2023]
Abstract
RATIONALE In previous studies, we have demonstrated that seized samples of a smokable form of cocaine, also known as coca paste (CP), induced behavioral sensitization in rats. Interestingly, this effect was accelerated and enhanced when the samples were adulterated with caffeine. While the cocaine phenomenon is associated with persistent functional and structural alterations in the prefrontal cortex (PFC) and nucleus accumbens (NAc), the molecular mechanisms underlying the CP sensitization and the influence of caffeine remains still unknown. OBJECTIVE We examined the gene expression in NAc and mPFC after the expression caffeine-adulterated and non-adulterated CP locomotor sensitization. METHODS The locomotor sensitization was established in C57BL/6 mice, repeatedly treated with a CP-seized sample adulterated with caffeine (CP-2) and a non-adulterated one (CP-1). We then assessed the mRNA expression of receptor subunits of the dopaminergic and glutamatergic systems in the medial PFC (mPFC) and NAc. Other molecular markers (e.g., adenosinergic, endocannabinoid receptor subunits, and synaptic plasticity-associated genes) were also analyzed. RESULTS Only CP-2-treated mice expressed locomotor sensitization. This phenomenon was associated with increased Drd1a, Gria1, Cnr1, and Syn mRNA expression levels in the NAc. Drd3 mRNA expression levels were only significantly increased in mPFC of CP-2-treated group. CONCLUSIONS Our results demonstrated that caffeine actively collaborates in the induction of the molecular changes underlying CP sensitization. The present study provides new knowledge on the impact of active adulterants to understand the early dependence induced by CP consumption.
Collapse
Affiliation(s)
- José Pedro Prieto
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Betina González
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Buenos Aires, Argentina
| | - Javier Muñiz
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Buenos Aires, Argentina
| | - Verónica Bisagno
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Buenos Aires, Argentina
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
3
|
Ugur M, Kanit L, Koylu EO, Balkan B, Gözen O. Cocaine- and amphetamine-regulated transcript promoter regulated by nicotine in nerve growth factor-treated PC12 cells. Physiol Int 2019; 106:272-282. [DOI: 10.1556/2060.106.2019.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nicotine and cocaine- and amphetamine-regulated transcripts (CART) have several overlapping functions, such as the regulation of reward, feeding behavior, stress response, and anxiety. Previous studies showed that nicotine regulates CART expression in various brain regions. However, the molecular mechanisms underlying this regulation are not known. This study investigated the regulatory effect of nicotine on promoter activity of the CART gene in PC12 cells, which were differentiated into a neuronal phenotype by nerve growth factor (NGF) treatment. Two vectors containing reporter genes (Gaussia luciferase or mCherry) and the 1,140-bp upstream of the transcriptional start site of the mouse CART gene are used to analyze the CART promoter activity. Transient transfection of PC12 cells with either vector displayed strong promoter activity in both undifferentiated and differentiated PC12 cells. CART promoter activity in the PC12 cell line is increased by forskolin or NGF treatment. In differentiated PC12 cells, exposure to 50 nM nicotine for 6 h increased CART promoter activity. However, treatment with higher nicotine doses for 6 h and treatment with all nicotine doses for 24 h showed no effect. A nicotine concentration of 50 nM is comparable to brain nicotine levels experienced by chronic smokers over long periods of time. Taken together, these data indicate that nicotine may exert some of its actions through the regulation of CART transcription in the brain.
Collapse
Affiliation(s)
- M Ugur
- 1 Department of Physiology, Ege University School of Medicine, Izmir, Turkey
| | - L Kanit
- 1 Department of Physiology, Ege University School of Medicine, Izmir, Turkey
- 2 Ege University Center for Brain Research, Izmir, Turkey
| | - EO Koylu
- 1 Department of Physiology, Ege University School of Medicine, Izmir, Turkey
- 2 Ege University Center for Brain Research, Izmir, Turkey
| | - B Balkan
- 1 Department of Physiology, Ege University School of Medicine, Izmir, Turkey
- 2 Ege University Center for Brain Research, Izmir, Turkey
| | - O Gözen
- 1 Department of Physiology, Ege University School of Medicine, Izmir, Turkey
- 2 Ege University Center for Brain Research, Izmir, Turkey
| |
Collapse
|
4
|
Yu C, Zhou X, Fu Q, Peng Q, Oh KW, Hu Z. A New Insight into the Role of CART in Cocaine Reward: Involvement of CaMKII and Inhibitory G-Protein Coupled Receptor Signaling. Front Cell Neurosci 2017; 11:244. [PMID: 28860971 PMCID: PMC5559471 DOI: 10.3389/fncel.2017.00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are neuropeptides that are expressed in brain regions associated with reward, such as the nucleus accumbens (NAc), and play a role in cocaine reward. Injection of CART into the NAc can inhibit the behavioral effects of cocaine, and injecting CART into the ventral tegmental area (VTA) reduces cocaine-seeking behavior. However, the exact mechanism of these effects is not clear. Recent research has demonstrated that Ca2+/calmodulin-dependent protein kinase II (CaMKII) and inhibitory G-protein coupled receptor (GPCR) signaling are involved in the mechanism of the effect of CART on cocaine reward. Hence, we review the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward and provide a new insight into the mechanism of that effect. In this article, we will first review the biological function of CART and discuss the role of CART in cocaine reward. Then, we will focus on the role of CaMKII and inhibitory GPCR signaling in cocaine reward. Furthermore, we will discuss how CaMKII and inhibitory GPCR signaling are involved in the mechanistic action of CART in cocaine reward. Finally, we will provide our opinions regarding the future directions of research on the role of CaMKII and inhibitory GPCR signaling in the effect of CART on cocaine reward.
Collapse
Affiliation(s)
- ChengPeng Yu
- The Second Clinic Medical College, School of Medicine, Nanchang UniversityNanchang, China
| | - XiaoYan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China
| | - Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang UniversityNanchang, China.,Department of Respiration, Department Two, Jiangxi Provincial People's HospitalNanchang, China
| | - QingHua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang UniversityNanchang, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National UniversityCheongju, South Korea
| | - ZhenZhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang UniversityNanchang, China.,Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathology, Schools of Basic Medical Sciences and Pharmaceutical Sciences, Nanchang University Medical CollegeNanchang, China
| |
Collapse
|
5
|
Fu Q, Zhou X, Dong Y, Huang Y, Yang J, Oh KW, Hu Z. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction. PLoS One 2016; 11:e0159104. [PMID: 27404570 PMCID: PMC4942143 DOI: 10.1371/journal.pone.0159104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Respiration, Department Two, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yun Dong
- Department of Breast Surgery, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- * E-mail: ;
| |
Collapse
|
6
|
Hu Z, Oh EH, Chung YB, Hong JT, Oh KW. Predominant D1 Receptors Involvement in the Over-expression of CART Peptides after Repeated Cocaine Administration. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:89-97. [PMID: 25729269 PMCID: PMC4342741 DOI: 10.4196/kjpp.2015.19.2.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/18/2014] [Accepted: 12/05/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the involvement of dopaminergic receptors (DR) in behavioral sensitization, as measured by locomotor activity, and the over-expression of cocaine- and amphetamine-regulated transcript (CART) peptides after repeated administration of cocaine in mice. Repeated administrations of cocaine induced behavioral sensitization and CART over-expression in mice. The levels of striatal CART mRNA were significantly increased on the 3rd day. CART peptides were over-expressed on the 5th day in the striata of behaviorally sensitized mice. A higher proportion of CART+ cells in the cocaine-treated mice were present in the nucleus accumbens (NAc) shell than in the dorsolateral (DL) part of caudate putamen (CP). The concomitant administration of both D1R and D2R antagonists, SCH 23390 (D1R selective) and raclopride (D2R selective), blocked cocaine induced-behavioral sensitization, CART over-expression, and cyclic adenosine 5'-monophosphate (cAMP)/protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signal pathways. SCH 23390 more predominantly inhibited the locomotor activity, CART over-expression, pCREB and PKA activity than raclopride. Cocaine induced-behavioral sensitization was also attenuated in the both D1R and D2R knockout (KO) mice, respectively. CART over-expression and activated cAMP/PKA/pCREB signal pathways were inhibited in the D1R-KO mice, but not in the D2R-KO mice. It is suggested that behavioral sensitization, CART over-expression and activated cAMP/PKA/pCREB signal pathways induced by repeated administration of cocaine could be more predominantly mediated by D1R.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Jiangxi 330006, China
| | - Eun-Hye Oh
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea
| | - Yeon Bok Chung
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea
| | - Jin Tae Hong
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea
| | - Ki-Wan Oh
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea
| |
Collapse
|
7
|
Peng Q, Sun X, Liu Z, Yang J, Oh KW, Hu Z. Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization. Neurochem Int 2014; 75:105-11. [PMID: 24953280 DOI: 10.1016/j.neuint.2014.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/15/2022]
Abstract
Repeated exposure to addictive drugs enhances dopamine receptor (DR) signaling and the ultimate phosphorylation of the cyclic adenosine 5'-monophosphate (cAMP)-response element-binding protein (CREB)-regulated cocaine- and amphetamine-regulated transcript (CART) expression in the nucleus accumbens (NAcc). These effects are known to contribute to the expression of behavioral sensitization. CART peptides are neuropeptides that modulate drug reward and reinforcement. The present experiments investigated the effects of CART 55-102 microinjection into the NAcc on (1) the phosphorylation of CREB, (2) cAMP/protein kinase A (PKA) signaling and (3) extracellular signal-regulated kinase (ERK) phosphorylated kinase signaling. Here, we show that repeated microinjections into the NAcc of CART 55-102 peptides (1.0 or 2.5μg, 0.5μl/side) attenuates cocaine-induced enhancements of D1R, D2R and D3R phosphorylation in this sites. Furthermore, the microinjection of CART 55-102 followed by repeated injections of cocaine (15mg/kg) dose-dependently blocked the enhancement of cAMP levels, PKA activity and pERK and pCREB levels on the fifth day of cocaine administration. The cocaine-induced locomotor activity and behavioral sensitization in rats were also inhibited by the 5-day-microinjection of CART peptides. These results suggest that the phosphorylation of CREB by cocaine in the NAcc was blocked by the CART 55-102 peptide via the inhibition of D1R and D2R stimulation, D3R phosphorylation, cAMP/PKA signaling and ERK phosphorylated kinase signaling. These effects may have played a compensatory inhibitory role in the behavioral sensitization of rats that received microinjections of CART 55-102.
Collapse
Affiliation(s)
- Qinghua Peng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 33006, China
| | - Xi Sun
- Evidence Identification Center, Department of Jiangxi Provincial Public Security, Nanchang, Jiangxi 33006, China
| | - Ziyong Liu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 33006, China
| | - Jianghua Yang
- Evidence Identification Center, Department of Jiangxi Provincial Public Security, Nanchang, Jiangxi 33006, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi 33006, China.
| |
Collapse
|
8
|
Zhang J, Wang S, Yuan L, Yang Y, Zhang B, Liu Q, Chen L, Yue W, Li Y, Pei X. Neuron-restrictive silencer factor (NRSF) represses cocaine- and amphetamine-regulated transcript (CART) transcription and antagonizes cAMP-response element-binding protein signaling through a dual NRSE mechanism. J Biol Chem 2012; 287:42574-87. [PMID: 23086924 DOI: 10.1074/jbc.m112.376590] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide plays a pivotal role in neuroprotection against stroke-related brain injury. However, the regulatory mechanism on CART transcription, especially the repression mechanism, is not fully understood. Here, we show that the transcriptional repressor neuron-restrictive silencer elements (NRSF, also known as REST) represses CART expression through direct binding to two NRSF-binding elements (NRSEs) in the CART promoter and intron 1 (named pNRSE and iNRSE, respectively). EMSA show that NRSF binds to pNRSE and iNRSE directly in vitro. ChIP assays show that NRSF recruits differential co-repressor complexes including CoREST and HDAC1 to these NRSEs. The presence of both NRSEs is required for efficient repression of CART transcription as indicated by reporter gene assays. NRSF overexpression antagonizes forskolin-mediated up-regulation of CART mRNA and protein. Ischemia insult triggered by oxygen-glucose deprivation (OGD) enhances NRSF mRNA levels and then NRSF antagonizes the CREB signaling on CART activation, leading to augmented cell death. Depletion of NRSF in combination with forskolin treatment increases neuronal survival after ischemic insult. These findings reveal a novel dual NRSE mechanism by which NRSF represses CART expression and suggest that NRSF may serve as a therapeutic target for stroke treatment.
Collapse
Affiliation(s)
- Jing Zhang
- Stem Cell and Regenerative Medicine Laboratory, Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ling F, Wei L, Wang T, Chen Y, Zhu X, Li J, Liu T, Du H, Wang H, Wang J. Cloning and characterization of the 5'-flanking region of the pig cocaine- and amphetamine-regulated transcript gene. DNA Cell Biol 2010; 30:91-7. [PMID: 21091201 DOI: 10.1089/dna.2010.1101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cocaine- and amphetamine-regulated transcript (CART) gene encodes an anorexigenic peptide. It has a key role in the hypothalamic regulation of energy balance through reducing food intake and enhancing lipid substrate utilization. To detect the CART expression pattern in pigs, reverse transcription (RT)-polymerase chain reaction (PCR) and real-time PCR were performed in various tissues. Our RT-PCR results revealed that the pig CART gene was ubiquitously expressed in all examined tissues including hypothalamus, m. longissimus, backfat, heart, liver, spleen, lung, kidney, stomach, bladder, belly fat, brain, large intestine, lymph, and skin. Real-time quantitative PCR experiments revealed that the cDNA level of CART in both the hypothalamus and backfat of adult Landrace pig (lean-type) was significantly higher than that of Chinese indigenous Lantang pig (fat-type), and it was in the hypothalamus where the highest expression of CART was observed for both adult Lantang and Landrace pigs, compared with backfat and m. longissimus muscle. To understand the regulation of the pig CART gene, the 5'-flanking region was isolated from a pig bacterial artificial chromosome library and used in a luciferase reporter assay. A positive cis-acting element for efficient CART expression was identified at nucleotides -73 to -53, using 5'-serial deletion of the promoter. Electrophoretic mobility shift assays with competing oligonucleotides revealed that the critical region contained a cis-acting element for the zinc-binding protein factor, a zinc-finger transcription factor of the Kruppel family. This element has not been reported in human or mouse CART genes. Our results indicated that zinc-binding protein factor might be an essential regulatory factor for transcription of pig CART, providing important insight into mechanisms involved in energy homeostasis regulation in the porcine and human brain.
Collapse
Affiliation(s)
- Fei Ling
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
McPherson CS, Lawrence AJ. The nuclear transcription factor CREB: involvement in addiction, deletion models and looking forward. Curr Neuropharmacol 2010; 5:202-12. [PMID: 19305803 PMCID: PMC2656817 DOI: 10.2174/157015907781695937] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 03/16/2007] [Accepted: 03/29/2007] [Indexed: 01/26/2023] Open
Abstract
Addiction involves complex physiological processes, and is characterised not only by broad phenotypic and behavioural traits, but also by ongoing molecular and cellular adaptations. In recent years, increasingly effective and novel techniques have been developed to unravel the molecular implications of addiction. Increasing evidence has supported a contribution of the nuclear transcription factor CREB in the development of addiction, both in contribution to phenotype and expression in brain regions critical to various aspects of drug-seeking behaviour and drug reward. Abstracting from this, models have exploited these data by removing the CREB gene from the developing or developed mouse, to crucially determine its impact upon addiction-related processes. More recent models, however, hold greater promise in unveiling the contribution of CREB to disorders such as addiction.
Collapse
Affiliation(s)
- Cameron S McPherson
- Brain Injury and Repair Group, Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
11
|
Rogge GA, Shen LL, Kuhar MJ. Chromatin immunoprecipitation assays revealed CREB and serine 133 phospho-CREB binding to the CART gene proximal promoter. Brain Res 2010; 1344:1-12. [PMID: 20451507 DOI: 10.1016/j.brainres.2010.04.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/14/2010] [Accepted: 04/26/2010] [Indexed: 02/07/2023]
Abstract
Both over expression of cyclic AMP response element binding protein (CREB) in the nucleus accumbens (NAc), and intra-accumbal injection of cocaine- and amphetamine-regulated transcript (CART) peptides, have been shown to decrease cocaine reward. Also, over expression of CREB in the rat NAc increased CART mRNA and peptide levels, but it is not known if this was due to a direct action of P-CREB on the CART gene promoter. The goal of this study was to test if CREB and P-CREB bound directly to the CRE site in the CART promoter, using chromatin immunoprecipitation (ChIP) assays. ChIP assay with anti-CREB antibodies showed an enrichment of the CART promoter fragment containing the CRE region over IgG precipitated material, a non-specific control. Forskolin, which was known to increase CART mRNA levels in GH3 cells, was utilized to show that the drug increased levels of P-CREB protein and P-CREB binding to the CART promoter CRE-containing region. A region of the c-Fos promoter containing a CRE cis-regulatory element was previously shown to bind P-CREB, and it was used here as a positive control. These data suggest that the effects of CREB over expression on blunting cocaine reward could be, at least in part, attributed to the increased expression of the CART gene by direct interaction of P-CREB with the CART promoter CRE site, rather than by some indirect action.
Collapse
Affiliation(s)
- George A Rogge
- Yerkes National Research Primate Center of Emory University, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
12
|
Liu M, Dziennis S, Hurn PD, Alkayed NJ. Mechanisms of gender-linked ischemic brain injury. Restor Neurol Neurosci 2009; 27:163-79. [PMID: 19531872 DOI: 10.3233/rnn-2009-0467] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHS-2, Portland, OR 97239-3098, USA.
| | | | | | | |
Collapse
|
13
|
Jones DC, Lakatos A, Rogge GA, Kuhar MJ. Regulation of cocaine- and amphetamine-regulated transcript mRNA expression by calcium-mediated signaling in GH3 cells. Neuroscience 2009; 160:339-47. [PMID: 19258027 DOI: 10.1016/j.neuroscience.2009.02.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 11/28/2022]
Abstract
Cocaine- and amphetamine-regulated-transcript (CART) peptides are associated with multiple physiological processes, including, feeding, body weight, and the response to drugs of abuse. CART mRNA and peptide levels and the expression of the CART gene appears to be under the control of a number of extra- and intra-cellular factors including the transcription factor, cAMP response element binding protein (CREB). Similar to the effects of CART, Ca(2+) signaling leads to the phosphorylation of CREB and has been associated with both feeding and the actions of psychostimulants; therefore, we hypothesized that Ca(2+) may play a role in CART gene regulation. We used real-time PCR (rtPCR) and GH3 cells to examine the effect of ionomycin, which increases intracellular Ca(2+), on CART mRNA levels. Ionomycin increased CART mRNA in a dose- and time-dependent manner. The effect of ionomycin appeared transient as CART mRNA had returned to control levels 3 h following treatment. Calmidazolium and KN93, inhibitors of calmodulin and Ca(2+)-modulated protein (CaM) kinases respectively, attenuated the effect of ionomycin (10 microM) on CART mRNA levels suggesting a calmodulin-dependent mechanism. Western immunoblotting indicated that ionomycin increased phosphorylated cAMP response element binding protein (pCREB) levels and electrophoretic mobility shift assay/supershift assay using antibodies against pCREB demonstrated increased levels of a CART oligo/pCREB protein complex. Finally, we showed that injection of ionomycin into the rat nucleus accumbens increases CART mRNA levels. To our knowledge, this is the first study providing evidence that the CART gene is, in part, regulated by Ca(2+)/CaM/CREB-dependent cell signaling.
Collapse
Affiliation(s)
- D C Jones
- Division of Neuroscience, Yerkes National Primate Research Center of Emory University, 945 Gatewood Road, Atlanta, GA 30329, USA.
| | | | | | | |
Collapse
|
14
|
Regulation of CART peptide expression by CREB in the rat nucleus accumbens in vivo. Brain Res 2008; 1251:42-52. [PMID: 19046951 DOI: 10.1016/j.brainres.2008.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/22/2008] [Accepted: 11/01/2008] [Indexed: 11/20/2022]
Abstract
Production of mRNA from the cocaine- and amphetamine-regulated transcript (CART) gene is regulated by cocaine and other drugs of abuse in the nucleus accumbens (NAc), a brain reward region. Current hypotheses postulate that CART peptides there oppose the rewarding actions of cocaine by opposing the effects of dopaminergic transmission. Since over expression of CREB was shown to decrease cocaine-mediated reward, we hypothesized that CART could be a target gene for CREB in the NAc and that over expression of CREB would increase CART peptide levels. Transcription factor (TF) binding to DNA is influenced by sequences adjacent to consensus TF binding sites and other factors. We thus examined CREB binding to a 27mer oligonucleotide containing the CRE sequence from the CART gene proximal promoter. Using electrophoretic mobility shift assays and TF-antibody super shift assays, CREB was found to bind to the CRE sequence from the CART promoter. To test if over expression of CREB in the NAc affected CART peptide levels, Herpes simplex virus-1 vectors over expressing CREB (HSV-CREB), or a vector that expressed LacZ (HSV-LacZ) as a control, were injected into the NAc of rats. Western blotting and in situ hybridization showed that HSV-CREB injections increased CART mRNA and peptide levels. Injections of a dominant negative CREB mutant (HSV-mCREB) did not alter either CART mRNA or peptide levels. The finding that CREB can regulate the levels of CART mRNA and peptides in vivo in the NAc supports a role for CART peptides in psychostimulant-induced reward and reinforcement.
Collapse
|
15
|
The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat Med 2008; 14:1112-7. [PMID: 18758446 DOI: 10.1038/nm.1866] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/25/2008] [Indexed: 11/08/2022]
Abstract
The adipocyte-derived hormone leptin maintains energy balance by acting on hypothalamic leptin receptors (Leprs) that act on the signal transducer and activator of transcription 3 (Stat3). Although disruption of Lepr-Stat3 signaling promotes obesity in mice, other features of Lepr function, such as fertility, seem normal, pointing to the involvement of additional regulators. Here we show that the cyclic AMP responsive element-binding protein-1 (Creb1)-regulated transcription coactivator-1 (Crtc1) is required for energy balance and reproduction-Crtc1(-/-) mice are hyperphagic, obese and infertile. Hypothalamic Crtc1 was phosphorylated and inactive in leptin-deficient ob/ob mice, while leptin administration increased amounts of dephosphorylated nuclear Crtc1. Dephosphorylated Crtc1 stimulated expression of the Cartpt and Kiss1 genes, which encode hypothalamic neuropeptides that mediate leptin's effects on satiety and fertility. Crtc1 overexpression in hypothalamic cells increased Cartpt and Kiss1 gene expression, whereas Crtc1 depletion decreased it. Indeed, leptin enhanced Crtc1 activity over the Cartpt and Kiss1 promoters in cells overexpressing Lepr, and these effects were disrupted by expression of a dominant-negative Creb1 polypeptide. As leptin administration increased recruitment of hypothalamic Crtc1 to Cartpt and Kiss1 promoters, our results indicate that the Creb1-Crtc1 pathway mediates the central effects of hormones and nutrients on energy balance and fertility.
Collapse
|
16
|
Genetic regulation of hypothalamic cocaine and amphetamine-regulated transcript (CART) in BxD inbred mice. Brain Res 2007; 1194:1-7. [PMID: 18199428 DOI: 10.1016/j.brainres.2007.11.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
Cocaine and Amphetamine-Regulated Transcript (CART) peptides are implicated in a wide range of behaviors including in the reinforcing properties of psychostimulants, feeding and energy balance and stress and anxiety responses. We conducted a complex trait analysis to examine natural variation in the regulation of CART transcript abundance (CARTta) in the hypothalamus. CART transcript abundance was measured in total hypothalamic RNA from 26 BxD recombinant inbred (RI) mouse strains and in the C57BL/6 (B6) and DBA/2J (D2) progenitor strains. The strain distribution pattern for CARTta was continuous across the RI panel, which is consistent with this being a quantitative trait. Marker regression and interval mapping revealed significant quantitative trait loci (QTL) on mouse chromosome 4 (around 58.2 cM) and chromosome 11 (between 20-36 cM) that influence CARTta and account for 31% of the between strain variance in this phenotype. There are numerous candidate genes and QTL in these chromosomal regions that may indicate shared genetic regulation between CART expression and other neurobiological processes referable to known actions of this neuropeptide.
Collapse
|
17
|
Hubert GW, Jones DC, Moffett MC, Rogge G, Kuhar MJ. CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem Pharmacol 2007; 75:57-62. [PMID: 17854774 PMCID: PMC3804336 DOI: 10.1016/j.bcp.2007.07.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 12/27/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides (CART 55-102 and CART 62-102) are peptidergic neurotransmitters that are widely but specifically distributed throughout the brain, gut and other parts of the body. They are found in many brain regions associated with drug addiction including the nucleus accumbens, ventral tegmental area and ventral pallidum. Injections of CART 55-102 into the nucleus accumbens have no effect on basal locomotor activity. However, an injection of CART just before an i.p. injection of cocaine reduces the locomotor activating effects of cocaine. These and other data suggest that CART in the accumbens blunts the effects of cocaine. A hypothesis is that CART is homeostatic in the accumbens and tends to oppose large increases in dopamine signaling. These actions would therefore be able to regulate the effects of some abused drugs such as the psychostimulants.
Collapse
Affiliation(s)
- George W Hubert
- Division of Neuroscience, The Yerkes National Primate Research Center of Emory University, 954 Gatewood Road, NE, Atlanta, GA 30329, USA.
| | | | | | | | | |
Collapse
|
18
|
de Lartigue G, Dimaline R, Varro A, Dockray GJ. Cocaine- and amphetamine-regulated transcript: stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin. J Neurosci 2007; 27:2876-82. [PMID: 17360909 PMCID: PMC6672594 DOI: 10.1523/jneurosci.5508-06.2007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The neuropeptide transmitter cocaine- and amphetamine-regulated transcript (CART) inhibits food intake and is expressed by both vagal afferent and hypothalamic neurons. Here we report that cholecystokinin (CCK) regulates CART expression in rat vagal afferent neurons. Thus, CART was virtually undetectable after energy restriction for 24 h, but administration of CCK to fasted rats increased CART immunoreactivity, and refeeding of fasted animals promptly increased CART by a mechanism sensitive to a CCK-1 receptor antagonist. In vagal afferent neurons incubated in serum-free medium, CART was virtually undetectable, whereas the orexigenic peptide melanin-concentrating hormone (MCH) was readily detected. The addition of CCK rapidly induced CART expression and downregulated MCH. Using a CART promoter-luciferase reporter vector transfected into cultured vagal afferent neurons, we showed that CCK stimulation of CART transcription was mediated by activation of protein kinase C and cAMP response element-binding protein (CREB). The action of CCK on CART expression was inhibited by the orexigenic peptide ghrelin, through a mechanism that involved exclusion of phosphorylated CREB from the nucleus. Thus, CCK reciprocally regulates expression of CART and MCH within the same vagal afferent neuron; ghrelin inhibits the effect of CCK at least in part through control of the nuclear localization of phosphoCREB, revealing previously unsuspected modulation of gut-brain signals implicated in control of food intake.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Graham J. Dockray
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
19
|
Regulation of CART mRNA by stress and corticosteroids in the hippocampus and amygdala. Brain Res 2007; 1152:234-40. [PMID: 17434149 DOI: 10.1016/j.brainres.2007.03.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 11/18/2022]
Abstract
CART (Cocaine-Amphetamine-Regulated Transcript) has been shown to be regulated by corticosteroids in the hypothalamus, but its regulation by corticosteroids and stress has not been well examined in the hippocampus or the amygdala. Further, CART has been implicated in the transition to puberty. In this study we examine the effects of acute (30 min) stress on CART mRNA in prepubescent and adult rats. In addition, we examined chronic (21 day x 6 h) restraint stress upon the expression of CART mRNA in the hippocampus and the amygdala and the effects of 7 days of adrenalectomy and corticosteroid replacement upon CART expression in these regions of the adult rat brain. We found an up-regulation of CART mRNA in the central amygdala induced by acute but not chronic stress and an up-regulation in the dentate gyrus induced by chronic but not acute stress. Adrenalectomy reduced CART expression in the dentate gyrus but not the amygdala and this effect was blocked by corticosterone but not RU28,362 or aldosterone replacement, suggesting a synergism of mineralocorticoid and glucocorticoid receptors. Our data establish that CART expression is regulated by stress in a regionally and time specific manner and that CART is regulated by corticosteroid actions in the hippocampus.
Collapse
|
20
|
Xu Y, Zhang W, Klaus J, Young J, Koerner I, Sheldahl LC, Hurn PD, Martínez-Murillo F, Alkayed NJ. Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection. Proc Natl Acad Sci U S A 2006; 103:14489-94. [PMID: 16971488 PMCID: PMC1636703 DOI: 10.1073/pnas.0602932103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Indexed: 01/17/2023] Open
Abstract
Estrogen reduces brain injury after experimental cerebral ischemia in part through a genomic mechanism of action. Using DNA microarrays, we analyzed the genomic response of the brain to estradiol, and we identified a transcript, cocaine- and amphetamine-regulated transcript (CART), that is highly induced in the cerebral cortex by estradiol under ischemic conditions. Using in vitro and in vivo models of neural injury, we confirmed and characterized CART mRNA and protein up-regulation by estradiol in surviving neurons, and we demonstrated that i.v. administration of a rat CART peptide is protective against ischemic brain injury in vivo. We further demonstrated binding of cAMP response element (CRE)-binding protein to a CART promoter CRE site in ischemic brain and rapid activation by CART of ERK in primary cultured cortical neurons. The findings suggest that CART is an important player in estrogen-mediated neuroprotection and a potential therapeutic agent for stroke and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Xu
- Departments of *Anesthesiology and Critical Care Medicine, and
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wenri Zhang
- Departments of Anesthesiology and Perioperative Medicine, and
| | - Judith Klaus
- Departments of *Anesthesiology and Critical Care Medicine, and
| | - Jennifer Young
- Departments of Anesthesiology and Perioperative Medicine, and
| | - Ines Koerner
- Departments of Anesthesiology and Perioperative Medicine, and
| | - Laird C. Sheldahl
- Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239; and
| | - Patricia D. Hurn
- Departments of *Anesthesiology and Critical Care Medicine, and
- Departments of Anesthesiology and Perioperative Medicine, and
- Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239; and
| | | | - Nabil J. Alkayed
- Departments of *Anesthesiology and Critical Care Medicine, and
- Departments of Anesthesiology and Perioperative Medicine, and
- Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239; and
| |
Collapse
|
21
|
Jaworski JN, Jones DC. The role of CART in the reward/reinforcing properties of psychostimulants. Peptides 2006; 27:1993-2004. [PMID: 16766084 DOI: 10.1016/j.peptides.2006.03.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 03/27/2006] [Indexed: 11/20/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are putative neurotransmitters which appear to play a role in the rewarding and reinforcing effects of both natural (food) and unnatural (psychostimulants) stimuli. There is extensive anatomical, pharmacological, and behavioral evidence supporting the importance of CART peptides in psychostimulant, namely cocaine and amphetamine, abuse. For instance, CART mRNA and peptides are found in brain regions considered important in the reward and reinforcement of psychostimulants including the ventral tegmental area and the nucleus accumbens, which are part of the mesolimbic dopamine system. Consequently, in a pharmacological sense, CART peptides have been closely linked to the actions of mesolimbic dopamine. In addition, under certain conditions, psychostimulants alter CART mRNA and peptide levels. However, the exact conditions and mechanisms are unclear and may involve CART modulation by corticosterone and/or cyclic AMP response element binding protein (CREB). Finally, behavioral studies on CART and psychostimulants suggest a modulatory role for CART in the actions of psychostimulants as central administration of CART attenuates the behavioral effects of cocaine. This review discusses the anatomical, pharmacological, and behavioral evidence implicating a role for CART peptide in the rewarding and reinforcing properties of psychostimulants.
Collapse
Affiliation(s)
- Jason N Jaworski
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health & Sciences University, Portland, OR 97239, USA.
| | | |
Collapse
|
22
|
Abstract
CART peptides are important neuropeptides that are involved in a variety of physiologic processes. The regulation of the CART gene is critical since peptides are regulated and secreted in response to specific stimuli. CART mRNA must also be controlled in order to respond to specific stimuli such as psychostimulant drugs and leptin. The regulation of the CART gene is central to maintaining homeostasis of peptide production. The 5' upstream region of the CART gene contains powerful regulatory elements that must be involved in transcriptional regulation via different signaling pathways. This review touches on several aspects related to CART gene regulation such as: (i) CART genomic structure, (ii) stimuli that alter CART mRNA levels, (iii) promoter characterization, (iv) role of the cAMP/PKA/CREB signal transduction pathway, and (v) role of the CART 5' and 3' ends in CART mRNA regulation. The goal of this review is to present current data so as to encourage further work in the field of CART gene regulation.
Collapse
Affiliation(s)
- Geraldina Dominguez
- Neuroscience Division, Yerkes National Primate Center of Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
23
|
Hunter RG, Jones D, Vicentic A, Hue G, Rye D, Kuhar MJ. Regulation of CART mRNA in the rat nucleus accumbens via D3 dopamine receptors. Neuropharmacology 2006; 50:858-64. [PMID: 16458333 DOI: 10.1016/j.neuropharm.2005.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/09/2005] [Accepted: 12/13/2005] [Indexed: 11/28/2022]
Abstract
A variety of studies indicate that CART in the nucleus accumbens (NAcc) is involved in the action of psychostimulants. In order to understand in more detail if and how dopamine is involved in the regulation of CART mRNA in the NAcc, the present studies of individual receptors were performed. The D1 agonist, dihydrexidine, and the D1 antagonist, SCH23,390, were administered separately and in combination to adult male rats; however, no changes were found in CART mRNA as measured by in situ hybridization. The D2/3 agonist, quinpirole, was administered either separately or in combination with the D2 selective antagonist, L741,626, or the D3 selective antagonist, GR103,691. Quinpirole produced a decrease in CART mRNA of up to 43%. This effect was blocked by pretreatment with the D3 antagonist GR103, 691, but not by the D2 antagonist, L741,626. CART peptide levels showed a similar decrement after acute quinpirole. CART mRNA levels in the NAcc of D3 mutant mice were found to be higher than that in wild-type animals, but treating the mutants with quinpirole failed to produce a decrease in CART expression like that observed in wild-type rodents. These findings demonstrate that CART is regulated by dopamine in the NAcc, at least partly by D3 dopamine receptors.
Collapse
Affiliation(s)
- Richard G Hunter
- Rockefeller University, Laboratory of Neuroendocrinology, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
24
|
Jones DC, Kuhar MJ. Cocaine-amphetamine-regulated transcript expression in the rat nucleus accumbens is regulated by adenylyl cyclase and the cyclic adenosine 5'-monophosphate/protein kinase a second messenger system. J Pharmacol Exp Ther 2006; 317:454-61. [PMID: 16322355 DOI: 10.1124/jpet.105.096123] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine-amphetamine-regulated transcript (CART), a neuropeptide involved in the brain's reward/reinforcement circuit, modulates the effects of psychostimulants, including cocaine. The CART gene has been characterized, and binding sites for multiple transcription factors have been identified within the promoter region, including the cAMP-response element, which serves as a binding site for cAMP-response element-binding protein (CREB). CART expression appears to be regulated via cAMP/protein kinase A (PKA)/CREB-mediated signaling in cell culture. Therefore, the goal of these studies was to examine the involvement of cAMP/PKA/CREB-mediated signaling in CART mRNA and peptide expression in vivo in the rat nucleus accumbens. Intra-accumbal injections of forskolin, an adenylyl cyclase activator, stimulated the phosphorylation of CREB and increased both CART mRNA and peptide levels, an effect attenuated by inhibition of PKA with H89 [N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline-sulfonamide hydrochloride] and adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In addition, Rp-cAMPS alone decreased CART mRNA compared with saline-injected controls, suggesting that CART expression may be tonically regulated by PKA. Under certain conditions, cocaine increases CART mRNA levels; thus, we examined the effects of cocaine on forskolin-induced CART mRNA expression in the rat nucleus accumbens. Cocaine plus forskolin significantly increased CART mRNA over either of the drugs administered independently, suggesting that under conditions of heightened cAMP signaling, cocaine may impact CART gene expression. These results suggest that CART expression in vivo in the rat nucleus accumbens is regulated by adenylyl cyclase and cAMP/PKA-mediating signaling and, likely, through the activation of CREB.
Collapse
Affiliation(s)
- Douglas C Jones
- Division of Neuroscience, Yerkes National Primate Research Center of Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
25
|
Kuhar MJ, Jaworski JN, Hubert GW, Philpot KB, Dominguez G. Cocaine- and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets. AAPS JOURNAL 2005; 7:E259-65. [PMID: 16146347 PMCID: PMC2751515 DOI: 10.1208/aapsj070125] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides (55 to 102 and 62 to 102) are neurotransmitters with important roles in a number of physiologic processes. They have a role in drug abuse by virtue of the fact that they are modulators of mesolimbic function. Key findings supporting a role in drug abuse are as follows. First, high densities of CART-containing nerve terminals are localized in mesolimbic areas. Second, CART 55 to 102 blunts some of the behavioral effects of cocaine and dopamine (DA). This functional antagonism suggests that CART peptides be considered as targets for medications development. Third, CREB in the nucleus accumbens has been shown to have an opposing effect on cocaine self-administration. CREB may activate CART expression in that region, and, if so, CART may mediate at least some of the effects of CREB. Fourth, in addition to the effects of CART on DA, DA can influence CART in the accumbens. Thus a complex interacting circuitry likely exists. Fifth, in humans, CART is altered in the ventral tegmental area of cocaine overdose victims, and a mutation in the CART gene associates with alcoholism. Overall, it is clear that there are functional interactions among CART, DA, and cocaine and that plausible cellular mechanisms exist to explain some of these actions. Future studies will clarify and extend these findings.
Collapse
Affiliation(s)
- Michael J Kuhar
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
The transactivation domain of the cAMP response element-binding protein (CREB) consists of two major domains. The glutamine-rich Q2 domain, which interacts with the general transcription factor TAFII130/135, is sufficient for the recruitment of a functional RNA polymerase II complex and allows basal transcriptional activity. The kinase-inducible domain, however, mediates signal-induced activation of CREB-mediated transcription. It is generally believed that recruitment of the coactivators CREB-binding protein (CBP) and p300 after signal-induced phosphorylation of this domain at serine-133 strongly enhances CREB-dependent transcription. Transcriptional activity of CREB can also be potentiated by phosphoserine-133-independent mechanisms, and not all stimuli that provoke phosphorylation of serine-133 stimulate CREB-dependent transcription. This review presents an overview of the diversity of stimuli that induce CREB phosphorylation at Ser-133, focuses on phosphoserine-133-dependent and -independent mechanisms that affect CREB-mediated transcription, and discusses different models that may explain the discrepancy between CREB Ser-133 phosphorylation and activation of CREB-mediated transcription.
Collapse
Affiliation(s)
- Mona Johannessen
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, N-9037, Norway
| | | | | |
Collapse
|
27
|
Dominguez G, Kuhar MJ. Transcriptional regulation of the CART promoter in CATH.a cells. ACTA ACUST UNITED AC 2004; 126:22-9. [PMID: 15207912 DOI: 10.1016/j.molbrainres.2004.02.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2004] [Indexed: 11/16/2022]
Abstract
Changes in Cocaine- and Amphetamine-Regulated Transcript (CART) mRNA levels have been observed in brain as a result of various physiologic stimuli including feeding, drugs of abuse, stress and glucocorticoids, and activators of the cyclic AMP (cAMP) and protein kinase A (PKA) pathway. Accordingly, we are interested in identifying factors involved in CART gene regulation. CATH.a cells, derived from the locus coeruleus (LC), express a 213-bp CART mRNA species that is translated and processed. The promoter activity of three CART-LUC constructs containing 3451, 641, and 102 bp of 5' upstream sequence, respectively, were tested in CATH.a cells. cAMP regulation was detected in the construct containing 641 bp of CART promoter sequence which contains a consensus CRE site. Mutation of the CRE site within -641CART-LUC significantly reduced basal and forskolin-induced promoter activity. Additionally, forskolin-induced transcription was inhibited by a dominant-negative mutant of CRE-binding protein (CREB) in CATH.a cells. Finally, tropin-releasing factor (CRF), an endogenously occurring activator of the cAMP/PKA pathway in CATH.a cells, was shown to increase transcriptional activity that was inhibited by a CRF receptor antagonist and a PKA inhibitor. This study provides evidence that the CRE site in the CART proximal promoter is involved in cAMP/PKA/CREB regulation in cells having a neuronal phenotype. Also, given the evidence for involvement of CREB in reward and reinforcement, these results are compatible with a role for CART in these processes as well.
Collapse
Affiliation(s)
- Geraldina Dominguez
- Division of Neuroscience, Yerkes National Primate Center of Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | | |
Collapse
|
28
|
Dominguez G, Vicentic A, Del Giudice EM, Jaworski J, Hunter RG, Kuhar MJ. CART Peptides: Modulators of Mesolimbic Dopamine, Feeding, and Stress. Ann N Y Acad Sci 2004; 1025:363-9. [PMID: 15542737 DOI: 10.1196/annals.1316.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CART peptides have been shown to be peptide neurotransmitters and endocrine factors in a series of cumulative studies over the past eight years or so. This brief review touches on three aspects of CART: CART as a mediator or modulator of mesolimbic dopamine, CART's regulation by glucocorticoids, and CART as a regulator of feeding, satiety, and body weight. There have been several recent reviews and publications on various aspects of CART peptides. These aspects include the sequence and numbering of the peptides, and their structure, processing, and roles in various physiologic processes.
Collapse
Affiliation(s)
- Geraldina Dominguez
- Yerkes National Primate Research Center, Division of Neuroscience, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | | | | | |
Collapse
|
29
|
Barrett P, Davidson J, Morgan P. CART gene promoter transcription is regulated by a cyclic adenosine monophosphate response element. OBESITY RESEARCH 2002; 10:1291-8. [PMID: 12490674 DOI: 10.1038/oby.2002.175] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To define the regulatory DNA sequence controlling the expression of the cocaine-amphetamine-regulated transcript (CART) gene expression. RESEARCH METHODS AND PROCEDURES A rat genomic library was screened for genomic clones containing the CART gene and upstream DNA sequence. A clone containing exons 1 and 2 of the rat CART gene plus 1.2 kb of upstream sequence was isolated. The 1.2-kb upstream sequence and truncated segments of this sequence were cloned into a luciferase reporter vector for analysis of transcriptional activity in the CART expressing pituitary GH3 cell line. Luciferase reporter assays, gel shift assays, and site-directed mutagenesis were used to analyze potential regulatory regions in the 1.2-kb 5' DNA sequence. RESULTS Sequence analysis of the 1.2-kb upstream sequence reveals several potential regulatory elements. Luciferase reporter assays demonstrate that within the first 162 bp of the start codon is a functional cyclic adenosine monophosphate (cAMP) response element that can induce cAMP-regulated gene expression of the CART promoter in GH3 cells. Mutation of this cAMP response element abolishes cAMP-stimulated transcription [corrected]. Furthermore, the promoter is active in a neuronal cell line where it also demonstrates cAMP responsiveness. DISCUSSION cAMP-mediated transcription of the CART promoter may be an important aspect of the regulation of the CART gene. However, the cellular context of expression is also important because the CART promoter is not responsive to cAMP stimulation in all cell types. Other transcription factor binding sequences are likely to play a key role in CART promoter regulation.
Collapse
Affiliation(s)
- Perry Barrett
- Rowett Research Institute, Aberdeen Centre for Energy Regulation and Obesity, Bucksburn, UK.
| | | | | |
Collapse
|
30
|
Affiliation(s)
- M J Kuhar
- Division of Neuroscience, Yerkes Regional Primate Research Center of Emory University, 954 Gatewood Rd NE, Atlanta, GA 30329, USA.
| | | | | | | | | |
Collapse
|