1
|
de Sousa GG, Barbosa MA, Barbosa CM, Lima TC, Souza Dos Santos RA, Campagnole-Santos MJ, Alzamora AC. Different reactive species modulate the hypotensive effect triggered by angiotensins at CVLM of 2K1C hypertensive rats. Peptides 2020; 134:170409. [PMID: 32950566 DOI: 10.1016/j.peptides.2020.170409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022]
Abstract
Hypertension is associated with increased central activity of the renin-angiotensin system (RAS) and oxidative stress. Here, we evaluated whether reactive species and neurotransmitters could contribute to the hypotensive effect induced by angiotensin (Ang) II and Ang-(1-7) at the caudal ventrolateral medulla (CVLM) in renovascular hypertensive rats (2K1C). Therefore, we investigated the effect of Ang II, Ang-(1-7), and the Ang-(1-7) antagonist A-779 microinjected before and after CVLM microinjection of the nitric oxide (NO)-synthase inhibitor, (L-NAME), vitamin C (Vit C), bicuculline, or kynurenic acid in 2K1C and SHAM rats. Baseline values of the mean arterial pressure (MAP) in 2K1C rats were higher than in SHAM rats. CVLM microinjection of Ang II, Ang-(1-7), l-NAME, or bicuculline induced decreases in the MAP in SHAM and 2K1C rats. In addition, Vit C and A-779 produced decreases in the MAP only in 2K1C rats. Kynurenic acid increased the MAP in both SHAM and 2K1C rats. Only the Ang-(1-7) effect was increased by l-NAME and reduced by bicuculline in SHAM rats. L-NAME also reduced the A-779 effect in 2K1C rats. Only the Ang II effect was abolished by CVLM Vit C and enhanced by CVLM kynurenic acid in SHAM and 2K1C rats. Overall, the superoxide anion and glutamate participated in the hypotensive effect of Ang II, while NO and GABA participated in the hypotensive effect of Ang-(1-7) in CVLM. The higher hypotensive response of A-779 in the CVLM of 2K1C rats suggests that Ang-(1-7) contributes to renovascular hypertension.
Collapse
Affiliation(s)
- Graziele Galdino de Sousa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Maria Andréa Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Claudiane Maria Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Taynara Carolina Lima
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Robson Augusto Souza Dos Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria José Campagnole-Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréia Carvalho Alzamora
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Brazil; Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
2
|
Costa MA, Matsumoto JPP, Carrettiero DC, Fior-Chadi DR. Adenosine A 1 and A 2a receptors modulate the nitrergic system in cell culture from dorsomedial medulla oblongata. Auton Neurosci 2020; 229:102737. [PMID: 33166836 DOI: 10.1016/j.autneu.2020.102737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022]
Abstract
Adenosine and nitric oxide act on the fine-tuning regulation of neural cardiovascular control in the nucleus tractus solitarius (NTS). Although the interaction between adenosine and NO is well known in the periphery, the mechanisms by which adenosine interferes in the dynamics of nitrergic neurotransmission, related to neural control of circulation, are not completely understood and might be relevant for individuals predisposed to hypertension. In this study we evaluate the interaction between adenosinergic and nitrergic systems in cell culture from the dorsomedial medulla oblongata of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Using quantification of nitrite levels, RT-PCR analysis and RNA interference we demonstrate that adenosine A1 (A1R) and A2a receptor (A2aR) agonists induce a concentration-dependent decrease and increase of nitrite and nNOS mRNA levels in cultured cells from WKY and SHR, respectively. These effects in nitrite levels are attenuated by the administration of A1R and A2aR selective antagonists, CPT and ZM 241385. Furthermore, knockdown of A1R and A2aR show an increase and decrease of nNOS mRNA levels, respectively. Pretreatment with the nonselective inhibitor of NOS, L-NAME, abolishes nitrite-increased levels triggered by CGS 21680 in WKY and SHR cells. Finally, it is shown that the cAMP-PKA pathway is involved in A1R and A2aR-mediated decrease and increase in nitrite levels in SHR and WKY cells. Our results highlight the influence of adenosine on nitric oxide levels in cultured cells from dorsal medulla oblongata of neonate WKY and SHR rats. In part, the modulatory profile is different in the SHR strain.
Collapse
Affiliation(s)
- M A Costa
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil
| | - J P P Matsumoto
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil
| | - D C Carrettiero
- Center of Natural Sciences and Humanities, University of ABC, Santo André, SP, Brazil
| | - D R Fior-Chadi
- Universidade de Sao Paulo, Department of Physiology, Institute of Biosciences, SP, Brazil.
| |
Collapse
|
3
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
4
|
Physical exercise prevents memory impairment in an animal model of hypertension through modulation of CD39 and CD73 activities and A2A receptor expression. J Hypertens 2019; 37:135-143. [DOI: 10.1097/hjh.0000000000001845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
McBryde FD, Liu BH, Roloff EV, Kasparov S, Paton JFR. Hypothalamic paraventricular nucleus neuronal nitric oxide synthase activity is a major determinant of renal sympathetic discharge in conscious Wistar rats. Exp Physiol 2018; 103:419-428. [PMID: 29215757 DOI: 10.1113/ep086744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does chronic reduction of neuronally generated nitric oxide in the hypothalamic paraventricular nucleus affect the set-point regulation of blood pressure and sympathetic activity destined to the kidneys? What is the main finding and its importance? Within the hypothalamic paraventricular nucleus, nitric oxide generated by neuronal nitric oxide synthase plays a major constitutive role in suppressing long term the levels of both ongoing renal sympathetic activity and arterial pressure in conscious Wistar rats. This finding unequivocally demonstrates a mechanism by which the diencephalon exerts a tonic influence on sympathetic discharge to the kidney and may provide the basis for both blood volume and osmolality homeostasis. ABSTRACT The paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in cardiovascular and neuroendocrine regulation. Application of nitric oxide donors to the PVN stimulates GABAergic transmission, and may suppress sympathetic nerve activity (SNA) to lower arterial pressure. However, the role of endogenous nitric oxide within the PVN in regulating renal SNA chronically remains to be established in conscious animals. To address this, we used our previously established lentiviral vectors to knock down neuronal nitric oxide synthase (nNOS) selectively in the PVN of conscious Wistar rats. Blood pressure and renal SNA were monitored simultaneously and continuously for 21 days (n = 14) using radio-telemetry. Renal SNA was normalized to maximal evoked discharge and expressed as a percentage change from baseline. The PVN was microinjected bilaterally with a neurone-specific tetracycline-controllable lentiviral vector, expressing a short hairpin miRNA30 interference system targeting nNOS (n = 7) or expressing a mis-sense as control (n = 7). Recordings continued for a further 18 days. The vectors also expressed green fluorescent protein, and successful expression in the PVN and nNOS knockdown were confirmed histologically post hoc. Knockdown of nNOS expression in the PVN resulted in a sustained increase in blood pressure (from 95 ± 2 to 104 ± 3 mmHg, P < 0.05), with robust concurrent sustained activation of renal SNA (>70%, P < 0.05). The study reveals a major role for nNOS-derived nitric oxide within the PVN in chronic set-point regulation of cardiovascular autonomic activity in the conscious, normotensive rat.
Collapse
Affiliation(s)
- F D McBryde
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.,Cardiovascular Autonomic Research Cluster, Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - B H Liu
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - E V Roloff
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - S Kasparov
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - J F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.,Cardiovascular Autonomic Research Cluster, Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
The asymmetric dimethylarginine-mediated inhibition of nitric oxide in the rostral ventrolateral medulla contributes to regulation of blood pressure in hypertensive rats. Nitric Oxide 2017; 67:58-67. [PMID: 28392446 DOI: 10.1016/j.niox.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) contributes to the central control of cardiovascular activity. The rostral ventrolateral medulla (RVLM) has been recognized as a pivotal region for maintaining basal blood pressure (BP) and sympathetic tone. It is reported that asymmetric dimethylarginine (ADMA), characterized as a cardiovascular risk marker, is an endogenous inhibitor of nitric oxide synthesis. The present was designed to determine the role of ADMA in the RVLM in the central control of BP in hypertensive rats. In Sprague Dawley (SD) rats, microinjection of ADMA into the RVLM dose-dependently increased BP, heart rate (HR), and renal sympathetic never activity (RSNA), but also reduced total NO production in the RVLM. In central angiotensin II (Ang II)-induced hypertensive rats and spontaneously hypertensive rat (SHR), the level of ADMA in the RVLM was increased and total NO production was decreased significantly, compared with SD rats treated vehicle infusion and WKY rats, respectively. These hypertensive rats also showed an increased protein level of protein arginine methyltransferases1 (PRMT1, which generates ADMA) and a decreased expression level of dimethylarginine dimethylaminohydrolases 1 (DDAH1, which degrades ADMA) in the RVLM. Furthermore, increased AMDA content and PRMT1 expression, and decreased levels of total NO production and DDAH1 expression in the RVLM in SHR were blunted by intracisternal infusion of the angiotensin II type 1 receptor (AT1R) blocker losartan. The current data indicate that the ADMA-mediated NO inhibition in the RVLM plays a critical role in involving in the central regulation of BP in hypertension, which may be associated with increased Ang II.
Collapse
|
7
|
Puzserova A, Bernatova I. Blood pressure regulation in stress: focus on nitric oxide-dependent mechanisms. Physiol Res 2017; 65:S309-S342. [PMID: 27775419 DOI: 10.33549/physiolres.933442] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stress is considered a risk factor associated with the development of various civilization diseases including cardiovascular diseases, malignant tumors and mental disorders. Research investigating mechanisms involved in stress-induced hypertension have attracted much attention of physicians and researchers, however, there are still ambiguous results concerning a causal relationship between stress and long-term elevation of blood pressure (BP). Several studies have observed that mechanisms involved in the development of stress-induced hypertension include increased activity of sympathetic nervous system (SNS), glucocorticoid (GC) overload and altered endothelial function including decreased nitric oxide (NO) bioavailability. Nitric oxide is well known neurotransmitter, neuromodulator and vasodilator involved in regulation of neuroendocrine mechanisms and cardiovascular responses to stressors. Thus NO plays a crucial role in the regulation of the stress systems and thereby in the BP regulation in stress. Elevated NO synthesis, especially in the initial phase of stress, may be considered a stress-limiting mechanism, facilitating the recovery from stress to the resting levels via attenuation of both GC release and SNS activity as well as by increased NO-dependent vasorelaxation. On the other hand, reduced levels of NO were observed in the later phases of stress and in subjects with genetic predisposition to hypertension, irrespectively, in which reduced NO bioavailability may account for disruption of NO-mediated BP regulatory mechanisms and accentuated SNS and GC effects. This review summarizes current knowledge on the role of stress in development of hypertension with a special focus on the interactions among NO and other biological systems affecting blood pressure and vascular function.
Collapse
Affiliation(s)
- A Puzserova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | |
Collapse
|
8
|
Han SY, Bouwer GT, Seymour AJ, Korpal AK, Schwenke DO, Brown CH. Induction of hypertension blunts baroreflex inhibition of vasopressin neurons in the rat. Eur J Neurosci 2015; 42:2690-8. [PMID: 26342194 DOI: 10.1111/ejn.13062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/12/2015] [Accepted: 08/27/2015] [Indexed: 01/21/2023]
Abstract
Vasopressin secretion from the posterior pituitary gland is determined by action potential discharge of hypothalamic magnocellular neurosecretory cells. Vasopressin is a potent vasoconstrictor, but vasopressin levels are paradoxically elevated in some patients with established hypertension. To determine whether vasopressin neurons are excited in hypertension, extracellular single-unit recordings of vasopressin neurons from urethane-anaesthetized Cyp1a1-Ren2 rats with inducible angiotensin-dependent hypertension were made. The basal firing rate of vasopressin neurons was higher in hypertensive Cyp1a1-Ren2 rats than in non-hypertensive Cyp1a1-Ren2 rats. The increase in firing rate was specific to vasopressin neurons because oxytocin neuron firing rate was unaffected by the induction of hypertension. Intravenous injection of the α1-adrenoreceptor agonist, phenylephrine (2.5 μg/kg), transiently increased mean arterial blood pressure to cause a baroreflex-induced inhibition of heart rate and vasopressin neuron firing rate (by 52 ± 9%) in non-hypertensive rats. By contrast, intravenous phenylephrine did not inhibit vasopressin neurons in hypertensive rats, despite a similar increase in mean arterial blood pressure and inhibition of heart rate. Circulating angiotensin II can excite vasopressin neurons via activation of afferent inputs from the subfornical organ. However, the increase in vasopressin neuron firing rate and the loss of inhibition by intravenous phenylephrine were not blocked by intra-subfornical organ infusion of the angiotensin AT1 receptor antagonist, losartan. It can be concluded that increased vasopressin neuron activity at the onset of hypertension is driven, at least in part, by reduced baroreflex inhibition of vasopressin neurons and that this might exacerbate the increase in blood pressure at the onset of hypertension.
Collapse
Affiliation(s)
- Su Young Han
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Gregory T Bouwer
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Alexander J Seymour
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Aaron K Korpal
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Daryl O Schwenke
- Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Colin H Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, 9054, New Zealand.,Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
9
|
Lee YH, Tsai MC, Li TL, Dai YWE, Huang SC, Hwang LL. Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla. Exp Physiol 2015; 100:993-1007. [PMID: 26096870 DOI: 10.1113/ep085016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 06/17/2015] [Indexed: 01/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? Our previous study demonstrates that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs), and a lower OX2R protein level was detected in their RVLM. The present study aims to explore the mechanisms underlying elevated orexinergic activity in the RVLM of SHRs, compared with their normotensive counterparts, Wistar-Kyoto rats. What is the main finding and its importance? Increased orexinergic input into the RVLM and enhanced OX2R responsiveness in the RVLM, which was mainly mediated by augmented OX2R-neuronal nitric oxide synthase signalling, may underlie the elevated OX2R activity within the RVLM of SHRs. Our previous study showed that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs). Herein, we investigated the mechanism(s) underlying the elevated OX2R activity. The following results were found. (i) More hypothalamic orexin A-immunoreactive (OXA-IR) cells existed in SHRs than in Wistar-Kyoto (WKY) rats at either 4 (2217 ± 43 versus 1809 ± 69) or 16 weeks of age (1829 ± 59 versus 1230 ± 84). The number of OXA-IR cells that project to the RVLM was higher in 16-week-old SHRs than in WKY rats (91 ± 11 versus 52 ± 11). (ii) Higher numbers of OXA-IR and RVLM-projecting OXA-IR cells were found in the dorsomedial and perifornical hypothalamus of 16-week-old SHRs. (iii) Spontaneously hypertensive rats had higher levels of orexin A and B in the hypothalamus and higher levels of orexin A in the RVLM than did WKY rats. (iv) Unilateral intra-RVLM application of OX2R agonist, orexin A or [Ala(11), d-Leu(15)]-orexin B (50 pmol) induced a larger pressor response in SHRs than in WKY rats. (v) Intra-RVLM pretreatment with a neuronal nitric oxide synthase (NOS) inhibitor, 7-nitro-indazole (2.5 pmol), or a soluble guanylate cyclase inhibitor, methylene blue (250 pmol), reduced the intra-RVLM [Ala(11), d-Leu(15) ]-orexin B-induced pressor response in both WKY rats and SHRs. In contrast, an inducible NOS inhibitor, aminoguanidine (100 pmol), was ineffective. (vi) Neuronal NOS was co-expressed with OX2R in RVLM neurons. In conclusion, increased orexinergic input and enhanced OX2R-neuronal NOS signalling may underlie elevated OX2R activity in the RVLM and contribute to the pathophysiology of hypertension in SHRs.
Collapse
Affiliation(s)
- Yen-Hsien Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Ling Li
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wen E Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shang-Cheng Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Abstract
SIGNIFICANCE There is now compelling evidence to substantiate the notion that by depressing baroreflex regulation of blood pressure and augmenting central sympathetic outflow through their actions on the nucleus tractus solitarii (NTS) and rostral ventrolateral medulla (RVLM), brain stem nitric oxide synthase (NOS) and reactive oxygen species (ROS) are important contributing factors to neural mechanisms of hypertension. This review summarizes our contemporary views on the impact of NOS and ROS in the NTS and RVLM on neurogenic hypertension, and presents potential antihypertensive strategies that target brain stem NOS/ROS signaling. RECENT ADVANCES NO signaling in the brain stem may be pro- or antihypertensive depending on the NOS isoform that generates this gaseous moiety and the site of action. Elevation of the ROS level when its production overbalances its degradation in the NTS and RVLM underlies neurogenic hypertension. Interventional strategies with emphases on alleviating the adverse actions of these molecules on blood pressure regulation have been investigated. CRITICAL ISSUES The pathological roles of NOS in the RVLM and NTS in neural mechanisms of hypertension are highly complex. Likewise, multiple signaling pathways underlie the deleterious roles of brain-stem ROS in neurogenic hypertension. There are recent indications that interactions between brain stem ROS and NOS may play a contributory role. FUTURE DIRECTIONS Given the complicity of action mechanisms of brain-stem NOS and ROS in neural mechanisms of hypertension, additional studies are needed to identify the most crucial therapeutic target that is applicable not only in animal models but also in patients suffering from neurogenic hypertension.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
11
|
Murphy MN, Mizuno M, Downey RM, Squiers JJ, Squiers KE, Smith SA. Neuronal nitric oxide synthase expression is lower in areas of the nucleus tractus solitarius excited by skeletal muscle reflexes in hypertensive rats. Am J Physiol Heart Circ Physiol 2013; 304:H1547-57. [PMID: 23564306 PMCID: PMC3680727 DOI: 10.1152/ajpheart.00235.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/08/2013] [Indexed: 11/22/2022]
Abstract
The functions of the skeletal muscle exercise pressor reflex (EPR) and its mechanically sensitive component are augmented in hypertension producing exaggerated increases in blood pressure during exercise. Afferent information from the EPR is processed in the nucleus tractus solitarius (NTS). Within the NT, nitric oxide (NO), produced via L-arginine oxidation by neuronal nitric oxide synthase (nNOS), buffers the pressor response to EPR activation. Therefore, EPR overactivity may manifest as a decrease in NO production due to reductions in nNOS. We hypothesized that nNOS protein expression is lower in the NTS of spontaneously hypertensive (SHR) compared with normotensive Wistar-Kyoto (WKY) rats. Further, we examined whether nNOS is expressed with FOS, a marker of neuronal excitation induced by EPR activation. The EPR and mechanoreflex were intermittently activated for 1 h via hindlimb static contraction or stretch, respectively. These maneuvers produced significantly greater pressor responses in SHR during the first 25 min of stimulation. Within the NTS, nNOS expression was lower from -14.9 to -13.4 bregma in SHR compared with WKY. For example, at -14.5 bregma the number of NTS nNOS-positive cells in SHR (13 ± 1) was significantly less than WKY (23 ± 2). However, the number of FOS-positive cells after muscle contraction in this area was not different (WKY = 82 ± 18; SHR = 75 ± 8). In both groups, FOS-expressing neurons were located within the same areas of the NTS as neurons containing nNOS. These findings demonstrate that nNOS protein expression is lower within NTS areas excited by skeletal muscle reflexes in hypertensive rats.
Collapse
Affiliation(s)
- Megan N Murphy
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Severcan C, Cevik C, Acar HV, Sivri ABC, Mit SS, Geçioğlu E, Paşaoğlu OT, Gündüztepe Y. The effects of acupuncture on the levels of blood pressure and nitric oxide in hypertensive patients. ACUPUNCTURE ELECTRO 2013; 37:263-75. [PMID: 23409611 DOI: 10.3727/036012912x13831831256320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hypertension possess a significant risk factor for a variety of diseases and affects millions of people all around the world. Recent studies suggest that NO plays a role in pathogenesis of hypertension while some investigators find a close relationship between acupuncture treatment and NO levels. We therefore aimed to investigate the effect of acupuncture on the levels of blood pressure and nitric oxide (NO) in hypertensive patients. After obtaining institutional ethics committee approval and patients' informed consent, 32 essential hypertensive patients aged between 32-65 and taking antihypertensive drugs were included to the study. A total of 10 sessions of manual acupuncture were applied on body acupoints (EX-HN3 (Yintang), KI 3, LIV 3, SP 9, LI 4, HT 7, ST 36, SP 6) in 10 weeks. Systolic (SBP) and diastolic blood pressure (DBP) levels and blood NO levels were measured for 3 times (i.e. before & after the first session, and after the 10th session). Main outcome measures of our study were the changes in SBP and DBP as well as nitric oxide levels between 3 measurements were compared. Our study showed that SBP and DBP values decreased both after the 1st and 10th sessions of acupuncture treatments (p<0.05). The NO concentration also increased both after the 1st (71.5%) and 10th sessions (184.6%) (p<0.05).
Collapse
Affiliation(s)
- Cinar Severcan
- Dept. of Biochemistry, Gazi University Medical School, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Leal AK, Murphy MN, Iwamoto GA, Mitchell JH, Smith SA. A role for nitric oxide within the nucleus tractus solitarii in the development of muscle mechanoreflex dysfunction in hypertension. Exp Physiol 2012; 97:1292-304. [PMID: 22581746 PMCID: PMC3480555 DOI: 10.1113/expphysiol.2012.065433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evidence suggests that the muscle mechanoreflex, a circulatory reflex that raises blood pressure and heart rate (HR) upon activation of mechanically sensitive afferent fibres in skeletal muscle, is overactive in hypertension. However, the mechanisms underlying this abnormal reflex function have yet to be identified. Sensory input from the mechanoreflex is processed within the nucleus tractus solitarii (NTS) in the medulla oblongata. Within the NTS, the enzymatic activity of nitric oxide synthase produces nitric oxide (NO). This centrally derived NO has been shown to modulate muscle reflex activity and serves as a viable candidate for mediating the mechanoreflex dysfunction that develops in hypertension. We hypothesized that mechanoreflex dysfunction in hypertension is mediated by abnormal alterations in NO production in the NTS. Mechanically sensitive afferent fibres were stimulated by passively stretching hindlimb muscle before and after blocking the endogenous production of NO within the NTS via microdialysis of the NO synthase inhibitor L-NAME (1 and 5 mM) in normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs). Changes in HR and mean arterial pressure in response to stretch were significantly larger in SHRs compared with Wistar-Kyoto rats prior to L-NAME dialysis. Attenuating NO production via L-NAME in normotensive rats recapitulated the exaggerated cardiovascular response to stretch observed in SHRs. Dialysing L-NAME in SHRs further accentuated the increases in HR and mean arterial pressure elicited by stretch. These findings support the contention that reductions in NO production within the NTS contribute to the generation of abnormal cardiovascular control by the skeletal muscle mechanoreflex in hypertension.
Collapse
Affiliation(s)
- Anna K. Leal
- Department of Bioengineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| | - Megan N. Murphy
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| | - Gary A. Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| | - Scott A. Smith
- Department of Bioengineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390-9174
| |
Collapse
|
14
|
Cerrato BD, Frasch AP, Nakagawa P, Longo-Carbajosa N, Peña C, Höcht C, Gironacci MM. Angiotensin-(1–7) upregulates central nitric oxide synthase in spontaneously hypertensive rats. Brain Res 2012; 1453:1-7. [DOI: 10.1016/j.brainres.2012.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/17/2012] [Accepted: 03/08/2012] [Indexed: 11/15/2022]
|
15
|
Nitric oxide at the CVLM is involved in the attenuation of the reflex bradycardia in renovascular hypertensive rats. Nitric Oxide 2012; 26:118-25. [DOI: 10.1016/j.niox.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 12/06/2011] [Accepted: 01/06/2012] [Indexed: 01/09/2023]
|
16
|
Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol 2011; 300:R818-26. [PMID: 21289238 DOI: 10.1152/ajpregu.00426.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in blood pressure regulation via the modulation of the autonomic nervous system, particularly in the central nervous system (CNS). In general, accumulating evidence suggests that NO inhibits, but ROS activates, the sympathetic nervous system. NO and ROS, however, interact with each other. Our consecutive studies and those of others strongly indicate that an imbalance between NO bioavailability and ROS generation in the CNS, including the brain stem, activates the sympathetic nervous system, and this mechanism is involved in the pathogenesis of neurogenic aspects of hypertension. In this review, we focus on the role of NO and ROS in the regulation of the sympathetic nervous system within the brain stem and subsequent cardiovascular control. Multiple mechanisms are proposed, including modulation of neurotransmitter release, inhibition of receptors, and alterations of intracellular signaling pathways. Together, the evidence indicates that an imbalance of NO and ROS in the CNS plays a pivotal role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
17
|
Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase. J Hypertens 2010; 27:1929-40. [PMID: 19587610 DOI: 10.1097/hjh.0b013e32832e8ddf] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide formed by neuronal nitric oxide synthase (nNOS) in the brain, autonomic inhibitory (nitrergic) nerves, and heart plays important roles in the control of blood pressure. Activation of nitrergic nerves innervating the systemic vasculature elicits vasodilatation, decreases peripheral resistance, and lowers blood pressure. Impairment of nitrergic nerve function, as well as endothelial dysfunction, results in systemic and pulmonary hypertension and decreased regional blood flow. Blockade of nNOS activity in the brain, particularly the medulla and hypothalamus, causes systemic hypertension. Under hypertensive states, such as those in spontaneously hypertensive and Dahl salt-sensitive rats, the expression of the nNOS gene in the brain is increased; this appears to counteract the activated sympathetic function in the vasomotor center. The present article summarizes information concerning the modulation of systemic and pulmonary hypertension through nNOS-derived nitric oxide produced in the brain and periphery.
Collapse
|
18
|
Xue B, Singh M, Guo F, Hay M, Johnson AK. Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide. Am J Physiol Heart Circ Physiol 2009; 297:H1638-46. [PMID: 19734362 DOI: 10.1152/ajpheart.00502.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tested the hypotheses that 1) nitric oxide (NO) is involved in attenuated responses to ANG II in female mice, and 2) there is differential expression of neuronal NO synthase (nNOS) in the subfornical organ (SFO) and paraventricular nucleus (PVN) in response to systemic infusions of ANG II in males vs. females. Aortic blood pressure (BP) was measured in conscious mice with telemetry implants. N(G)-nitro-l-arginine methyl ester (l-NAME; 100 microg x kg(.-1)day(-1)), an inhibitor of NOS, was administrated into the lateral cerebral ventricle for 14 days before and during ANG II pump implantation. Central infusion of l-NAME augmented the pressor effects of systemic ANG II in females (Delta21.5 + or - 2.2 vs. Delta9.2 + or - 1.5 mmHg) but not in males (Delta29.4 + or - 2.5 vs. Delta30.1 + or - 2.5 mmHg). Central administration of N(5)-(1-imino-3-butenyl)-l-ornithine (l-VNIO), a selective nNOS inhibitor, also significantly potentiated the increase in BP induced by ANG II in females (Delta17.5 + or - 3.2 vs. Delta9.2 + or - 1.5 mmHg). In gonadectomized mice, central l-NAME infusion did not affect the pressor response to ANG II in either males or females. Ganglionic blockade after ANG II infusion resulted in a greater reduction in BP in central l-NAME- or l-VNIO-treated females compared with control females. Western blot analysis of nNOS protein expression indicated that levels were approximately 12-fold higher in both the SFO and PVN of intact females compared with those in intact males. Seven days of ANG II treatment resulted in a further increase in nNOS protein expression only in intact females (PVN, to approximately 51-fold). Immunohistochemical studies revealed colocalization of nNOS and estrogen receptors in the SFO and PVN. These results suggest that NO attenuates the increase in BP induced by ANG II through reduced sympathetic outflow in females and that increased nNOS protein expression associated with the presence of female sex hormones plays a protective role against ANG II-induced hypertension in female mice.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychology, University of Iowa, 11 Seashore Hall E, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
19
|
Hinrichs JM, Llewellyn-Smith IJ. Variability in the occurrence of nitric oxide synthase immunoreactivity in different populations of rat sympathetic preganglionic neurons. J Comp Neurol 2009; 514:492-506. [DOI: 10.1002/cne.22015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Kim JI, Kim YS, Kang SK, Kim C, Park C, Lee MS, Huh Y. Electroacupuncture decreases nitric oxide synthesis in the hypothalamus of spontaneously hypertensive rats. Neurosci Lett 2009; 446:78-82. [PMID: 18834924 DOI: 10.1016/j.neulet.2008.09.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/02/2008] [Accepted: 09/17/2008] [Indexed: 12/21/2022]
Abstract
Acupuncture-related effects on autonomic function have been explored via biological and neurophysiologic studies. The hypothalamus, known to regulate the autonomic nervous system, is likely affected by acupuncture treatment that modulates sympathetic functions. The aim of this study was to investigate the effect of electroacupuncture at the Jogsamni point (ST36, an acupoint known to modulate autonomic function) on expression of neuronal nitric oxide synthase (nNOS) in the hypothalamus of spontaneously hypertensive rat. Nitric oxide, which is produced by nNOS activity, plays an important role in the regulation of many physiologic processes, including sympathetic activities, in the hypothalamus and other parts of the brain. nNOS expression was assessed by immunohistochemistry of nNOS and histochemistry of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d). The staining intensities of nNOS-positive neurons and NADPH-d-positive neurons were quantitatively assessed using microdensitometry to measure changes in optical density. The results show that electroacupuncture at ST36 reduced the expression and activity of nNOS in the hypothalamus of spontaneously hypertensitive rats. These findings suggest that the electroacupuncture at ST36 results in modulation of the activity of nNOS in the hypothalamus of spontaneously hypertensive rat.
Collapse
Affiliation(s)
- Jong-In Kim
- Department of Medical Research, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Hemodynamic responses induced by modulation of the nitric oxide system and mitochondrial permeability in the medullary cardiovascular nuclei of rats. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Hojná S, Kadlecová M, Dobesová Z, Valousková V, Zicha J, Kunes J. The participation of brain NO synthase in blood pressure control of adult spontaneously hypertensive rats. Mol Cell Biochem 2006; 297:21-9. [PMID: 17009099 DOI: 10.1007/s11010-006-9318-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.
Collapse
Affiliation(s)
- Silvie Hojná
- Institute of Physiology AS CR, Charles University, Videnska 1083, 142 20, Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
23
|
Taranukhin AG, Yamova LA, Chernigovskaya EV. Participation of catecholamines and NO in regulation of apoptosis of nonapeptidergic neurons of neonatal rat pups. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Chernigovskaya EV, Taranukhin AG, Yamova LA, Komissarov AB, Glazova MV. Participation of neuronal NO-synthase in regulation of hypothalamus vasopressinergic neurons of rat pups at early stages of postnatal ontogeny. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Chan JYH, Chang AYW, Chan SHH. New insights on brain stem death: From bedside to bench. Prog Neurobiol 2005; 77:396-425. [PMID: 16376477 DOI: 10.1016/j.pneurobio.2005.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/31/2005] [Accepted: 11/03/2005] [Indexed: 01/07/2023]
Abstract
As much as brain stem death is currently the clinical definition of death in many countries and is a phenomenon of paramount medical importance, there is a dearth of information on its mechanistic underpinnings. A majority of the clinical studies are concerned only with methods to determine brain stem death. Whereas a vast amount of information is available on the cellular and molecular mechanisms of cell death, rarely are these studies directed specifically towards the understanding of brain stem death. This review presents a framework for translational research on brain stem death that is based on systematically coordinated clinical and laboratory efforts that center on this phenomenon. It begins with the identification of a novel clinical marker from patients that is related specifically to brain stem death. After realizing that this "life-and-death" signal is related to the functional integrity of the brain stem, its origin is traced to the rostral ventrolateral medulla (RVLM). Subsequent laboratory studies on this neural substrate in animal models of brain stem death provide credence to the notion that both "pro-life" and "pro-death" programs are at work during the progression towards death. Those programs (mitochondrial functions, nitric oxide, peroxynitrite, superoxide anion, coenzyme Q10, heat shock proteins and ubiquitin-proteasome system) hitherto identified from the RVLM are presented, along with their cellular and molecular mechanisms. It is proposed that outcome of the interplay between the "pro-life" and "pro-death" programs (dying) in this neural substrate determines the final fate of the individual (being dead). Thus, identification of additional programs in the RVLM and delineation of their regulatory mechanisms should shed new lights on future directions for clinical management of life-and-death.
Collapse
Affiliation(s)
- Julie Y H Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, ROC
| | | | | |
Collapse
|
26
|
Bordieri L, Bonaccorsi di Patti MC, Miele R, Cioni C. Partial cloning of neuronal nitric oxide synthase (nNOS) cDNA and regional distribution of nNOS mRNA in the central nervous system of the Nile tilapia Oreochromis niloticus. ACTA ACUST UNITED AC 2005; 142:123-33. [PMID: 16274840 DOI: 10.1016/j.molbrainres.2005.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/23/2005] [Accepted: 09/29/2005] [Indexed: 01/21/2023]
Abstract
A constitutive NOS complementary DNA (cDNA) was partially cloned by RT-PCR from the brain of a teleost, the Nile tilapia (Oreochromis niloticus), using degenerate primers against conserved regions of NOS. The predicted 206-long amino acid sequence showed a high degree of identity with other vertebrate neuronal NOS (nNOS) protein sequences. In addition, phylogenetic analysis revealed that Nile tilapia NOS clustered with other known nNOS. Using the coupled reaction of semi-quantitative RT-PCR and Southern blotting, the basal tissue expression pattern of the cloned nNOS gene was investigated in discrete areas of the central nervous system (CNS) and in the heart and skeletal muscle tissue. As revealed, expression of nNOS transcripts was detected in all the CNS regions examined, whereas nNOS gene was not expressed in the heart and skeletal muscle. The distribution pattern of nNOS gene expression showed the highest expression levels in the forebrain followed by the optic tectum, the brainstem and the spinal cord, whereas scarce expression was detected in the cerebellum. Cellular expression of nNOS mRNA was analyzed in the CNS by means of in situ hybridization. According to the RT-PCR results, most nNOS mRNA expressing neurons are localized in the telencephalon and diencephalon, whereas in the mesencephalic optic tectum, the brainstem and the spinal cord, nNOS mRNA expressing neurons are relatively more scattered. A very low hybridization signal was detected in the cerebellar cortex. These results suggest that NO is involved in numerous brain functions in teleosts.
Collapse
Affiliation(s)
- Loredana Bordieri
- Department of Animal and Human Biology, "La Sapienza" University, via A. Borelli, 50 00161 Rome, Italy
| | | | | | | |
Collapse
|
27
|
Ferrari MFR, Fior-Chadi DR. Differential expression of nNOS mRNA and protein in the nucleus tractus solitarii of young and aged Wistar–Kyoto and spontaneously hypertensive rats. J Hypertens 2005; 23:1683-90. [PMID: 16093913 DOI: 10.1097/01.hjh.0000179163.68634.c3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine neuronal nitric oxide synthase (nNOS) mRNA and protein in the nucleus tractus solitarii (NTS) and paraventricular hypothalamic nucleus (PVN) of Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) during their life span. METHODS By means of in situ hybridization and immunohistochemistry, we evaluated nNOS mRNA and protein in the NTS and PVN of 15-day- and 1-, 2-, 4-, 8- and 12-month-old SHR and WKY rats. RESULTS Two patterns of nNOS expression were observed in two subnuclei of the NTS: medial (NTSm) and central (NTSce). NTSce of the SHR exhibited higher nNOS mRNA and protein expression in all ages analyzed when compared to the age-matched WKY. Increased amounts of nNOS mRNA and protein were seen in the NTSm only during the early life of SHR (15 days to 4 months) when compared to WKY, suggesting a special role of this circuitry before the establishment of hypertension. No changes were seen in nNOS mRNA and protein expression in the PVN of the SHR in comparison to the WKY in all periods. nNOS analysis during the life span showed either a decrease or no change in nNOS mRNA expression in NTS or PVN associated with increased nNOS protein at some analyzed periods, suggesting the differential regulation of nNOS mRNA and protein during aging. CONCLUSIONS Data suggest that different NTS subnuclei exhibit nNOS changes in different phases of the life of SHR and this might be important during the development of hypertension in these animals.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, Cidade universitaria São Paulo, SP 05508-900, Brazil
| | | |
Collapse
|
28
|
Häuser W, Sassmann A, Qadri F, Jöhren O, Dominiak P. Expression of nitric oxide synthase isoforms in hypothalamo–pituitary–adrenal axis during the development of spontaneous hypertension in rats. ACTA ACUST UNITED AC 2005; 138:198-204. [PMID: 15913838 DOI: 10.1016/j.molbrainres.2005.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/22/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
This study was performed to investigate the expression of the major isoforms of nitric oxide synthase mRNA and protein in the hypothalamo-pituitary-adrenal axis (HPA axis) of spontaneously hypertensive rats (SHR) at two different postnatal ages corresponding to the development of genetic hypertension. Using RT-PCR and Western blot techniques, the mRNA and protein levels of neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) isoforms were measured in 3- to 4-week-old (prehypertensive phase) and 12- to 13-week-old (established hypertension phase) SHR and age-matched normotensive Wistar-Kyoto (WKY) rats. nNOS but not eNOS mRNA levels were increased at prehypertensive and hypertensive phases in SHR HPA axis. Compared to age-matched WKY rats, significantly higher levels of nNOS protein were found in the hypothalamus, lower levels in the adrenal glands and no changes were observed in the pituitary gland. At both ages tested, there was no significant change in eNOS protein expression in SHR HPA axis. The expression of iNOS mRNA and protein was under detection limit. In the HPA axis, the expression of nNOS isoform appears to be differentially controlled at the transcriptional and translational levels in SHR. Increased mRNA levels and differential nNOS protein expression from birth in SHR HPA axis may contribute in the pathogenesis of genetic hypertension.
Collapse
Affiliation(s)
- Walter Häuser
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Clinic Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany
| | | | | | | | | |
Collapse
|
29
|
Edwards MA, Loxley RA, Powers-Martin K, Lipski J, McKitrick DJ, Arnolda LF, Phillips JK. Unique levels of expression of N-methyl-d-aspartate receptor subunits and neuronal nitric oxide synthase in the rostral ventrolateral medulla of the spontaneously hypertensive rat. ACTA ACUST UNITED AC 2004; 129:33-43. [PMID: 15469880 DOI: 10.1016/j.molbrainres.2004.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
The rostral ventrolateral medulla (RVLM) is the major brainstem region contributing to sympathetic control of blood pressure. We have compared the expression of N-methyl-d-aspartate (NMDA) receptor subunits (NR1, NR2A-D), NR1 splice variants (NR1-1a/1b, -2a/2b, -3a/3b, -4a/4b), and the neuronal and inducible isoforms of NO synthase (nNOS and iNOS) in the RVLM of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR), based on the hypothesis that altered NMDA receptor make-up or altered expression of endogenous NO may be associated with the increase in sympathetic output described from this site in hypertension. Total RNA was extracted and reverse transcribed from the RVLM of mature male WKY and SHR (16-23 weeks). Conventional polymerase chain reaction (PCR) indicated that only the NR1 splice variants NR1-2a, NR1-2b, NR1-4a and NR1-4b were expressed in the RVLM of either species. Quantitative real-time PCR indicated that for both strains of rat, mRNA for the NR1 subunit (all splice variants) was the most abundant (16.5-fold greater, P< or =0.05, relative to the NR2A subunit). Amongst the NR2A-D subunits, NR2C was the most abundant (7- and 1.7-fold greater relative to the NR2A subunit, P< or =0.05, WKY and SHR, respectively). Relative to WKY, mRNA levels for the NR2C and NR2D subunits in the SHR RVLM were significantly lower (0.3- and 0.25-fold less, P< or =0.05), while nNOS was significantly higher (1.76-fold greater, P< or =0.05). This was confirmed immunohistochemically for nNOS expression. These results demonstrate differential expression levels of NMDA receptor subunits and NOS isoforms in the RVLM region of SHR when compared to WKY rats.
Collapse
Affiliation(s)
- Mark A Edwards
- Division of Health Sciences, Murdoch University, Perth, WA 6150, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Sears CE, Ashley EA, Casadei B. Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol Sci 2004; 359:1021-44. [PMID: 15306414 PMCID: PMC1693378 DOI: 10.1098/rstb.2004.1477] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nitric oxide (NO) has been shown to regulate cardiac function, both in physiological conditions and in disease states. However, several aspects of NO signalling in the myocardium remain poorly understood. It is becoming increasingly apparent that the disparate functions ascribed to NO result from its generation by different isoforms of the NO synthase (NOS) enzyme, the varying subcellular localization and regulation of NOS isoforms and their effector proteins. Some apparently contrasting findings may have arisen from the use of non-isoform-specific inhibitors of NOS, and from the assumption that NO donors may be able to mimic the actions of endogenously produced NO. In recent years an at least partial explanation for some of the disagreements, although by no means all, may be found from studies that have focused on the role of the neuronal NOS (nNOS) isoform. These data have shown a key role for nNOS in the control of basal and adrenergically stimulated cardiac contractility and in the autonomic control of heart rate. Whether or not the role of nNOS carries implications for cardiovascular disease remains an intriguing possibility requiring future study.
Collapse
Affiliation(s)
- Claire E Sears
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
31
|
|
32
|
Salas N, Terrell MLA, Summy-Long JY, Kadekaro M. Role of prostaglandin, endothelin and sympathetic nervous system on the L-NAME-induced pressor responses in spontaneously hypertensive rats. Brain Res 2003; 983:162-73. [PMID: 12914977 DOI: 10.1016/s0006-8993(03)03052-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We tested the hypothesis that in spontaneously hypertensive rat (SHR) NO produced centrally influences the resting arterial blood pressure by attenuating mechanisms involving prostaglandins, angiotensin II, endothelin and sympathetic nervous system. L-NAME (200 micro g/5 micro l), an inhibitor of NO synthase, administered intracerebroventricularly (i.c.v.) to awake and freely moving rats increased mean arterial blood pressure (MABP) in a biphasic pattern: an early transient increase within 1 min and a late prolonged response starting at 45 min and persisting for the duration of experiment (180 min). The two pressor responses involve different neurochemical mechanisms and, based on their latencies, they appear to reflect different anatomical sites of action of L-NAME. The late, but not the early pressor response, was prevented by pretreatment with chlorisondamine (2.5 mg/kg, i.v.), a ganglionic blocker, indicating its dependence on the sympathetic nervous system. Both pressor responses were abolished by i.c.v. pretreatment with indomethacin (200 micro g/5 micro l, i.c.v.), an inhibitor of cyclo-oxygenase, showing that they are mediated by prostaglandin(s). In contrast, losartan (25 micro g/5 micro l), an angiotensin II AT(1) receptor antagonist, had no effect. The initial pressor response was also attenuated by pretreatment with the endothelin ET(A)/ET(B) receptor antagonist, PD 145065 (48 micro g/2 micro l, i.c.v.). Intravenous pretreatment with another ET(A)/ET(B) receptor antagonist, L-754,142 (15 mg/kg as a bolus+15 mg/kg/h for 180 min), however, attenuated both responses to L-NAME. It is possible that L-754,142 crossed the blood-brain barrier and blocked, in addition, central ET(A)/ET(B) receptors. These studies show that NO synthesized in the brain attenuates pressor mechanisms involving prostaglandin, endothelin and sympathetic nervous system, but not angiotensin II, to modulate resting arterial blood pressure.
Collapse
Affiliation(s)
- Nilson Salas
- Division of Neurosurgery, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-0517, USA
| | | | | | | |
Collapse
|
33
|
Wibo M. Brain nitric oxide synthase in hypertension. J Hypertens 2003; 21:1623-4. [PMID: 12923390 DOI: 10.1097/00004872-200309000-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Qadri F, Arens T, Schwarz EC, Häuser W, Dendorfer A, Dominiak P. Brain nitric oxide synthase activity in spontaneously hypertensive rats during the development of hypertension. J Hypertens 2003; 21:1687-94. [PMID: 12923401 DOI: 10.1097/00004872-200309000-00018] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Blockade of neuronal nitric oxide synthase (nNOS) in the brain induced an increase in mean arterial pressure of spontaneously hypertensive rats (SHR). We hypothesize that increased nitric oxide (NO) synthesis in the brain compensates for hypertension. Therefore, we measured NOS activity in different brain regions in SHR at prehypertensive, onset and established hypertension, and compared with age-matched Wistar-Kyoto (WKY) rats. METHOD NOS activity was measured by the ability of tissue homogenate to convert [3H]l-arginine to [3H]l-citrulline in a Ca2+- and NADPH-dependent manner. RESULTS NOS activity was impaired in the cerebral cortex and brainstem of prehypertensive SHR. At established hypertension, SHR showed an augmentation in NOS activity in hypothalamus and brainstem. Chronic treatment of SHR with the angiotensin-1 converting enzyme (ACE)-inhibitor, enalapril, and the AT(1) receptor antagonist, losartan, normalized NOS activity in the hypothalamus but not in the brainstem. Treatment with a peripheral vasodilator, hydralazine, did not affect NOS activity. CONCLUSION Attenuated NOS activity in the cortex and brainstem of prehypertensive SHR may play a role in the pathogenesis of hypertension. The upregulated NOS activity in the hypothalamus and brainstem of SHR possibly serves to compensate for hypertension. Hypothalamic, but not brainstem, NO is involved in antihypertensive effects of ACE inhibition and AT(1) receptor blockade. Since a blood pressure decrease per se had no effect on NOS activity, it appears that central sympathetic activity influenced by endogenous angiotensin II, rather than blood pressure, represents the stimulus for the increased NOS activity in the hypothalamus of SHR.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Brady F, Bakhle YS, Bell C. Evaluation of the involvement of nitric oxide and substance P in reducing baroreflex gain in the genetically hypertensive (GH) rat. ACTA PHYSIOLOGICA HUNGARICA 2003; 89:451-61. [PMID: 12489754 DOI: 10.1556/aphysiol.89.2002.4.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The attenuation of baroreflex gain associated with hereditary hypertension could involve abnormal signalling by nitric oxide or substance P. Baroreflex gain was measured in age-matched male genetically hypertensive (GH) and nonnotensive (N) anaesthetised rats from heart rate changes in response to i.v. phenylephrine or sodium nitroprusside. In subgroups of these animals, nitric oxide synthesis was inhibited using NG-nitro-L-arginine methyl ester (L-NAME, 30 mg x kg(-1) i.v.), substance P transmission was blocked using the antagonist SR 140333 (360 nmoles x kg(-1) i.v.) or substance P release was inhibited with resiniferatoxin (4 doses of 0.3 microg x kg(-1) i.v. at 4 min intervals). Baroreflex gain was markedly reduced in GH compared to N animals (N -0.37 +/- 0.04 beat x min(-1) x mm Hg(-1), GH -0.17 +/- 0.02 beat x min(-1) x mm Hg(-1), p < 0.0001). Inhibition of nitric oxide synthase increased baroreflex gain in each strain, but the inter-strain difference in gain persisted (post-treatment N -0.57 +/- 0.07 beat x min(-1) x mm Hg(-1), GH -0.24 +/- 0.05 beat x min(-1) x mm Hg(-1) (p < 0.001). Blockade of receptors or inhibition of substance P release did not affect gain in either strain. Nitric oxide, but not substance P, appears to play an inhibitory role in the rat arterial baroreflex. Impairment of baroreflex gain in GH rats is not secondary to altered nitric oxide signaling.
Collapse
Affiliation(s)
- Felicity Brady
- Department of Physiology, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
36
|
Chang AYW, Chan JYH, Chan SHH. Differential distribution of nitric oxide synthase isoforms in the rostral ventrolateral medulla of the rat. J Biomed Sci 2003; 10:285-91. [PMID: 12711855 DOI: 10.1007/bf02256447] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 01/10/2003] [Indexed: 10/25/2022] Open
Abstract
We evaluated the distribution of nitric oxide synthase (NOS) isoforms in the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic neurogenic vasomotor tone, and the contribution of NOS III to the cardiovascular actions of endogenous NO in the RVLM. Adult Sprague-Dawley rats were used. Reverse transcription-polymerase chain reaction or Western blot analysis revealed that NOS I, II or III was expressed in the ventrolateral medulla at the mRNA or protein level under basal conditions. However, laser scanning confocal microscopic analysis of double-immunofluorescence images showed that whereas NOS I or II immunoreactivity colocalized with cells within the confines of the RVLM that stained positively with the neuronal marker, NeuN, NOS III immunoreactivity was associated primarily with blood vessels. Furthermore, bilateral microinjection into the RVLM of the selective NOS III inhibitor, N(5)-(1-iminoethyl)-L-ornithine, elicited minimal alterations in baseline systemic arterial pressure, heart rate or sympathetic vasomotor outflow in rats anesthetized with propofol. We conclude that whereas NOS I and II are present in neurons within the confines of the RVLM, NOS III is associated primarily with blood vessels. Our results further indicate that NOS III does not appear to contribute to the maintenance of basal sympathetic vasomotor outflows and arterial pressure by the endogenous NO at the RVLM.
Collapse
Affiliation(s)
- Alice Y W Chang
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, ROC
| | | | | |
Collapse
|
37
|
Hirooka Y, Sakai K, Kishi T, Ito K, Shimokawa H, Takeshita A. Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 2003; 26:325-31. [PMID: 12733701 DOI: 10.1291/hypres.26.325] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previously, we demonstrated that endothelial nitric oxide synthase (eNOS) gene transfer into the nucleus tractus solitarii (NTS) decreased blood pressure, heart rate and sympathetic nerve activity in conscious normotensive Wistar-Kyoto rats (WKY). In order to determine whether overexpression of eNOS in the NTS causes different effects on blood pressure and heart rate between spontaneously hypertensive rats (SHR) and WKY, we transfected adenovirus vectors encoding either eNOS (AdeNOS) or beta-galactosidase (Ad beta gal) into the NTS of SHR and WKY in vivo. The local expression of eNOS in the NTS was confirmed by Western blot analysis for eNOS protein, and the magnitude of expression did not differ between SHR and WKY. Blood pressure and heart rate were monitored by the use of a radio-telemetry system in a conscious state before and 7 days after the gene transfer. Systolic blood pressure (SBP) and heart rate decreased on day 7 in both AdeNOS-transfected SHR and WKY. However, the magnitude of decreases in SBP of AdeNOS-transfected SHR was greater than that of AdeNOS-transfected WKY (-24.1 +/- 2.9 vs. -15.9 +/- 2.1 mmHg, p < 0.05). Transfection of Ad beta gal into the NTS did not alter SBP in either group. A depressor response evoked by microinjection of L-glutamate into the NTS did not differ between the two strains. These results suggest that overexpression of eNOS in the NTS causes a greater depressor response in SHR than in WKY in a conscious state. An abnormality of the L-arginine-NO pathway in the NTS may be related to the hypertensive mechanism(s) of SHR.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Chan JYH, Wang LL, Chao YM, Chan SHH. Downregulation of basal iNOS at the rostral ventrolateral medulla is innate in SHR. Hypertension 2003; 41:563-70. [PMID: 12623960 DOI: 10.1161/01.hyp.0000054214.10670.4c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We demonstrated recently that a significant reduction in both the molecular synthesis and functional expression of inducible nitric oxide synthase (iNOS) in the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic vasomotor outflow, underlies the augmented sympathetic vasomotor tone during hypertension. This study further evaluated the hypothesis that this downregulation of basal iNOS at the RVLM during hypertension is innate. In adult spontaneously hypertensive rats (SHR) treated for 4 weeks with the antihypertensive captopril to normalize elevated blood pressure or in young prehypertensive SHR, the significantly lower iNOS mRNA and protein levels at the ventrolateral medulla under basal conditions or on activation by microinjection bilaterally into the RVLM of lipopolysaccharide (10 ng) remained unaltered. The retarded efficacy of lipopolysaccharide (10 ng) to elicit cardiovascular depression (hypotension, bradycardia, and reduction in sympathetic vasomotor tone) also persevered in captopril-treated adult or young normotensive SHR. On the other hand, compared with Wistar-Kyoto normotensive rats, the magnitude of cardiovascular depression induced in adult SHR by local administration into the RVLM of the NO precursor l-arginine (40 nmol) was significantly smaller. In addition, microinjection bilaterally into the RVLM of a selective iNOS inhibitor, aminoguanidine (125 or 250 pmol), was discernibly less efficacious in unmasking hypertension, tachycardia, and the increase in sympathetic vasomotor tone in adult SHR. We conclude that a predisposed reduction in molecular synthesis and functional expression of basal iNOS in the RVLM is associated with the sympathetic vasomotor overactivity during hypertension.
Collapse
Affiliation(s)
- Julie Y H Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
39
|
Kishi T, Hirooka Y, Ito K, Sakai K, Shimokawa H, Takeshita A. Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 2002; 39:264-8. [PMID: 11847195 DOI: 10.1161/hy0202.102701] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously demonstrated that the overexpression of endothelial NO synthase (eNOS) in the rostral ventrolateral medulla (RVLM) decreases blood pressure, heart rate, and sympathetic nerve activity via an increase in gamma-amino butyric acid release in normotensive Wistar-Kyoto rats (WKY). Stroke-prone spontaneously hypertensive rats (SHRSP) appear to have reductions of NO production and GABA release in the RVLM. The aim of this study was to determine whether the effects of the increase in NO production in the RVLM in SHRSP are different from those in WKY. We transfected adenovirus vectors encoding either eNOS (AdeNOS) or beta-galactosidase (Adbetagal) into the RVLM of both strains. In the AdeNOS-treated group, mean arterial blood pressure and heart rate in the conscious state were significantly decreased at day 7 after the gene transfer in both strains. The decreases in mean arterial blood pressure and heart rate were significantly greater in SHRSP than in WKY. Urinary norepinephrine excretion was also decreased to a greater degree in SHRSP than in WKY after the gene transfer. The pressor response evoked by bicuculline into the RVLM of WKY was greater than that of SHRSP in the nontransfected group. However, in the AdeNOS-treated group, the pressor response did not differ between SHRSP and WKY after the gene transfer. These results indicate that the increase in NO production evoked by the overexpression of eNOS in the RVLM causes greater depressor and sympathoinhibitory responses in SHRSP than in WKY by improving an inhibitory action of GABA on the RVLM neurons.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
The magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) express multiple kinds of genes, including not only the classical hormones arginine vasopressin (AVP) and oxytocin (OXT), but also other physiologically active substances including neuropeptides, their receptors, and nitric oxide (NO) synthase, the rate-limiting enzyme in the synthesis of NO under physiological condition. For example, osmotic stimuli such as dehydration and chronic salt loading cause a wide range of changes of the expression levels of the genes and marked induction of the expression of the genes in the SON. The expression of the NO synthase gene in the SON under physiological conditions is reviewed.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
41
|
Chan JY, Wang LL, Wu KL, Chan SH. Reduced functional expression and molecular synthesis of inducible nitric oxide synthase in rostral ventrolateral medulla of spontaneously hypertensive rats. Circulation 2001; 104:1676-81. [PMID: 11581148 DOI: 10.1161/hc3901.095767] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We demonstrated recently that the prevalence of neuronal (nNOS) over inducible (iNOS) nitric oxide synthase activity at the rostral ventrolateral medulla (RVLM), the medullary origin of sympathetic neurogenic vasomotor tone, and the associated dominance of sympathoexcitation over sympathoinhibition underlie the maintenance of sympathetic vasomotor outflow by the endogenous NO. Here, we evaluated the hypothesis that a significant downregulation of iNOS at the RVLM may play a crucial role in the genesis of augmented sympathetic vasomotor tone during hypertension. METHODS AND RESULTS Spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats anesthetized with propofol were used. Compared with SHR, the hypotension, bradycardia, or depression in sympathetic vasomotor tone induced by bilateral microinjection of lipopolysaccharide (5 or 10 ng) into the RVLM of WKY rats exhibited significantly shorter-onset latency, appreciably steeper slope, and a greater incidence of mortality. All these effects of lipopolysaccharide (10 ng) were significantly blunted by coadministration of the selective iNOS inhibitor S-methylisothiourea (250 pmol). Reverse transcription-polymerase chain reaction and Western blot analyses further revealed significantly lower iNOS mRNA and protein levels at the ventrolateral medulla in SHR under basal conditions or on activation by lipopolysaccharide (10 ng). Conversely, nNOS mRNA and protein levels remained constant in the RVLM and were comparable in both strains of rats. CONCLUSIONS We conclude that a significant downregulation in both functional expression and molecular synthesis of iNOS at the RVLM may underlie the augmented sympathetic vasomotor tone during hypertension.
Collapse
Affiliation(s)
- J Y Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
42
|
Abstract
Most forms of hypertension are associated with a wide variety of functional changes in the hypothalamus. Alterations in the following substances are discussed: catecholamines, acetylcholine, angiotensin II, natriuretic peptides, vasopressin, nitric oxide, serotonin, GABA, ouabain, neuropeptide Y, opioids, bradykinin, thyrotropin-releasing factor, vasoactive intestinal polypeptide, tachykinins, histamine, and corticotropin-releasing factor. Functional changes in these substances occur throughout the hypothalamus but are particularly prominent rostrally; most lead to an increase in sympathetic nervous activity which is responsible for the rise in arterial pressure. A few appear to be depressor compensatory changes. The majority of the hypothalamic changes begin as the pressure rises and are particularly prominent in the young rat; subsequently they tend to fluctuate and overall to diminish with age. It is proposed that, with the possible exception of the Dahl salt-sensitive rat, the hypothalamic changes associated with hypertension are caused by renal and intrathoracic cardiopulmonary afferent stimulation. Renal afferent stimulation occurs as a result of renal ischemia and trauma as in the reduced renal mass rat. It is suggested that afferents from the chest arise, at least in part, from the observed increase in left auricular pressure which, it is submitted, is due to the associated documented impaired ability to excrete sodium. It is proposed, therefore, that the hypothalamic changes in hypertension are a link in an integrated compensatory natriuretic response to the kidney's impaired ability to excrete sodium.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College School of Medicine, Charing Cross Campus, London, United Kingdom.
| |
Collapse
|
43
|
Abstract
The gaseous molecule nitric oxide (NO) plays an important role in cardiovascular homeostasis. It plays this role by its action on both the central and peripheral autonomic nervous systems. In this review, the central role of NO in the regulation of sympathetic outflow and subsequent cardiovascular control is examined. After a brief introduction concerning the location of NO synthase (NOS) containing neurons in the central nervous system (CNS), studies that demonstrate the central effect of NO by systemic administration of NO modulators will be presented. The central effects of NO as assessed by intracerebroventricular, intracisternal, or direct injection within the specific central areas is also discussed. Our studies demonstrating specific medullary and hypothalamic sites involved in sympathetic outflow are summarized. The review will be concluded with a discussion of the role of central NO mechanisms in the altered sympathetic outflow in disease states such as hypertension and heart failure.
Collapse
Affiliation(s)
- K P Patel
- Department of Physiology and Biophysics, University of Nebraska Medical Center, 984575 Nebraska Medical Center, Omaha, NE 68198-4545, USA.
| | | | | |
Collapse
|
44
|
Chan SHH, Wang LL, Wang SH, Chan JYH. Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. Br J Pharmacol 2001; 133:606-14. [PMID: 11399678 PMCID: PMC1572812 DOI: 10.1038/sj.bjp.0704105] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We investigated the contribution of neuronal or inducible nitric oxide synthase (nNOS or iNOS) at the rostral ventrolateral medulla (RVLM) to central cardiovascular regulation by endogenous nitric oxide (NO), using Sprague-Dawley rats anaesthetized and maintained with propofol. Microinjection bilaterally into the RVLM of a NO trapping agent, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-l-oxy-l-3-oxide (10, 50 or 100 nmoles) resulted in significant hypotension and bradycardia. Similar application of a selective antagonist of nNOS, 7-nitroindazole (1, 2.5 or 5 pmoles), or selective antagonists of iNOS, aminoguanidine (125, 250 or 500 pmoles), N(6)-(l-iminoethyl)-L-lysine (250 pmoles) or S-methylisothiourea (250 pmoles), induced respectively a reduction or an enhancement in systemic arterial pressure, heart rate and power density of the vasomotor components in the spectrum of arterial blood pressure signals, the experimental index for sympathetic neurogenic vasomotor tone. Both hypotension and bradycardia induced by the NO precursor, L-arginine (100 nmoles), were significantly blunted when aminoguanidine (250 pmoles) was co-microinjected bilaterally into the RVLM. On the other hand, co-administered 7-nitroindazole (2.5 pmoles) was ineffective. Whereas low doses of S-nitro-N-acetylpenicillamine (0.25 or 0.5 nmoles) elicited hypertension and tachycardia, high doses of this non-nitrate NO donor (5 nmoles) induced hypotension and bradycardia. Reverse transcription - polymerase chain reaction analysis revealed that both iNOS and nNOS mRNA were expressed in the ventrolateral medulla. We conclude that the prevalence of nNOS over iNOS activity at the RVLM and the associated dominance of sympathoexcitation over sympathoinhibition may underlie the maintenance of sympathetic vasomotor outflow and stable systemic arterial pressure by the endogenous NO.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, Republic of China
| | - Ling-Lin Wang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Shu-Huei Wang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
| | - Julie Y H Chan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81346, Taiwan, Republic of China
- Author for correspondence:
| |
Collapse
|
45
|
Qadri F, Arens T, Schwartz EC, Häuser W, Dominiak P. Angiotensin-converting enzyme inhibitors and AT1-receptor antagonist restore nitric oxide synthase (NOS) activity and neuronal NOS expression in the adrenal glands of spontaneously hypertensive rats. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 85:365-9. [PMID: 11388639 DOI: 10.1254/jjp.85.365] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During development of hypertension in spontaneously hypertensive (SHR) rats, the activity of adrenal nitric oxide synthase (NOS) was investigated. SHR and Wistar-Kyoto (WKY) rats were studied at different ages: 3-4, 7-8 and 12-13 weeks after birth. Basal NOS activity was measured by the ability of homogenate to convert [3H]-L-arginine to [3H]-L-citrulline. At all ages, SHR rats exhibited 50-60% reduction in NOS activity when compared to age-matched WKY rats. In a following study, SHR rats (12-13 weeks) were treated chronically with the angiotensin I-converting enzyme inhibitors (ACE-I) captopril or enalapril, or the AT1-receptor antagonist losartan (2 x 25, 10 and 60 mg/kg per day for 10 days, respectively). The total NOS activity and protein expression of NOS isoenzymes from adrenals were determined. The basal NOS activity and protein expression of neuronal NOS (nNOS) was significantly increased in treated SHR rats when compared to control rats. The isoforms endothelial NOS and inducible NOS were undetectable. We conclude that impaired NO synthesis in the adrenal glands of SHR rats may contribute to the onset and maintenance of hypertension. The upregulation of nNOS protein in the adrenal glands may be one of the mechanisms by which ACE inhibitors and AT1-receptor antagonists by restoring the NO synthesis, mediate their antihypertensive effects.
Collapse
Affiliation(s)
- F Qadri
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical University of Lübeck, Germany.
| | | | | | | | | |
Collapse
|
46
|
Serino R, Ueta Y, Hanamiya M, Nomura M, Yamamoto Y, Yamaguchi KI, Nakashima Y, Yamashita H. Increased levels of hypothalamic neuronal nitric oxide synthase and vasopressin in salt-loaded Dahl rat. Auton Neurosci 2001; 87:225-35. [PMID: 11476283 DOI: 10.1016/s1566-0702(00)00279-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plasma concentration of arginine vasopression (AVP) and the expression level of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular nucleus (PVN) and the Supraoptic nucleus (SON) of Sprague-Dawley (SD). Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats on a high salt diet were examined by radioimmunoassay for AVP and in situ hybridization histochemistry for nNOS. The high salt diet containing 8.0% NaCl was given for 4 weeks. The concentrations of AVP in hypertensive Dahl S rats were significantly increased in comparison with those in SD rats and Dahl R rats on a high salt diet. The levels of nNOS mRNA and NADPH-diaphorase activity in the PVN and SON of hypertensive Dahl S rats were greater than those in Dahl R rats on a high salt diet. The antihypertensive drugs, either nicardipine or captopril were administered to the Dahl S rats for 2 weeks beginning 2 weeks after the start of the high salt diet The nNOS mRNA in the PVN and SON of Dahl S rats given a high salt diet was not upregulated by treatment with nicardipine, while the nNOS mRNA in salt loaded Dahl S rats was greater upregulated by treatment with captopril to that greater than without the antihypertensive drug. Our results suggest that the increased NO production in the PVN and SON of hypertensive Dahl S rats may be ineffective in decreasing blood pressure or inhibiting AVP secretion.
Collapse
Affiliation(s)
- R Serino
- Department of Physiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Esteves FO, McWilliam PN, Batten TF. Nitric oxide producing neurones in the rat medulla oblongata that project to nucleus tractus solitarii. J Chem Neuroanat 2000; 20:185-97. [PMID: 11118810 DOI: 10.1016/s0891-0618(00)00091-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The production of nitric oxide in neurones of the rat medulla oblongata that project to the nucleus tractus solitarii (NTS) was examined by simultaneous immunohistochemical detection of nitric oxide synthase (NOS) and of cholera toxin B-subunit (CTb), which was injected into the caudal zone of the NTS. Neurones immunoreactive for CTb and neurones immunoreactive for NOS were widely co-distributed and found in almost all the anatomical divisions of the medulla. Dual-labelled cells, containing both CTb and NOS immunoreactivities were more numerous ipsilaterally to the injection sites. They were concentrated principally in the more rostral zone of the NTS, raphé nuclei, dorsal, intermediate and lateral reticular areas, spinal trigeminal and paratrigeminal nuclei and the external cuneate and medial vestibular nuclei. Isolated dual-labelled neurones were also scattered throughout most of the divisions of the reticular formation. These observations indicate that many areas of the medulla that are known to relay somatosensory and viscerosensory inputs contain NOS immunoreactive neurones that project to the NTS, and may, therefore, contribute to the dense NOS-immunoreactive innervation of the NTS. The release of nitric oxide from the axon terminals of these neurones may modulate autonomic responses generated by NTS neurones in relation to peripheral sensory stimuli, and thus ultimately regulate sympathetic and/or parasympathetic outflow.
Collapse
Affiliation(s)
- F O Esteves
- Institute for Cardiovascular Research, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
48
|
Ferguson AV, Latchford KJ. Local circuitry regulates the excitability of rat neurohypophysial neurones. Exp Physiol 2000; 85 Spec No:153S-161S. [PMID: 10795918 DOI: 10.1111/j.1469-445x.2000.tb00019.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of angiotensin II (AII) and glutamate has long since been recognized in neuroendocrine regulation. However, the mechanisms by which AII and glutamate modulate the excitability of the paraventricular nucleus (PVN) have largely remained a mystery until recently. It is now apparent that AII and glutamate are potent stimulators of both magnocellular and parvocellular neurones in the rat PVN. While glutamate, the predominant excitatory neurotransmitter in the CNS, ubiquitously excites PVN neurones, AII appears to mediate excitability of the PVN by both direct and indirect mechanisms. Interestingly, both of these neurotransmitters, upon exciting the PVN, activate an inhibitory feedback system, which is capable of diminishing the initial stimulus. Physiologically, this moderates the output signals from the PVN, and probably also regulates neuropeptide release from the neurohypophysis. The importance of this negative-feedback loop is evident in the pathophysiological implications of a disruption in the system. Evidence suggests that a breakdown in this system may be responsible in part for the onset and maintenance of both congestive heart failure and hypertension. Future studies will continue to characterize both the actions of glutamate and AII in the PVN, and to further elucidate the mechanisms which control the excitability of the PVN.
Collapse
Affiliation(s)
- A V Ferguson
- Department of Physiology, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
49
|
|
50
|
Woodside B, Amir S. Chapter V Nitric oxide signaling in the hypothalamus. HANDBOOK OF CHEMICAL NEUROANATOMY 2000:147-176. [DOI: 10.1016/s0924-8196(00)80059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|