1
|
Yu JZ, Wang J, Sheridan SD, Perlis RH, Rasenick MM. N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Mol Psychiatry 2021; 26:4605-4615. [PMID: 32504049 PMCID: PMC10034857 DOI: 10.1038/s41380-020-0786-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
Abstract
Evidence from epidemiological and laboratory studies, as well as randomized placebo-controlled trials, suggests supplementation with n-3 polyunsaturated fatty acids (PUFAs) may be efficacious for treatment of major depressive disorder (MDD). The mechanisms underlying n-3 PUFAs potential therapeutic properties remain unknown. There are suggestions in the literature that glial hypofunction is associated with depressive symptoms and that antidepressants may normalize glial function. In this study, induced pluripotent stem cells (iPSC)-derived neuronal stem cell lines were generated from individuals with MDD. Astrocytes differentiated from patient-derived neuronal stem cells (iNSCs) were verified by GFAP. Cells were treated with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or stearic acid (SA). During astrocyte differentiation, we found that n-3 PUFAs increased GFAP expression and GFAP positive cell formation. BDNF and GDNF production were increased in the astrocytes derived from patients subsequent to n-3 PUFA treatment. Stearic Acid (SA) treatment did not have this effect. CREB activity (phosphorylated CREB) was also increased by DHA and EPA but not by SA. Furthermore, when these astrocytes were treated with n-3 PUFAs, the cAMP antagonist, RP-cAMPs did not block n-3 PUFA CREB activation. However, the CREB specific inhibitor (666-15) diminished BDNF and GDNF production induced by n-3 PUFA, suggesting CREB dependence. Together, these results suggested that n-3 PUFAs facilitate astrocyte differentiation, and may mimic effects of some antidepressants by increasing production of neurotrophic factors. The CREB-dependence and cAMP independence of this process suggests a manner in which n-3 PUFA could augment antidepressant effects. These data also suggest a role for astrocytes in both MDD and antidepressant action.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Jennifer Wang
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven D Sheridan
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy H Perlis
- Center for Experimental Drugs and Diagnostics and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Division of Clinical Research, Massachusetts General Hospital, Boston, 02114, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
- Pax Neuroscience, Glenview, IL, 60025, USA.
| |
Collapse
|
2
|
Kambey PA, Kanwore K, Ayanlaja AA, Nadeem I, Du Y, Buberwa W, Liu W, Gao D. Failure of Glial Cell-Line Derived Neurotrophic Factor (GDNF) in Clinical Trials Orchestrated By Reduced NR4A2 (NURR1) Transcription Factor in Parkinson's Disease. A Systematic Review. Front Aging Neurosci 2021; 13:645583. [PMID: 33716718 PMCID: PMC7943926 DOI: 10.3389/fnagi.2021.645583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative maladies with unforeseen complex pathologies. While this neurodegenerative disorder’s neuropathology is reasonably well known, its etiology remains a mystery, making it challenging to aim therapy. Glial cell-line derived neurotrophic factor (GDNF) remains an auspicious therapeutic molecule for treating PD. Neurotrophic factor derived from glial cell lines is effective in rodents and nonhuman primates, but clinical findings have been equivocal. Laborious exertions have been made over the past few decades to improve and assess GDNF in treating PD (clinical studies). Definitive clinical trials have, however, failed to demonstrate a survival advantage. Consequently, there seemed to be a doubt as to whether GDNF has merit in the potential treatment of PD. The purpose of this cutting edge review is to speculate as to why the clinical trials have failed to meet the primary endpoint. We introduce a hypothesis, “Failure of GDNF in clinical trials succumbed by nuclear receptor-related factor 1 (Nurr1) shortfall.” We demonstrate how Nurr1 binds to GDNF to induce dopaminergic neuron synthesis. Due to its undisputable neuro-protection aptitude, we display Nurr1 (also called Nr4a2) as a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Abiola Abdulrahman Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Iqra Nadeem
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - YinZhen Du
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | | | - WenYa Liu
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Zhang B, Han X, Gao Q, Liu J, Li S, Zha W, Wang X, Guo X, Gao D. Enhancer II-targeted dsRNA decreases GDNF expression via histone H3K9 trimethylation to inhibit glioblastoma progression. Brain Res Bull 2020; 167:22-32. [PMID: 33278485 DOI: 10.1016/j.brainresbull.2020.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is expressed in both astrocytes and glioblastoma (GBM) cells. GDNF expression is significantly increased in GBM, and inhibiting its expression can retard GBM progression. However, there is no known method for specific inhibition of GDNF in GBM cells. METHODS Promoter-targeted dsRNA-induced transcriptional gene silencing or activation was recently achieved in human cells. This approach has the potential to specifically regulate gene transcription via epigenetic modifications. In this study, we designed six candidate dsRNAs targeting the enhancer or silencer in GDNF gene promoter II to check their effects on GDNF transcription and GBM progression. RESULTS Among these dsRNAs, enhancer II-targeted dsRNA significantly inhibited U251 GBM progression by downregulating GDNF (P < 0.05), while silencer II-targeted dsRNA exerted an opposite effect. Moreover, enhancer II-targeted dsRNA did not significantly change GDNF expression in human astrocytes (HA) and the proliferation and migration of HA cells (P > 0.05). Bisulfate PCR and chromatin immunoprecipitation analyses revealed that both DNA methylation and trimethylation of histone 3 at lysine 9 (H3K9me3) at silencer II-targeted region significantly increased, and H3K9me3 at enhancer II-targeted region significantly decreased, in U251 cells compared with HA cells in non-intervention condition (P < 0.05). Both enhancer II- and silencer II-targeted dsRNA significantly increased H3K9me3 methylation rather than DNA at the targeted site in U251 cells (P < 0.05). The expression and activity of histone methyltransferase SETDB1 increased dramatically in U251 cells compared with HA cells, and it was recruited to enhancer II targeting region after enhancer II-targeted dsRNA treatment in U251 cells (P < 0.05). CONCLUSIONS Our results demonstrate that a promoter-targeted dsRNA can silence or promote gene transcription depending on its targeted site in different cis-acting elements in the gene promoter. Targeted inhibition of GDNF by enhancer II-targeted dsRNA may be explored as a novel treatment for GBM.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Saisai Li
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Wei Zha
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoyu Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
4
|
Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T, Gao D. Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics 2020; 12:47. [PMID: 32183903 PMCID: PMC7079383 DOI: 10.1186/s13148-020-00835-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is highly expressed in glioblastoma (GBM) and blocking its expression can inhibit the initiation and development of GBM. GDNF is a dual promoter gene, and the promoter II with two enhancers and two silencers plays a major role in transcription initiation. We had previously reported that histone hyperacetylation and DNA hypermethylation in GDNF promoter II region result in high transcription of GDNF in GBM cells, but the mechanism remains unclear. In this study, we investigated whether these modifications synergistically regulate high GDNF transcription in GBM. RESULTS Cyclic AMP response element binding protein (CREB) expression and phosphorylation at S133 were significantly increased in human GBM tissues and GBM cell lines (U251 and U343). In U251 GBM cells, high expressed CREB significantly enhanced GDNF transcription and promoter II activity. CREB regulated GDNF transcription via the cyclic AMP response elements (CREs) in enhancer II and silencer II of GDNF promoter II. However, the two CREs played opposite regulatory roles. Interestingly, hypermethylation of CRE in silencer II occurred in GBM tissues and cells which led to decreased and increased phosphorylated CREB (pCREB) binding to silencer II and enhancer II, respectively. Moreover, pCREB recruited CREB binding protein (CBP) with histone acetylase activity to the CRE of GDNF enhancer II, thereby increasing histone H3 acetylation and RNA polymerase II recruitment there and at the transcription start site (TSS), and promoted GDNF high transcription in U251 cells. The results indicated that high GDNF transcription was attributable to DNA hypermethylation in CRE of GDNF silencer II increasing pCREB binding to CRE in enhancer II, which enhanced CBP recruitment, histone H3 acetylation, and RNA polymerase II recruitment there and at the TSS. CONCLUSIONS Our results demonstrate that pCREB-induced crosstalk between DNA methylation and histone acetylation at the GDNF promoter II enhanced GDNF high transcription, providing a new perspective for GBM treatment.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiaohe Gu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tingwen Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
5
|
Duarte Azevedo M, Sander S, Tenenbaum L. GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease. J Clin Med 2020; 9:E456. [PMID: 32046031 PMCID: PMC7073520 DOI: 10.3390/jcm9020456] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
In a healthy adult brain, glial cell line-derived neurotrophic factor (GDNF) is exclusively expressed by neurons, and, in some instances, it has also been shown to derive from a single neuronal subpopulation. Secreted GDNF acts in a paracrine fashion by forming a complex with the GDNF family receptor α1 (GFRα1), which is mainly expressed by neurons and can act in cis as a membrane-bound factor or in trans as a soluble factor. The GDNF/GFRα1 complex signals through interactions with the "rearranged during transfection" (RET) receptor or via the neural cell adhesion molecule (NCAM) with a lower affinity. GDNF can also signal independently from GFRα1 by interacting with syndecan-3. RET, which is expressed by neurons involved in several pathways (nigro-striatal dopaminergic neurons, motor neurons, enteric neurons, sensory neurons, etc.), could be the main determinant of the specificity of GDNF's pro-survival effect. In an injured brain, de novo expression of GDNF occurs in glial cells. Neuroinflammation has been reported to induce GDNF expression in activated astrocytes and microglia, infiltrating macrophages, nestin-positive reactive astrocytes, and neuron/glia (NG2) positive microglia-like cells. This disease-related GDNF overexpression can be either beneficial or detrimental depending on the localization in the brain and the level and duration of glial cell activation. Some reports also describe the upregulation of RET and GFRα1 in glial cells, suggesting that GDNF could modulate neuroinflammation.
Collapse
Affiliation(s)
| | | | - Liliane Tenenbaum
- Laboratory of Molecular Neurotherapies and NeuroModulation, Center for Neuroscience Research, Lausanne University Hospital, CHUV-Pavillon 3, av de Beaumont, CH-1010 Lausanne, Switzerland; (M.D.A.); (S.S.)
| |
Collapse
|
6
|
Maier HB, Neyazi M, Neyazi A, Hillemacher T, Pathak H, Rhein M, Bleich S, Goltseker K, Sadot-Sogrin Y, Even-Chen O, Frieling H, Barak S. Alcohol consumption alters Gdnf promoter methylation and expression in rats. J Psychiatr Res 2020; 121:1-9. [PMID: 31710958 DOI: 10.1016/j.jpsychires.2019.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Alcohol use disorder is one of the most disabling diseases worldwide. Glial-cell derived neurotrophic factor (Gdnf) shows promising results concerning the inhibition of alcohol consumption in rodent models. We investigated the epigenetic regulation of Gdnf following ethanol consumption and withdrawal in a rat model. 32 Wistar rats underwent 7 weeks of intermittent access to alcohol in a 2-bottle choice (IA2BC). Whole blood, Nucleus Accumbens (NAc) and Ventral Tegmental Area (VTA) were collected immediately after the last 24 h of an alcohol-drinking session (alcohol group, AG) or 24 h after withdrawal (withdrawal group, WG). MRNA levels were measured using real-time quantitative PCR. Bisulfite-conversion of DNA and capillary sequencing was used to determine methylation levels of the core promoter (CP) and the negative regulatory element (NRE). The CP of the AG in the NAc was significantly less methylated compared to controls (p < 0.05). In the NAc, mRNA expression was significantly higher in the WG (p < 0.05). In the WG, mRNA expression levels in the VTA were significantly lower (p < 0.05) and showed significantly less methylation in the NRE in the VTA (p < 0.001) and the NAc (p < 0.01) compared to controls. Changes in the cerebral mRNA expression correspond to alterations in DNA methylation of the Gdnf promoter in a rodent model. Our results hold clinical relevance since differences in Gdnf mRNA expression and DNA methylation could be a target for pharmacological interventions.
Collapse
Affiliation(s)
- Hannah Benedictine Maier
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Meraj Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Thomas Hillemacher
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany; Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Hansi Pathak
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Mathias Rhein
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Koral Goltseker
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Sadot-Sogrin
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oren Even-Chen
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry, and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Segev Barak
- School of Psychological Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Solius G, Panteleev D, Pustogarov N, Revishchin A, Poletaeva I, Pavlova G. Time course of transient expression of pre-α-pro-GDNF and pre-β-pro-GDNF transcripts, and mGDNF mRNA region in Krushinsky-Molodkina rat brain after audiogenic seizures. Epilepsy Behav 2019; 96:87-91. [PMID: 31112899 DOI: 10.1016/j.yebeh.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
The expression of glial cell line-derived neurothrophic factor (GDNF) transcript forms pre-(α)pro-gdnf, pre-(β)pro-gdnf, and their common region m-gdnf in the pons as well as the inferior (IC) and superior colliculi in Krushinsky-Molodkina (KM) rats and in the strain "0" was analyzed by quantitative real-time polymerase chain reaction (PCR) in the control (unstimulated KM and "0" rats) and 1.5, 4.5, and 8 h after auditory stimulation. Such stimulation induced audiogenic seizures (AS) in KM rats. Audiogenic seizure was not observed in "0" rats, which was obtained by selection for the absence of AS in a population of F2 hybrids between KM and Wistar rats not predisposed to AS. A significant drop in the level of all transcripts was observed 1.5 h after auditory stimulation in both KM and "0" rats. In most cases, the average expression of α and β isoforms and m-region 4.5 h after stimulation was greater than those after 1.5 and 8 h. At the same time, the expression of pre-(β)pro-gdnf in the IC of KM rats 4.5 h after the stimulation was significantly lower than after 1.5 or 8 h. This work presents the first demonstration of different time courses of expression of the α and β GDNF isoforms during physiological processes in genotype-specific pathology.
Collapse
Affiliation(s)
- Georgy Solius
- Institute of Gene Biology, Russian Academy of Sciences, 34/5, Vavilova Street, Moscow 117312, Russia
| | - Dmitri Panteleev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5, Vavilova Street, Moscow 117312, Russia
| | - Nikolay Pustogarov
- Institute of Gene Biology, Russian Academy of Sciences, 34/5, Vavilova Street, Moscow 117312, Russia
| | - Alexander Revishchin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5, Vavilova Street, Moscow 117312, Russia
| | - Inga Poletaeva
- Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia
| | - Galina Pavlova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5, Vavilova Street, Moscow 117312, Russia; Burdenko Neurosurgical Institute, 4-th Tverskaya-Yamskaya st., 16, Moscow 125047, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 8 Trubetskaya Street, Bldg. 2, Moscow 119991, Russia.
| |
Collapse
|
8
|
Zhang L, Wang D, Han X, Tang F, Gao D. Mechanism of methylation and acetylation of high GDNF transcription in glioma cells: A review. Heliyon 2019; 5:e01951. [PMID: 31294105 PMCID: PMC6595186 DOI: 10.1016/j.heliyon.2019.e01951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
Gliomas are the most common primary malignant tumors in the central nervous system. High expression of glial cell line-derived neurotrophic factor (GDNF) is an important prerequisite for the initiation and development of gliomas. However, the underlying transcription mechanism is poorly understood. Epigenetic alterations are common and important hallmarks of various types of tumors, and lead to abnormal expression of genes. Several recent studies have suggested that epigenetic modifications contribute to increased GDNF transcription. Specifically, aberrant DNA methylation and histone acetylation in the promoter regions of GDNF are related to high GDNF transcription in glioma cells, where transcription factors have extremely important roles. Therefore, elucidating the importance and features of this underlying molecular mechanism will enhance our understanding and provide clues for the accurate diagnosis and efficacious treatment of gliomas. This review summarizes the latest thinking on the potential epigenetic mechanisms of high expression of GDNF in glioma cells focusing primarily on DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Lin Zhang
- School of Nursing of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China.,Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Dan Wang
- School of Medical Information of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Xiao Han
- Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Furong Tang
- Department of Psychiatry of Xuzhou Oriental People's Hospital, Xuzhou, Jiangsu province, 221004, China
| | - Dianshuai Gao
- Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| |
Collapse
|
9
|
Ayanlaja AA, Zhang B, Ji G, Gao Y, Wang J, Kanwore K, Gao D. The reversible effects of glial cell line-derived neurotrophic factor (GDNF) in the human brain. Semin Cancer Biol 2018; 53:212-222. [PMID: 30059726 DOI: 10.1016/j.semcancer.2018.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor, and a member of the transforming growth factor β (TGF-β) superfamily acting on different neuronal activities. GDNF was originally identified as a neurotrophic factor crucially involved in the survival of dopaminergic neurons of the nigrostriatal pathway and is currently an established therapeutic target in Parkinson's disease. However, GDNF was later reported to be highly expressed in gliomas, especially in glioblastomas, and was demonstrated as a potent proliferation factor involved in the development and migration of gliomas. Here, we review our current understanding and progress made so far by researchers in our laboratories with references to relevant articles to support our discoveries. We present past and recent discoveries on the mechanisms involved in the protection of neurons by GDNF and examine its emerging roles in gliomas, as well as reasons for the abnormal expression in Glioblastoma Multiforme (GBM). Collectively, our work establishes a paradigm by which the ability of GDNF to protect dopaminergic neurons from degradation and its corresponding effects on glioma cells points to an underlying biological vulnerability in the effects of GDNF in the normal brain which can be subverted for use by cancer cells. Hence, presenting novel opportunities for intervention in glioma therapies.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Baole Zhang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jie Wang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
10
|
Zhang BL, Guo TW, Gao LL, Ji GQ, Gu XH, Shao YQ, Yao RQ, Gao DS. Egr-1 and RNA POL II facilitate glioma cell GDNF transcription induced by histone hyperacetylation in promoter II. Oncotarget 2018; 8:45105-45116. [PMID: 28187447 PMCID: PMC5542170 DOI: 10.18632/oncotarget.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
The specific mechanisms for epigenetic regulation of gene transcription remain to be elucidated. We previously demonstrated that hyperacetylation of histone H3K9 in promoter II of glioma cells promotes high transcription of the glial cell line-derived neurotrophic factor (GDNF) gene. This hyperacetylation significantly enhanced Egr-1 binding and increased the recruitment of RNA polymerase II (RNA POL II) to that region (P < 0.05). Egr-1 expression was abnormally increased in C6 glioma cells. Further overexpression of Egr-1 significantly increased Egr-1 binding to GDNF promoter II, while increasing RNA POL II recruitment, thus increasing GDNF transcription (P < 0.01). When the acetylation of H3K9 in the Egr-1 binding site was significantly reduced by the histone acetyltransferase (HAT) inhibitor curcumin, binding of Egr-1 to GDNF promoter II, RNA POL II recruitment, and GDNF mRNA expression were significantly downregulated (P < 0.01). Moreover, curcumin attenuated the effects of Egr-1 overexpression on Egr-1 binding, RNA POL II recruitment, and GDNF transcription (P < 0.01). Egr-1 and RNA POL II co-existed in the nucleus of C6 glioma cells, with overlapping regions, but they were not bound to each other. In conclusion, highly expressed Egr-1 may be involved in the recruitment of RNA POL II in GDNF promoter II in a non-binding manner, and thereby involved in regulating GDNF transcription in high-grade glioma cells. This regulation is dependent on histone hyperacetylation in GDNF promoter II.
Collapse
Affiliation(s)
- Bao-Le Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ting-Wen Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Le-Le Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Guang-Quan Ji
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiao-He Gu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yu-Qi Shao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rui-Qin Yao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
11
|
Abstract
Age-dependent declines in muscle function are observed across species. The loss of mobility resulting from the decline in muscle function represents an important health issue and a key determinant of quality of life for the elderly. It is believed that changes in the structure and function of the neuromuscular junction are important contributors to the observed declines in motor function with increased age. Numerous studies indicate that the aging muscle is an important contributor to the deterioration of the neuromuscular junction but the cellular and molecular mechanisms driving the degeneration of the synapse remain incompletely described. Importantly, growing data from both animal models and humans indicate that exercise can rejuvenate the neuromuscular junction and improve motor function. In this review we will focus on the role of muscle-derived neurotrophin signaling in the rejuvenation of the aged neuromuscular junction in response to exercise.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.,Barshoph Institute of Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| | - Benjamin A Eaton
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.,Barshoph Institute of Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
12
|
Huang J, Dang R, Torigoe D, Li A, Lei C, Sasaki N, Wang J, Agui T. Genetic variation in the GDNF promoter affects its expression and modifies the severity of Hirschsprung's disease (HSCR) in rats carrying Ednrb(sl) mutations. Gene 2015; 575:144-8. [PMID: 26318480 DOI: 10.1016/j.gene.2015.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is necessary for the migration of neural crest stem cells in the gut. However, mutations in GDNF per se are deemed neither necessary nor sufficient to cause Hirschsprung's disease (HSCR). In a previous study, a modifier locus on chromosome 2 in rats carrying Ednrb(sl) mutations was identified, and several mutations in the putative regulatory region of the Gdnf gene in AGH-Ednrb(sl) rats were detected. Specifically, the mutation -232C>T has been shown to be strongly associated with the severity of HSCR. In the present study, the influence of genetic variations on the transcription of the Gdnf gene was tested using dual-luciferase assay. Results showed that the mutation -613C>T, located near the mutation -232C>T in AGH-Ednrb(sl) rats, decreased Gdnf transcription in an in vitro dual-luciferase expression assay. These data suggested an important role of -613C in Gdnf transcription. Expression levels of the Gdnf gene may modify the severity of HSCR in rats carrying Ednrb(sl) mutations.
Collapse
Affiliation(s)
- Jieping Huang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Daisuke Torigoe
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan; Division of Microbiology and Genetics, Center for Animal Resources and Development, Kumamoto, Japan
| | - Anqi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Jinxi Wang
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
13
|
An Epigenetic Mechanism of High Gdnf Transcription in Glioma Cells Revealed by Specific Sequence Methylation. Mol Neurobiol 2015; 53:4352-62. [DOI: 10.1007/s12035-015-9365-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023]
|
14
|
Zhang BL, Ni HB, Liu J, Lei Y, Li H, Xiong Y, Yao R, Yu ZQ, Gao DS. Egr-1 participates in abnormally high gdnf gene transcription mediated by histone hyperacetylation in glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1161-9. [PMID: 25201174 DOI: 10.1016/j.bbagrm.2014.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/13/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022]
Abstract
Abnormally high transcription of the glial cell-line derived neurotrophic factor (gdnf) gene in glioma cells is related to the hyperacetylation of histone H3 lysine 9 (H3K9) in its promoter region II, but the mechanism remains unclear. There are three consecutive putative binding sites for the transcription factor early growth response protein 1(Egr-1) in promoter region II of the gdnf gene, and Egr-1 participates in gdnf gene transcription activation. Here we show that the acetylation level of H3K9 at Egr-1 binding sites in gdnf gene promoter region II in rat C6 astroglioma cells was significantly higher than that in normal astrocytes, and the binding capacity was also significantly higher. In C6 astroglioma cells, gdnf gene transcription significantly decreased after Egr-1 knock-down. In addition, the deletion or mutation of the Egr-1 binding site also significantly down-regulated the activity of promoter region II of this gene in vitro. When curcumin decreased the acetylation level of H3K9 at the Egr-1 binding site, the binding of Egr-1 to promoter region II and GDNF mRNA levels significantly decreased. In contrast, trichostatin A treatment significantly increased H3K9 acetylation at the Egr-1 binding site, which significantly increased both the binding of Egr-1 with promoter region II and GDNF mRNA levels. In this context, knocking down Egr-1 significantly reduced the elevation in gdnf gene transcription. Collectively, our results demonstrate that the hyperacetylation of H3K9 at Egr-1 binding sites in promoter region II of the gdnf gene can up-regulate the binding of Egr-1 to increase gdnf gene transcription in glioma cells.
Collapse
Affiliation(s)
- Bao-Le Zhang
- Department of Neurobiology and Anatomy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Hai-Bo Ni
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Yu Lei
- Department of Neurobiology and Anatomy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Heng Li
- Department of Neurobiology and Anatomy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Ye Xiong
- Department of Neurobiology and Anatomy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Ruiqin Yao
- Department of Neurobiology and Anatomy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Zheng-Quan Yu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
15
|
Lamberti D, Vicini E. Promoter analysis of the gene encoding GDNF in murine Sertoli cells. Mol Cell Endocrinol 2014; 394:105-14. [PMID: 25025809 DOI: 10.1016/j.mce.2014.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 01/15/2023]
Abstract
GDNF is a Sertoli-cell-derived factor that controls the balance between self-renewal and differentiation of the spermatogonial stem cells. Although research in recent years has concentrated on the impact of GDNF on target germ cells rather little attention has been paid to the molecular control of GDNF expression in Sertoli cells. Here, we aimed to characterize the promoter region of the mouse gdnf gene active in Sertoli cells. We identified the transcriptional start sites and analyzed the promoter activity of the 5'-flanking regions. By in-silico analysis of evolutionarily conserved DNA sequences we identified several putative transcription factor-binding regions. Deletion analysis showed the involvement of the three CRE sites for basal and cAMP-induced expression of gdnf in murine Sertoli cells. These results provide the basis for future studies to analyze how hormonal or paracrine signals modulate the transcriptional activity of gdnf in Sertoli cells.
Collapse
Affiliation(s)
- Dante Lamberti
- Fondazione Pasteur Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology Sapienza University of Rome, Italy
| | - Elena Vicini
- Fondazione Pasteur Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology Sapienza University of Rome, Italy.
| |
Collapse
|
16
|
Yu ZQ, Zhang BL, Ni HB, Liu ZH, Wang JC, Ren QX, Mo JB, Xiong Y, Yao RQ, Gao DS. Hyperacetylation of histone H3K9 involved in the promotion of abnormally high transcription of the gdnf gene in glioma cells. Mol Neurobiol 2014; 50:914-22. [PMID: 24619502 DOI: 10.1007/s12035-014-8666-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/20/2014] [Indexed: 12/21/2022]
Abstract
The mechanism underlying abnormally high transcription of the glial cell line-derived neurotrophic factor (GDNF) gene in glioma cells is not clear. In this study, to assess histone H3K9 acetylation levels in promoters I and II of the gdnf gene in normal human brain tissue, low- and high-grade glioma tissues, normal rat astrocytes, and rat C6 glioblastoma cells, we employed chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR), real-time PCR, and a pGL3 dual fluorescence reporter system. We also investigated the influence of treatment with curcumin, a histone acetyltransferase inhibitor, and trichostatin A (TSA), a deacetylase inhibitor, on promoter acetylation and activity and messenger RNA (mRNA) expression level of the gdnf gene in C6 cells. Compared to normal brain tissue, H3K9 acetylation in promoters I and II of the gdnf gene increased significantly in high-grade glioma tissues but not in low-grade glioma tissues. Moreover, H3K9 promoter acetylation level of the gdnf gene in C6 cells was also remarkably higher than in normal astrocytes. In C6 cells, curcumin markedly decreased promoter II acetylation and activity and GDNF mRNA expression. Conversely, all three measurements were significantly increased following TSA treatment. Our results suggest that histone H3K9 hyperacetylation in promoter II of the gdnf gene might be one of the reasons for its abnormal high transcription in glioma cells.
Collapse
Affiliation(s)
- Zheng-Quan Yu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Phillipson OT. Management of the aging risk factor for Parkinson's disease. Neurobiol Aging 2013; 35:847-57. [PMID: 24246717 DOI: 10.1016/j.neurobiolaging.2013.10.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 01/12/2023]
Abstract
The aging risk factor for Parkinson's disease is described in terms of specific disease markers including mitochondrial and gene dysfunctions relevant to energy metabolism. This review details evidence for the ability of nutritional agents to manage these aging risk factors. The combination of alpha lipoic acid, acetyl-l-carnitine, coenzyme Q10, and melatonin supports energy metabolism via carbohydrate and fatty acid utilization, assists electron transport and adenosine triphosphate synthesis, counters oxidative and nitrosative stress, and raises defenses against protein misfolding, inflammatory stimuli, iron, and other endogenous or xenobiotic toxins. These effects are supported by gene expression via the antioxidant response element (ARE; Keap/Nrf2 pathway), and by peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1 alpha), a transcription coactivator, which regulates gene expression for energy metabolism and mitochondrial biogenesis, and maintains the structural integrity of mitochondria. The effectiveness and synergies of the combination against disease risks are discussed in relation to gene action, dopamine cell loss, and the accumulation and spread of pathology via misfolded alpha-synuclein. In addition there are potential synergies to support a neurorestorative role via glial derived neurotrophic factor expression.
Collapse
Affiliation(s)
- Oliver T Phillipson
- School of Medical Sciences, University of Bristol, University Walk, Bristol, UK.
| |
Collapse
|
18
|
Yu ZQ, Zhang BL, Ren QX, Wang JC, Yu RT, Qu DW, Liu ZH, Xiong Y, Gao DS. Changes in Transcriptional Factor Binding Capacity Resulting from Promoter Region Methylation Induce Aberrantly High GDNF Expression in Human Glioma. Mol Neurobiol 2013; 48:571-80. [DOI: 10.1007/s12035-013-8443-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/13/2013] [Indexed: 01/20/2023]
|
19
|
Ahmadiantehrani S, Ron D. Dopamine D2 receptor activation leads to an up-regulation of glial cell line-derived neurotrophic factor via Gβγ-Erk1/2-dependent induction of Zif268. J Neurochem 2013; 125:193-204. [PMID: 23373701 DOI: 10.1111/jnc.12178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 01/11/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent growth factor essential to the development, survival, and function of dopaminergic neurons (Airaksinen and Saarma 2002). The molecular mechanisms underlying GDNF expression remain elusive; thus, we set out to identify a signaling pathway that governs GDNF levels. We found that treatment of both differentiated dopaminergic-like SH-SY5Y cells and rat midbrain slices with the dopamine D2 receptor (D2R) agonist, quinpirole, triggered an increase in the expression of GDNF that was temporally preceded by an increase in the levels of zinc-finger protein 268 (Zif268), a DNA-binding transcription factor encoded by an immediate-early gene. Moreover, the D2R inhibitor raclopride blocked the increase of both GDNF and Zif268 expression following potassium-evoked dopamine release in SH-SY5Y cells. We used adenoviral delivery of small hairpin RNA (shRNA) targeting Zif268 to down-regulate its expression and found that Zif268 is specifically required for the D2R-mediated up-regulation of GDNF. Furthermore, the D2R-mediated induction of GDNF and Zif268 expression was dependent on Gβγ-mediated signaling and activation of extracellular signal-regulated kinase 1/2. Importantly, using chromatin immunoprecipitation assay, we identified a direct association of Zif268 with the GDNF promoter. These results suggest that D2R activation induces a Gβγ- and extracellular signal-regulated kinase 1/2-dependent increase in the level of Zif268, which functions to directly up-regulate the expression of GDNF.
Collapse
Affiliation(s)
- Somayeh Ahmadiantehrani
- Gallo Research Center, Emeryville, California, USA.,Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California, USA
| | - Dorit Ron
- Gallo Research Center, Emeryville, California, USA.,Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
20
|
Golan M, Schreiber G, Avissar S. Antidepressants elevate GDNF expression and release from C₆ glioma cells in a β-arrestin1-dependent, CREB interactive pathway. Int J Neuropsychopharmacol 2011; 14:1289-300. [PMID: 21223624 DOI: 10.1017/s1461145710001550] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF), essential for neuronal survival, plasticity and development, has been implicated in the mechanism of action of antidepressant drugs (ADs). β-arrestin1, a member of the arrestin protein family, was found to play a role in AD mechanism of action. The present study aimed at evaluating whether the effect of ADs on GDNF in C6 rat glioma cells is exerted through a β-arrestin1-dependent, CREB-interactive pathway. For chronic treatment, C6 rat glioma cells were treated for 3 d with different classes of ADs: imipramine - a non-selective monoamine reuptake inhibitor, citalopram - a serotonin selective reuptake inhibitor (SSRI) or desipramine - a norepinephrine selective reuptake inhibitor (NSRI) and compared to mood stabilizers (lithium and valproic acid) or to the antipsychotic haloperidol. Only ADs significantly elevated β-arrestin1 levels in the cytosol, while reducing phospho-β-arrestin1 levels in the cell nuclear fraction. ADs significantly increased both GDNF expression and release from the cells, but were unable to induce such effects in β-arrestin1 knock-down cells. Chronic AD treatment significantly increased CREB phosphorylation without altering the level of total CREB in the nuclear fraction of the cells. Moreover, treatment with ADs significantly increased β-arrestin1/CREB interaction. These findings support the involvement of β-arrestin1 in the mechanism of action of ADs. We suggest that following AD treatment, β-arrestin1 generates a transcription complex involving CREB essential for GDNF expression and release, thus enhancing GDNF's neuroprotective action that promotes cellular survival and plasticity when the survival and function of neurons is compromised as occurs in major depression.
Collapse
Affiliation(s)
- Moran Golan
- Department of Pharmacology, Faculty for Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | |
Collapse
|
21
|
Obara Y, Nemoto W, Kohno S, Murata T, Kaneda N, Nakahata N. Basic fibroblast growth factor promotes glial cell-derived neurotrophic factor gene expression mediated by activation of ERK5 in rat C6 glioma cells. Cell Signal 2011; 23:666-72. [DOI: 10.1016/j.cellsig.2010.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
22
|
Otsuki K, Uchida S, Watanuki T, Wakabayashi Y, Fujimoto M, Matsubara T, Funato H, Watanabe Y. Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res 2008; 42:1145-53. [PMID: 18313696 DOI: 10.1016/j.jpsychires.2008.01.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 11/26/2022]
Abstract
There is an abundance of evidence suggesting the involvement of altered levels of expression of neurotrophic factors in the pathophysiology of neuropsychiatric disorders. Although postmortem brain studies have indicated the alterations in the expression levels of neurotrophic factors in mood disorder patients, it is unclear whether these changes are state- or trait-dependent. In this study, we examined the expression levels of the members of the glial cell line-derived neurotrophic factor (GDNF) family (GDNF, artemin (ARTN), neurturin, and persephin), brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3 (NT-3), and neurotrophin-4 mRNAs by using quantitative real-time PCR method in peripheral blood cells of patients with major depressive and bipolar disorders in both a current depressive and a remissive states. Reduced expression levels of GDNF, ARTN, and NT-3 mRNAs were found in patients with major depressive disorder in a current depressive state, but not in a remissive state. Altered expressions of these mRNAs were not found in patients with bipolar disorder. Our results suggest that the changes in the expression levels of GDNF, ARTN, and NT-3 mRNAs might be state-dependent and associated with the pathophysiology of major depression.
Collapse
Affiliation(s)
- Koji Otsuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008; 86:186-215. [PMID: 18824211 DOI: 10.1016/j.pneurobio.2008.09.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/18/2008] [Accepted: 09/03/2008] [Indexed: 01/28/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is widely recognized as a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson's disease (PD). In animal models of PD, GDNF delivery to the striatum or the substantia nigra protects dopaminergic neurons against subsequent toxin-induced injury and rescues previously damaged neurons, promoting recovery of the motor function. Thus, GDNF was proposed as a potential therapy to PD aimed at slowing down, halting or reversing neurodegeneration, an issue addressed in previous reviews. However, the use of GDNF as a therapeutic agent for PD is hampered by the difficulty in delivering it to the brain. Another potential strategy is to stimulate the endogenous expression of GDNF, but in order to do that we need to understand how GDNF expression is regulated. The aim of this review is to do a comprehensive analysis of the state of the art on the control of endogenous GDNF expression in the nervous system, focusing mainly on the nigrostriatal pathway. We address the control of GDNF expression during development, in the adult brain and after injury, and how damaged neurons signal glial cells to up-regulate GDNF. Pharmacological agents or natural molecules that increase GDNF expression and show neuroprotective activity in animal models of PD are reviewed. We also provide an integrated overview of the signalling pathways linking receptors for these molecules to the induction of GDNF gene, which might also become targets for neuroprotective therapies in PD.
Collapse
Affiliation(s)
- Ana Saavedra
- Department of Cell Biology, Immunology and Neurosciences, Faculty of Medicine, University of Barcelona, Carrer Casanova 143, 08036 Barcelona, Spain.
| | | | | |
Collapse
|
24
|
Tsuchioka M, Takebayashi M, Hisaoka K, Maeda N, Nakata Y. Serotonin (5-HT) induces glial cell line-derived neurotrophic factor (GDNF) mRNA expression via the transactivation of fibroblast growth factor receptor 2 (FGFR2) in rat C6 glioma cells. J Neurochem 2008; 106:244-57. [DOI: 10.1111/j.1471-4159.2008.05357.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Tanaka T, Oh-hashi K, Ito M, Shitara H, Hirata Y, Kiuchi K. Identification of a novel GDNF mRNA induced by LPS in immune cell lines. Neurosci Res 2008; 61:11-7. [DOI: 10.1016/j.neures.2008.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 12/18/2007] [Accepted: 01/09/2008] [Indexed: 11/24/2022]
|
26
|
Kong PJ, Byun JS, Lim SY, Lee JJ, Hong SJ, Kwon KJ, Kim SS. Melatonin Induces Akt Phosphorylation through Melatonin Receptor- and PI3K-Dependent Pathways in Primary Astrocytes. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:37-41. [PMID: 20157392 DOI: 10.4196/kjpp.2008.12.2.37] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Melatonin has been reported to protect neurons from a variety of neurotoxicity. However, the underlying mechanism by which melatonin exerts its neuroprotective property has not yet been clearly understood. We previously demonstrated that melatonin protected kainic acid-induced neuronal cell death in mouse hippocampus, accompanied by sustained activation of Akt, a critical mediator of neuronal survival. To further elucidate the neuroprotective action of melatonin, we examined in the present study the causal mechanism how Akt signaling pathway is regulated by melatonin in a rat primary astrocyte culture model. Melatonin resulted in increased astrocytic Akt phosphorylation, which was significantly decreased with wortmannin, a specific inhibitor of PI3K, suggesting that activation of Akt by melatonin is mediated through the PI3K-Akt signaling pathway. Furthermore, increased Akt activation was also significantly decreased with luzindole, a non-selective melatonin receptor antagonist. As downstream signaling pathway of Akt activation, increased levels of CREB phoshorylation and GDNF expression were observed, which were also attenuated with wortmannin and luzindole. These results strongly suggest that melatonin exerts its neuroprotective property in astrocytes through the activation of plasma membrane receptors and then PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Pil-Jae Kong
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Hisaoka K, Maeda N, Tsuchioka M, Takebayashi M. Antidepressants induce acute CREB phosphorylation and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Brain Res 2008; 1196:53-8. [DOI: 10.1016/j.brainres.2007.12.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/06/2007] [Accepted: 12/12/2007] [Indexed: 11/26/2022]
|
28
|
NF-κB independent signaling pathway is responsible for LPS-induced GDNF gene expression in primary rat glial cultures. Neurosci Lett 2008; 431:262-7. [DOI: 10.1016/j.neulet.2007.11.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/16/2007] [Accepted: 11/29/2007] [Indexed: 12/19/2022]
|
29
|
Saavedra A, Baltazar G, Duarte EP. Interleukin-1beta mediates GDNF up-regulation upon dopaminergic injury in ventral midbrain cell cultures. Neurobiol Dis 2006; 25:92-104. [PMID: 17027275 DOI: 10.1016/j.nbd.2006.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/24/2006] [Accepted: 08/25/2006] [Indexed: 01/25/2023] Open
Abstract
We recently proposed the involvement of diffusible modulators in signalling astrocytes to increase glial cell line-derived neurotrophic factor (GDNF) expression after selective dopaminergic injury by H2O2 or L-DOPA. Here we report that interleukin-1beta (IL-1beta) is involved in this crosstalk between injured neurons and astrocytes. IL-1beta was detected only in the media from challenged neuron-glia cultures. Exogenous IL-1beta did not change GDNF protein levels in astrocyte cultures, and diminished GDNF levels in neuron-glia cultures. This decrease was not due to cell loss, as assessed by the MTT assay and immunocytochemistry. Neither H2O2 nor L-DOPA induced microglia proliferation or appeared to change its activation state. The IL-1 receptor antagonist (IL-1ra) prevented GDNF up-regulation in challenged cultures, showing that IL-1beta is involved in the signalling between injured neurons and astrocytes. Since IL-1ra decreased the number of dopaminergic neurons in H2O2-treated cultures, we propose that IL-1 has a neuroprotective role in this system involving GDNF up-regulation.
Collapse
Affiliation(s)
- Ana Saavedra
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
30
|
He DY, Ron D. Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB J 2006; 20:2420-2. [PMID: 17023388 DOI: 10.1096/fj.06-6394fje] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently showed that the up-regulation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the midbrain, is the molecular mechanism by which the putative anti-addiction drug Ibogaine mediates its desirable action of reducing alcohol consumption. Human reports and studies in rodents have shown that a single administration of Ibogaine results in a long-lasting reduction of drug craving (humans) and drug and alcohol intake (rodents). Here we determine whether, and how, Ibogaine exerts its long-lasting actions on GDNF expression and signaling. Using the dopaminergic-like SHSY5Y cell line as a culture model, we observed that short-term Ibogaine exposure results in a sustained increase in GDNF expression that is mediated via the induction of a long-lasting autoregulatory cycle by which GDNF positively regulates its own expression. We show that the initial exposure of cells to Ibogaine or GDNF results in an increase in GDNF mRNA, leading to protein expression and to the corresponding activation of the GDNF signaling pathway. This, in turn, leads to a further increase in the mRNA level of the growth factor. The identification of a GDNF-mediated, autoregulatory long-lasting feedback loop could have important implications for GDNF's potential value as a treatment for addiction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dao-Yao He
- Ernest Gallo Research Center, Emeryville, California, USA
| | | |
Collapse
|
31
|
Saavedra A, Baltazar G, Santos P, Carvalho CM, Duarte EP. Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: Role of neuron–glia crosstalk. Neurobiol Dis 2006; 23:533-42. [PMID: 16766196 DOI: 10.1016/j.nbd.2006.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/27/2006] [Accepted: 04/24/2006] [Indexed: 01/13/2023] Open
Abstract
The effect of selective injury to dopaminergic neurons on the expression of glial cell line-derived neurotrophic factor (GDNF) was examined in substantia nigra cell cultures. H(2)O(2), mimicking increased oxidative stress, or l-DOPA, the main symptomatic treatment for Parkinson's disease, increased GDNF mRNA and protein levels in a time-dependent mode in neuron-glia mixed cultures. The concentration dependence indicated that mild, but not extensive, injury induced GDNF up-regulation. GDNF neutralization with an antibody decreased dopaminergic cell viability in H(2)O(2)-treated cultures, showing that up-regulation of GDNF was protecting dopaminergic neurons. Neither H(2)O(2) nor l-DOPA directly affected GDNF expression in astrocyte cultures, but conditioned media from challenged mixed cultures increased GDNF mRNA and protein levels in astrocyte cultures, indicating that GDNF up-regulation was mediated by neuronal factors. Since pretreatment with 6-OHDA completely abolished H(2)O(2)-induced GDNF up-regulation, we propose that GDNF up-regulation is triggered by failing dopaminergic neurons that signal astrocytes to increase GDNF expression.
Collapse
Affiliation(s)
- Ana Saavedra
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|
32
|
Cen X, Nitta A, Ohya S, Zhao Y, Ozawa N, Mouri A, Ibi D, Wang L, Suzuki M, Saito K, Ito Y, Kawagoe T, Noda Y, Ito Y, Furukawa S, Nabeshima T. An analog of a dipeptide-like structure of FK506 increases glial cell line-derived neurotrophic factor expression through cAMP response element-binding protein activated by heat shock protein 90/Akt signaling pathway. J Neurosci 2006; 26:3335-44. [PMID: 16554484 PMCID: PMC6674092 DOI: 10.1523/jneurosci.5010-05.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophic factor that has therapeutic implications for neurodegenerative disorders. We previously showed that leucine-isoleucine (Leu-Ile), an analog of a dipeptide-like structure of FK506 (tacrolimus), induces GDNF expression both in vivo and in vitro. In this investigation, we sought to clarify the cellular mechanisms underlying the GDNF-inducing effect of this dipeptide. Leu-Ile transport was investigated using fluorescein isothiocyanate-Leu-Ile in cultured neurons, and the results showed the transmembrane mobility of this dipeptide. By liquid chromatography-mass spectrometry and quartz crystal microbalance assay, we identified heat shock cognate protein 70 as a protein binding specifically to Leu-Ile, and molecular modeling showed that the ATPase domain is the predicted binding site. Leu-Ile stimulated Akt phosphorylation, which was attenuated significantly by heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA). Moreover, enhanced interaction between phosphorylated Akt and Hsp90 was detected by immunoprecipitation. Leu-Ile elicited an increase in cAMP response element binding protein (CREB) phosphorylation, which was inhibited by GA, indicating that CREB is a downstream target of Hsp90/Akt signaling. Leu-Ile elevated the levels of GDNF mRNA and protein expression, whereas inhibition of CREB blocked such effects. Leu-Ile promoted the binding activity of phosphorylated CREB with cAMP response element. These findings show that CREB plays a key role in transcriptional regulation of GDNF expression induced by Leu-Ile. In conclusion, Leu-Ile activates Hsp90/Akt/CREB signaling, which contributes to the upregulation of GDNF expression. It may represent a novel lead compound for the treatment of dopaminergic neurons or motoneuron diseases.
Collapse
|
33
|
Caumont AS, Octave JN, Hermans E. Specific regulation of rat glial cell line-derived neurotrophic factor gene expression by riluzole in C6 glioma cells. J Neurochem 2006; 97:128-39. [PMID: 16524382 DOI: 10.1111/j.1471-4159.2006.03711.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Contrasting with its robust expression during embryogenesis, the glial cell line-derived neurotrophic factor (GDNF) is repressed in the adult organism. However, rapid induction of this neuronal growth factor is observed following diverse neuronal insults and it is now widely accepted that the control of its expression could constitute a powerful target in neuropharmacology. We investigated the effects of the neuroprotective drug, riluzole, on the GDNF gene expression in glial cells. Exposure of C6 glioma cells to riluzole (1 microM) significantly increased GDNF protein and mRNA levels. Using luciferase reporter gene constructs encoding fragments of the 5' untranslated region of the rat GDNF gene, we demonstrated that riluzole mediates its effect at the transcription level. Furthermore, luciferase assays revealed the presence of a negative regulatory region within the +343/+587 region of exon 1. This region was shown to contribute to the high sensitivity and specificity of the induction mediated by riluzole in the C6 glioma cell line at pharmacologically relevant concentrations. The effects of riluzole were inhibited by the mitogen-activated protein kinase extracellular signal-related kinase (MEK) inhibitor PD 98059. Together, these results indicated that the induction of GDNF release by riluzole in the C6 glioma cells results from the activation of its corresponding gene promoter through a signalling pathway involving MEK activity. This study suggests that the regulation of GDNF gene transcription in glial cells could contribute to the pharmacological properties of riluzole and possibly other neuroprotective drugs.
Collapse
Affiliation(s)
- Anne-Sophie Caumont
- Laboratoire de Pharmacologie Expérimentale, Université catholique de Louvain, 54.10, Avenue Hippocrate 54, 1200 Bruxelles, Belgium
| | | | | |
Collapse
|
34
|
Caumont AS, Octave JN, Hermans E. Amantadine and memantine induce the expression of the glial cell line-derived neurotrophic factor in C6 glioma cells. Neurosci Lett 2005; 394:196-201. [PMID: 16298481 DOI: 10.1016/j.neulet.2005.10.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 01/24/2023]
Abstract
Aminoadamantanes are commonly used in the treatment of Parkinson's and Alzheimer's diseases. While these drugs are shown to antagonise ionotropic glutamate receptors on neuronal cells, additional mechanisms could contribute to their neuroprotective properties. The aim of the present study was to investigate the effect of aminoadamantanes on the production of the glial cell line-derived neurotrophic factor (GDNF) in glial cells. For this purpose, we measured the modulation of GDNF release in C6 glioma cell cultures treated for 24 h with amantadine and memantine. Both drugs dose-dependently increased GDNF level in the culture medium with similar potency (submicromolar range) and efficacy (three to four-fold induction). RT-PCR studies revealed that both compounds also increased GDNF mRNA levels and their influence on the GDNF gene transcription was further evidenced using a rat GDNF promoter luciferase reporter assay. Together, these results demonstrate that the neuroprotective effect of amantadine and memantine could involve the regulation of GDNF production by glial cells.
Collapse
Affiliation(s)
- Anne-Sophie Caumont
- Laboratoire de Pharmacologie Expérimentale (FARL), Université catholique de Louvain, Avenue Hippocrate 54.10, 1200 Bruxelles, Belgium
| | | | | |
Collapse
|
35
|
Castro LMR, Gallant M, Niles LP. Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells. J Neurochem 2005; 95:1227-36. [PMID: 16313512 DOI: 10.1111/j.1471-4159.2005.03457.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Valproic acid (VPA) is a potent anti-epileptic and effective mood stabilizer. It is known that VPA enhances central GABAergic activity and activates the mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) pathway. It can also inhibit various isoforms of the enzyme, histone deacetylase (HDAC), which is associated with modulation of gene transcription. Recent in vivo studies indicate a neuroprotective role for VPA, which has been found to up-regulate the expression of brain-derived neurotrophic factor (BDNF) in the rat brain. Given the interaction between the pineal hormone, melatonin, and GABAergic systems in the central nervous system, the effects of VPA on the expression of the mammalian melatonin receptor subtypes, MT1 and MT2, were examined in rat C6 glioma cells. The effects of VPA on the expression of glial cell line-derived neurotrophic factor (GDNF) and BDNF were also examined. RT-PCR studies revealed a significant induction of melatonin MT1 receptor mRNA in C6 cells following treatment with 3 or 5 mm VPA for 24 h or 5 mm VPA for 48 h. Western analysis and immunocytochemical detection confirmed that the VPA-induced increase in MT1 mRNA results in up-regulation of MT1 protein expression. Blockade of the MAPK-ERK pathway by PD98059 enhanced the effect of VPA on MT1 expression, suggesting a negative role for this pathway in MT1 receptor regulation. In addition, significant increases in BDNF, GDNF and HDAC mRNA expression were observed after treatment with VPA for 24 or 48 h. Taken together, the present findings suggest that the neuroprotective properties of VPA involve modulation of neurotrophic factors and receptors for melatonin, which is also thought to play a role in neuroprotection. Moreover, the foregoing suggests that combinations of VPA and melatonin could provide novel therapeutic strategies in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Lyda M Rincón Castro
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
36
|
Koyama Y, Egawa H, Osakada M, Baba A, Matsuda T. Increase by FK960, a novel cognitive enhancer, in glial cell line-derived neurotrophic factor production in cultured rat astrocytes. Biochem Pharmacol 2004; 68:275-82. [PMID: 15193999 DOI: 10.1016/j.bcp.2004.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 03/19/2004] [Indexed: 01/19/2023]
Abstract
We examined the effect of N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate (FK960), a novel anti-dementia drug, on neurotrophic factor production in cultured rat astrocytes. FK960 (100nM) increased mRNA and protein levels of glial cell line-derived neurotrophic factor (GDNF). FK960 did not affect mRNA levels of neurotrophic factors other than GDNF. The effect of FK960 was not affected by antagonists of dopamine and alpha7-nicotinic acetylcholine receptors. FK960 stimulated phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (ERK) without any effect on phosphoryolation of p38 and c-Jun N-terminal kinase. FK960 increased the levels of c-Fos and phosphorylation of cAMP responsive element binding protein (CREB). The effect of FK960 on c-Fos was inhibited by PD98059 (10microM), an ERK kinase inhibitor, and cycloheximide (1microg/ml), a transcription inhibitor, and the effect of FK960 on CREB phosphorylation was blocked by PD98059. The effect of FK960 on GDNF mRNA expression was attenuated by PD98059, curcumin (10microM), an activator protein-1 inhibitor, cycloheximide and actinomycin D (10microg/ml). These results suggest that FK960 stimulates GDNF production in c-Fos- and CREB-dependent mechanisms in cultured astrocytes and that ERK signal is responsible for both c-Fos expression and CREB phosphorylation in the cascades.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
37
|
Hisaoka K, Nishida A, Takebayashi M, Koda T, Yamawaki S, Nakata Y. Serotonin increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells. Brain Res 2004; 1002:167-70. [PMID: 14988048 DOI: 10.1016/j.brainres.2004.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2004] [Indexed: 10/26/2022]
Abstract
Antidepressants, which increase monoamine levels, induce glial cell line-derived neurotrophic factor (GDNF) release in C6 cells. Thus, we examined whether monoamines affect on GDNF release in C6 cells. We found that serotonin (5-HT) specifically increased GDNF mRNA expression and GDNF release in a dose- and time-dependent manner. The 5-HT-induced GDNF release was mediated through the MEK/mitogen-activated protein kinase (MAPK) pathway and, at least, 5-HT(2A) receptors. The action of 5-HT on GDNF release may provide important insights into the mechanism of antidepressants.
Collapse
Affiliation(s)
- Kazue Hisaoka
- Department of Psychiatry and Neuroscience, Institute of Clinical Research, National Kure Medical Center, 3-1 Aoyama, Kure 737-0023, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Koyama Y, Tsujikawa K, Matsuda T, Baba A. Endothelin-1 stimulates glial cell line-derived neurotrophic factor expression in cultured rat astrocytes. Biochem Biophys Res Commun 2003; 303:1101-5. [PMID: 12684049 DOI: 10.1016/s0006-291x(03)00491-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of endothelin-1 (ET-1) on glial cell line-derived neurotrophic factor (GDNF) production in cultured astrocytes were examined. Treatment of cultured astrocytes with ET-1 (100 nM) increased mRNA levels of GDNF in 1-6h. The effect of ET-1 was inhibited by BQ788, an ET(B) receptor antagonist, but not by FR139317, an ET(A) receptor antagonist. ET-1 stimulated release of GDNF into culture medium. Dexamethasone (1 microM) and pyrrolidine dithiocarbamate (PDTC, 100 microM), which inhibit activation of NFkappaB, prevented the increases in GDNF mRNA by H(2)O(2). In contrast, the effect of ET-1 was not affected by dexamethasone and PDTC. The increase of astrocytic GDNF mRNA by ET-1 was inhibited by BAPTA/AM (30 microM) and PD98059 (50 microM), but not by calphostin C, staurosporine, and cyclosporine A. These results suggest that ET-1 stimulated expression of astrocytic GDNF through ET(B) receptor-mediated increases in cytosolic Ca(2+) and ERK activation.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Yamada-Oka 1-6, Suita 565-0871, Japan
| | | | | | | |
Collapse
|
39
|
Tanaka M, Ito S, Kiuchi K. The 5'-untranslated region of the mouse glial cell line-derived neurotrophic factor gene regulates expression at both the transcriptional and translational levels. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:81-95. [PMID: 11457495 DOI: 10.1016/s0169-328x(01)00125-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously cloned mouse glial cell line-derived neurotrophic factor (GDNF) cDNA and genomic DNA and found that the mouse gene contains a 1086-bp 5'-untranslated region (5'-UTR). We investigated the contributions of the 5'-UTR to promoter activity and found one positive regulatory region and two negative regulatory regions in the 5'-UTR. In the present study, using gel retardation assays and mutation analyses, two novel cis-elements that interact with nuclear extracts from mouse astrocytes were identified. The first cis-element (nucleotides (nt) +70 to +81) enhances promoter activity, whereas the second cis-element (nt +239 to +247) attenuates promoter activity in a position- and orientation-dependent manner. Suppression of gene expression by a third region (nt +509 to +580) occurs at the translational level. The ATG sequence (nt +547 to +549) has the potential to initiate translation and to attenuate the efficiency of translation for the GDNF precursor coding region. Furthermore, we identified an alternative promoter in the 5'-UTR that is driven by an Sp1 element, circumventing the translational suppression. Taken together, the 5'-UTR of mouse GDNF contains two novel cis-elements, a short upstream open reading frame and an alternative promoter that influences gene expression at both the transcriptional and translational levels.
Collapse
Affiliation(s)
- M Tanaka
- The Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research, Moriyama, 463-0003, Nagoya, Japan.
| | | | | |
Collapse
|
40
|
Tanaka M, Ito S, Matsushita N, Mori N, Kiuchi K. Promoter analysis and characteristics of the 5'-untranslated region of the mouse glial cell line-derived neurotrophic factor gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:91-102. [PMID: 11146111 DOI: 10.1016/s0169-328x(00)00250-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have cloned the mouse GDNF cDNA and genomic DNA to study the molecular mechanism of gene expression. Primer extension and RT-PCR analyses indicated that the mouse gene contains 1086 bp of 5'-untranslated region (5'-UTR) [Gene 203 (1997) 149]. In this report, we identified the core promoter region of mouse GDNF and examined the role of the 5'-UTR in gene expression. Promoter deletion analyses indicated that the proximal region (-81 to +28), which includes a TATA-box, is necessary for high-level expression of GDNF. Using reporter constructs encoding luciferase or fusion gene of GDNF to enhanced green fluorescent protein that were transiently transfected to mouse astroglial cell-line TGA-3 cells and rat glioma C6 cells, we investigated effects of the 5'-UTR on promoter activity. Luciferase reporter assay indicated that a region downstream of the transcription initiation site may include a positive regulatory element, while two more distal regions appear to contain negative regulatory elements, which was correlated to the mRNA level based on RNase protection assay. Both negative regulatory elements attenuated promoter activity in a position-dependent manner. Nuclear proteins from C6 glioma cells were shown to interact with several regions (+65/+105, +233/+265, and +554/+582) including each of the regulatory elements, suggesting that regulation of GDNF expression by the 5'-UTR occurred mainly at the transcriptional level.
Collapse
Affiliation(s)
- M Tanaka
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research (RIKEN), Moriyama, Nagoya 463-0003, Japan
| | | | | | | | | |
Collapse
|
41
|
Tanaka M, Ito S, Kiuchi K. Novel alternative promoters of mouse glial cell line-derived neurotrophic factor gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:63-74. [PMID: 11072069 DOI: 10.1016/s0167-4781(00)00218-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously isolated cDNA and genomic DNA of the mouse glial cell line-derived neurotrophic factor (GDNF) gene and found that the gene consists of three exons. Recently, it was suggested that an alternative promoter exists within intron 1 of the human GDNF gene, but this has not been confirmed. Novel cDNA clones of the mouse GDNF gene were isolated by 5'-rapid amplification of cDNA ends from postnatal day-14 striatum. A novel exon, containing 351 nucleotides, exists between exon 1 and exon 3 (referred to as exon 2 in our previous report). Luciferase reporter assay showed that a core promoter for the novel exon 2 requires its 5'-untranslated region. Primer extension analysis and reverse transcription-PCR identified another novel transcript that starts 39 bp upstream of exon 3, and the core promoter activity exists within a region containing putative Sp1 sites. Although the core promoters for the novel exons are different from those previously identified, transcripts derived from each promoter coincidentally increased with interleukin-1beta or tumor necrosis factor-alpha stimulation. Gel retardation assays suggested that the NF-kappaB binding site in intron 1 would be involved in the cytokine response of the mouse GDNF gene.
Collapse
Affiliation(s)
- M Tanaka
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research Center (RIKEN), Moriyama, 463-0003, Nagoya, Japan
| | | | | |
Collapse
|