1
|
Strazzabosco G, Liboni A, Pezzi G, Alogna A, Bortolotti D. Insights into Liposomal and Gel-Based Formulations for Dermatological Treatments. Gels 2025; 11:245. [PMID: 40277680 PMCID: PMC12027463 DOI: 10.3390/gels11040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Dermatological diseases pose a significant challenge due to their chronic nature, complex pathophysiology, and the need for effective, patient-friendly treatments. Recent advancements in liposomal and gel-based formulations have played a crucial role in improving drug delivery, therapeutic efficacy, and patient compliance. Liposomal formulations have garnered considerable attention in dermatology due to their ability to encapsulate both hydrophilic and lipophilic compounds, enabling controlled drug release and enhanced skin penetration. However, challenges such as formulation complexity, stability issues, and regulatory constraints remain. Similarly, gel-based formulations are widely used due to their ease of application, biocompatibility, and ability to retain active ingredients. However, they also face limitations, including restricted penetration depth, susceptibility to microbial contamination, and challenges in achieving sustained drug release. The integration of liposomal and gel-based technologies offers a promising strategy to overcome current challenges and optimize dermatological drug delivery. This review explores both well-established therapies and recent innovations, offering a comprehensive overview of their applications in the treatment of prevalent dermatological conditions. Ultimately, continued research is essential to refine these formulations, expanding their clinical utility and enhancing therapeutic effectiveness in dermatology.
Collapse
Affiliation(s)
- Giovanni Strazzabosco
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.S.); (A.L.)
| | - Alessia Liboni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.S.); (A.L.)
| | - Giulia Pezzi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| | - Andrea Alogna
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| | - Daria Bortolotti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| |
Collapse
|
2
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
3
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
4
|
Kumar D, Sachdeva K, Tanwar R, Devi S. Review on novel targeted enzyme drug delivery systems: enzymosomes. SOFT MATTER 2024; 20:4524-4543. [PMID: 38738579 DOI: 10.1039/d4sm00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The goal of this review is to present enzymosomes as an innovative means for site-specific drug delivery. Enzymosomes make use of an enzyme's special characteristics, such as its capacity to accelerate the reaction rate and bind to a particular substrate at a regulated rate. Enzymosomes are created when an enzyme forms a covalent linkage with a liposome or lipid vesicle surface. To construct enzymosomes with specialized activities, enzymes are linked using acylation, direct conjugation, physical adsorption, and encapsulation techniques. By reducing the negative side effects of earlier treatment techniques and exhibiting efficient medication release, these cutting-edge drug delivery systems improve long-term sickness treatments. They could be a good substitute for antiplatelet medication, gout treatment, and other traditional medicines. Recently developed supramolecular vesicular delivery systems called enzymosomes have the potential to improve drug targeting, physicochemical characteristics, and ultimately bioavailability in the pharmaceutical industry. Enzymosomes have advantages over narrow-therapeutic index pharmaceuticals as focusing on their site of action enhances both their pharmacodynamic and pharmacokinetic profiles. Additionally, it reduces changes in normal enzymatic activity, which enhances the half-life of an enzyme and accomplishes enzyme activity on specific locations.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Komal Sachdeva
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Rajni Tanwar
- Department of Pharmaceutical Sciences, Starex University, Gurugram, India
| | - Sunita Devi
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| |
Collapse
|
5
|
Zhang L, Qiu M, Wang R, Li S, Liu X, Xu Q, Xiao L, Jiang ZX, Zhou X, Chen S. Monitoring ROS Responsive Fe 3O 4-based Nanoparticle Mediated Ferroptosis and Immunotherapy via 129Xe MRI. Angew Chem Int Ed Engl 2024; 63:e202403771. [PMID: 38551448 DOI: 10.1002/anie.202403771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 04/24/2024]
Abstract
The immune checkpoint blockade strategy has improved the survival rate of late-stage lung cancer patients. However, the low immune response rate limits the immunotherapy efficiency. Here, we report a ROS-responsive Fe3O4-based nanoparticle that undergoes charge reversal and disassembly in the tumor microenvironment, enhancing the uptake of Fe3O4 by tumor cells and triggering a more severe ferroptosis. In the tumor microenvironment, the nanoparticle rapidly disassembles and releases the loaded GOx and the immune-activating peptide Tuftsin under overexpressed H2O2. GOx can consume the glucose of tumor cells and generate more H2O2, promoting the disassembly of the nanoparticle and drug release, thereby enhancing the therapeutic effect of ferroptosis. Combined with Tuftsin, it can more effectively reverse the immune-suppressive microenvironment and promote the recruitment of effector T cells in tumor tissues. Ultimately, in combination with α-PD-L1, there is significant inhibition of the growth of lung metastases. Additionally, the hyperpolarized 129Xe method has been used to evaluate the Fe3O4 nanoparticle-mediated immunotherapy, where the ventilation defects in lung metastases have been significantly improved with complete lung structure and function recovered. The ferroptosis-enhanced immunotherapy combined with non-radiation evaluation methodology paves a new way for designing novel theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maosong Qiu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruifang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sha Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoxun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiuyi Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Long Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, P. R. China
| |
Collapse
|
6
|
Mandal S, Mallik S, Bhoumick A, Bhattacharya A, Sen P. Synthesis of Amino Acid-Based Cationic Lipids and Study of the Role of the Cationic Head Group for Enhanced Drug and Nucleic Acid Delivery. Chembiochem 2024; 25:e202300834. [PMID: 38284327 DOI: 10.1002/cbic.202300834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Leveraging liposomes for drug and nucleic acid delivery, though promising due to reduced toxicity and ease of preparation, faces challenges in stability and efficiency. To address this, we synthesized cationic amphiphiles from amino acids (arginine, lysine, and histidine). Histidine emerged as the superior candidate, leading to the development of three histidine-rich cationic amphiphiles for liposomes. Using the hydration method, we have prepared the liposomes and determined the optimal N/P ratios for lipoplex formation via gel electrophoresis. In vitro transfection assays compared the efficacy of our lipids to Fugene, while MTT assays gauged biocompatibility across cancer cell lines (MDA-MB 231 and MCF-7). The histidine-based lipid demonstrated marked potential in enhancing drug and nucleic acid delivery. This improvement stemmed from increased zeta potential, enhancing electrostatic interactions with nucleic acids and cellular uptake. Our findings underscore histidine's crucial role over lysine and arginine for effective delivery, revealing a significant correlation between histidine abundance and optimal performance. This study paves the way for histidine-enriched lipids as promising candidates for efficient drug and nucleic acid delivery, addressing key challenges in the field.
Collapse
Affiliation(s)
- Subhasis Mandal
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | - Suman Mallik
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | - Avinandan Bhoumick
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| | | | - Prosenjit Sen
- Indian Association for the Cultivation of Science, School of Biological Sciences, 2 A & 2B Raja S C Mullick Road, Kolkata, 700032
| |
Collapse
|
7
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
8
|
Nakazato Y, Otaki JM. Protein Delivery to Insect Epithelial Cells In Vivo: Potential Application to Functional Molecular Analysis of Proteins in Butterfly Wing Development. BIOTECH 2023; 12:biotech12020028. [PMID: 37092472 PMCID: PMC10123617 DOI: 10.3390/biotech12020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Protein delivery to cells in vivo has great potential for the functional analysis of proteins in nonmodel organisms. In this study, using the butterfly wing system, we investigated a method of protein delivery to insect epithelial cells that allows for easy access, treatment, and observation in real time in vivo. Topical and systemic applications (called the sandwich and injection methods, respectively) were tested. In both methods, green/orange fluorescent proteins (GFP/OFP) were naturally incorporated into intracellular vesicles and occasionally into the cytosol from the apical surface without any delivery reagent. However, the antibodies were not delivered by the sandwich method at all, and were delivered only into vesicles by the injection method. A membrane-lytic peptide, L17E, appeared to slightly improve the delivery of GFP/OFP and antibodies. A novel peptide reagent, ProteoCarry, successfully promoted the delivery of both GFP/OFP and antibodies into the cytosol via both the sandwich and injection methods. These protein delivery results will provide opportunities for the functional molecular analysis of proteins in butterfly wing development, and may offer a new way to deliver proteins into target cells in vivo in nonmodel organisms.
Collapse
Affiliation(s)
- Yugo Nakazato
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
9
|
Varghese S, Chaudhary JP, Thareja P, Ghoroi C. Newly developed nano-biocomposite embedded hydrogel to enhance drug loading and modulated release of anti-inflammatory drug. Pharm Dev Technol 2023; 28:299-308. [PMID: 36940227 DOI: 10.1080/10837450.2023.2193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A newly developed iron-based nano-biocomposite (nano Fe-CNB) impregnated alginate formulation (CA) is proposed to improve drug loading and exhibit pH-responsive behavior of model anti-inflammatory drug-ibuprofen for controlled release applications. The proposed formulation is investigated with conventional β-CD addition in CA. The nano Fe-CNB-based formulations with and without β-CD, (Fe-CNB β-CD CA and Fe-CNB CA) are compared with only CA and β-CD incorporated CA formulations. The results indicate the incorporation of nano-biocomposite or β-CD into CA enhances the drug loading (>40%). However, pH-responsive controlled release behavior is observed for nano Fe-CNB based formulations only. The release studies from Fe-CNB β-CD CA indicate ∼ 45% release in stomach pH (1.2) within 2 h. In contrast, Fe-CNB CA shows ∼20% release only in stomach pH and improved release (∼49%) at colon pH (7.4). The rheology and swelling studies indicate Fe-CNB CA remains intact in stomach pH with a minimal drug release, but it disintegrates at colon pH due to charge reversal behavior of nano-biocomposite and ionization of polymeric chains. Thus, Fe-CNB CA formulation is found to be a potential candidate for targeting colon delivery, inflammatory bowel disease, and post-operative conditions.
Collapse
Affiliation(s)
- Sophia Varghese
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | | | - Prachi Thareja
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Chinmay Ghoroi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
10
|
Ali H, Akbar M, Iqbal B, Ali F, Kant Sharma N, Kumar N, Najmi A, Albratty M, Alhazmi HA, Madkhali OA, Zoghebi K, Shamsher Alam M. Virosome: An engineered virus for vaccine delivery. Saudi Pharm J 2023; 31:752-764. [PMID: 37181145 PMCID: PMC10172599 DOI: 10.1016/j.jsps.2023.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
The purpose of immunization is the effective cellular and humoral immune response against antigens. Several studies on novel vaccine delivery approaches such as micro-particles, liposomes & nanoparticles, etc. against infectious diseases have been investigated so far. In contrast to the conventional approaches in vaccine development, a virosomes-based vaccine represents the next generation in the field of immunization because of its balance between efficacy and tolerability by virtue of its mechanism of immune instigation. The versatility of virosomes as a vaccine adjuvant, and delivery vehicle of molecules of different nature, such as peptides, nucleic acids, and proteins, as well as provide an insight into the prospect of drug targeting using virosomes. This article focuses on the basics of virosomes, structure, composition formulation and development, advantages, interplay with the immune system, current clinical status, different patents highlighting the applications of virosomes and their status, recent advances, and research associated with virosomes, the efficacy, safety, and tolerability of virosomes based vaccines and the future prospective.
Collapse
|
11
|
Hendy DA, Haven A, Bachelder EM, Ainslie KM. Preclinical developments in the delivery of protein antigens for vaccination. Expert Opin Drug Deliv 2023; 20:367-384. [PMID: 36731824 PMCID: PMC9992317 DOI: 10.1080/17425247.2023.2176844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Vaccine technology has constantly advanced since its origin. One of these advancements is where purified parts of a pathogen are used rather than the whole pathogen. Subunit vaccines have no chance of causing disease; however, alone these antigens are often poorly immunogenic. Therefore, they can be paired with immune stimulating adjuvants. Further, subunits can be combined with delivery strategies such as nano/microparticles to enrich their delivery to organs and cells of interest as well as protect them from in vivo degradation. Here, we seek to highlight some of the more promising delivery strategies for protein antigens. AREAS COVERED We present a brief description of the different types of vaccines, clinically relevant examples, and their disadvantages when compared to subunit vaccines. Also, specific preclinical examples of delivery strategies for protein antigens. EXPERT OPINION Subunit vaccines provide optimal safety given that they have no risk of causing disease; however, they are often not immunogenic enough on their own to provide protection. Advanced delivery systems are a promising avenue to increase the immunogenicity of subunit vaccines, but scalability and stability can be improved. Further, more research is warranted on systems that promote a mucosal immune response to provide better protection against infection.
Collapse
Affiliation(s)
- Dylan A. Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Alex Haven
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Vu TT, Gulfam M, Jo SH, Rizwan A, Joo SB, Lee B, Park SH, Lim KT. The effect of molecular weight and chemical structure of cross-linkers on the properties of redox-responsive hyaluronic acid hydrogels. Int J Biol Macromol 2023; 238:124285. [PMID: 37004930 DOI: 10.1016/j.ijbiomac.2023.124285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
In this work, we investigated the effect of the size and the chemical structure of crosslinkers on the properties of hyaluronic acid-based hydrogels prepared via an inverse electron demand Diels-Alder reaction. Hydrogels having loose and dense networks were designed by cross-linkers with and without polyethylene glycol (PEG) spacers of different molecular weights (1000 and 4000 g/mol). The study showed that the properties of hydrogels such as swelling ratios (20-55 times), morphology, stability, mechanical strength (storage modulus in the range 175-858 Pa), and drug loading efficiency (87 % ~ 90 %) were greatly influenced by the addition of PEG and changing its molecular weight in the cross-linker. Particularly, the presence of PEG chains in redox- responsive crosslinkers increased the doxorubicin release (85 %, after 168 h) and the degradation rate (96 %, after 10 d) of hydrogels in the simulated reducing medium (10 mM DTT). The in vitro cytotoxicity experiments conducted for HEK-293 cells revealed that the formulated hydrogels were biocompatible, which could be a promising candidate for drug delivery applications.
Collapse
|
13
|
Abbasi H, Kouchak M, Mirveis Z, Hajipour F, Khodarahmi M, Rahbar N, Handali S. What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Adv Pharm Bull 2023; 13:7-23. [PMID: 36721822 PMCID: PMC9871273 DOI: 10.34172/apb.2023.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 03/31/2022] [Indexed: 02/03/2023] Open
Abstract
Liposomes have been attracted considerable attention as phospholipid spherical vesicles, over the past 40 years. These lipid vesicles are valued in biomedical application due to their ability to carry both hydrophobic and hydrophilic agents, high biocompatibility and biodegradability. Various methods have been used for the synthesis of liposomes, so far and numerous modifications have been performed to introduce liposomes with different characteristics like surface charge, size, number of their layers, and length of circulation in biological fluids. This article provides an overview of the significant advances in synthesis of liposomes via active or passive drug loading methods, as well as describes some strategies developed to fabricate their targeted formulations to overcome limitations of the "first-generation" liposomes.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zohreh Mirveis
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Hajipour
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| |
Collapse
|
14
|
Liu C, Liu C, Bai Y, Wang J, Tian W. Drug Self-Delivery Systems: Molecule Design, Construction Strategy, and Biological Application. Adv Healthc Mater 2022; 12:e2202769. [PMID: 36538727 DOI: 10.1002/adhm.202202769] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Indexed: 02/01/2023]
Abstract
Drug self-delivery systems (DSDSs) offer new ways to create novel drug delivery systems (DDSs). In typical DSDSs, therapeutic reagents are not considered passive cargos but active delivery agents of actionable targets. As an advanced drug delivery strategy, DSDSs with positive cooperativity of both free drugs and nanocarriers exhibit the clear merits of unprecedented drug-loading capacity, minimized systemic toxicity, and flexible preparation of nanoscale deliverables for passive targeted therapy. This review highlights the recent advances and future trends in DSDSs on the basis of two differently constructed structures: covalent and noncovalent bond-based DSDSs. Specifically, various chemical and architectural designs, fabrication strategies, and responsive and functional features are comprehensively discussed for these two types of DSDSs. In addition, additional comments on the current development status of DSDSs and the potential applications of their molecular designs are presented in the corresponding discussion. Finally, the promising potential of DSDSs in biological applications is revealed and the relationship between preliminary molecular design of DSDSs and therapeutic effects of subsequent DSDSs biological applications is clarified.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jingxia Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
15
|
Effect of polyols on membrane structures of liposomes: A study using small-angle X-ray scattering data and generalized indirect Fourier transformation. Chem Phys Lipids 2022; 249:105253. [PMID: 36273632 DOI: 10.1016/j.chemphyslip.2022.105253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023]
Abstract
This study aimed to evaluate the membrane structure of distearoylphosphatidylcholine (DSPC) liposomes dispersed in water containing various types of polyols with low molecular weight such as glycerin (Gly), 1,3-butandiol (BG), and propylene glycol (PG). To clarify the detailed membrane structure, generalized indirect Fourier transformation (GIFT) analysis, which provides information about the bilayer spacing, bilayer thickness, number of lamellar layers, and membrane flexibility, was applied to small-angle X-ray scattering (SAXS) data of the present system. The GIFT results showed that the bilayer thickness of the DSPC liposomes followed the order Gly>>BG>PG. In addition, the membrane flexibility estimated by the Caille parameter was in the order Gly>>BG>PG; this result was supported by the gel-liquid crystal phase transition temperature (Tc) obtained by differential scanning calorimetry (DSC). These results, together with the Raman spectra, suggest that BG and PG incorporated into the bilayers of DSPC liposomes result in the formation of an interdigitated lamellar structure.
Collapse
|
16
|
Kumeria T, Wang J, Kim B, Park JH, Zuidema JM, Klempner M, Cavacini L, Wang Y, Sailor MJ. Enteric Polymer-Coated Porous Silicon Nanoparticles for Site-Specific Oral Delivery of IgA Antibody. ACS Biomater Sci Eng 2022; 8:4140-4152. [PMID: 36210772 PMCID: PMC10036216 DOI: 10.1021/acsbiomaterials.0c01313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porous silicon (pSi) nanoparticles are loaded with Immunoglobulin A-2 (IgA2) antibodies, and the assembly is coated with pH-responsive polymers on the basis of the Eudragit family of enteric polymers (L100, S100, and L30-D55). The temporal release of the protein from the nanocomposite formulations is quantified following an in vitro protocol simulating oral delivery: incubation in simulated gastric fluid (SGF; at pH 1.2) for 2 h, followed by a fasting state simulated intestinal fluid (FasSIF; at pH 6.8) or phosphate buffer solution (PBS; at pH 7.4). The nanocomposite formulations display a negligible release in SGF, while more than 50% of the loaded IgA2 is released in solutions at a pH of 6.8 (FasSIF) or 7.4 (PBS). Between 21 and 44% of the released IgA2 retains its functional activity. A capsule-based system is also evaluated, where the IgA2-loaded particles are packed into a gelatin capsule and the capsule is coated with either EudragitL100 or EudragitS100 polymer for a targeted release in the small intestine or the colon, respectively. The capsule-based formulations outperform polymer-coated nanoparticles in vitro, preserving 45-54% of the activity of the released protein.
Collapse
Affiliation(s)
- Tushar Kumeria
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
- School of Materials Science and Engineering, University of New South Wales-Sydney, Sydney, NSW 2052, Australia
| | - Joanna Wang
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Mark Klempner
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| |
Collapse
|
17
|
Mittal D, Ali SA. Use of Nanomaterials for Diagnosis and Treatment: The Advancement of Next-Generation Antiviral Therapy. Microb Drug Resist 2022; 28:670-697. [PMID: 35696335 DOI: 10.1089/mdr.2021.0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Globally, viral illness propagation is the leading cause of morbidity and death, causing wreaking havoc on socioeconomic development and health care systems. The rise of infected individuals has outpaced the existing critical care facilities. Early and sophisticated methods are desperately required in this respect to halt the spread of the infection. Therefore, early detection of infectious agents and an early treatment approach may help minimize viral outbreaks. Conventional point-of-care diagnostic techniques such as computed tomography scan, quantitative real time polymerase chain reaction (qRT-PCR), X-ray, and immunoassay are still deemed valuable. However, the labor demanding, low sensitivity, and complex infrastructure needed for these methods preclude their use in distant areas. Nanotechnology has emerged as a potentially transformative technology due to its promise as an effective theranostic platform for diagnosing and treating viral infection, circumventing the limits of traditional techniques. Their unique physical and chemical characteristics make nanoparticles (NPs) advantageous for drug delivery platforms due to their size, encapsulation efficiency, improved bioavailability, effectiveness, immunogenicity, and antiviral response. This study discusses the recent research on nanotechnology-based treatments designed to combat new viruses.
Collapse
Affiliation(s)
- Deepti Mittal
- Nanosafety Lab, Division of Biochemistry, ICAR-NDRI, Karnal, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal, Haryana, India
| |
Collapse
|
18
|
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8:e09394. [PMID: 35600452 PMCID: PMC9118483 DOI: 10.1016/j.heliyon.2022.e09394] [Citation(s) in RCA: 452] [Impact Index Per Article: 150.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Liposomes are now considered the most commonly used nanocarriers for various potentially active hydrophobic and hydrophilic molecules due to their high biocompatibility, biodegradability, and low immunogenicity. Liposomes also proved to enhance drug solubility and controlled distribution, as well as their capacity for surface modifications for targeted, prolonged, and sustained release. Based on the composition, liposomes can be considered to have evolved from conventional, long-circulating, targeted, and immune-liposomes to stimuli-responsive and actively targeted liposomes. Many liposomal-based drug delivery systems are currently clinically approved to treat several diseases, such as cancer, fungal and viral infections; more liposomes have reached advanced phases in clinical trials. This review describes liposomes structure, composition, preparation methods, and clinical applications.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman, Jordan
| | - Usama Sayed
- Department of Biology, The University of Jordan, Amman, 11942, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman, 11942, Jordan.,Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
19
|
Gautam L, Shrivastava P, Yadav B, Jain A, Sharma R, Vyas S, Vyas SP. Multicompartment systems: A putative carrier for combined drug delivery and targeting. Drug Discov Today 2021; 27:1184-1195. [PMID: 34906689 DOI: 10.1016/j.drudis.2021.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
In this review, we discuss recent developments in multicompartment systems commonly referred to as vesosomes, as well as their method of preparation, surface modifications, and clinical potential. Vesosomal systems are able to entrap more than one drug moiety and can be customized for site-specific delivery. We focus in particular on the possible reticuloendothelial system (RES) - mediated accumulation of vesosomes, and their application in tumor targeting, as areas for further investigation.
Collapse
Affiliation(s)
- Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Bhavana Yadav
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Anamika Jain
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Sonal Vyas
- Shri Chaitanya Hospital, Sagar, MP 470003, India
| | - S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India.
| |
Collapse
|
20
|
Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev 2021; 174:482-503. [PMID: 34015417 DOI: 10.1016/j.addr.2021.05.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Peptide-based supramolecular hydrogels have shown great promise as drug delivery systems (DDSs) because of their excellent biocompatibility, biodegradability, biological function, synthetic feasibility, and responsiveness to external stimuli. Self-assembling peptide molecules are able rationally designed into specific nanoarchitectures in response to the different environmental factors under different circumstances. Among all stimuli that have been investigated, utilizing inherent biological microenvironment, such as metal ions, enzymes and endogenous redox species, to trigger self-assembly endows such systems spatiotemporal controllability to transport therapeutics more accurately. Materials formed by weak non-covalent interactions result in the shear-thinning and immediate recovery behavior. Thus, they are injectable via a syringe or catheter, making them the ideal vehicles to deliver drugs. Based on the above merits, self-assembling peptide-based DDSs have been applied to treat various diseases via direct administration at the lesion site. Herein, in this review, we outline the triggers for inducing peptide-based hydrogels formation and serving as DDSs. We also described the advancements of peptide-based supramolecular hydrogels for local drug delivery, including intratumoral, subcutaneous, ischemia-related tissue (intramyocardial, intrarenal, and ischemic hind limb), and ocular administration. Finally, we give a brief perspective about the prospects and challenges in this field.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Sifan Ai
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China.
| |
Collapse
|
21
|
Kozani PS, Kozani PS, Malik MT. AS1411-functionalized delivery nanosystems for targeted cancer therapy. EXPLORATION OF MEDICINE 2021; 2:146-166. [PMID: 34723284 PMCID: PMC8555908 DOI: 10.37349/emed.2021.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to various pathologic and oncological indications. These characteristics of NCL make it an ideal target for the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payloaddelivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad spectrum of therapeutic agents.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Carlos Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
| | - Mohammad Tariq Malik
- Departments of Microbiology and Immunology, Regenerative Medicine, and Stem Cell Biology, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
22
|
Virosome-based nanovaccines; a promising bioinspiration and biomimetic approach for preventing viral diseases: A review. Int J Biol Macromol 2021; 182:648-658. [PMID: 33862071 PMCID: PMC8049750 DOI: 10.1016/j.ijbiomac.2021.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/08/2023]
Abstract
Vaccination is the most effective means of controlling infectious disease-related morbidity and mortality. However, due to low immunogenicity of viral antigens, nanomedicine as a new opportunity in new generation of vaccine advancement attracted researcher encouragement. Virosome is a lipidic nanomaterial emerging as FDA approved nanocarriers with promising bioinspiration and biomimetic potency against viral infections. Virosome surface modification with critical viral fusion proteins is the cornerstone of vaccine development. Surface antigens at virosomes innovatively interact with targeted receptors on host cells that evoke humoral or cellular immune responses through antibody-producing B cell and internalization by endocytosis-mediated pathways. To date, several nanovaccine based on virosome formulations have been commercialized against widespread and life-threatening infections. Recently, Great efforts were made to fabricate a virosome-based vaccine platform against a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Thus, this review provides a novel overview of the virosome based nanovaccine production, properties, and application on the viral disease, especially its importance in SARS-CoV-2 vaccine discovery.
Collapse
|
23
|
Kumar V, Kumar R, Jain VK, Nagpal S. Comparison of Virosome vs. Liposome as drug delivery vehicle using HepG2 and CaCo2 cell lines. J Microencapsul 2021; 38:263-275. [PMID: 33719838 DOI: 10.1080/02652048.2021.1902009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM The present work involves encapsulation of herbal drug nanocurcumin into the virosomes and compared with a liposome in terms of their in vitro anti-proliferative, anti-inflammatory, and anti-migratory efficacy. METHODS The anti-proliferative, anti-inflammatory, and anti-migratory efficacy of virosome and liposome were compared in HepG2 and CaCo2 cells by using MTT, Nitric oxide scavenging, and Wound healing assay, respectively. RESULTS Size of the optimised NC-Virosome and NC-Liposome was 70.06 ± 1.63 and 265.80 ± 1.64 nm, respectively. The prepared NC-Virosome can be stored at -4 °C up to six months. The drug encapsulation efficiency of NC-Virosome and NC-Liposome was found to be 84.66 ± 1.67 and 62.15 ± 1.75% (w/w). The evaluated minimum inhibitory concentration (IC50 value) for NC-Virosome was 102.7 μg/ml and 108.1 μg/ml, while NC-Liposome showed 129.2 μg/ml and 160.1 μg/ml for HepG2 and CaCo2 cells, respectively. Morphological examination depicts detachment of the cells from substratum after exposure to NC-Virosome for 48 h. CONCLUSION The prepared NC-Virosome provides remarkable in vitro efficacy in both the cell lines with site-specific drug-targeting potential as compared to the liposome, results proved its potential as a drug delivery vehicle for future therapy with reduced toxicity.
Collapse
Affiliation(s)
- Varun Kumar
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida, India
| | - Ramesh Kumar
- Virology Section, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - V K Jain
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida, India
| | - Suman Nagpal
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida, India
| |
Collapse
|
24
|
Witika BA, Makoni PA, Mweetwa LL, Ntemi PV, Chikukwa MTR, Matafwali SK, Mwila C, Mudenda S, Katandula J, Walker RB. Nano-Biomimetic Drug Delivery Vehicles: Potential Approaches for COVID-19 Treatment. Molecules 2020; 25:E5952. [PMID: 33339110 PMCID: PMC7765509 DOI: 10.3390/molecules25245952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Larry L. Mweetwa
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
| | - Pascal V. Ntemi
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Melissa T. R. Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Jonathan Katandula
- Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| |
Collapse
|
25
|
Leifert D, Moreland AS, Limwongyut J, Mikhailovsky AA, Bazan GC. Photoswitchable Conjugated Oligoelectrolytes for a Light-Induced Change of Membrane Morphology. Angew Chem Int Ed Engl 2020; 59:20333-20337. [PMID: 32596843 DOI: 10.1002/anie.202004448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Indexed: 11/07/2022]
Abstract
The synthesis of a new conjugated oligoelectrolyte (COE), namely DSAzB, is described, which contains a conjugated core bearing a diazene moiety in the center of its electronically delocalized structure. Similar to structurally related phenylenevinylene-based COEs, DSAzB readily intercalates into model and natural lipid bilayer membranes. Photoinduced isomerization transforms the linear trans COE into a bent or C-shape form. It is thereby possible to introduce DSAzB into the bilayer of a cell and disrupt its integrity by irradiation with light. This leads to controlled permeabilization of membranes, as demonstrated by the release of calcein from DMPG/DMPC vesicles and by propidium iodide influx experiments on S. epidermidis. Both experiments support that the permeabilization is selective for the light stimulus, highly efficient, and repeatable. Target-selective and photoinduced actions demonstrated by DSAzB may have broad applications in biocatalysis and related biotechnologies.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Jakkarin Limwongyut
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Alexander A Mikhailovsky
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical Engineering, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
26
|
Leifert D, Moreland AS, Limwongyut J, Mikhailovsky AA, Bazan GC. Photoswitchable Conjugated Oligoelectrolytes for a Light‐Induced Change of Membrane Morphology. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| | - Alex S. Moreland
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry, Materials and Physics University of California Santa Barbara CA 93106 USA
| | - Jakkarin Limwongyut
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry, Materials and Physics University of California Santa Barbara CA 93106 USA
| | - Alexander A. Mikhailovsky
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry, Materials and Physics University of California Santa Barbara CA 93106 USA
| | - Guillermo C. Bazan
- Departments of Chemistry and Chemical Engineering National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
27
|
Basahih TS, Alamoudi AA, El-Say KM, Alhakamy NA, Ahmed OAA. Improved Transmucosal Delivery of Glimepiride via Unidirectional Release Buccal Film Loaded With Vitamin E TPGS-Based Nanocarrier. Dose Response 2020; 18:1559325820945164. [PMID: 32782450 PMCID: PMC7401050 DOI: 10.1177/1559325820945164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
Glimepiride (GMD) is a hypoglycemic agent that has variation in bioavailability for its unexpected absorption. Glimepiride was formulated in a buccal film loaded with a nanobased formulation to enhance its absorption via buccal mucosa. Nanostructured lipid carriers (NLCs) and d-α-tocopherol polyethylene glycol 1000 succinate-based micelles enhance GMD solubility and improve its permeation through the buccal mucosa. The formulation variables were optimized using a Box-Behnken design. These factors, such as the percent of micelles relative to NLC (X1), the percent of Carbopol (X2), and the percent of permeation enhancer (X3), were investigated for their effect on the initial release (Y1) and the cumulative release after 6 hours (Y2). The optimum levels for X1, X2, and X3 were 100%, 0.05%, and 1.8%, respectively. The optimized formulation revealed that the permeation of GMD from the film was in favor of micelles. This optimized film was then coated with ethyl cellulose to direct the release only through the buccal mucosa. The optimized unidirectional GMD transmucosal film showed a release of 93.9% of GMD content at 6 hours compared to 60.41% of GMD release from the raw GMD film. This finding confirmed the suitability of transmucosal delivery of GMD via the buccal mucosa.
Collapse
Affiliation(s)
- Tahani S. Basahih
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah A. Alamoudi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Osama A. A. Ahmed, Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
28
|
Rozo AJ, Cox MH, Devitt A, Rothnie AJ, Goddard AD. Biophysical analysis of lipidic nanoparticles. Methods 2020; 180:45-55. [PMID: 32387313 DOI: 10.1016/j.ymeth.2020.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Biological nanoparticles include liposomes, extracellular vesicle and lipid-based discoidal systems. When studying such particles, there are several key parameters of interest, including particle size and concentration. Measuring these characteristics can be of particular importance in the research laboratory or when producing such particles as biotherapeutics. This article briefly describes the major types of lipid-containing nanoparticles and the techniques that can be used to study them. Such methodologies include electron microscopy, atomic force microscopy, dynamic light scattering, nanoparticle tracking analysis, flow cytometry, tunable resistive pulse sensing and microfluidic resistive pulse sensing. Whilst no technique is perfect for the analysis of all nanoparticles, this article provides advantages and disadvantages of each, highlighting the latest developments in the field. Finally, we demonstrate the use of microfluidic resistive pulse sensing for the analysis of biological nanoparticles.
Collapse
Affiliation(s)
- Annaïg J Rozo
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Megan H Cox
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK; Meritics Ltd, Unit 3, Clipstone Brook Industrial Estate, Cherrycourt Way, Leighton Buzzard LU7 4GP, UK
| | - Andrew Devitt
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Alice J Rothnie
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
29
|
Sevencan C, McCoy RSA, Ravisankar P, Liu M, Govindarajan S, Zhu J, Bay BH, Leong DT. Cell Membrane Nanotherapeutics: From Synthesis to Applications Emerging Tools for Personalized Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900201] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cansu Sevencan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Reece Sean Ashley McCoy
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Priyaharshini Ravisankar
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- Centre for Advanced 2D MaterialsGraphene Research Centre Singapore 117546 Singapore
| | - Meng Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Suresh Govindarajan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Jingyi Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education InstitutesDepartment of Biomedical EngineeringJinan University Guangzhou 510632 China
| | - Boon Huat Bay
- Department of AnatomyNational University of Singapore 4 Medical Drive Singapore 117594 Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of Singapore Singapore 117456 Singapore
| |
Collapse
|
30
|
Khalaj‐Hedayati A, Chua CLL, Smooker P, Lee KW. Nanoparticles in influenza subunit vaccine development: Immunogenicity enhancement. Influenza Other Respir Viruses 2020; 14:92-101. [PMID: 31774251 PMCID: PMC6928032 DOI: 10.1111/irv.12697] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022] Open
Abstract
The threat of novel influenza infections has sparked research efforts to develop subunit vaccines that can induce a more broadly protective immunity by targeting selected regions of the virus. In general, subunit vaccines are safer but may be less immunogenic than whole cell inactivated or live attenuated vaccines. Hence, novel adjuvants that boost immunogenicity are increasingly needed as we move toward the era of modern vaccines. In addition, targeting, delivery, and display of the selected antigens on the surface of professional antigen-presenting cells are also important in vaccine design and development. The use of nanosized particles can be one of the strategies to enhance immunogenicity as they can be efficiently recognized by antigen-presenting cells. They can act as both immunopotentiators and delivery system for the selected antigens. This review will discuss on the applications, advantages, limitations, and types of nanoparticles (NPs) used in the preparation of influenza subunit vaccine candidates to enhance humoral and cellular immune responses.
Collapse
Affiliation(s)
- Atin Khalaj‐Hedayati
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Caroline Lin Lin Chua
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Peter Smooker
- Department of Biosciences and Food TechnologySchool of ScienceRMIT UniversityBundooraVictoriaAustralia
| | - Khai Wooi Lee
- School of BiosciencesFaculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| |
Collapse
|
31
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019; 10:751. [PMID: 31333467 PMCID: PMC6624236 DOI: 10.3389/fphar.2019.00751] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
There are still great challenges for the effective treatment of infectious diseases, although considerable achievement has been made by using antiviral and antimicrobial agents varying from small-molecule drugs, peptides/proteins, to nucleic acids. The nanomedicine approach is emerging as a new strategy capable of overcoming disadvantages of molecular therapeutics and amplifying their anti-infective activities, by localized delivery to infection sites, reducing off-target effects, and/or attenuating resistance development. Nanotechnology, in combination with bioinspired and biomimetic approaches, affords additional functions to nanoparticles derived from synthetic materials. Herein, we aim to provide a state-of-the-art review on recent progress in biomimetic and bioengineered nanotherapies for the treatment of infectious disease. Different biomimetic nanoparticles, derived from viruses, bacteria, and mammalian cells, are first described, with respect to their construction and biophysicochemical properties. Then, the applications of diverse biomimetic nanoparticles in anti-infective therapy are introduced, either by their intrinsic activity or by loading and site-specifically delivering various molecular drugs. Bioinspired and biomimetic nanovaccines for prevention and/or therapy of infectious diseases are also highlighted. At the end, major translation issues and future directions of this field are discussed.
Collapse
Affiliation(s)
- Guoyu Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
33
|
Goto Y, Sugikawa K, Ikeda A. Enhancement in Guest Molecule Incorporation into Lipid Membranes in the Presence of Zinc-Porphyrin Anchor Molecules. ChemistrySelect 2019. [DOI: 10.1002/slct.201803462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuya Goto
- Department of Applied Chemistry; Graduate School of Engineering; Hiroshima University, 1-4-1 Kagamiyama; Higashi-Hiroshima 739-8527 Japan
| | - Kouta Sugikawa
- Department of Applied Chemistry; Graduate School of Engineering; Hiroshima University, 1-4-1 Kagamiyama; Higashi-Hiroshima 739-8527 Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry; Graduate School of Engineering; Hiroshima University, 1-4-1 Kagamiyama; Higashi-Hiroshima 739-8527 Japan
| |
Collapse
|
34
|
Nakaya T, Horiguchi B, Hino S, Sugikawa K, Funabashi H, Kuroda A, Ikeda A. Stabilisation of lipid membrane-incorporated porphyrin derivative aqueous solutions and their photodynamic activities. Photochem Photobiol Sci 2019; 18:459-466. [DOI: 10.1039/c8pp00350e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A porphyrin derivative which exists on the hydrophilic surface of the liposomes showed high photodynamic activity.
Collapse
Affiliation(s)
- Toshimi Nakaya
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Banri Horiguchi
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Shodai Hino
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Kouta Sugikawa
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Hisakage Funabashi
- Department of Molecular Biotechnology
- Graduate School of Advanced Sciences of Matter
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Akio Kuroda
- Department of Molecular Biotechnology
- Graduate School of Advanced Sciences of Matter
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
35
|
Antoku D, Sugikawa K, Ikeda A. Photodynamic Activity of Fullerene Derivatives Solubilized in Water by Natural-Product-Based Solubilizing Agents. Chemistry 2018; 25:1854-1865. [PMID: 30133024 DOI: 10.1002/chem.201803657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Water-soluble fullerenes prepared by using solubilizing agents based on natural products are promising photosensitizers for photodynamic therapy. Cyclodextrin, β-1,3-glucan, lysozyme, and liposomes can stably solubilize not only C60 and C70 , but also some C60 derivatives in water. To improve the solubilities of fullerenes, specific methods have been developed for each solubilizing agent. Water-soluble C60 and C70 exhibit photoinduced cytotoxicity under near-ultraviolet irradiation, but not at wavelengths over 600 nm, which are the appropriate wavelengths for photodynamic therapy. However, dyad complexes of solubilized C60 derivatives combined with light-harvesting antenna molecules improve the photoinduced cytotoxicities at wavelengths over 600 nm. Furthermore, controlling the fullerene and antenna molecule positions within the solubilizing agents affects the performance of the photosensitizer.
Collapse
Affiliation(s)
- Daiki Antoku
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Kouta Sugikawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| |
Collapse
|
36
|
Shimokawa R, Ueda M, Sugikawa K, Ikeda A. Control of the incorporation and release of guest molecules by photodimerization in liposomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:235-240. [DOI: 10.1016/j.jphotobiol.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
|
37
|
Derakhshi M, Ashkarran AA, Bahari A, Bonakdar S. Synergistic effect of shape-selective silver nanostructures decorating reduced graphene oxide nanoplatelets for enhanced cytotoxicity against breast cancer. NANOTECHNOLOGY 2018; 29:285102. [PMID: 29694332 DOI: 10.1088/1361-6528/aac011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene-based nanomaterials contain unique physicochemical properties and have been widely investigated due to a variety of applications particularly in cancer therapy. Furthermore, Ag has been known for its extensive historical background for biomedical applications. Therefore, conjugation of shape-selective Ag nanostructures with graphene may provide new horizons for pharmaceutical applications such as cancer treatments. Here we report on the synthesis of Ag nanoparticles (NPs)/reduced graphene oxide (AgNPs/RGO) conjugate nanomaterials containing various shapes of AgNPs by a novel and simple synthesis route using the deformation of dimethylformamide (DMF) as the reducing and coupling agent. The cytotoxicity and anticancer properties of AgNPs, AgNPs/RGO conjugate nanomaterials, RGO and graphene oxide (GO) were probed against MDA-MB-231 cancer and MCF-10A normal human breast cells in vitro. The AgNPs/RGO nanocomposites exhibited a strong anticancer effect by penetration and apoptosis in cancer cells as well as the lowest influence on the viability of normal cells. It was found that cancer cell viability not only depends on the geometry of Ag nanostructures but also on the interaction between AgNPs and RGO nanoplatelets. It is suggested that AgNPs/RGO conjugate nanomaterials with various shapes of AgNPs is a promising therapeutic platform for cancer therapy.
Collapse
Affiliation(s)
- Maryam Derakhshi
- Department of Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | | | | |
Collapse
|
38
|
Somiya M, Liu Q, Kuroda S. Current Progress of Virus-mimicking Nanocarriers for Drug Delivery. Nanotheranostics 2017; 1:415-429. [PMID: 29188175 PMCID: PMC5704007 DOI: 10.7150/ntno.21723] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Nanomedicines often involve the use of nanocarriers as a delivery system for drugs or genes for maximizing the therapeutic effect and/or minimizing the adverse effect. From drug administration to therapeutic activity, nanocarriers must evade the host's immune system, specifically and efficiently target and enter the cell, and release their payload into the cell cytoplasm by endosomal escape. These processes constitute the early infection stage of viruses. Viruses are a powerful natural nanomaterial for the efficient delivery of genetic information by sophisticated mechanisms. Over the past two decades, many virus-inspired nanocarriers have been generated to permit successful drug and gene delivery. In this review, we summarize the early infection machineries of viruses, of which the part has so far been utilized for delivery systems. Furthermore, we describe basics and applications of the bio-nanocapsule, which is a hepatitis B virus-mimicking nanoparticle harboring nearly all activities involved in the early infection machineries (i.e., stealth activity, targeting activity, cell entry activity, endosomal escaping activity).
Collapse
Affiliation(s)
| | | | - Shun'ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| |
Collapse
|
39
|
Fukuma S, Shimanouchi T, Hayashi K, Kimura Y. Calcein Leakage Behavior from Vesicles Induced by Protein–Vesicle Interaction: A Study by Surface Pressure–Area Isotherms. CHEM LETT 2017. [DOI: 10.1246/cl.170119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Saki Fukuma
- Department of Environmental Chemistry and Materials, Okayama University, Okayama 700-8530
| | - Toshinori Shimanouchi
- Department of Environmental Chemistry and Materials, Okayama University, Okayama 700-8530
| | - Keita Hayashi
- Department of Chemical Engineering, National Institute of Technology, Nara College, Nara 639-1080
| | - Yukitaka Kimura
- Department of Environmental Chemistry and Materials, Okayama University, Okayama 700-8530
| |
Collapse
|
40
|
Chattopadhyay S, Chen JY, Chen HW, Hu CMJ. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics 2017; 1:244-260. [PMID: 29071191 PMCID: PMC5646730 DOI: 10.7150/ntno.19796] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Synthetic nanoparticles play an increasingly significant role in vaccine design and development as many nanoparticle vaccines show improved safety and efficacy over conventional formulations. These nanoformulations are structurally similar to viruses, which are nanoscale pathogenic organisms that have served as a key selective pressure driving the evolution of our immune system. As a result, mechanisms behind the benefits of nanoparticle vaccines can often find analogue to the interaction dynamics between the immune system and viruses. This review covers the advances in vaccine nanotechnology with a perspective on the advantages of virus mimicry towards immune potentiation. It provides an overview to the different types of nanomaterials utilized for nanoparticle vaccine development, including functionalization strategies that bestow nanoparticles with virus-like features. As understanding of human immunity and vaccine mechanisms continue to evolve, recognizing the fundamental semblance between synthetic nanoparticles and viruses may offer an explanation for the superiority of nanoparticle vaccines over conventional vaccines and may spur new design rationales for future vaccine research. These nanoformulations are poised to provide solutions towards pressing and emerging human diseases.
Collapse
Affiliation(s)
- Saborni Chattopadhyay
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jui-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan
| |
Collapse
|
41
|
Devadasu VR, Alshammari TM, Aljofan M. Current advances in the utilization of nanotechnology for the diagnosis and treatment of diabetes. Int J Diabetes Dev Ctries 2017. [DOI: 10.1007/s13410-017-0558-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
42
|
Tsuchiya Y, Sugikawa K, Ueda M, Ikeda A. Incorporation of large guest molecules into liposomes via chemical reactions in lipid membranes. Org Biomol Chem 2017; 15:1786-1791. [PMID: 27918054 DOI: 10.1039/c6ob02343f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of hydrophobic guest molecules into lipid membranes by the exchange of the guest molecule from a cyclodextrin (CDx) complex to a liposome is limited to guest molecules that can be included in CDxs. To solve this problem, large guest molecules were incorporated into liposomes by chemical reactions of guest molecules in lipid membranes. Stable lipid-membrane-incorporated fullerene derivatives with large substituent(s) were prepared by Diels-Alder reactions in lipid membranes.
Collapse
Affiliation(s)
- Yuki Tsuchiya
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Kouta Sugikawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Masafumi Ueda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Atsushi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
43
|
Kotla NG, Chandrasekar B, Rooney P, Sivaraman G, Larrañaga A, Krishna KV, Pandit A, Rochev Y. Biomimetic Lipid-Based Nanosystems for Enhanced Dermal Delivery of Drugs and Bioactive Agents. ACS Biomater Sci Eng 2017; 3:1262-1272. [PMID: 33440514 DOI: 10.1021/acsbiomaterials.6b00681] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinical utility of conventional oral therapies is limited by their inability to deliver therapeutic molecules at the local or targeted site, causing a variety of side effects. Transdermal delivery has made a significant contribution in the management of skin diseases with enhanced therapeutic activities over the past two decades. In the modern era, various biomimetic and biocompatible polymer-lipid hybrid systems have been used to augment the transdermal delivery of therapeutics such as dermal patches, topical gels, iontophoresis, electroporation, sonophoresis, thermal ablation, microneedles, cavitational ultrasound, and nano or microlipid vesicular systems. Nevertheless, the stratum corneum still represents the main barrier to the delivery of vesicles into the skin. Lipid based formulations applied to the skin are at the center of attention and are anticipated to be increasingly functional as the skin offers many advantages for the direction of such systems. Accordingly, this review provides an overview of the development of conventional to advanced biomimetic lipid vesicles for skin delivery of a variety of therapeutics, with special emphasis on recent developments in this field including the development of transferosomes, niosomes, aquasomes, cubosomes, and other new generation lipoidal carriers.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Bhargavi Chandrasekar
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Peadar Rooney
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Aitor Larrañaga
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - K Vijaya Krishna
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland.,School of Chemistry, National University of Ireland Galway, Newcastle, Galway, Ireland.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation
| |
Collapse
|
44
|
Wang Y, Cheetham AG, Angacian G, Su H, Xie L, Cui H. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliv Rev 2017; 110-111:112-126. [PMID: 27370248 PMCID: PMC5199637 DOI: 10.1016/j.addr.2016.06.015] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Peptide-drug conjugates (PDCs) represent an important class of therapeutic agents that combine one or more drug molecules with a short peptide through a biodegradable linker. This prodrug strategy uniquely and specifically exploits the biological activities and self-assembling potential of small-molecule peptides to improve the treatment efficacy of medicinal compounds. We review here the recent progress in the design and synthesis of peptide-drug conjugates in the context of targeted drug delivery and cancer chemotherapy. We analyze carefully the key design features in choosing the peptide sequence and linker chemistry for the drug of interest, as well as the strategies to optimize the conjugate design. We highlight the recent progress in the design and synthesis of self-assembling peptide-drug amphiphiles to construct supramolecular nanomedicine and nanofiber hydrogels for both systemic and topical delivery of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Andrew G Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Garren Angacian
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Lisi Xie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, USA
| |
Collapse
|
45
|
HAMDOUN Z, EHSAN H. Aftermath of the Human Genome Project: an era of struggle and discovery. Turk J Biol 2017. [DOI: 10.3906/biy-1609-77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
46
|
Waghulde S, Naik P. An Overview of Therapeutic Applications. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over the last few years' great advances have been made on the development drug delivery systems for different purposes for targeting the diseased conditions. Novel drug delivery originates from polymers or associated with some devices is generally related with the emergence of novel characteristics. These changes are what eventually comprise the value of drug delivery system and Novel drug delivery system. Novel properties become existed without making new materials. Novel drug delivery system comparable to traditional system, following Targeted Drug Delivery System (TDDS) is also called targeting drug system. A new drug delivery system makes the drugs densely gather pathological-change structures, and has an improved healing effect and less toxic side effects. The drugs can improve the strength of pharmacological action and reduce the bad effect all over the body, for they release in the target organs.
Collapse
|
47
|
Chun JY, Weiss J, Gibis M, Choi MJ, Hong GP. Change of Multiple-Layered Phospholipid Vesicles Produced by Electrostatic Deposition of Polymers during Storage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2016. [DOI: 10.1515/ijfe-2016-0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, 1 wt% lecithin (–), chitosan (+), and λ-carrageenan (–) were prepared to manufacture multiple-layered liposomes with optimal formulations developed in a previous study by using layer-by-layer electrostatic deposition. We observed their particle size, ζ-potential, sedimentation behavior, and microstructure for 6 weeks. Multiple-layered liposomes were quenched with calcein to evaluate stability in terms of factors such as encapsulation efficiency and released amount of calcein. The particle size of multi-layered liposomes increased with storage periods and the ζ-potential of multiple-layered liposomes gained a neutral charge. Interestingly, negatively charged layered liposomes were smaller than positively charged layered liposomes and showed a lower polydispersity index. Moreover, the ζ-potential did not apparently change compared to positively charged layered liposomes. For the calcein release study, multiple-layered liposomes significantly sustained quenched calcein more than that observed using non-layered liposomes. This study showed that it was possible to increase the thickness of the liposome surface and to manipulate its charge using chitosan and λ-carrageenan through electrostatic deposition. Results showed that manufacturing negatively charged multiple-layer (over 4-layer) liposomes with charged biopolymer improved the physicochemical stability of liposomes.
Collapse
|
48
|
Akhtar N, Khan RA. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions'. Prog Lipid Res 2016; 64:192-230. [DOI: 10.1016/j.plipres.2016.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
|
49
|
Xing H, Li J, Xu W, Hwang K, Wu P, Yin Q, Li Z, Cheng J, Lu Y. The Effects of Spacer Length and Composition on Aptamer-Mediated Cell-Specific Targeting with Nanoscale PEGylated Liposomal Doxorubicin. Chembiochem 2016; 17:1111-7. [PMID: 27123758 DOI: 10.1002/cbic.201600092] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 12/27/2022]
Abstract
Aptamer-based targeted drug delivery systems have shown significant promise for clinical applications. Although much progress has been made in this area, it remains unclear how PEG coating would affect the selective binding of DNA aptamers and thus influence the overall targeting efficiency. To answer this question, we herein report a systematic investigation of the interactions between PEG and DNA aptamers on the surface of liposomes by using a series of nanoscale liposomal doxorubicin formulations with different DNA aptamer and PEG modifications. We investigated how the spatial size and composition of the spacer molecules affected the targeting ability of the liposome delivery system. We showed that a spacer of appropriate length was critical to overcome the shielding from surrounding PEG molecules in order to achieve the best targeting effect, regardless of the spacer composition. Our findings provide important guidelines for the design of aptamer-based targeted drug delivery systems.
Collapse
Affiliation(s)
- Hang Xing
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, 61801, USA
| | - Ji Li
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, 61801, USA
| | - Weidong Xu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kevin Hwang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, 61801, USA
| | - Peiwen Wu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, 61801, USA
| | - Qian Yin
- Material Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, 61801, USA
| | - Zhensheng Li
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, 61801, USA
| | - Jianjun Cheng
- Material Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
50
|
Purushothaman S, Cama J, Keyser UF. Dependence of norfloxacin diffusion across bilayers on lipid composition. SOFT MATTER 2016; 12:2135-2144. [PMID: 26768751 DOI: 10.1039/c5sm02371h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antibiotic resistance is a growing concern in medicine and raises the need to develop and design new drug molecules that can efficiently inhibit bacterial replication. Spurring the passive uptake of the drug molecules is an obvious solution. However our limited understanding of drug-membrane interactions due to the presence of an overwhelming variety of lipids constituting cellular membranes and the lack of facile tools to probe the bio-physical interactions between drugs and lipids imposes a major challenge towards developing new drug molecules that can enter the cell via passive diffusion. Here, we used a label-free micro-fluidic platform combined with giant unilamellar lipid vesicles to investigate the permeability of membranes containing mixtures of DOPE and DOPG in DOPC, leading to a label-free measurement of passive membrane-permeability of autofluorescent antibiotics. A fluoroquinolone drug, norfloxacin was used as a case study. Our results indicate that the diffusion of norfloxacin is strongly dependent on the lipid composition which is not expected from the traditional octanol-lipid partition co-efficient assay. The anionic lipid, DOPG, slows the diffusion process whereas the diffusion across liposomes containing DOPE increases with higher DOPE concentration. Our findings emphasise the need to investigate drug-membrane interactions with focus on the specificity of drugs to lipids for efficient drug delivery, drug encapsulation and targeted drug-delivery.
Collapse
Affiliation(s)
- Sowmya Purushothaman
- Biological and Soft Systems, Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | | | | |
Collapse
|