1
|
Veselinović AM, Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. Las Vegas algorithm in the prediction of intrinsic solubility of drug-like compounds. J Mol Graph Model 2025; 137:109004. [PMID: 40054303 DOI: 10.1016/j.jmgm.2025.109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
A randomized algorithm that always succeeds in producing a correct output, but whose running time depends on random events is known as a Las Vegas algorithm. In this study, the Las Vegas algorithm aimed to improve QSPR models of intrinsic solubility of drug-like compounds obtained by the Monte Carlo method. Corresponding computational experiments were carried out with the CORAL software. The developed QSPR models were rigorously validated using a battery of statistical parameters, demonstrating excellent predictive ability and robustness. It has been shown, that the Las Vegas algorithm is a suitable way to improve the predictive potential of models obtained with the Monte Carlo technique. Additionally, the study identified key molecular fragments derived from the SMILES notation descriptors that influence the intrinsic solubility (increase or decrease). Overall, this work underscores the efficacy of the Monte Carlo method optimization with applied Las Vegas algorithm in constructing conformation-independent QSPR models with strong predictive power for prediction of intrinsic solubility of drug-like compounds.
Collapse
Affiliation(s)
| | - Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156, Milano, Italy
| | - Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156, Milano, Italy
| | - Alessandra Roncaglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156, Milano, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156, Milano, Italy
| |
Collapse
|
2
|
Skrdla PJ, Browning A, Sekharan S, Gavartin J. Possible applications of the Polli dissolution mechanism: A case study using molecular dynamics simulation of Bupivacaine. J Pharm Sci 2025; 114:103697. [PMID: 39947615 DOI: 10.1016/j.xphs.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
The recently proposed Polli equation [Polli JE. A simple one-parameter percent dissolved versus time dissolution equation that accommodates sink and non-sink conditions via drug solubility and dissolution volume. AAPS J 2023;25:1] has been discussed in the context of its ability to fit experimental dissolution transients obtained under either sink or non-sink conditions. In this work, we reveal that the Polli equation describes a complex dissolution mechanism that combines classical first-order (Noyes-Whitney, N-W) kinetics with a second-order mechanism. Possible origins of the second-order process are discussed within the framework of small-molecule drug dissolution, after first probing the general utility of the higher-order rate term in more precisely fitting typical dissolution transients (for ibuprofen and ketoconazole) taken from the referenced work. Lastly, molecular dynamics (MD) simulations are performed using the prototypical drug, bupivacaine, that is shown to dimerize in aqueous solution under acidic conditions. Our findings point us to conclude that the Polli mechanism best describes cases where the drug forms dimers in solution at a rate comparable to that with which it dissolves (per the N-W mechanism), given non-sink conditions. Under sink conditions, the Polli mechanism is first-order in drug concentration.
Collapse
Affiliation(s)
- Peter J Skrdla
- Therapeutics Group, Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, NY 10036, USA; Materials Science, Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, NY 10036, USA; Department of Chemistry, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085 USA.
| | - Andrea Browning
- Materials Science, Schrödinger LLC, Suite 1300, 101 SW Main Street, Portland, OR 97204, USA
| | - Shiva Sekharan
- Materials Science, Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, NY 10036, USA
| | - Jacob Gavartin
- Materials Science, Schrödinger Inc., 1st Floor West, Davidson House, Forbury Square, Reading, RG1 3EU, United Kingdom
| |
Collapse
|
3
|
Petersen EF, Rasmussen CLM, Prabhala BK, Heidtmann CV, Nielsen P, Nielsen CU. The oral bioavailability of a pleuromutilin antibiotic candidate is increased after co-administration with the CYP3A4 inhibitor ritonavir and the P-gp inhibitor zosuquidar formulated as amorphous solid dispersions. Int J Pharm 2025; 673:125397. [PMID: 40010527 DOI: 10.1016/j.ijpharm.2025.125397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The aim of the present work was to investigate if CYP-mediated metabolism or P-gp recognition were the main limitations to developing oral formulations of the pleuromutilin drug candidate CVH-174, 16, and to subsequently increase the bioavailability through a formulation design based on amorphous solid dispersions (ASDs) containing either a CYP3A inhibitor or a P-gp inhibitor or both. ASDs were produced using HPMC-5 with ritonavir and zosuquidar as CYP3A4 and P-gp inhibitors, respectively, through freeze-drying. The ASDs were characterized using XRPD over time to assess the stability of the formulations. The oral bioavailability was investigated in Sprague-Dawley rats following either oral or intravenous (IV) dosing. The results showed that ritonavir could be supersaturated when formulated in an HPMC-5-based ASD, whereas HPMC-5-based ASDs could not increase the solubility of CVH-174 and zosuquidar. The ASD formulations remained stable for the period covering the experiments. In vivo IV dosing showed that CVH-174 was metabolized fast with a half-life of 0.15 h. The oral bioavailability of CVH-174 was low ∼ 1 % and could not be increased by co-dosing with a P-gp inhibitor alone, whereas the CYP3A4 inhibitor ritonavir did increase the bioavailability. The combined co-administration of ritonavir- and zosuquidar-containing ASDs surprisingly increased CVH-174 bioavailability to around 18 %. In conclusion, the oral bioavailability of CVH-174 can be significantly increased through a formulation design encompassing an inhibitor of the CYP3A4 enzyme, and this holds great potential for the future development of an inherent metabolic labile pleuromutilin drug class.
Collapse
Affiliation(s)
- Emilie Fynbo Petersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | - Bala Krishna Prabhala
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Christoffer Vogsen Heidtmann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
4
|
Akbar T, Gershkovich P, Stamatopoulos K, Gowland PA, Stolnik S, Butler J, Marciani L. Novel Use of Manganese Gluconate as a Marker for Visualization of Tablet Dissolution in the Fed Human Stomach Using Magnetic Resonance Imaging. Mol Pharm 2025; 22:594-598. [PMID: 39637400 PMCID: PMC11707739 DOI: 10.1021/acs.molpharmaceut.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Magnetic resonance imaging (MRI) of dry or solid materials in the gastrointestinal (GI) tract requires the use of contrast agents to enhance visualization of the dosage forms. In this study, we explore the novel use of manganese gluconate added to tablets. Manganese was released during tablet dissolution, generating a bright "halo" effect around the tablets, consistent with shortening of the longitudinal relaxation time of the bulk water surrounding the tablet. This is the first study to use MRI to directly image tablet dissolution in the fed stomach using a manganese gluconate contrast agent as dissolution marker.
Collapse
Affiliation(s)
- Tejal Akbar
- Nottingham
Digestive Diseases Centre and National Institute for Health Research
(NIHR), Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UH, U.K.
| | - Pavel Gershkovich
- School of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | | | - Penny A. Gowland
- Sir Peter
Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2QX, U.K.
| | - Snow Stolnik
- School of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - James Butler
- Drug Product
Development, GSK R&D, Ware, Hertfordshire SG12 0GX, U.K.
| | - Luca Marciani
- Nottingham
Digestive Diseases Centre and National Institute for Health Research
(NIHR), Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UH, U.K.
| |
Collapse
|
5
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
6
|
Zhao J, Hermans E, Sepassi K, Tistaert C, Bergström CAS, Ahmad M, Larsson P. Effect of Data Quality and Data Quantity on the Estimation of Intrinsic Solubility: Analysis Based on a Single-Source Data Set. Mol Pharm 2024; 21:5261-5271. [PMID: 39267585 PMCID: PMC11462503 DOI: 10.1021/acs.molpharmaceut.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Aqueous solubility is one of the most important physicochemical properties of drug molecules and a major driving force for oral drug absorption. To date, the performance of in silico models for the estimation of solubility for novel chemical space is limited. To investigate possible reasons and remedies for this, the Johnson and Johnson in-house aqueous solubility data with over 40,000 compounds was leveraged. All data were generated through the same high-throughput assay, providing a unique opportunity to explore the relationship between data quality, quantity, and model estimations. Six intrinsic solubility data sets with different sizes and noise levels were generated by making use of three different approaches: (i) inclusion or exclusion of amorphous solid residue, (ii) measured or experimental log D to identify the intrinsic solubility, and (iii) adopting or omitting a quality check process in the data processing workflow. A random forest regressor was trained on the data sets with three different sets of descriptors calculated from RDKit, ADMET predictor, or Mordred, and the performances were evaluated with nested cross-validation as well as ten refined test sets. The models confirm, as expected, that with the same data set size, high-quality data leads to better model performance; however, also, models trained with larger data sets containing analytical variability can give equally accurate estimations compared to models trained with small, clean, and diverse data sets. However, noise introduced by including the presence of amorphous solid postsolubility measurement in the training data set cannot be overcome by increasing data size, as they are introducing a biased systematic positive error in the data set, confirming the importance of critical data review. Finally, two top-performing models were tested on the first test set from the second solubility challenge, achieving RMSE values of 0.74 and 0.72 and log S ± 0.5 of 46 and 48%, respectively. These results demonstrated improved performance compared to those reported in the findings of the competition, highlighting that a single-source curated data set can enhance the prediction of intrinsic solubility.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Department
of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| | - Eline Hermans
- Pharmaceutical
& Material Sciences, Janssen Pharmaceutica
NV, B-2340 Beerse, Belgium
| | - Kia Sepassi
- Discovery
Pharmaceutics, Janssen Research & Development,
LLC, La Jolla, California 92121, United States
| | - Christophe Tistaert
- Pharmaceutical
& Material Sciences, Janssen Pharmaceutica
NV, B-2340 Beerse, Belgium
| | | | - Mazen Ahmad
- In
Silico Discovery, Janssen Pharmaceutica
NV, B-2340 Beerse, Belgium
| | - Per Larsson
- Department
of Pharmacy, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
7
|
Yadav H, Maiti S. Poly(allylamine)-adorned heptylcarboxymethyl galactomannan nanocarriers of canagliflozin for controlling type-2 diabetes: Optimization by Box-Behnken design and in vivo performance. Int J Biol Macromol 2024; 277:134253. [PMID: 39084426 DOI: 10.1016/j.ijbiomac.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In the past three decades, the prevalence of type-2 diabetes has arisen dramatically in countries of all income levels. A novel, most effective nanotechnology-based strategy may reduce the prevalence of diabetes. Recently, the shell-crosslinked polysaccharide-based micellar nanocarriers (MNCs) have shown great promise in terms of stability, controlled drug release, and improved in vivo performance. In this study, heptyl carboxymethyl guar gum was synthesized and characterized by ATR-FTIR, 1HNMR spectroscopy, surface charge, critical micelle concentration (23.9 μg/mL), and cytotoxicity analysis. Box-Behnken design was used to optimize the diameter, zeta potential, drug entrapment efficiency (DEE), and drug release characteristics of poly (allylamine)-crosslinked MNCs containing canagliflozin. The optimized MNCs revealed spherical morphology under TEM and had 149.3 nm diameter (PDI 21.2 %), +53.8 mV zeta potential, and 84 % DEE. The MNCs released about 63 % of the drug in 12 h under varying pH of the simulated gastrointestinal fluid. DSC and x-ray analyses suggested amorphous dispersion of drugs in the MNCs. CAM assay demonstrated the biocompatibility of the MNCs. The MNCs showed hemolysis of <1 %, 85 % mucin adsorption, and stability over three months. The MNCs demonstrated excellent anti-diabetic efficacy in streptozotocin-nicotinamide-induced diabetic rats, continuously lowering blood glucose levels up to 12 h.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India.
| |
Collapse
|
8
|
Gao L, Li X, Yan X, Zhang X. Ethylenediamine Salt Enhances the Solubility and Dissolution of Flurbiprofen. ChemistryOpen 2024; 13:e202300262. [PMID: 38214691 PMCID: PMC11164022 DOI: 10.1002/open.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Drugs that are poorly soluble in water are difficult to absorb orally, resulting in low bioavailability. Flurbiprofen (FLU) is an arylpropionic acid nonsteroidal anti-inflammatory drug belonging to BCS class II, with low water solubility. In this study, a novel flurbiprofen-ethylenediamine salt (FLU-EDA) was successfully prepared via solvent crystallization. Its crystal structure was determined via single-crystal X-ray diffraction (SXRD). Further, the physicochemical properties of FLU-EDA salt were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR). The solubility and intrinsic dissolution rate (IDR) of FLU-EDA salt in water were investigated. The results showed that compared with FLU, the solubility and IDR of FLU-EDA salt increased by 57-fold and 32-fold, respectively. This indicates that FLU-EDA salt can significantly enhance the solubility and dissolution rate of flurbiprofen in water. This study provides basic data and theory for the development of new formulations of flurbiprofen.
Collapse
Affiliation(s)
- Lei Gao
- College of Food and Pharmaceutical EngineeringWuzhou University543000WuzhouP. R. China
| | - Xiaojie Li
- College of Food and Pharmaceutical EngineeringWuzhou University543000WuzhouP. R. China
| | - Xiaolin Yan
- College of Food and Pharmaceutical EngineeringWuzhou University543000WuzhouP. R. China
| | - Xianrui Zhang
- College of Food and Pharmaceutical EngineeringWuzhou University543000WuzhouP. R. China
| |
Collapse
|
9
|
Zhang SY, Ong WSY, Subelzu N, Gleeson JP. Validation of a Caco-2 microfluidic Chip model for predicting intestinal absorption of BCS Class I-IV drugs. Int J Pharm 2024; 656:124089. [PMID: 38599444 DOI: 10.1016/j.ijpharm.2024.124089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Oral delivery is considered the most patient preferred route of drug administration, however, the drug must be sufficiently soluble and permeable to successfully formulate an oral formulation. There have been advancements in the development of more predictive solubility and dissolution tools, but the tools that has been developed for permeability assays have not been validated as extensively as the gold-standard Caco-2 Transwell assay. Here, we evaluated Caco-2 intestinal permeability assay in Transwells and a commercially available microfluidic Chip using 19 representative Biopharmaceutics Classification System (BCS) Class I-IV compounds. For each selected compound, we performed a comprehensive viability test, quantified its apparent permeability (Papp), and established an in vitro in vivo correlation (IVIVC) to the human fraction absorbed (fa) in both culture conditions. Permeability differences were observed across the models as demonstrated by antipyrine (Transwell Papp: 38.5 ± 6.1 × 10-8 cm/s vs Chip Papp: 32.9 ± 11.3 × 10-8 cm/s) and nadolol (Transwell Papp: 0.6 ± 0.1 × 10-7 cm/s vs Chip Papp: 3 ± 1.2 × 10-7 cm/s). The in vitro in vivo correlation (IVIVC; Papp vs. fa) of the Transwell model (r2 = 0.59-0.83) was similar to the Chip model (r2 = 0.41-0.79), highlighting similar levels of predictivity. Comparing to historical data, our Chip Papp data was more closely aligned to native tissues assessed in Ussing chambers. This is the first study to comprehensively validate a commercial Gut-on-a-Chip model as a predictive tool for assessing oral absorption to further reduce our reliance on animal models.
Collapse
Affiliation(s)
- Stephanie Y Zhang
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Whitney S Y Ong
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Natalia Subelzu
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - John P Gleeson
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
10
|
Mehrdadi S. Lipid-Based Nanoparticles as Oral Drug Delivery Systems: Overcoming Poor Gastrointestinal Absorption and Enhancing Bioavailability of Peptide and Protein Therapeutics. Adv Pharm Bull 2024; 14:48-66. [PMID: 38585451 PMCID: PMC10997935 DOI: 10.34172/apb.2024.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Delivery and formulation of oral peptide and protein therapeutics have always been a challenge for the pharmaceutical industry. The oral bioavailability of peptide and protein therapeutics mainly relies on their gastrointestinal solubility and permeability which are affected by their poor membrane penetration, high molecular weight and proteolytic (chemical and enzymatic) degradation resulting in limited delivery and therapeutic efficacy. The present review article highlights the challenges and limitations of oral delivery of peptide and protein therapeutics focusing on the application, potential and importance of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as lipid-based drug delivery systems (LBDDSs) and their advantages and drawbacks. LBDDSs, due to their lipid-based matrix can encapsulate both lipophilic and hydrophilic drugs, and by reducing the first-pass effect and avoiding proteolytic degradation offer improved drug stability, dissolution rate, absorption, bioavailability and controlled drug release. Furthermore, their small size, high surface area and surface modification increase their mucosal adhesion, tissue-targeted distribution, physiological function and half-life. Properties such as simple preparation, high-scale manufacturing, biodegradability, biocompatibility, prolonged half-life, lower toxicity, lower adverse effects, lipid-based structure, higher drug encapsulation rate and various drug release profile compared to other similar carrier systems makes LBDDSs a promising drug delivery system (DDS). Nevertheless, undesired physicochemical features of peptide and protein drug development and discovery such as plasma stability, membrane permeability and circulation half-life remain a serious challenge which should be addressed in future.
Collapse
Affiliation(s)
- Soheil Mehrdadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
11
|
Raparla S, Lampa C, Li X, Jasti BR. An empirical predictive model for determining the aqueous solubility of BCS class IV drugs in amorphous solid dispersions. Drug Dev Ind Pharm 2024; 50:236-247. [PMID: 38318700 DOI: 10.1080/03639045.2024.2315477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
CONTEXT Determining solubility of drugs is laborious and time-consuming process that may not yield meaningful results. Amorphous solid dispersion (ASD) is a widely used solubility enhancement technique. Predictive models could streamline this process and accelerate the development of oral drugs with improved aqueous solubilities. OBJECTIVE This study aimed to develop a predictive model to estimate the solubility of a compound from the ASDs in polymer matrices. METHODS ASDs of model drugs (acetazolamide, chlorothiazide, furosemide, hydrochlorothiazide, sulfamethoxazole) with model polymers (PVP, PVPVA, HPMC E5, Soluplus) and a surfactant (TPGS) were prepared using hotmelt process. The prepared ASDs were characterized using DSC, FTIR, and XRD. The aqueous solubility of the model drugs was determined using shake-flask method. Multiple linear regression was used to develop a predictive model to determine aqueous solubility using the molecular descriptors of the drug and polymer as predictor variables. The model was validated using Leave-One-Out Cross-Validation. RESULTS The ASDs' drug components were identified as amorphous via DSC and XRD Studies. There were no significant chemical interactions between the model drugs and the polymers based on FTIR studies. The ASDs showed a significant (p < 0.05) improvement in solubility, ranging from a 3-fold to 118-fold, compared with the pure drug. The developed empirical model predicted the solubility of the model drugs from the ASDs containing model polymer matrices with an accuracy greater than 80%. CONCLUSION The developed empirical model demonstrated robustness and predicted the aqueous solubility of model drugs from the ASDs of model polymer matrices with an accuracy greater than 80%.
Collapse
Affiliation(s)
- Sridivya Raparla
- Department of Medicinal chemistry and pharmaceutics, Thomas J. long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Charina Lampa
- Department of Medicinal chemistry and pharmaceutics, Thomas J. long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Xiaoling Li
- Department of Medicinal chemistry and pharmaceutics, Thomas J. long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - Bhaskara R Jasti
- Department of Medicinal chemistry and pharmaceutics, Thomas J. long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| |
Collapse
|
12
|
Bergillos-Ruiz M, Kumar A, Hodnett BK, Davern P, Rasmuson Å, Hudson SP. Impact of carrier particle surface properties on drug nanoparticle attachment. Int J Pharm 2024; 651:123743. [PMID: 38151103 DOI: 10.1016/j.ijpharm.2023.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
HYPOTHESIS The stabilization and isolation to dryness of drug nanoparticles has always been a challenge for nano-medicine production. In the past, the use of montmorillonite (MMT) clay carrier particles to adsorb drug nanoparticles and maintain their high surface area to volume ratio after isolation to dryness has proven to be effective. We hypothesise that the distribution of hydrophilic and hydrophobic patches on the clay's surface as well as its porosity/roughness, hinder the agglomeration of the drug nanoparticles to the extent that they retain their high surface area to volume ratio and display fast dissolution profiles. EXPERIMENTS In this work, the distribution of hydrophobicity and hydrophilicity, and the porosity/roughness, of the surface of selected silica carrier particles were varied and the impact of these variations on drug nanoparticle attachment to the carrier particle and subsequent dissolution profiles was studied. FINDINGS The fastest dissolution profiles at the highest drug nanoparticle loadings were obtained with a periodic mesoporous organosilane carrier particle which had a homogeneous distribution of hydrophobic and hydrophilic surface properties. Carrier particles with rough/porous surfaces and a combination of hydrophobic and hydrophilic patches resulted in nanocomposite powders with faster dissolution behaviour than carrier particles with predominantly either a hydrophobic or hydrophilic surface, or with non-porous/smoother surfaces.
Collapse
Affiliation(s)
- Marta Bergillos-Ruiz
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Ajay Kumar
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Benjamin K Hodnett
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Peter Davern
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Åke Rasmuson
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland; Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Sarah P Hudson
- SSPC the Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
13
|
Li Y, Yin H, Wu C, He J, Wang C, Ren B, Wang H, Geng D, Zhang Y, Zhao L. Preparation and in vivo evaluation of an intravenous emulsion loaded with an aprepitant-phospholipid complex. Drug Deliv 2023; 30:2183834. [PMID: 36843571 PMCID: PMC9979997 DOI: 10.1080/10717544.2023.2183834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
In present, there was no detailed report on the formulation optimization and quality evaluation of aprepitant (APT) injectable lipid emulsion (APT-IE). The aim of the present investigation was to prepare and evaluate its properties of APT-IE loaded with an APT phospholipid complex (APT-PC) in vitro and in vivo. APT-PC was obtained by solvent evaporation with APT and phospholipids, then analyzed by X-ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry. Lipid emulsions are a new formulation that can reduce side effects and improve drug loading.APT-IE prepared by High-pressure homogenization and optimized by response surface methodology (RSM). The proportion of sodium oleate, poloxamer 188 and soybean oil were selected as variables for the optimization. The optimal formulation of ATP-IE had the following characteristics: particle size, 82.83 ± 1.89 nm; polydispersity index, 0.243 ± 0.008; zeta potential, -59.0 ± 2.54 mV; encapsulation efficiency, 98.84%±1.43%; drug loading, 7.08 ± 0.16 mg/mL; and osmotic pressure, 301 ± 2.15 mOsmol/kg. Transmission electron microscopy images indicated that the particle diameter of APT-IE was approximately 100 nm, with a morphology of spheroidal or spherical. APT-IE exhibited sufficient stability after storage at 4 ± 2 °C for more than 6 months. The results of the pharmacokinetic study demonstrated that APT-IE had the advantages of better safety, higher bioavailability, and obvious liver targeting than APT solution (APT-SL). The area under the curve (AUC) of APT-IE was 3-fold enhanced compared with APT-SL. The targeted enhancement multiple of APT-IE to liver tissue was greater than that of APT-SL. These results suggested that APT-IE has broad clinical application and industrial production potential.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacy, Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Hong Yin
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Chensi Wu
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Jia He
- Department of Pharmacy, Hohhot Hospital of Traditional Chinese Medicine and Mongolian Medicine, Hohhot, China
| | - Chunyan Wang
- Department of Pharmacy, Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Bo Ren
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Heping Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Dandan Geng
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Yirong Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Ligang Zhao
- School of Pharmacy, North China University of Science and Technology, Tangshan, China,Tangshan Key Lab of Novel Preparations and Drug Release Technology, Tangshan, China,CONTACT Ligang Zhao School of Pharmacy, North China University of Science and Technology, 21 Bohai Road of Caofeidian, Tangshan, Hebei063210, China
| |
Collapse
|
14
|
Caminero Gomes Soares A, Marques Sousa GH, Calil RL, Goulart Trossini GH. Absorption matters: A closer look at popular oral bioavailability rules for drug approvals. Mol Inform 2023; 42:e202300115. [PMID: 37550251 DOI: 10.1002/minf.202300115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
This study examines how two popular drug-likeness concepts used in early development, Lipinski Rule of Five (Ro5) and Veber's Rules, possibly affected drug profiles of FDA approved drugs since 1997. Our findings suggest that when all criteria are applied, relevant compounds may be excluded, addressing the harmfulness of blindly employing these rules. Of all oral drugs in the period used for this analysis, around 66 % conform to the RO5 and 85 % to Veber's Rules. Molecular Weight and calculated LogP showed low consistent values over time, apart from being the two least followed rules, challenging their relevance. On the other hand, hydrogen bond related rules and the number of rotatable bonds are amongst the most followed criteria and show exceptional consistency over time. Furthermore, our analysis indicates that topological polar surface area and total count of hydrogen bonds cannot be used as interchangeable parameters, contrary to the original proposal. This research enhances the comprehension of drug profiles that were FDA approved in the post-Lipinski period. Medicinal chemists could utilize these heuristics as a limited guide to direct their exploration of the oral bioavailability chemical space, but they must also steer the wheel to break these rules and explore different regions when necessary.
Collapse
Affiliation(s)
- Artur Caminero Gomes Soares
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Gustavo Henrique Marques Sousa
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Raisa Ludmila Calil
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Gustavo Henrique Goulart Trossini
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Roy P, Chakraborty S, Pandey N, Kumari N, Chougule S, Chatterjee A, Chatterjee K, Mandal P, Gorain B, Dhotre AV, Bansal AK, Ghosh A. Study on Sulfamethoxazole-Piperazine Salt: A Mechanistic Insight into Simultaneous Improvement of Physicochemical Properties. Mol Pharm 2023; 20:5226-5239. [PMID: 37677085 DOI: 10.1021/acs.molpharmaceut.3c00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Multidrug salts represent more than one drug in a crystal lattice and thus could be used to deliver multiple drugs in a single dose. It showcases unique physicochemical properties in comparison to individual components, which could lead to improved efficacy and therapeutic synergism. This study presents the preparation and scale-up of sulfamethoxazole-piperazine salt, which has been thoroughly characterized by X-ray diffraction and thermal and spectroscopic analyses. A detailed mechanistic study investigates the impact of piperazine on the microenvironmental pH of the salt and its effect on the speciation profile, solubility, dissolution, and diffusion profile. Also, the improvement in the physicochemical properties of sulfamethoxazole due to the formation of salt was explored with lattice energy contributions. A greater ionization of sulfamethoxazole (due to pH changes contributed by piperazine) and lesser lattice energy of sulfamethoxazole-piperazine contributed to improved solubility, dissolution, and permeability. Moreover, the prepared salt addresses the stability issues of piperazine and exhibits good stability behavior under accelerated stability conditions. Due to the improvement of physicochemical properties, the sulfamethoxazole-piperazine salt demonstrates better pharmacokinetic parameters in comparison to sulfamethoxazole and provides a strong suggestion for the reduction of dose. The following study suggests that multidrug salts can concurrently enhance the physicochemical properties of drugs and present themselves as improved fixed-dose combinations.
Collapse
Affiliation(s)
- Parag Roy
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Soumalya Chakraborty
- Solid State Pharmaceutics Lab, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Mohali 160062, Punjab, India
| | - Noopur Pandey
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Nimmy Kumari
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sourav Chougule
- Solid State Pharmaceutics Lab, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Mohali 160062, Punjab, India
| | - Amrita Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Pallab Mandal
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ananta V Dhotre
- College of Dairy Technology, Warud, Maharashtra Animal and Fishery Sciences University, Pusad, Nagpur 445204, Maharashtra, India
| | - Arvind Kumar Bansal
- Solid State Pharmaceutics Lab, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Mohali 160062, Punjab, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
16
|
Stienstra CMK, Ieritano C, Haack A, Hopkins WS. Bridging the Gap between Differential Mobility, Log S, and Log P Using Machine Learning and SHAP Analysis. Anal Chem 2023. [PMID: 37384824 DOI: 10.1021/acs.analchem.3c00921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Aqueous solubility, log S, and the water-octanol partition coefficient, log P, are physicochemical properties that are used to screen the viability of drug candidates and to estimate mass transport in the environment. In this work, differential mobility spectrometry (DMS) experiments performed in microsolvating environments are used to train machine learning (ML) frameworks that predict the log S and log P of various molecule classes. In lieu of a consistent source of experimentally measured log S and log P values, the OPERA package was used to evaluate the aqueous solubility and hydrophobicity of 333 analytes. With ion mobility/DMS data (e.g., CCS, dispersion curves) as input, we used ML regressors and ensemble stacking to derive relationships with a high degree of explainability, as assessed via SHapley Additive exPlanations (SHAP) analysis. The DMS-based regression models returned scores of R2 = 0.67 and RMSE = 1.03 ± 0.10 for log S predictions and R2 = 0.67 and RMSE = 1.20 ± 0.10 for log P after 5-fold random cross-validation. SHAP analysis reveals that the regressors strongly weighted gas-phase clustering in log P correlations. The addition of structural descriptors (e.g., # of aromatic carbons) improved log S predictions to yield RMSE = 0.84 ± 0.07 and R2 = 0.78. Similarly, log P predictions using the same data resulted in an RMSE of 0.83 ± 0.04 and R2 = 0.84. The SHAP analysis of log P models highlights the need for additional experimental parameters describing hydrophobic interactions. These results were achieved with a smaller dataset (333 instances) and minimal structural correlation compared to purely structure-based models, underscoring the value of employing DMS data in predictive models.
Collapse
Affiliation(s)
- Cailum M K Stienstra
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Christian Ieritano
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Alexander Haack
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
- Centre for Eye and Vision Research, Hong Kong Science Park, New Territories 999077, Hong Kong
| |
Collapse
|
17
|
Sato Y, Moritani T, Inoue R, Takeuchi H. Preparation and evaluation of sustained release formulation of PLGA using a new injection system based on ink-jet injection technology. Int J Pharm 2023; 635:122731. [PMID: 36822339 DOI: 10.1016/j.ijpharm.2023.122731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
We developed a method for the preparation of PLGA particles exhibiting long-term sustained-release of entrapped drugs. The fine droplet drying (FDD) technology using a new injection system based on ink-jet injection technology was adapted as the preparation method. PLGA microspheres containing TRITC-dextran, acetaminophen, and albumin as model drugs were prepared by the FDD technology. The resultant microspheres were uniform in size, with average particle sizes ranging from 16.3 to 33.0 μm and SPAN factors ranging from 0.49 to 0.77. The encapsulation efficiency of drugs showed high values ranging from 75 to 99 wt% of the total amount of water-soluble drug contained in the particles. In an investigation of the optimal operation conditions of the FDD technology, the dew point temperature of the dryer air stream was found to be an important factor for controlling the initial burst of the prepared particles. The TRITC-dextran-containing PLGA microspheres were confirmed to exhibit long-term sustained release for about 90 days, and the mechanism was found to be PLGA degradation rate-limiting. Based on these results, we concluded that long-term sustained-released PLGA particles can be prepared by using FDD technology under a suitable drying condition for controlling the initial burst.
Collapse
Affiliation(s)
- Yuichi Sato
- Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, Gifu 502-8585, Japan; RICOH Co., Ltd., Kanagawa 243-0460, Japan.
| | | | | | - Hirofumi Takeuchi
- Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| |
Collapse
|
18
|
Mahmood T, Sarfraz RM, Ismail A, Ali M, Khan AR. Pharmaceutical Methods for Enhancing the Dissolution of Poorly Water-Soluble Drugs. Assay Drug Dev Technol 2023; 21:65-79. [PMID: 36917562 DOI: 10.1089/adt.2022.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Low water solubility is the main hindrance in the growth of pharmaceutical industry. Approximately 90% of newer molecules under investigation for drugs and 40% of novel drugs have been reported to have low water solubility. The key and thought-provoking task for the formulation scientists is the development of novel techniques to overcome the solubility-related issues of these drugs. The main intention of present review is to depict the conventional and novel strategies to overcome the solubility-related problems of Biopharmaceutical Classification System Class-II drugs. More than 100 articles published in the last 5 years were reviewed to have a look at the strategies used for solubility enhancement. pH modification, salt forms, amorphous forms, surfactant solubilization, cosolvency, solid dispersions, inclusion complexation, polymeric micelles, crystals, size reduction, nanonization, proliposomes, liposomes, solid lipid nanoparticles, microemulsions, and self-emulsifying drug delivery systems are the various techniques to yield better bioavailability of poorly soluble drugs. The selection of solubility enhancement technique is based on the dosage form and physiochemical characteristics of drug molecules.
Collapse
Affiliation(s)
- Tahir Mahmood
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Rai M Sarfraz
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Asmara Ismail
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| | - Muhammad Ali
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| | - Abdur Rauf Khan
- Specialized Healthcare and Medical Education Department, Government of Punjab, Lahore, Pakistan
| |
Collapse
|
19
|
Franco YL, Da Silva L, Charbe N, Kinvig H, Kim S, Cristofoletti R. Integrating Forward and Reverse Translation in PBPK Modeling to Predict Food Effect on Oral Absorption of Weakly Basic Drugs. Pharm Res 2023; 40:405-418. [PMID: 36788156 DOI: 10.1007/s11095-023-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Ketoconazole and posaconazole are two weakly basic broad-spectrum antifungals classified as Biopharmaceutics Classification System class II drugs, indicating that they are highly permeable, but exhibit poor solubility. As a result, oral bioavailability and clinical efficacy can be impacted by the formulation performance in the gastrointestinal system. In this work, we have leveraged in vitro biopharmaceutics and clinical data available in the literature to build physiologically based pharmacokinetic (PBPK) models for ketoconazole and posaconazole, to determine the suitability of forward in vitro-in vivo translation for characterization of in vivo drug precipitation, and to predict food effect. METHODS A stepwise modeling approach was utilized to derive key parameters related to absorption, such as drug solubility, dissolution, and precipitation kinetics from in vitro data. These parameters were then integrated into PBPK models for the simulation of ketoconazole and posaconazole plasma concentrations in the fasted and fed states. RESULTS Forward in vitro-in vivo translation of intestinal precipitation kinetics for both model drugs resulted in poor predictions of PK profiles. Therefore, a reverse translation approach was applied, based on limited fitting of precipitation-related parameters to clinical data. Subsequent simulations for ketoconazole and posaconazole demonstrated that fasted and fed state PK profiles for both drugs were adequately recapitulated. CONCLUSION The two examples presented in this paper show how middle-out modeling approaches can be used to predict the magnitude and direction of food effects provided the model is verified on fasted state PK data.
Collapse
Affiliation(s)
- Yesenia L Franco
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Lais Da Silva
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Nitin Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Hannah Kinvig
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Soyoung Kim
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA.
| |
Collapse
|
20
|
Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS NANO 2023; 17:27-50. [PMID: 36534488 DOI: 10.1021/acsnano.2c04716] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Untethered miniature robots enable targeted delivery and therapy deep inside the gastrointestinal tract in a minimally invasive manner. By combining actuation systems and imaging tools, significant progress has been made toward the development of functional microrobots. These robots can be actuated by external fields and fuels while featuring real-time tracking feedback toward certain regions and can perform the therapeutic process by rational exertion of the local environment of the gastrointestinal tract (e.g., pH, enzyme). Compared with conventional surgical tools, such as endoscopic devices and catheters, miniature robots feature minimally invasive diagnosis and treatment, multifunctionality, high safety and adaptivity, embodied intelligence, and easy access to tortuous and narrow lumens. In addition, the active motion of microrobots enhances local penetration and retention of drugs in tissues compared to common passive oral drug delivery. Based on the dissimilar microenvironments in the various sections of the gastrointestinal tract, this review introduces the advances of miniature robots for minimally invasive targeted delivery and therapy of diseases along the gastrointestinal tract. The imaging modalities for the tracking and their application scenarios are also discussed. We finally evaluate the challenges and barriers that retard their applications and hint on future research directions in this field.
Collapse
Affiliation(s)
- Yun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen518036, P.R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| |
Collapse
|
21
|
Hassan F, Sher M, Hussain MA, Saadia M, Naeem-Ul-Hassan M, Rehman MFU, Haseeb MT, Bukhari SNA, Abbas A, Peng B, Kanwal F, Deng H. Pharmaceutical and Pharmacological Evaluation of Amoxicillin after Solubility Enhancement Using the Spray Drying Technique. ACS OMEGA 2022; 7:48506-48519. [PMID: 36591136 PMCID: PMC9798760 DOI: 10.1021/acsomega.2c06662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The dose frequency of drugs belonging to class II is usually high and associated with harmful effects on the body. The study aimed to enhance the solubility of the poorly water-soluble drug amoxicillin (AM) by the solid dispersion (SD) technique. Six different SDs of AM, F1-F6, were prepared by the spray drying technique using two other carriers, HP-β-CD (F1-F3) and HPMC (F4-F6), in 1:1, 1:2, and 1:3 drug-to-polymer ratios. These SDs were analyzed to determine their practical yield, drug content, and aqueous solubility using analytical techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and powder X-ray diffraction. The effect of polymer concentration on SDs was determined using aqueous solubility, in vitro dissolution, and in vivo studies. The results showed no drug-polymer interactions in SDs. Solubility studies showed that SDs based on the drug-to-polymer ratio of 1:2 (F2 and F5) were highly soluble in water compared to those with ratios of 1:1 and 1:3. In vitro dissolution studies also showed that SDs with a ratio of 1:2 released the highest drug concentration from both polymeric systems. The SDs based on HPMC confirmed the more sustained release of the drug as compared to that of HP-β-CD. All the SDs were observed as stable and amorphous, with a smooth spherical surface. In vivo studies reveal the enhancement of pharmacokinetics parameters as compared to standard AM. Hence, it is confirmed that spray drying is an excellent technique to enhance the solubility of AM in an aqueous medium. This may contribute to the enhancement of the pharmacokinetic behaviors of SDs.
Collapse
Affiliation(s)
- Faiza Hassan
- Institute
of Chemistry, University of Sargodha, Sargodha40100, Pakistan
| | - Muhammad Sher
- Institute
of Chemistry, University of Sargodha, Sargodha40100, Pakistan
| | | | - Mubshara Saadia
- Department
of Chemistry, Ghazi University, Dera Ghazi Khan32200, Pakistan
| | | | | | | | - Syed Nasir Abbas Bukhari
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aliouf2014, Saudi Arabia
| | - Azhar Abbas
- Institute
of Chemistry, University of Sargodha, Sargodha40100, Pakistan
- Department
of Cardiothoracic Surgery, The Second Affiliated
Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong510006, China
| | - Bo Peng
- Government
Ambala Muslim Graduate College, Sargodha40100, Pakistan
| | - Fariha Kanwal
- School
of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai201620, China
| | - Huibiao Deng
- Department
of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200127, China
| |
Collapse
|
22
|
Wu J, Wang J, Wu Z, Zhang S, Deng Y, Kang Y, Cao D, Hsieh CY, Hou T. ALipSol: An Attention-Driven Mixture-of-Experts Model for Lipophilicity and Solubility Prediction. J Chem Inf Model 2022; 62:5975-5987. [PMID: 36417544 DOI: 10.1021/acs.jcim.2c01290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lipophilicity (logD) and aqueous solubility (logSw) play a central role in drug development. The accurate prediction of these properties remains to be solved due to data scarcity. Current methodologies neglect the intrinsic relationships between physicochemical properties and usually ignore the ionization effects. Here, we propose an attention-driven mixture-of-experts (MoE) model named ALipSol, which explicitly reproduces the hierarchy of task relationships. We adopt the principle of divide-and-conquer by breaking down the complex end point (logD or logSw) into simpler ones (acidic pKa, basic pKa, and logP) and allocating a specific expert network for each subproblem. Subsequently, we implement transfer learning to extract knowledge from related tasks, thus alleviating the dilemma of limited data. Additionally, we substitute the gating network with an attention mechanism to better capture the dynamic task relationships on a per-example basis. We adopt local fine-tuning and consensus prediction to further boost model performance. Extensive evaluation experiments verify the success of the ALipSol model, which achieves RMSE improvement of 8.04%, 2.49%, 8.57%, 12.8%, and 8.60% on the Lipop, ESOL, AqSolDB, external logD, and external logS data sets, respectively, compared with Attentive FP and the state-of-the-art in silico tools. In particular, our model yields more significant advantages (Welch's t-test) for small training data, implying its high robustness and generalizability. The interpretability analysis proves that the atom contributions learned by ALipSol are more reasonable compared with the vanilla Attentive FP, and the substitution effects in benzene derivatives agreed well with empirical constants, revealing the potential of our model to extract useful patterns from data and provide guidance for lead optimization.
Collapse
Affiliation(s)
- Jialu Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058Zhejiang, P. R. China.,CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018Zhejiang, P. R. China
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058Zhejiang, P. R. China.,CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018Zhejiang, P. R. China
| | - Shengyu Zhang
- Tencent Quantum Laboratory, Tencent, Shenzhen, 518057Guangdong, P. R. China
| | - Yafeng Deng
- CarbonSilicon AI Technology Co., Ltd, Hangzhou, 310018Zhejiang, P. R. China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058Zhejiang, P. R. China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004Hunan, P. R. China
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058Zhejiang, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058Zhejiang, P. R. China
| |
Collapse
|
23
|
Oja M, Sild S, Piir G, Maran U. Intrinsic Aqueous Solubility: Mechanistically Transparent Data-Driven Modeling of Drug Substances. Pharmaceutics 2022; 14:pharmaceutics14102248. [PMID: 36297685 PMCID: PMC9611068 DOI: 10.3390/pharmaceutics14102248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Intrinsic aqueous solubility is a foundational property for understanding the chemical, technological, pharmaceutical, and environmental behavior of drug substances. Despite years of solubility research, molecular structure-based prediction of the intrinsic aqueous solubility of drug substances is still under active investigation. This paper describes the authors’ systematic data-driven modelling in which two fit-for-purpose training data sets for intrinsic aqueous solubility were collected and curated, and three quantitative structure–property relationships were derived to make predictions for the most recent solubility challenge. All three models perform well individually, while being mechanistically transparent and easy to understand. Molecular descriptors involved in the models are related to the following key steps in the solubility process: dissociation of the molecule from the crystal, formation of a cavity in the solvent, and insertion of the molecule into the solvent. A consensus modeling approach with these models remarkably improved prediction capability and reduced the number of strong outliers by more than two times. The performance and outliers of the second solubility challenge predictions were analyzed retrospectively. All developed models have been published in the QsarDB.org repository according to FAIR principles and can be used without restrictions for exploring, downloading, and making predictions.
Collapse
Affiliation(s)
| | | | | | - Uko Maran
- Correspondence: ; Tel.: +372-7-375-254; Fax: +372-7-375-264
| |
Collapse
|
24
|
Okezue MA, Byrn SJ, Clase KL. Determining the solubilities for benzoate, nicotinate, hydrochloride, and malonate salts of bedaquiline. Int J Pharm 2022; 627:122229. [PMID: 36162611 DOI: 10.1016/j.ijpharm.2022.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
Determining the solubility of a compound is important for predicting its oral bioavailability, the medium to be used for dissolution, and solvents for cleaning during manufacturing. The solubilities of the newly synthesized benzoate, hydrochloride, nicotinate, and malonate salts of bedaquiline were elucidated, and the plausible reasons for the differences observed in their experimental aqueous solubilities were highlighted. The shake flask method was used to determine the experimental solubilities of the bedaquiline free base and all the salts in water, 0.01 N HCl, and pH 6.8 buffer. The molar and mole fraction solubility estimates of the salts were determined using equations for ideal and non-ideal situations. Furthermore, the relative contribution of the lattice and activity coefficient to the overall aqueous solubility of the salts were predicted graphically. The new salts ranked hydrochloride [0.6437 mg/mL] > malonate [0.0268 mg/ml] > nicotinate [0.0024 mg/mL] > benzoate [0.0004 mg/mL], showed improved aqueous solubility over the free base. The general solubility equation [GSE], fairly predicted the solubilities for the benzoate and malonate salts, but the ideal solubility equations provided poor estimates of their experimental values. Based on the ideal solubility estimates, the crystal lattice contributions of all salts were malonate > nicotinate > HCl > benzoate. However, using the activity coefficient values, the order of hydrophobicity of the bedaquiline salts was: benzoate > nicotinate > malonate > HCl. The salts forms of bedaquiline offered additional solubility as a function of their crystallinity and hydrophobicity.
Collapse
Affiliation(s)
- Mercy A Okezue
- Department of Industrial & Physical Pharmacy, Purdue University, West Lafayette, IN, USA.
| | - Stephen J Byrn
- Department of Industrial & Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Kari L Clase
- School of Agricultural & Biological Engineering, Biotechnology Innovation & Regulatory Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
25
|
Fast-Fed Variability: Insights into Drug Delivery, Molecular Manifestations, and Regulatory Aspects. Pharmaceutics 2022; 14:pharmaceutics14091807. [PMID: 36145555 PMCID: PMC9505616 DOI: 10.3390/pharmaceutics14091807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/26/2022] Open
Abstract
Among various drug administration routes, oral drug delivery is preferred and is considered patient-friendly; hence, most of the marketed drugs are available as conventional tablets or capsules. In such cases, the administration of drugs with or without food has tremendous importance on the bioavailability of the drugs. The presence of food may increase (positive effect) or decrease (negative effect) the bioavailability of the drug. Such a positive or negative effect is undesirable since it makes dosage estimation difficult in several diseases. This may lead to an increased propensity for adverse effects of drugs when a positive food effect is perceived. However, a negative food effect may lead to therapeutic insufficiency for patients suffering from life-threatening disorders. This review emphasizes the causes of food effects, formulation strategies to overcome the fast-fed variability, and the regulatory aspects of drugs with food effects, which may open new avenues for researchers to design products that may help to eliminate fast-fed variability.
Collapse
|
26
|
Abdelhameed AH, Abdelhafez WA, Saleh K, Mohamed MS. Formulation, optimization, and in-vivo evaluation of nanostructured lipid carriers loaded with Fexofenadine HCL for oral delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Synthesis of N-vinylcaprolactam and methacrylic acid based hydrogels and investigation of drug release characteristics. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Liang M, Li LD, Li L, Li S. Nanotechnology in diagnosis and therapy of gastrointestinal cancer. World J Clin Cases 2022; 10:5146-5155. [PMID: 35812681 PMCID: PMC9210884 DOI: 10.12998/wjcc.v10.i16.5146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Advances in nanotechnology have opened new frontiers in the diagnosis and treatment of cancer. Nanoparticle-based technology improves the precision of tumor diagnosis when combined with imaging, as well as the accuracy of drug target delivery, with fewer side effects. Optimized nanosystems have demonstrated advantages in many fields, including enhanced specificity of detection, reduced toxicity of drugs, enhanced effect of contrast agents, and advanced diagnosis and therapy of gastrointestinal (GI) cancers. In this review, we summarize the current nanotechnologies in diagnosis and treatment of GI cancers. The development of nanotechnology will lead to personalized approaches for early diagnosis and treatment of GI cancers.
Collapse
Affiliation(s)
- Meng Liang
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, The sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518053, Guangdong Province, China
| | - Li-Dan Li
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| | - Liang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518059, Guangdong Province, China
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, The sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518053, Guangdong Province, China
| |
Collapse
|
29
|
Jain P, Thota A, Saini PK, Raghuvanshi RS. Comprehensive Review on Different Analytical Techniques for HIV 1- Integrase Inhibitors: Raltegravir, Dolutegravir, Elvitegravir and Bictegravir. Crit Rev Anal Chem 2022; 54:401-415. [PMID: 35617468 DOI: 10.1080/10408347.2022.2080493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The advent of HIV-Integrase inhibitors (IN) has marked a significant impact on the lives of HIV patients. Since the launch of the first anti retro-viral drug "Azidothymidine" to the recent advances of IN inhibitors, about 27.4 million people benefit by antiretroviral therapy (ART). The path had been challenging due to many crossroads, leading to the discovery of newer targets. One such recent ART target is Integrase. Use of Integrase inhibitors has surpassed the usage of all other ART owing to a strong barrier to resistance and have been reported to be the first-line therapy. Raltegravir, Elvitegravir, Dolutegravir and Bictegravir are US FDA approved IN inhibitors. The high usage of ART created an opportunity to study various analytical techniques for IN inhibitors. Hitherto, no review encompassing all IN inhibitors is presented. Herein, this review describes the analytical techniques employed for IN inhibitors estimation and quantification reported in the literature and official compendia. Literature suggests that most studies focus on LC-MS/MS and HPLC methods for drug estimation, and few reports suggest spectrophotometric, spectrofluorimetric and electrochemical methods. Furthermore, the review presents the techniques that describe the quantification of integrase drugs in various matrices. Although, antiretroviral drugs are extensively used but data suggests that limited studies have been conducted for determination of impurity profile and stability. This therefore, presents a scope to detect and validate impurities in order to meet ICH guidelines for their limits and further to improve the quality and safety of antiretroviral drugs.
Collapse
Affiliation(s)
- Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Anusha Thota
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Pawan K Saini
- Indian Pharmacopoeia Commission, Ministry of Health and Family Welfare, Ghaziabad, UP, India
| | | |
Collapse
|
30
|
Meng T, Qiao F, Ma S, Gao T, Li L, Hou Y, Yang J. Exploring the influence factors and improvement strategies of drug polymorphic transformation combined kinetic and thermodynamic perspectives during the formation of nanosuspensions. Drug Dev Ind Pharm 2022; 47:1867-1880. [PMID: 35362347 DOI: 10.1080/03639045.2022.2061988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanosuspensions can effectively increase saturation solubility and improve the bioavailability of poorly water-soluble drugs attributed to high loading and surface-to-volume ratio. Wet media milling has been regarded as a scalable method to prepare nanosuspensions because of its simple operation and easy scale-up. In recent years, besides particle aggregation and Ostwald ripening, polymorphic transformation induced by processing has become a critical factor leading to the instability of nanosuspensions. Therefore, this review aims to discuss the influence factors comprehensively and put forward the corresponding improvement strategies of polymorphic transformation during the formation of nanosuspensions. In addition, this review also demonstrates the implication of molecular simulation in polymorphic transformation. The competition between shear-induced amorphization and thermally activated crystallization is the global mechanism of polymorphic transformation during media milling. The factors affecting the polymorphic transformation and corresponding improvement strategies are summarized from formulation and process parameters perspectives during the formation of nanosuspensions. The development of analytical techniques has promoted the qualitative and quantitative characterization of polymorphic transformation, and some techniques can in-situ monitor dynamic transformation. The microhydrodynamic model can be referenced to study the stress intensities by analyzing formulation and process parameters during wet media milling. Molecular simulation can be used to explore the possible polymorphic transformation based on the crystal structure and energy. This review is helpful to improve the stability of nanosuspensions by regulating polymorphic transformation, providing quality assurance for nanosuspension-based products.
Collapse
Affiliation(s)
- Tingting Meng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Shijie Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Ting Gao
- Department of Preparation Center, General Hospital of Ningxia Medical University, No.804 Shengli South Street, Yinchuan, 750004, P. R. China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| |
Collapse
|
31
|
Mello FV, Cunha SC, Fogaça FHS, Alonso MB, Torres JPM, Fernandes JO. Occurrence of pharmaceuticals in seafood from two Brazilian coastal areas: Implication for human risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149744. [PMID: 34482147 DOI: 10.1016/j.scitotenv.2021.149744] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals (PhACs) are considered emerging contaminants with potential accumulation in aquatic organisms. Thus, seafood consumption may cause long-term effects and health risk for consumers. In the present study, the occurrence of PhACs in seafood from two Brazilian coastal areas, Sepetiba Bay (n = 43) and Parnaiba Delta River (n = 48), was determined for the first time, and their potential risk for human health was assessed. An eco-friendly multi-analytes method was used, after being validated for the different types of matrices (mussels, fatty and lean fish). All compounds under study were detected at least in four seafood species, including chloramphenicol, an antibiotic prohibited in animal foods. Most PhACs had mean concentrations below limit of quantification. Ibuprofen and other nonsteroidal anti-inflammatory drugs (NSAIDs), as well as simvastatin and carbamazepine were the main PhACs bioaccumulated in edible parts of seafood species from Brazil. The high trophic level carnivorous species, snook, was the most contaminated by NSAIDs, while bivalves were the seafood more contaminated by lipid regulators. The profile of contamination did not vary among different types of matrix, except in relation to carbamazepine and ketoprofen. These PhACs were more abundant in species from Sepetiba Bay, an area highly impacted by human influence. The estimated daily exposure for Brazilian population that consumes the studied species was up to 20.3 ng/kg bw/day via carib pointed-venus and 25.7 ng/kg bw/day via snooks, lower than acceptable daily intake. Thus, consumption of seafood species from Sepetiba Bay and Parnaiba Delta River seems to be safe to the population in what concerns the PhACs studied.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Fabíola H S Fogaça
- Laboratory of Bioacessibility, Embrapa Food Agroindustry, Av. das Américas 29501, 23020-470 Rio de Janeiro, Brazil
| | - Mariana B Alonso
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil
| | - João Paulo M Torres
- Laboratory of Radioisotopes Eduardo Penna Franca, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil; Laboratory of Micropollutants, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology e Hidrology, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
32
|
Owens K, Argon S, Yu J, Yang X, Wu F, Lee SC, Sun WJ, Ramamoorthy A, Zhang L, Ragueneau-Majlessi I. Exploring the Relationship of Drug BCS Classification, Food Effect, and Gastric pH-Dependent Drug Interactions. AAPS J 2021; 24:16. [PMID: 34961909 DOI: 10.1208/s12248-021-00667-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023] Open
Abstract
Food effect (FE) and gastric pH-dependent drug-drug interactions (DDIs) are both absorption-related. Here, we evaluated if Biopharmaceutics Classification System (BCS) classes may be correlated with FE or pH-dependent DDIs. Trends in FE data were investigated for 170 drugs with clinical FE studies from the literature and new drugs approved from 2013 to 2019 by US Food and Drug Administration. A subset of 38 drugs was also evaluated to determine whether FE results can inform the need for a gastric pH-dependent DDI study. The results of FE studies were defined as no effect (AUC ratio 0.80-1.25), increased exposure (AUC ratio ≥1.25), or decreased exposure (AUC ratio ≤0.8). Drugs with significantly increased exposure FE (AUC ratio ≥2.0; N=14) were BCS Class 2 or 4, while drugs with significantly decreased exposure FE (AUC ratio ≤0.5; N=2) were BCS Class 1/3 or 3. The lack of FE was aligned with the lack of a pH-dependent DDI for all 7 BCS Class 1 or 3 drugs as expected. For the 13 BCS Class 2 or 4 weak base drugs with an increased exposure FE, 6 had a pH-dependent DDI (AUC ratio ≤0.8). Among the 16 BCS Class 2 or 4 weak base drugs with no FE, 6 had a pH-dependent DDI (AUC ratio ≤0.8). FE appears to have limited correlation with BCS classes except for BCS Class 1 drugs, confirming that multiple physiological mechanisms can impact FE. Lack of FE does not indicate absence of pH-dependent DDI for BCS Class 2 or 4 drugs. Graphical Abstract.
Collapse
Affiliation(s)
- Katie Owens
- Department of Pharmaceutics, University of Washington, H-272 Health Sciences Building, Box 357610, Seattle, Washington, 98195, USA.
| | - Sophie Argon
- Department of Pharmaceutics, University of Washington, H-272 Health Sciences Building, Box 357610, Seattle, Washington, 98195, USA
| | - Jingjing Yu
- Department of Pharmaceutics, University of Washington, H-272 Health Sciences Building, Box 357610, Seattle, Washington, 98195, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Fang Wu
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sue-Chih Lee
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wei-Jhe Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anuradha Ramamoorthy
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Isabelle Ragueneau-Majlessi
- Department of Pharmaceutics, University of Washington, H-272 Health Sciences Building, Box 357610, Seattle, Washington, 98195, USA
| |
Collapse
|
33
|
Yamada K, Ristroph KD, Kaneko Y, Lu HD, Sato H, Prud'homme RK, Onoue S. Clofazimine-Loaded Mucoadhesive Nanoparticles Prepared by Flash Nanoprecipitation for Strategic Intestinal Delivery. Pharm Res 2021; 38:2109-2118. [PMID: 34904203 DOI: 10.1007/s11095-021-03144-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE This study was undertaken to develop novel mucoadhesive formulations of clofazimine (CFZ), a drug candidate for the treatment of cryptosporidiosis, with the aim of strategic delivery to the small intestine, the main site of the disease parasites. METHODS CFZ-loaded nanoparticles (nCFZ) coated with non-biodegradable anionic polymer (nCFZ/A) and biodegradable anionic protein complex (nCFZ/dA) were prepared by Flash NanoPrecipitation (FNP) and evaluated for their physicochemical and biopharmaceutical properties. RESULTS The mean diameters of nCFZ/A and nCFZ/dA were ca. 90 and 240 nm, respectively, and they showed narrow size distributions and negative ζ-potentials. Both formulations showed higher solubility of CFZ in aqueous solution than crystalline CFZ. Despite their improved dispersion behaviors, both formulations exhibited significantly lower diffusiveness than crystalline CFZ in a diffusion test using artificial mucus (AM). Quartz crystal microbalance analysis showed that both formulations clearly interacted with mucin, which appeared to be responsible for their reduced diffusiveness in AM. These results suggest the potent mucoadhesion of nCFZ/A and nCFZ/dA. After the oral administration of CFZ samples (10 mg-CFZ/kg) to rats, nCFZ/dA and nCFZ/A exhibited a prolongation in Tmax by 2 and >9 h, respectively, compared with crystalline CFZ. At 24 h after oral doses of nCFZ/A and nCFZ/dA with mucoadhesion, there were marked increases in the intestinal CFZ concentration (4-7 fold) compared with Lamprene®, a commercial CFZ product, indicating enhanced CFZ exposure in the small intestine. CONCLUSION The use of FNP may produce mucoadhesive CFZ formulations with improved intestinal exposure, possibly offering enhanced anti-cryptosporidium therapy.
Collapse
Affiliation(s)
- Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kurt D Ristroph
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, NJ, 08544, USA
| | - Yuki Kaneko
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hoang D Lu
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, NJ, 08544, USA
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Robert K Prud'homme
- Department of Chemical & Biological Engineering, A301 EQUAD, Princeton University, Princeton, NJ, 08544, USA.
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
34
|
Elmeligy S, Hathout RM, Khalifa SA, El-Seedi HR, Farag MA. Pharmaceutical manipulation of citrus flavonoids towards improvement of its bioavailability and stability. A mini review and a meta-analysis study. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Gonzalez-Melo C, Garcia-Brand AJ, Quezada V, Reyes LH, Muñoz-Camargo C, Cruz JC. Highly Efficient Synthesis of Type B Gelatin and Low Molecular Weight Chitosan Nanoparticles: Potential Applications as Bioactive Molecule Carriers and Cell-Penetrating Agents. Polymers (Basel) 2021; 13:polym13234078. [PMID: 34883582 PMCID: PMC8659274 DOI: 10.3390/polym13234078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/25/2022] Open
Abstract
Gelatin and chitosan nanoparticles have been widely used in pharmaceutical, biomedical, and nanofood applications due to their high biocompatibility and biodegradability. This study proposed a highly efficient synthesis method for type B gelatin and low-molecular-weight (LMW) chitosan nanoparticles. Gelatin nanoparticles (GNPs) were synthesized by the double desolvation method and the chitosan nanoparticles (CNPs) by the ionic gelation method. The sizes of the obtained CNPs and GNPs (373 ± 71 nm and 244 ± 67 nm, respectively) and zeta potential (+36.60 ± 3.25 mV and −13.42 ± 1.16 mV, respectively) were determined via dynamic light scattering. Morphology and size were verified utilizing SEM and TEM images. Finally, their biocompatibility was tested to assure their potential applicability as bioactive molecule carriers and cell-penetrating agents.
Collapse
Affiliation(s)
- Cristina Gonzalez-Melo
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
| | - Andres J. Garcia-Brand
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
| | - Luis H. Reyes
- Product and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: (L.H.R.); (C.M.-C.); (J.C.C.); Tel.: +57-1-339-4949 (ext. 1702) (L.H.R.); +57-1-339-4949 (ext. 1789) (C.M.-C. & J.C.C.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
- Correspondence: (L.H.R.); (C.M.-C.); (J.C.C.); Tel.: +57-1-339-4949 (ext. 1702) (L.H.R.); +57-1-339-4949 (ext. 1789) (C.M.-C. & J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá 111711, Colombia; (C.G.-M.); (A.J.G.-B.); (V.Q.)
- Correspondence: (L.H.R.); (C.M.-C.); (J.C.C.); Tel.: +57-1-339-4949 (ext. 1702) (L.H.R.); +57-1-339-4949 (ext. 1789) (C.M.-C. & J.C.C.)
| |
Collapse
|
36
|
Ettaoussi M, Laversin A, Vreulz B, Rami M, Lebegue N, Delagrange P, Caignard DH, Melnyk P, Liberelle M, Yous S. Synthesis and SAR Studies of Isoquinoline and Tetrahydroisoquinoline Derivatives as Melatonin Receptor Ligands. ChemMedChem 2021; 17:e202100658. [PMID: 34797951 DOI: 10.1002/cmdc.202100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Indexed: 11/06/2022]
Abstract
In our constant search for new successors of agomelatine, we report herein a new series of compounds resulting from bioisosteric modulation of the naphthalene ring. The isoquinoline and tetrahydroisoquinoline derivatives were synthesized and pharmacologically evaluated. This isosteric replacement of the naphthalene group of agomelatine has led to potent agonist and partial agonist compounds with nanomolar melatonergic binding affinities. Overall, the presence of a nitrogen atom was accompanied with a decrease in the binding affinity toward both MT1 and MT2 and the loss of 5HT2C response, especially for tetrahydroisoquinoline in comparison with the parent compound. Interestingly, due to the presence of this nitrogen atom, a notable improvement in the pharmacokinetic properties was observed for all compounds.
Collapse
Affiliation(s)
- Mohamed Ettaoussi
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, 59000, Lille, France
| | - Amélie Laversin
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, 59000, Lille, France
| | - Brandon Vreulz
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, 59000, Lille, France
| | - Marouane Rami
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, 59000, Lille, France
| | - Nicolas Lebegue
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, 59000, Lille, France
| | - Philippe Delagrange
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290, Croissy sur Seine, France
| | - Daniel Henri Caignard
- PEX Biotechnologie Chimie & Biologie, Institut de Recherches Servier, 78290, Croissy sur Seine, France
| | - Patricia Melnyk
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, 59000, Lille, France
| | - Maxime Liberelle
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, 59000, Lille, France
| | - Saïd Yous
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, Inserm, CHU Lille, 59000, Lille, France
| |
Collapse
|
37
|
SHIEK ABDUL KADHAR MOHAMED EBRAHIM HR, CHUNGATH TT, SRIDHAR K, SIRAM K, ELUMALAI M, RANGANATHAN H, MUTHUSAMY S. Development and Validation of a Discriminative Dissolution Medium for a Poorly Soluble Nutraceutical Tetrahydrocurcumin. Turk J Pharm Sci 2021; 18:565-573. [PMID: 34719154 PMCID: PMC8562123 DOI: 10.4274/tjps.galenos.2021.91145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/19/2021] [Indexed: 12/01/2022]
Abstract
Objectives The present study aimed to develop and validate a discriminative dissolution method for tetrahydrocurcumin (THC), a Biopharmaceutical Classification System class II drug, by a simple ultraviolet (UV) spectrophotometric analysis. The final dissolution medium composition was selected based on the solubility and stability criteria of the drug. Materials and Methods As a prerequisite for this, the solubility of the drug was assessed in media of different pH (1.2-7.4), and surfactant concentrations of 0.5-1.5% (w/v) sodium lauryl sulfate (SLS) in water, and pH 7.4 phosphate buffer. The dissolved drug concentration in each medium was quantified by UV analysis at 280 nm wavelength. Results The drug solubility was found to be high at a pH of 1.2 and 7.4. The media with surfactant enhanced solubility of the drug by approximately 17-fold and exhibited better sink conditions. The discriminative power of the developed dissolution medium (i.e., 1% w/v SLS in pH 7.4) was determined by performing in vitro dissolution studies of the prepared THC tablets and comparing their release profiles using fit factors (f1 and f2). The results of the fit factor comparisons made between the dissolution profiles of THC tablets proved the discriminative ability of the medium. The validation of the developed dissolution method was performed by international guidelines and the method showed specificity, linearity, accuracy, and precision within the acceptable range. Conclusion The proposed dissolution method was found to be adequate for the routine quality control analysis of THC, as there is no specified dissolution method for the drug in the pharmacopoeia.
Collapse
Affiliation(s)
| | - Telny Thomas CHUNGATH
- Chemists College of Pharmaceutical Sciences and Research, Department of Pharmaceutical Analysis, Ernakulum, India
| | - Karthik SRIDHAR
- PSG College of Pharmacy, Department of Pharmaceutics, Coimbatore, India
| | - Karthik SIRAM
- PSG College of Pharmacy, Department of Pharmaceutics, Coimbatore, India
| | - Manogaran ELUMALAI
- UCSI University Faculty of Pharmaceutical Sciences, Department of Pharmacology, Kuala Lumpur, Malaysia
| | | | - Sivaselvakumar MUTHUSAMY
- PSG Institute of Medical Sciences & Research Centre for Molecular Medicine and Therapeutics, Department of Pharmaceutical Analysis, Coimbatore, India
| |
Collapse
|
38
|
Weitschies W, Müller L, Grimm M, Koziolek M. Ingestible devices for studying the gastrointestinal physiology and their application in oral biopharmaceutics. Adv Drug Deliv Rev 2021; 176:113853. [PMID: 34192551 DOI: 10.1016/j.addr.2021.113853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
Ingestible sensor systems are unique tools for obtaining physiological data from an undisturbed gastrointestinal tract. Since their dimensions correspond to monolithic oral dosage forms, such as enteric coated tablets or hydrogel matrix tablets, they also allow insights into the physiological conditions experienced by non-disintegrating dosage forms on their way through the gastrointestinal tract. In this work, the different ingestible sensor systems which can be used for this purpose are described and their potential applications as well as difficulties and pitfalls with respect to their use are presented. It is also highlighted how the data on transit times, pH, temperature and pressure as well as the data from different animal models commonly used in drug product development such as dogs and pigs have contributed to a deeper mechanistic understanding of oral drug delivery.
Collapse
Affiliation(s)
- Werner Weitschies
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany.
| | - Laura Müller
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Michael Grimm
- Institute of Pharmacy, Center of Drug Absorption and Transport, University of Greifswald, Greifswald, Germany
| | - Mirko Koziolek
- NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| |
Collapse
|
39
|
Tosca EM, Bartolucci R, Magni P. Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules. Pharmaceutics 2021; 13:1101. [PMID: 34371792 PMCID: PMC8309152 DOI: 10.3390/pharmaceutics13071101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/25/2022] Open
Abstract
Machine learning (ML) approaches are receiving increasing attention from pharmaceutical companies and regulatory agencies, given their ability to mine knowledge from available data. In drug discovery, for example, they are employed in quantitative structure-property relationship (QSPR) models to predict biological properties from the chemical structure of a drug molecule. In this paper, following the Second Solubility Challenge (SC-2), a QSPR model based on artificial neural networks (ANNs) was built to predict the intrinsic solubility (logS0) of the 100-compound low-variance tight set and the 32-compound high-variance loose set provided by SC-2 as test datasets. First, a training dataset of 270 drug-like molecules with logS0 value experimentally determined was gathered from the literature. Then, a standard three-layer feed-forward neural network was defined by using 10 ChemGPS physico-chemical descriptors as input features. The developed ANN showed adequate predictive performances on both of the SC-2 test datasets. Benefits and limitations of ML approaches have been highlighted and discussed, starting from this case-study. The main findings confirmed that ML approaches are an attractive and promising tool to predict logS0; however, many aspects, such as data quality, molecular descriptor computation and selection, and assessment of applicability domain, are crucial but often neglected, and should be carefully considered to improve predictions based on ML.
Collapse
Affiliation(s)
| | | | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, I-27100 Pavia, Italy; (E.M.T.); (R.B.)
| |
Collapse
|
40
|
Sun Y, Fan S, Liang R, Ni X, Du Y, Wang J, Yang C. Design and characterization of starch/solid lipids hybrid microcapsules and their thermal stability with menthol. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Li YW, Zhang HM, Cui BJ, Hao CY, Zhu HY, Guan J, Wang D, Jin Y, Feng B, Cai JH, Qi XR, Shi NQ. "Felodipine-indomethacin" co-amorphous supersaturating drug delivery systems: "Spring-parachute" process, stability, in vivo bioavailability, and underlying molecular mechanisms. Eur J Pharm Biopharm 2021; 166:111-125. [PMID: 34119671 DOI: 10.1016/j.ejpb.2021.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022]
Abstract
Amorphous solid dispersions (ASD) are one of most commonly used supersaturating drug delivery systems (SDDS) to formulate insoluble active pharmaceutical ingredients. However, the development of polymer-guided stabilization of ASD systems faces many obstacles. To overcome these shortcomings, co-amorphous supersaturable formulations have emerged as an alternative formulation strategy for poorly soluble compounds. Noteworthily, current researches around co-amorphous system (CAS) are mostly focused on preparation and characterization of these systems, but more detailed investigations of their supersaturation ("spring-parachute" process), stability, in vivo bioavailability and molecular mechanisms are inadequate and need to be clarified. In present study, we chose pharmacological relevant BCS II drugs to fabricate and characterize "felodipine-indomethacin" CAS. To enrich the current inadequate but key knowledge on CAS studies, we carried out following highlighted investigations including dissolution/solubility, semi-continuous "spring-parachute" process, long-term stability profile of amorphous state, in vivo bioavailability and underlying molecular mechanisms (molecular interaction, molecular miscibility and crystallization inhibition). Generally, the research provides some key information in the field of current "drug-drug" CAS supersaturable formulations.
Collapse
Affiliation(s)
- Ya-Wei Li
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Hong-Mei Zhang
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Bai-Ji Cui
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Cheng-Yi Hao
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - He-Yun Zhu
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Jiao Guan
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Dan Wang
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Ying Jin
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Bo Feng
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Jian-Hui Cai
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Xian-Rong Qi
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Nian-Qiu Shi
- School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China.
| |
Collapse
|
42
|
Iqbal R, Qureshi OS, Yousaf AM, Raza SA, Sarwar HS, Shahnaz G, Saleem U, Sohail MF. Enhanced solubility and biopharmaceutical performance of atorvastatin and metformin via electrospun polyvinylpyrrolidone-hyaluronic acid composite nanoparticles. Eur J Pharm Sci 2021; 161:105817. [PMID: 33757829 DOI: 10.1016/j.ejps.2021.105817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022]
Abstract
The study was aimed to improve the aqueous solubility of atorvastatin (AT) and ameliorate permeability of metformin (MT) in a combination formulation, improving their oral bioavailability. Several AT-MT loaded polyvinylpyrrolidone (PVP) and hyaluronic acid (HA) based nanoparticles were prepared through electrospraying method (ES-NPs), and tested for physicochemical, in vitro, and in vivo parameters. Among the trialed formulations, a sample consisting of AT, MT, PVP, and HA at the weight ratio of 1/6.25/3.75/15 furnished the most satisfying solubility and release rate results. It enhanced approximately 10.3-fold and 3.6-fold solubility of AT as compared with AT powder and marketed product (Lipilow) in phosphate buffer pH = 6.8, respectively. Whereas, permeation of MT was 1.60-fold and 1.47-fold improved as compared with MT powder and marketed product (Glucophage), respectively. As compared with Lipilow, AUC (0-∞) and Cmax of AT with ES-NPs in rats were improved to 3.6-fold and 3.2-fold, respectively. Similarly, as compared with Glucophage, AUC (0-∞) and Cmax of MT were improved to 2.3-fold and 1.8-fold, respectively. Thus, ES-NPs significantly enhanced the solubility of AT (a BCS class II drug) and permeability of MT (a BCS class III drug) and might be a promising drug delivery system for co-delivery of these drugs.
Collapse
Affiliation(s)
- Rabia Iqbal
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Omer Salman Qureshi
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College University, Lahore, 54000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSAT University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| | - Syed Atif Raza
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - Hafiz Shoaib Sarwar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, 54000, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmacy, GC University, Faisalabad, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, Lahore, 54000, Pakistan; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
43
|
Ranjan A, Jha PK. Studying Drug Release through Polymeric Controlled Release Formulations in United States Pharmacopoeia 2 Apparatus Using Multiphysics Simulation and Experiments. Mol Pharm 2021; 18:2600-2611. [PMID: 34056905 DOI: 10.1021/acs.molpharmaceut.1c00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro dissolution of oral drug formulations is often studied using the United States Pharmacopoeia (USP) apparatus. Although a well-stirred vessel or a perfect sink assumption is often employed in the modeling of in vitro dissolution in USP apparatus, such a limit is usually not realized in actual experimental conditions. The interplay of hydrodynamics in the vessel and the swelling and erosion of dosage forms often results in substantial deviations from the dissolution behavior obtained under perfect sink approximation. We develop a multiphysics model of drug release from controlled release tablets of polymeric excipients with active pharmaceutical ingredients (APIs). Simulations are performed in COMSOL for the USP 2 (paddle) apparatus and the effects of stirring speed, drug loading, erosion rate, and polymer swelling and erosion are analyzed in detail. We demonstrate that the drug release phenomena can be conveniently interpreted using the Weibull equation to fit the simulation results. This is further confirmed using drug release experiments performed on mechanically compressed tablets of naproxen sodium as the API with poly-methyl-methacrylate-co-methacrylic acid as the excipient. We show that the API-to-polymer ratio may be varied to obtain different regimes of controlled release.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
44
|
Aldosari BN, Almurshedi AS, Alfagih IM, AlQuadeib BT, Altamimi MA, Imam SS, Hussain A, Alqahtani F, Alzait E, Alshehri S. Formulation of Gelucire®-Based Solid Dispersions of Atorvastatin Calcium: In Vitro Dissolution and In Vivo Bioavailability Study. AAPS PharmSciTech 2021; 22:161. [PMID: 34031791 DOI: 10.1208/s12249-021-02019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/18/2021] [Indexed: 01/22/2023] Open
Abstract
Atorvastatin (ATV) is a poorly water-soluble drug that exhibits poor oral bioavailability. Therefore, present research was designed to develop ATV solid dispersions (SDs) to enhance the solubility, drug release, and oral bioavailability. Various SDs of ATV were formulated by conventional and microwave-induced melting methods using Gelucire®48/16 as a carrier. The formulated SDs were characterized for different physicochemical characterizations, drug release, and oral bioavailability studies. The results obtained from the different physicochemical characterization indicate the molecular dispersion of ATV within various SDs. The drug polymer interaction results showed no interaction between ATV and used carrier. There was marked enhancement in the solubility (1.95-9.32 folds) was observed for ATV in prepared SDs as compare to pure ATV. The drug content was found to be in the range of 96.19% ± 2.14% to 98.34% ± 1.32%. The drug release results revealed significant enhancement in ATV release from prepared SDs compared to the pure drug and the marketed tablets. The formulation F8 showed high dissolution performance (% DE30 value of 80.65 ± 3.05) among the other formulations. Optimized Gelucire®48/16-based SDs formulation suggested improved oral absorption of atorvastatin as evidenced with improved pharmacokinetic parameters (Cmax 2864.33 ± 573.86 ng/ml; AUC0-t 5594.95 ± 623.3 ng/h ml) as compared to ATV suspension (Cmax 317.82 ± 63.56 ng/ml; AUC0-t 573.94 ± 398.9 ng/h ml) and marketed tablets (Cmax 852.72 ± 42.63 ng/ml; 4837.4 ± 174.7 ng/h ml). Conclusively, solid dispersion-based oral formulation of atorvastatin could be a promising approach for enhanced drug solubilization, dissolution, and subsequently improved absorption.
Collapse
|
45
|
Surov AO, Voronin AP, Drozd KV, Gruzdev MS, Perlovich GL, Prashanth J, Balasubramanian S. Polymorphic forms of antiandrogenic drug nilutamide: structural and thermodynamic aspects. Phys Chem Chem Phys 2021; 23:9695-9708. [PMID: 33908506 DOI: 10.1039/d1cp00793a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attempts to obtain new cocrystals of nonsteroidal antiandrogenic drug nilutamide produced alternative polymorphic forms of the compound (Form II and Form III) and their crystal structures were elucidated by single-crystal X-ray diffraction. Apart from the cocrystallization technique, lyophilization was found to be an effective strategy for achieving polymorph control of nilutamide, which was difficult to obtain by other methods. The physicochemical properties and relative stability of the commercial Form I and newly obtained Form II were comprehensively investigated by a variety of analytical methods (thermal analysis, solution calorimetry, solubility, and sublimation), whereas for Form III, only a handful of experimental parameters were obtained due to the elusive nature of the polymorph. Form I and Form II were found to be monotropically related, with Form I being confirmed as the thermodynamically most stable solid phase. In addition, the performance of different DFT-D and semi-empirical schemes for lattice energy calculation and polymorph energy ranking was compared and analysed. Lattice energy calculations using periodic DFT at B3LYP-D3/6-31(F+)G(d,p) and PBEh-3c/def2-mSVP levels of theory were found to provide the most accurate lattice energy values for Form I against experimental data, while PIXEL and PBEh-3c/def2-mSVP were the only methods that predicted the correct order of stability of Forms I and II.
Collapse
Affiliation(s)
- Artem O Surov
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Paisana MC, Lino PR, Nunes PD, Pinto JF, Henriques J, Paiva AM. Laser diffraction as a powerful tool for amorphous solid dispersion screening and dissolution understanding. Eur J Pharm Sci 2021; 163:105853. [PMID: 33865976 DOI: 10.1016/j.ejps.2021.105853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023]
Abstract
Biopharmaceutics Classification System (BCS) class II and IV drugs may be formulated as supersaturating drug delivery systems (e.g., amorphous solid dispersions [ASDs]) that can generate a supersaturated drug solution during gastrointestinal (GI) transit. The mechanisms that contribute to increased bioavailability are generally attributed to the increased solubility of the amorphous form, but another mechanism with significant contributions to the improved bioavailability have been recently identified. This mechanism consists on the formation of colloidal species and may further improve the bioavailability several fold beyond that of the amorphous drug alone. These colloidal species occur when the concentration of drug generated in solution exceeds the amorphous solubility during dissolution, resulting in a liquid-liquid phase separation (LLPS). For the appearance of LLPS, the crystallization kinetics needs to be slow relatively to the dissolution process. This work intended to implement an analytical methodology to understand the ability of a drug to form colloidal species in a biorelevant dissolution media. This screening tool was therefore focused on following the colloidal formation and crystallization kinetics of itraconazole (ITZ; model drug from BSC class II) in the presence of hydroxypropyl methylcellulose (HPMC-AS L and HPMC-AS M, which are HPMC-AS with varying ratios of succinoyl:acetyl groups), using a laser diffraction-based methodology. The ability of ITZ to form colloids by a solvent-shift approach was compared with the actual colloidal formation of ITZ amorphous solid dispersions produced by spray-drying. Results indicate that regardless of the used methodology, colloids of ITZ can be detected and monitored. The extension of colloid generation showed to be correlated with the ASD disintegration/dissolution rate, i.e, polymers with faster wettability kinetics led to faster ASD disintegration and colloidal formation. As conclusion, this study showed that laser diffraction could give complementary information about colloidal formation and ASD dissolution profile, showing to be an excellent screening strategy to be applied in the early stage development of amorphous solid dispersions.
Collapse
Affiliation(s)
- Maria C Paisana
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal.
| | - Paulo R Lino
- R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| | - Patricia D Nunes
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal; R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal; iMed - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1640-003 Lisboa, Portugal
| | - João F Pinto
- iMed - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1640-003 Lisboa, Portugal
| | - João Henriques
- R&D Drug Product Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| | - Ana Mafalda Paiva
- R&D Analytical Development, Hovione Farmaciencia SA, Lumiar, 1649-038 Lisboa, Portugal
| |
Collapse
|
47
|
Sarkar T, Kumar A, Sahoo S, Hussain A. Mixed-Ligand Cobalt(III) Complexes of a Naturally Occurring Coumarin and Phenanthroline Bases as Mitochondria-Targeted Dual-Purpose Photochemotherapeutics. Inorg Chem 2021; 60:6649-6662. [PMID: 33855849 DOI: 10.1021/acs.inorgchem.1c00444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bioessential nature of cobalt and the rich photochemistry of its coordination complexes can be exploited to develop potential next-generation photochemotherapeutics. A series of six novel mixed-ligand cobalt(III) complexes of the formulation [Co(B)2(L)]ClO4 (1-6), where B is an N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1 and 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 2 and 5), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 3 and 6), and L is an O,O-donor dianionic ligand derived from catechol (1,2-dihydroxybenzene, cat2-, in 1-3) or esculetin (6,7-dihydoxycoumarin, esc2-, in 4-6), have been prepared and characterized, and their light-triggered cytotoxicity has been studied in cancer cells. The single-crystal X-ray diffraction structures of complexes 1 (as PF6- salt, 1a) and 2 show distorted octahedral geometries around the cobalt(III) center formed by the set of N4O2 donor atoms. The low-spin and 1:1 electrolytic complexes 1-6 display a d-d transition around 700 nm. Complexes 4-6 with a coordinated esc2- ligand additionally display a π → π* intraligand transition centered at 403 nm. Complexes 4-6 possessing a naturally occurring and photoactive esc2- ligand show high visible-light-triggered cytotoxicity against HeLa and MCF-7 cancer cells, yielding remarkably low micromolar IC50 values while being much less toxic under dark conditions. Control complexes 1-3 possessing the photoinactive cat2- ligand show significantly less cytotoxicity either in the presence of light or in the dark. The complex-induced cell death is apoptotic in nature caused by the formation of reactive oxygen species via a type 1 photoredox pathway. Fluorescence microscopy of HeLa cells treated with complex 6 reveals mitochondrial localization of the complex. A significant decrease in the dark toxicity of free esculetin and dppz base is observed upon coordination to cobalt(III). Complexes bind to calf-thymus DNA with significant affinity, but 6 binds with the greatest affinity. Complex 6 efficiently photocleaves supercoiled DNA to its nicked circular form when irradiated with visible light via a photoredox type 1 pathway involving hydroxyl radicals (HO•). Thus, complex 6 showing remarkable visible-light-triggered cytotoxicity but negligible toxicity in the dark is a good candidate for cancer photochemotherapy applications.
Collapse
Affiliation(s)
- Tukki Sarkar
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India
| | - Arun Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India
| |
Collapse
|
48
|
Uhljar LÉ, Kan SY, Radacsi N, Koutsos V, Szabó-Révész P, Ambrus R. In Vitro Drug Release, Permeability, and Structural Test of Ciprofloxacin-Loaded Nanofibers. Pharmaceutics 2021; 13:pharmaceutics13040556. [PMID: 33921031 PMCID: PMC8071406 DOI: 10.3390/pharmaceutics13040556] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Nanofibers of the poorly water-soluble antibiotic ciprofloxacin (CIP) were fabricated in the form of an amorphous solid dispersion by using poly(vinyl pyrrolidone) as a polymer matrix, by the low-cost electrospinning method. The solubility of the nanofibers as well as their in vitro diffusion were remarkably higher than those of the CIP powder or the physical mixture of the two components. The fiber size and morphology were optimized, and it was found that the addition of the CIP to the electrospinning solution decreased the nanofiber diameter, leading to an increased specific surface area. Structural characterization confirmed the interactions between the drug and the polymer and the amorphous state of CIP inside the nanofibers. Since the solubility of CIP is pH-dependent, the in vitro solubility and dissolution studies were executed at different pH levels. The nanofiber sample with the finest morphology demonstrated a significant increase in solubility both in water and pH 7.4 buffer. Single medium and two-stage biorelevant dissolution studies were performed, and the release mechanism was described by mathematical models. Besides, in vitro diffusion from pH 6.8 to pH 7.4 notably increased when compared with the pure drug and physical mixture. Ciprofloxacin-loaded poly(vinyl pyrrolidone) (PVP) nanofibers can be considered as fast-dissolving formulations with improved physicochemical properties.
Collapse
Affiliation(s)
- Luca Éva Uhljar
- Interdisciplinary Excellence Centre, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (L.É.U.); (P.S.-R.)
| | - Sheng Yuan Kan
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, UK; (S.Y.K.); (N.R.); (V.K.)
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, UK; (S.Y.K.); (N.R.); (V.K.)
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3FB, UK; (S.Y.K.); (N.R.); (V.K.)
| | - Piroska Szabó-Révész
- Interdisciplinary Excellence Centre, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (L.É.U.); (P.S.-R.)
| | - Rita Ambrus
- Interdisciplinary Excellence Centre, Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary; (L.É.U.); (P.S.-R.)
- Correspondence:
| |
Collapse
|
49
|
Bachmaier RD, Monschke M, Faber T, Krome AK, Pellequer Y, Stoyanov E, Lamprecht A, Wagner KG. In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100076. [PMID: 33851133 PMCID: PMC8024662 DOI: 10.1016/j.ijpx.2021.100076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/26/2022]
Abstract
Using polymers as additives to formulate ternary amorphous solid dispersions (ASDs) has successfully been established to increase the bioavailability of poorly soluble drugs, when one polymer is not able to provide both, stabilizing the drug in the matrix and the supersaturated solution. Therefore, we investigated the influence of low-viscosity hydroxypropyl cellulose (HPC) polymers as an additive in HPMC based ternary ASD formulations made by hot-melt extrusion (HME) on the bioavailability of itraconazole (ITZ). The partitioning potential of the different HPC grades was screened in biphasic supersaturation assays. Solid-state analytics were performed using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD). The addition of HPCs, especially HPC-UL, resulted in a superior partitioned amount of ITZ in biphasic supersaturation assays. Moreover, the approach in using HPCs as an additive in HPMC based ASDs led to an increase in partitioned ITZ compared to Sporanox® in biorelevant biphasic dissolution studies. The results from the biphasic dissolution experiments correlated well with the in vivo studies, which revealed the highest oral bioavailability for the ternary ASD comprising HPC-UL and HPMC. Increased partitioning rate of itraconazole using low-viscosity HPC polymers. Enhanced bioavailability of itraconazole using HPC-UL as functional additive. Ternary amorphous solid dispersion with higher performance than Sporanox®.
Collapse
Key Words
- API, active pharmaceutical ingredient
- ASD, amorphous solid dispersion
- AUC, area under the curve
- AcN, acetonitrile
- Amorphous solid dispersion
- BCS, biopharmaceutical classification system
- Biphasic dissolution
- DMSO, dimethyl sulfoxide
- DSC, differential scanning calorimetry
- FaSSIF, fasted state simulated intestinal fluid
- GI, gastrointestinal
- HME, hot-melt extrusion
- HPC
- HPC, hydroxypropyl cellulose
- HPMC
- HPMC, hydroxypropyl methyl cellulose
- Hot-melt extrusion
- ITZ, itraconazole
- KTZ, ketoconazole
- NCE, new chemical entity
- OH-ITZ, hydroxy-itraconazole
- PM, physical mixture
- SD, spray-drying
- TG, glass transition temperature
- XRPD, x-ray powder diffraction
Collapse
Affiliation(s)
- Rafael D Bachmaier
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Thilo Faber
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Anna K Krome
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Yann Pellequer
- UFR Santé, Laboratoire de Pharmacie Galénique, 19, rue Ambroise Paré, 25000 Besancon, France
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, 40212 Düsseldorf, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.,UFR Santé, Laboratoire de Pharmacie Galénique, 19, rue Ambroise Paré, 25000 Besancon, France
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
50
|
Decundo JM, Diéguez SN, Amanto FA, Martínez G, Pérez Gaudio DS, Fernández Paggi MB, Romanelli A, Soraci AL. Potential interactions between an oral fosfomycin formulation and feed or drinking water: Impact on bioavailability in piglets. J Vet Pharmacol Ther 2021; 44:783-792. [PMID: 33720436 DOI: 10.1111/jvp.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Feed and drinking water are the most frequently used vehicles for administration of antibiotics in intensive pig production. Interactions of drugs with feed and water components may affect dissolution and bioavailability. Therefore, antibiotic formulations should be tested in order to assure their suitability for oral use. In this study, an oral fosfomycin (FOS) formulation was evaluated considering dissolution in water (soft and hard), release kinetics from feed in simulated gastrointestinal fluids and bioavailability after oral administration blended into feed or dissolved in water (soft and hard), to fed and fasted piglets. FOS reached immediate dissolution in soft and hard water. The presence of feed significantly decreased antibiotic dissolution in simulated intestinal medium. Bioavailability was lower when feed was used as a vehicle for FOS administration than when the drug was dissolved in water (soft or hard). The fed or fasted condition of piglets did not affect bioavailability. Probably, FOS interactions with feed components alter its dissolution in the gastrointestinal tract, and only a fraction of the dose would be available for absorption. This information must be considered to support decisions on eligibility of antibiotic pharmaceutical formulations and the vehicle for their administration in order to pursue a responsible use of antibiotics.
Collapse
Affiliation(s)
- Julieta M Decundo
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Susana N Diéguez
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA, Tandil, Argentina
| | - Fabián A Amanto
- Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Guadalupe Martínez
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Denisa S Pérez Gaudio
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - María B Fernández Paggi
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Área Producción Porcina, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Agustina Romanelli
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina.,Área Fisiología de la Nutrición, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Alejandro L Soraci
- Área Toxicología, Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina.,Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| |
Collapse
|