1
|
Development of a Spacer-optimized Quenchbody against Tumor Necrosis Factor Alpha. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, Luria-Pérez R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel) 2022; 14:cancers14174206. [PMID: 36077739 PMCID: PMC9455005 DOI: 10.3390/cancers14174206] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recombinant antibody fragments have shown remarkable potential as diagnostic and therapeutic tools in the fight against cancer. The single-chain fragment variable (scFv) that contains the complete antigen-binding domains of a whole antibody, has several advantages such as a high specificity and affinity for antigens, a low immunogenicity, and the proven ability to penetrate tumor tissues and diffuse. This review provides an overview of the current studies on the principle, generation, and applications of scFvs, particularly in the diagnosis and therapy of cancer, and underscores their potential use in clinical trials. Abstract Cancer remains a public health problem worldwide. Although conventional therapies have led to some excellent outcomes, some patients fail to respond to treatment, they have few therapeutic alternatives and a poor survival prognosis. Several strategies have been proposed to overcome this issue. The most recent approach is immunotherapy, particularly the use of recombinant antibodies and their derivatives, such as the single-chain fragment variable (scFv) containing the complete antigen-binding domains of a whole antibody that successfully targets tumor cells. This review describes the recent progress made with scFvs as a cancer diagnostic and therapeutic tool, with an emphasis on preclinical approaches and their potential use in clinical trials.
Collapse
Affiliation(s)
- Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-(55)-5228-9917 (ext. 4401)
| |
Collapse
|
3
|
Panth KM, van den Beucken T, Biemans R, Lieuwes NG, Weber M, Losen M, Yaromina A, Dubois LJ, Lambin P. In vivo optical imaging of MMP2 immuno protein antibody: tumor uptake is associated with MMP2 activity. Sci Rep 2016; 6:22198. [PMID: 26923459 PMCID: PMC4770595 DOI: 10.1038/srep22198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/09/2016] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinase-2 (MMP2) is important in tumorigenesis, angiogenesis and tumor invasion. In this study, we investigated if the Cy5-tagged small immuno protein targeting the catalytic domain of human MMP2 (aMMP2-SIP) detects MMP2 in tumors non-invasively. For this purpose, we generated MMP2 expressing (empty vector EV) and knock-down (KD) HT1080, U373 and U87 cells, which were injected subcutaneously in the lateral flank of NMRI-nu mice. Optical imaging (Optix MX2) performed at 0.5, 2, 4, 8, 24 and 48 hour post injection (h.p.i.) of Cy5 tagged aMMP2-SIP, indicated significantly lower tumor to background ratios at both 24 (P = 0.0090) and 48 h.p.i. (P < 0.0001) for the U87 MMP2-KD compared to control tumors. No differences were found for HT1080 and U373 models. U87 MMP2-KD tumors had significantly lower MMP2 activity (P < 0.0001) than EV tumors as determined by gelatin zymography in tumor sections and lysates, while no differences were observed between EV and MMP2-KD in HT1080 and U373. In line with these data, only U87 MMP2-KD tumors had a reduced tumor growth compared to control tumors (P = 0.0053). aMMP2-SIP uptake correlates with MMP2 activity and might therefore be a potential non-invasive imaging biomarker for the evaluation of MMP2 activity in tumors.
Collapse
Affiliation(s)
| | - Twan van den Beucken
- Department of Radiation Oncology (MAASTRO), GROW, MUMC, Maastricht, the Netherlands.,Department of Toxicogenomics, GROW, MUMC, Maastricht, the Netherlands
| | - Rianne Biemans
- Department of Radiation Oncology (MAASTRO), GROW, MUMC, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- Department of Radiation Oncology (MAASTRO), GROW, MUMC, Maastricht, the Netherlands
| | - Marcel Weber
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Mario Losen
- Department of Psychology and Neuropsychology, MHeNS, MUMC, Maastricht, the Netherlands
| | - Ala Yaromina
- Department of Radiation Oncology (MAASTRO), GROW, MUMC, Maastricht, the Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology (MAASTRO), GROW, MUMC, Maastricht, the Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW, MUMC, Maastricht, the Netherlands
| |
Collapse
|
4
|
LIU QIONG, PANG HUA, HU XIAOLI, LI WENBO, XI JIMEI, XU LU, ZHOU JING. Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice. Oncol Rep 2015; 35:171-8. [DOI: 10.3892/or.2015.4345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
|
5
|
Yuasa N, Koyama T, Fujita-Yamaguchi Y. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies. Biosci Trends 2014; 8:24-31. [PMID: 24647109 DOI: 10.5582/bst.8.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.
Collapse
Affiliation(s)
- Noriyuki Yuasa
- Department of Applied Biochemistry, Tokai University School of Engineering
| | | | | |
Collapse
|
6
|
Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol 2012; 2012:980250. [PMID: 22474489 PMCID: PMC3312285 DOI: 10.1155/2012/980250] [Citation(s) in RCA: 504] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/07/2012] [Indexed: 01/16/2023]
Abstract
To date, generation of single-chain fragment variable (scFv) has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional proteins having both antigen-binding capacity and marker activity can be obtained from transformed bacteria and used for one-step immunodetection of biological agents. Alternatively, antibody fragments could also be applied in the construction of immunotoxins, therapeutic gene delivery, and anticancer intrabodies for therapeutic purposes. This paper provides an overview of the current studies on the principle, generation, and application of scFv. The potential of scFv in breast cancer research is also discussed in this paper.
Collapse
Affiliation(s)
- Zuhaida Asra Ahmad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Abdul Manaf Ali
- Faculty of Agriculture and Biotechnology, Universiti Sultan Zainal Abidin, Kampus Kota, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia
| | - Wan Yong Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Muhajir Hamid
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| |
Collapse
|
7
|
Abstract
Ricin and its corresponding polypeptides (A & B chain) were purified from castor seed. The molecular weight of ricin subunits were 29,000 and 28,000 daltons. The amino acids in ricin determined were Asp45 The22 Ser40 Glu53 Cys4 Gly96 His5 Ile21 Leu33 Lys20 Met4 Phe13 Pro37 Tyr11 Ala45 Val23 Arg20 indicating that ricin contains approximately 516 amino acid residues. The amino acids of the two subunits of ricin A and B chains were Asp23 The12 Ser21 Glu29 Cys2 Gly48 His3 Ile12, Leu17 Lys10 Met2 Phe6 Pro17 Tyr7 Ala35 Val13 Arg13 while in B chain the amino acids were Asp22 The10 Ser19 Glu25 Cys2 Gly47 His1 Ile10, Leu15 Lys11 Met1 Phe7 Pro6 Tyr5 Ala32Val11 Arg10. The total helical content of ricin came around 53.6% which is a new observation.
Collapse
Affiliation(s)
- Srinivas V S Chakravartula
- Natural Products and Medicinal Chemistry Laboratory, Island Vitamins- Venus Pharmaceuticals Inc, New York, NY 11735, USA.
| | | |
Collapse
|
8
|
Paganetti P, Calanca V, Galli C, Stefani M, Molinari M. beta-site specific intrabodies to decrease and prevent generation of Alzheimer's Abeta peptide. ACTA ACUST UNITED AC 2005; 168:863-8. [PMID: 15767460 PMCID: PMC2171775 DOI: 10.1083/jcb.200410047] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endoproteolysis of the β-amyloid precursor protein (APP) by β- and γ-secretases generates the toxic amyloid β-peptide (Aβ), which accumulates in the brain of Alzheimer's disease (AD) patients. Here, we established a novel approach to regulate production of Aβ based on intracellular expression of single chain antibodies (intrabodies) raised to an epitope adjacent to the β-secretase cleavage site of human APP. The intrabodies rapidly associated, within the endoplasmic reticulum (ER), with newly synthesized APP. One intrabody remained associated during APP transport along the secretory line, shielded the β-secretase cleavage site and facilitated the alternative, innocuous cleavage operated by α-secretase. Another killer intrabody with an ER retention sequence triggered APP disposal from the ER. The first intrabody drastically inhibited and the second almost abolished generation of Aβ. Intrabodies association with specific substrates rather than with enzymes, may modulate intracellular processes linked to disease with highest specificity and may become instrumental to investigate molecular mechanisms of cellular events.
Collapse
Affiliation(s)
- Paolo Paganetti
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Blazek D, Celer V. The production and application of single-chain antibody fragments. Folia Microbiol (Praha) 2003; 48:687-98. [PMID: 14976730 DOI: 10.1007/bf02993480] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This review discusses methods for the single-chain antibody fragment ($cFv) generation and scFv expression systems, and describes potential applications of scFv in the therapy of viral diseases and cancer, with emphasis on intracellularly expressed scFvs (intrabodies), application of scFvs in detection and diagnostics, and their use in proteomics.
Collapse
Affiliation(s)
- D Blazek
- Institute of Microbiology and Immunology, Faculty of Veterinary Medicine, Veterinary and Pharmaceutical University, 612 42 Brno, Czechia
| | | |
Collapse
|
11
|
Intracellular targeting of antibodies in mammalian cells. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Abstract
The development of genetic engineering technologies has today advanced to the point where the generation of high-affinity human antibodies against therapeutic targets is not a major hurdle. Rather, it is the selection of target molecules in, for example, cancer therapy that poses a challenge. Targets that are not merely passive acceptors but those that signal into the cell are preferred. Recent advances in the clinical use of antibody-based therapy--such as anti-CD20 (rituximab) for the treatment of non-Hodgkin's lymphoma and anti-tumour-necrosis-factor-alpha for Crohn's disease--as well as novel antibody designs and improved understanding of the mode of action of current antibodies lend great hope to the future of this therapeutic approach.
Collapse
Affiliation(s)
- C A Borrebaeck
- Department of Immunotechnology, Lund University, Sweden.
| | | |
Collapse
|
13
|
Yang LJ, Sui YF, Chen ZN. Preparation and activity of conjugate of monoclonal antibody HAb18 against hepatoma F(ab')(2) fragment and staphylococcal enterotoxin A. World J Gastroenterol 2001; 7:216-21. [PMID: 11819763 PMCID: PMC4723525 DOI: 10.3748/wjg.v7.i2.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Revised: 11/28/2000] [Accepted: 11/30/2000] [Indexed: 02/06/2023] Open
Abstract
AIM To prepare the conjugate of staphylococcal enterotoxin A (SEA) protein which is a bacterial SAg and the F(ab')(2) fragment of mAb HAb18 against human hepatocellular carcinoma (HCC), and identify its activity in order to use SAg in the targeting therapy of HCC. METHODS MAb HAb18 was extracted from the abdominal dropsy of Balb/c mice, and was purified through chromatography column SP 40HR with Fast protein liquid chromatography (FPLC) system. The F(ab')(2) fragment of mAb HAb18 was prepared by papainic digestion method. The conjugate of mAb HAb18 F(ab')(2) fragment and SEA was prepared with chemical conjugating reagent N succinimidyl 3 (2-pyridyldithio) propionate (SPDP) and purified through chromatography column Superose 12 with FPLC system. The molecular mass and purity of each collected peak were identified with SDS-PAGE assay. The protein content was assayed by Lowry's method. The antibody activity of HAb18 F(ab')(2) against HCC in the conjugate was identified by indirect immunocytochemical ABC method, and the activity of SEA in the conjugate to activate peripheral blood mononuclear cells (PBMC) was identified with MTT assay. RESULTS The IgG mAb HAb18 was extracted, and purified successfully. Immunocytochemical staining demonstrated that it reacted with most of HHCC cells of human HCC cell line. There were two peaks in the process of purification of the prepared HAb18 F(ab')(2) SEA conjugate. SDS-PAGE assay demonstrated that the molecular mass of the first peak was about 130 ku, and the second peak was the mixture of about 45 ku and a little 100 ku proteins. The immunocytochemical staining was similar in HAb18 F(ab') (2) SEA conjugate and HAb18 F(ab') (2), i.e.the cytoplasm and/or cell membranes of most HHCC cells were positively stained. The MTT assay showed that the optical absorbance (A) value at 490 nm of HAb18 F(ab') (2) SEA conjugate was 0.182 +/- 0.012, that of negative control was 0.033 +/- 0.009, and there was significant difference between them (P < 0.05). CONCLUSION SPDP is a good protein conjugating reagent and can be used in preparing protein conjugate. The conjugate of mAb HAb18 F(ab') (2) fragment and SEA protein was prepared successfully in present study and can be used in the experimental study of HCC targeting therapy with the conjugate of SAg and anti HCC mAbs or their fragments.
Collapse
Affiliation(s)
- L J Yang
- Department of Pathology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province,China.
| | | | | |
Collapse
|
14
|
Heike Y, Kasono K, Kunisaki C, Hama S, Saijo N, Tsuruo T, Kuntz DA, Rose DR, Curiel DT. Overcoming multi-drug resistance using an intracellular anti-MDR1 sFv. Int J Cancer 2001. [DOI: 10.1002/1097-0215(200102)9999:9999<::aid-ijc1150>3.0.co;2-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Høgset A, Prasmickaite L, Tjelle TE, Berg K. Photochemical transfection: a new technology for light-induced, site-directed gene delivery. Hum Gene Ther 2000; 11:869-80. [PMID: 10779164 DOI: 10.1089/10430340050015482] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The development of methods for specific delivery of therapeutic genes into target tissues is an important issue for the further progress of in vivo gene therapy. In this article we report on a novel technology, named photochemical transfection, to use light to direct a precise delivery of therapeutic genes to a desired location. The technology makes use of photosensitizing compounds that localize mainly in the membranes of endosomes and lysosomes. On illumination these membrane structures will be destroyed, releasing endocytosed DNA into the cell cytosol. Using a green fluorescent protein gene as a model we show that illumination of photosensitizer-treated cells induces a substantial increase in the efficiency of transfection by DNA-poly-L-lysine complexes. Thus, in a human melanoma cell line the light treatment can increase the transfection efficiency more than 20-fold, reaching transfection levels of about 50% of the surviving cells. In this article various parameters of importance for the use of this technology are examined, and the potential use of the technology in gene therapy is discussed.
Collapse
Affiliation(s)
- A Høgset
- Department of Biophysics, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo.
| | | | | | | |
Collapse
|
16
|
Zhu Q, Zeng C, Huhalov A, Yao J, Turi TG, Danley D, Hynes T, Cong Y, DiMattia D, Kennedy S, Daumy G, Schaeffer E, Marasco WA, Huston JS. Extended half-life and elevated steady-state level of a single-chain Fv intrabody are critical for specific intracellular retargeting of its antigen, caspase-7. J Immunol Methods 1999; 231:207-22. [PMID: 10648939 DOI: 10.1016/s0022-1759(99)00158-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
8 h) and high steady-state levels of protein accumulation, while the H2 intrabodies had a half-life of 2 h and less protein at steady state. These results suggest that the choice of sFv as an intrabody depends critically on the intracellular sFv protein having an extended half-life and elevated steady-state level. Thus, extended half-life must be considered together with sFv antibody specificity and affinity when choosing an optimal sFv intrabody for functional studies of cellular proteins.
Collapse
Affiliation(s)
- Q Zhu
- IntraImmune Therapies Inc., P.O. Box 15599, Boston, MA 02215-0011,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|