1
|
Reichen C, Beirão BCB, Monteiro ALG. Contagious ecthyma in small ruminants: from etiology to vaccine challenges - a review. Vet Res Commun 2025; 49:115. [PMID: 39992468 DOI: 10.1007/s11259-025-10677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Orf virus (ORFV) is an epitheliotropic, double-stranded DNA pathogen belonging to the genus Parapoxvirus, and it is the causative agent of contagious ecthyma (CE) in small ruminants. It is an endemic disease on goat and sheep herds around the world. It is often a neglected disease, with impacts on herd health and productivity, while also being an occupational zoonosis. This review explores the causative agent of ovine ecthyma, its epidemiology, and clinical manifestations, with a particular emphasis on its interaction with the host's immune system and the development of ORFV vaccines. Like other members of the Poxviridae family, ORFV expresses numerous immunomodulatory genes, which complicate vaccination efforts and disease management. This review highlights the challenges posed by ORFV in achieving effective immunization and discusses potential vaccine strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Caroline Reichen
- Department of Animal Science, Sheep and Goat Production and Research Center (LAPOC), Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Breno Castello Branco Beirão
- Department of Basic Pathology, Comparative Immunology Laboratory (LIC), Federal University of Paraná (UFPR), Curitiba, 81531-980, Paraná, Brazil
| | - Alda Lúcia Gomes Monteiro
- Department of Animal Science, Sheep and Goat Production and Research Center (LAPOC), Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
2
|
Russell FA, Trim L, Bryan E, Fisher MA, Leahy D, Harris JM, Hutmacher D, Dargaville TR, Beagley KW. Stability and antigenicity of Chlamydia muridarum major outer membrane protein antigen at body temperature. Vaccine 2024; 42:126047. [PMID: 38897891 DOI: 10.1016/j.vaccine.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Chlamydia is an obligate intracellular bacterial pathogen responsible for disease and infertility across multiple species. Currently vaccines are being studied to help reduce the prevalence of this disease. The main advantage of protein subunit vaccines is their high degree of safety although this is traded off with the requirement for multiple booster doses to achieve complete protection. Although in certain populations the booster dose can be difficult and costly to administer, development of delayed vaccine delivery techniques, such as a vaccine capsule, could be the solution to this problem. One of the main drawbacks in this technology is that the antigen must remain stable at body temperature (37 °C) until release is achieved. Here we elucidate the stability of a recombinant chlamydial major outer membrane protein (MOMP) antigen and assess its antigenic and immunogenic properties after subjecting the antigen to 37 °C for four to six weeks. Through in vitro and in vivo assessment we found that the aged chlamydial MOMP was able to produce equivalent humoral and cell-mediated immune responses when compared with the unaged vaccine. It was also found that vaccines formulated with the aged antigen conferred equivalent protection against a live infection challenge as the unaged antigen. Thus ageing chlamydial MOMP antigens at 37 °C for four to six weeks did not cause any significant structural or antigenic/immunogenic degradation and recombinant C. muridarum MOMP is suitable for use in a delayed vaccine delivery system.
Collapse
Affiliation(s)
- Freya A Russell
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; School of Biomedical Sciences and Centre for Immunology and Infection Control (CIIC), 300 Herston Road, QLD 4006, Australia.
| | - Logan Trim
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; School of Biomedical Sciences and Centre for Immunology and Infection Control (CIIC), 300 Herston Road, QLD 4006, Australia
| | - Emily Bryan
- School of Biomedical Sciences and Centre for Immunology and Infection Control (CIIC), 300 Herston Road, QLD 4006, Australia; Faculty of Medicine, University of Queensland Centre for Clinical Research, Herston 4006, Australia
| | - Mark A Fisher
- Queensland University of Technology, Faculty of Health, School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program, Translational Research Institute, Brisbane, Qld 4000, Australia
| | - Darren Leahy
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Jonathan M Harris
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Dietmar Hutmacher
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia; School of Biomedical Sciences and Centre for Immunology and Infection Control (CIIC), 300 Herston Road, QLD 4006, Australia; Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Kenneth W Beagley
- School of Biomedical Sciences and Centre for Immunology and Infection Control (CIIC), 300 Herston Road, QLD 4006, Australia
| |
Collapse
|
3
|
Wijesundara YH, Howlett TS, Kumari S, Gassensmith JJ. The Promise and Potential of Metal-Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chem Rev 2024; 124:3013-3036. [PMID: 38408451 DOI: 10.1021/acs.chemrev.3c00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development. Although these materials have been widely explored in the context of drug delivery, imaging, and cancer immunotherapy, their role in immunology and vaccine-related applications is a recent yet rapidly developing field. This review seeks to elucidate the prospective use of MOFs and COFs for biomaterial stabilization, eliminating the necessity for cold chains, enhancing antigen potency as adjuvants, and potentializing needle-free delivery of vaccines. It provides an expansive and critical viewpoint on this rapidly evolving field of research and emphasizes the vital contribution of chemists in driving further advancements.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
4
|
Canelli E, Ferrari L, Borghetti P, Candela F, Abiakam NS, Bianchera A, Buttini F, Magi GE, Sonvico F, Martelli P, Bettini R. Nano-adjuvanted dry powder vaccine for the mucosal immunization against airways pathogens. Front Vet Sci 2023; 10:1116722. [PMID: 36998637 PMCID: PMC10043307 DOI: 10.3389/fvets.2023.1116722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
Nasal vaccination has been shown to provide optimal protection against respiratory pathogens. However, mucosal vaccination requires the implementation of specific immunization strategies to improve its effectiveness. Nanotechnology appears a key approach to improve the effectiveness of mucosal vaccines, since several nanomaterials provide mucoadhesion, enhance mucosal permeability, control antigen release and possess adjuvant properties. Mycoplasma hyopneumoniae is the main causative agent of enzootic pneumonia in pigs, a respiratory disease responsible for considerable economic losses in the pig farming worldwide. The present work developed, characterized, and tested in vivo an innovative dry powder nasal vaccine, obtained from the deposition on a solid carrier of an inactivated antigen and a chitosan-coated nanoemulsion, as an adjuvant. The nanoemulsion was obtained through a low-energy emulsification technique, a method that allowed to achieve nano droplets in the order of 200 nm. The oil phase selected was alpha-tocopherol, sunflower oil, and poly(ethylene glycol) hydroxystearate used as non-ionic tensioactive. The aqueous phase contained chitosan, which provides a positive charge to the emulsion, conferring mucoadhesive properties and favoring interactions with inactivated M. hyopneumoniae. Finally, the nanoemulsion was layered with a mild and scalable process onto a suitable solid carrier (i.e., lactose, mannitol, or calcium carbonate) to be transformed into a solid dosage form for administration as dry powder. In the experimental study, the nasal vaccine formulation with calcium carbonate was administered to piglets and compared to intramuscular administration of a commercial vaccine and of the dry powder without antigen, aimed at evaluating the ability of IN vaccination to elicit an in vivo local immune response and a systemic immune response. Intranasal vaccination was characterized by a significantly higher immune response in the nasal mucosa at 7 days post-vaccination, elicited comparable levels of Mycoplasma-specific IFN-γ secreting cells and comparable, if not higher, responsiveness of B cells expressing IgA and IgG in peripheral blood mononuclear cells, with those detected upon a conventional intramuscular immunization. In conclusion, this study illustrates a simple and effective strategy for the development of a dry powder vaccine formulation for nasal administration which could be used as alternative to current parenteral commercial vaccines.
Collapse
Affiliation(s)
- Elena Canelli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Francesco Candela
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
| | - Nkemjika Sopuru Abiakam
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
| | - Annalisa Bianchera
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Francesca Buttini
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Fabio Sonvico
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parma, Italy
- *Correspondence: Fabio Sonvico
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Ruggero Bettini
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Russell FA, Trim LK, Savi FM, Simon C, Dargaville TR, Hutmacher DW, Beagley KW. Controlled release vaccine implants for delivery of booster immunisations. Vet Immunol Immunopathol 2022; 253:110484. [PMID: 36174421 DOI: 10.1016/j.vetimm.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
Most current animal vaccine regimes involve a primary vaccination followed sometime later by a booster vaccination. This presents challenges when vaccinating difficult to access animals such as livestock. Mustering livestock to deliver a vaccine boost is costly and stressful for animals. Thus, we have produced a platform system that can be administered at the same time as the priming immunisation and delivers payload after an appropriate delay time to boost the immune response, without need for further handling of animals. A 30 × 2 mm osmotically triggered polymer implant device with burst-release characteristics delivered the booster dose of a tetanus vaccine. Blood samples were collected from an experimental group that received the priming vaccine and implant on day 0 and control group that received the initial vaccine (tetanus toxoid) and then a bolus dose 28 days later via subcutaneous injection. The two groups showed identical weight gain curves. T cell proliferation following in vitro stimulation with antigen was identical between the two groups at all time points. However, serum IgG antibody responses to the tetanus toxoid antigen were significantly higher in the control group at weeks 8 and 12. The implant capsules stayed at the site of implantation and at week 12 there was evidence of tissue integration. No local reactions at the implant site were observed, other than mild thickening of the skin in half of the experimental group animals and no other adverse health events were recorded in either group.
Collapse
Affiliation(s)
- Freya A Russell
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Logan K Trim
- School of Biomedical Sciences and Centre for Immunology and Infection Control (CIIC), 300 Herston Road, QLD 4006, Australia
| | - Flavia Medeiros Savi
- Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Craig Simon
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Tim R Dargaville
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Dietmar W Hutmacher
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia; Center for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Kenneth W Beagley
- School of Biomedical Sciences and Centre for Immunology and Infection Control (CIIC), 300 Herston Road, QLD 4006, Australia.
| |
Collapse
|
6
|
Physical, Chemical, and Biological Properties of Chitosan-Coated Alginate Microparticles Loaded with Porcine Interleukin-1β: A Potential Protein Adjuvant Delivery System. Int J Mol Sci 2022; 23:ijms23179959. [PMID: 36077367 PMCID: PMC9456129 DOI: 10.3390/ijms23179959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
We previously developed chicken interleukin-1β (IL-1β) mutants as single-dose adjuvants that induce protective immunity when co-administered with an avian vaccine. However, livestock such as pigs may require a vaccine adjuvant delivery system that provides long-lasting protection to reduce the need for successive booster doses. Therefore, we developed chitosan-coated alginate microparticles as a carrier for bovine serum albumin (BSA) or porcine IL-1β (pIL-1β) and assessed their physical, chemical, and biological properties. Electrospraying of the BSA-loaded alginate microparticles (BSA/ALG MPs) resulted in an encapsulation efficiency of 50%, and those MPs were then coated with chitosan (BSA/ALG/CHI MPs). Optical and scanning electron microscopy, zeta potential analysis, and Fourier transform infrared spectroscopy were used to characterize these MPs. The BSA encapsulation parameters were applied to ALG/CHI MPs loaded with pIL-1β, which were not cytotoxic to porcine fibroblasts but had enhanced bio-activity over unencapsulated pIL-1β. The chitosan layer of the BSA/ALG/CHI MPs prevented burst release and facilitated sustained release of pIL-1β for at least 28 days. In conclusion, BSA/ALG/CHI MPs prepared as a carrier for pIL-1β may be used as an adjuvant for the formulation of pig vaccines.
Collapse
|
7
|
Bukar AM, Jesse FFA, Abdullah CAC, Noordin MM, Lawan Z, Mangga HK, Balakrishnan KN, Azmi MLM. Immunomodulatory Strategies for Parapoxvirus: Current Status and Future Approaches for the Development of Vaccines against Orf Virus Infection. Vaccines (Basel) 2021; 9:1341. [PMID: 34835272 PMCID: PMC8624149 DOI: 10.3390/vaccines9111341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orf virus (ORFV), the prototype species of the parapoxvirus genus, is the causative agent of contagious ecthyma, an extremely devastating skin disease of sheep, goats, and humans that causes enormous economic losses in livestock production. ORFV is known for its ability to repeatedly infect both previously infected and vaccinated sheep due to several immunomodulatory genes encoded by the virus that temporarily suppress host immunity. Therefore, the development of novel, safe and effective vaccines against ORFV infection is an important priority. Although, the commercially licensed live-attenuated vaccines have provided partial protection against ORFV infections, the attenuated viruses have been associated with major safety concerns. In addition to safety issues, the persistent reinfection of vaccinated animals warrants the need to investigate several factors that may affect vaccine efficacy. Perhaps, the reason for the failure of the vaccine is due to the long-term adaptation of the virus in tissue culture. In recent years, the development of vaccines against ORFV infection has achieved great success due to technological advances in recombinant DNA technologies, which have opened a pathway for the development of vaccine candidates that elicit robust immunity. In this review, we present current knowledge on immune responses elicited by ORFV, with particular attention to the effects of the viral immunomodulators on the host immune system. We also discuss the implications of strain variation for the development of rational vaccines. Finally, the review will also aim to demonstrate future strategies for the development of safe and efficient vaccines against ORFV infections.
Collapse
Affiliation(s)
- Alhaji Modu Bukar
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
- Department of Science Laboratory Technology, School Agriculture and Applied Sciences, Ramat Polytechnic Maiduguri, Maiduguri 1070, Borno, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | | - Mustapha M. Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Zaharaddeen Lawan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Hassana Kyari Mangga
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Krishnan Nair Balakrishnan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Mohd-Lila Mohd Azmi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| |
Collapse
|
8
|
Şenel S. Nanotechnology and Animal Health. Pharm Nanotechnol 2020; 9:26-35. [PMID: 32912131 DOI: 10.2174/2211738508666200910101504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
Nanotechnology has been a rapidly expanding area of research with huge potential in many sectors, including animal healthcare. It promises to revolutionize drug and vaccine delivery, diagnostics, and theranostics, which has become an important tool in personalized medicine by integrating therapeutics and diagnostics. Nanotechnology has also been used successfully in animal nutrition. In this review, the application of nanotechnology in animal health will be reviewed with its pros and cons.
Collapse
Affiliation(s)
- Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100-Ankara, Turkey
| |
Collapse
|
9
|
Abstract
Vaccination is a critical tool in modern animal production and key to maintaining animal health. Adjuvants affect the immune response by increasing the rate, quantity, or quality of the protective response generated by the target antigens. Although adjuvant technology dates back to the nineteenth century, there was relatively little improvement in adjuvant technology before the late twentieth century. With the discovery of molecular pathways that regulate the timing, quantity, and quality of the immune response, new technologies are focused on bringing safer, more effective, and inexpensive adjuvants to commercial use.
Collapse
Affiliation(s)
- Alan J Young
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2175, ARW168F, Brookings, SD 57006, USA.
| |
Collapse
|
10
|
Food-Grade Saponin Extract as an Emulsifier and Immunostimulant in Emulsion-Based Subunit Vaccine for Pigs. J Immunol Res 2018; 2018:8979838. [PMID: 30599004 PMCID: PMC6288570 DOI: 10.1155/2018/8979838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Subunit vaccines consisting of highly purified antigens require the presence of adjuvants to create effective and long-lasting protective immunity. Advances on adjuvant research include designing combination adjuvants which incorporate two or more adjuvants to enhance vaccine efficacy. Previously, an oil-in-water emulsion adjuvant (OW-14) composed of mineral oil and an inexpensive gum Arabic emulsifier has been reported demonstrating enhanced and robust immune responses when used as an adjuvant in swine subunit vaccines. This study presents a modified version of OW-14 prepared with food-grade Quillaja saponin extract (OWq). In new OWq emulsion, saponin extract served as an emulsifier for stabilization of emulsion droplets and as an immunoactive compound. The use of saponins allowed to reduce the required amount of emulsifier in the original OW-14. However, emulsion stabilized with saponins demonstrated extended physical stability even at elevated temperature (37°C). The two-dose vaccination with a classical swine fever virus (CSFV) glycoprotein E2-based vaccine formulated with OWq produced higher levels of E2-specific IgG and virus neutralizing antibodies in pigs in contrast with animals that received the vaccine adjuvanted with oil only. In addition, new OWq adjuvant was safe to use in the vaccination of pigs.
Collapse
|
11
|
Thi Nguyen D, Shepard SS, Burke DF, Jones J, Thor S, Nguyen LV, Nguyen TD, Balish A, Hoang DN, To TL, Iqbal M, Wentworth DE, Spackman E, van Doorn HR, Davis CT, Bryant JE. Antigenic characterization of highly pathogenic avian influenza A(H5N1) viruses with chicken and ferret antisera reveals clade-dependent variation in hemagglutination inhibition profiles. Emerg Microbes Infect 2018; 7:100. [PMID: 29855467 PMCID: PMC5981457 DOI: 10.1038/s41426-018-0100-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/04/2023]
Abstract
Highly pathogenic avian influenza (HPAI) A(H5N1) viruses pose a significant economic burden to the poultry industry worldwide and have pandemic potential. Poultry vaccination against HPAI A(H5N1) viruses has been an important component of HPAI control measures and has been performed in Vietnam since 2005. To systematically assess antigenic matching of current vaccines to circulating field variants, we produced a panel of chicken and ferret antisera raised against historical and contemporary Vietnamese reference viruses representing clade variants that were detected between 2001 and 2014. The antisera were used for hemagglutination inhibition (HI) assays to generate data sets for analysis by antigenic cartography, allowing for a direct comparison of results from chicken or ferret antisera. HI antigenic maps, developed with antisera from both hosts, revealed varying patterns of antigenic relationships and clustering of viruses that were dependent on the clade of viruses analyzed. Antigenic relationships between existing poultry vaccines and circulating field viruses were also aligned with in vivo protection profiles determined by previously reported vaccine challenge studies. Our results establish the feasibility and utility of HPAI A(H5N1) antigenic characterization using chicken antisera and support further experimental and modeling studies to investigate quantitative relationships between genetic variation, antigenic drift and correlates of poultry vaccine protection in vivo.
Collapse
Affiliation(s)
- Diep Thi Nguyen
- National Center for Veterinary Diagnostics, Department of Animal Health, Hanoi, Vietnam. .,Department of Animal Health, Ministry of Agriculture and Rural Development of Vietnam, Hanoi, Vietnam. .,Oxford University Clinical Research Unit, Hanoi, Vietnam. .,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | - Samuel S Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | | | - Joyce Jones
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Sharmi Thor
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Long Van Nguyen
- Department of Animal Health, Ministry of Agriculture and Rural Development of Vietnam, Hanoi, Vietnam
| | - Tho Dang Nguyen
- National Center for Veterinary Diagnostics, Department of Animal Health, Hanoi, Vietnam
| | - Amanda Balish
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Dang Nguyen Hoang
- National Center for Veterinary Diagnostics, Department of Animal Health, Hanoi, Vietnam
| | - Thanh Long To
- Department of Animal Health, Ministry of Agriculture and Rural Development of Vietnam, Hanoi, Vietnam
| | | | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Erica Spackman
- United States Department of Agriculture, Southeast Poultry Research Laboratory, Athens, GA, USA
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam.,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - C Todd Davis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.
| | - Juliet E Bryant
- Oxford University Clinical Research Unit, Hanoi, Vietnam. .,Center for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res 2017; 40:1238-1248. [PMID: 29027637 DOI: 10.1007/s12272-017-0969-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
Vaccination is an effective approach to prevent the consequences of infectious diseases. Vaccines strengthen immunity and make individuals resistant to infections with pathogens. Although conventional vaccines are highly immunogenic, they are associated with some safety issues. Subunit vaccines are safe, but they require adjuvants to stimulate the immune system because of their weaker immunogenicity. Adjuvants are entities incorporated into vaccines to increase the immunogenic responses of antigens. They play a crucial role in increasing the potency and efficacy of vaccines. Different adjuvants have different modes of action; therefore, a better understanding of their immunology could provide guidance for the development of novel adjuvants. Numerous studies have been conducted using different types of adjuvants to characterize their potency and safety; however, in practice, only few are used in human or animal vaccines. This review aims to introduce the different modes of action of adjuvants and give insight into the types of adjuvants that possess the greatest potential for adjuvanticity.
Collapse
|
13
|
Lillehoj HS, Jang SI, Panebra A, Lillehoj EP, Dupuis L, Ben Arous J, Lee SK, Oh ST. In ovo vaccination using Eimeria profilin and Clostridium perfringens NetB proteins in Montanide IMS adjuvant increases protective immunity against experimentally-induced necrotic enteritis. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1478-1485. [PMID: 28335090 PMCID: PMC5582334 DOI: 10.5713/ajas.17.0053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The effects of vaccinating 18-day-old chicken embryos with the combination of recombinant Eimeria profilin plus Clostridium perfringens (C. perfringens) NetB proteins mixed in the Montanide IMS adjuvant on the chicken immune response to necrotic enteritis (NE) were investigated using an Eimeria maxima (E. maxima)/C. perfringens co-infection NE disease model that we previously developed. METHODS Eighteen-day-old broiler embryos were injected with 100 μL of phosphate-buffered saline, profilin, profilin plus necrotic enteritis B-like (NetB), profilin plus NetB/Montanide adjuvant (IMS 106), and profilin plus Net-B/Montanide adjuvant (IMS 101). After post-hatch birds were challenged with our NE experimental disease model, body weights, intestinal lesions, serum antibody levels to NetB, and proinflammatory cytokine and chemokine mRNA levels in intestinal intraepithelial lymphocytes were measured. RESULTS Chickens in ovo vaccinated with recombinant profilin plus NetB proteins/IMS106 and recombinant profilin plus NetB proteins/IMS101 showed significantly increased body weight gains and reduced gut damages compared with the profilin-only group, respectively. Greater antibody response to NetB toxin were observed in the profilin plus NetB/IMS 106, and profilin plus NetB/IMS 101 groups compared with the other three vaccine/adjuvant groups. Finally, diminished levels of transcripts encoding for proinflammatory cytokines such as lipopolysaccharide-induced tumor necrosis factor-α factor, tumor necrosis factor superfamily 15, and interleukin-8 were observed in the intestinal lymphocytes of chickens in ovo injected with profilin plus NetB toxin in combination with IMS 106, and profilin plus NetB toxin in combination with IMS 101 compared with profilin protein alone bird. CONCLUSION These results suggest that the Montanide IMS adjuvants potentiate host immunity to experimentally-induced avian NE when administered in ovo in conjunction with the profilin and NetB proteins, and may reduce disease pathology by attenuating the expression of proinflammatory cytokines and chemokines implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Hyun Soon Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Seung Ik Jang
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Institute of Health and Environment, Daejeon Metropolitan City, Daejeon 305–338, Korea
| | - Alfredo Panebra
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Erik Peter Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Seung Kyoo Lee
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Sung Taek Oh
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
14
|
Chen WT, Chang HK, Lin CC, Yang SM, Yin HS. Chicken interleukin-1β mutants are effective single-dose vaccine adjuvants that enhance mucosal immune response. Mol Immunol 2017; 87:308-316. [DOI: 10.1016/j.molimm.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
|
15
|
Abstract
Vaccines are essential tools for the prevention and control of infectious diseases in animals. One of the most important steps in vaccine development is the selection of a suitable adjuvant. The focus of this review is the adjuvants used in vaccines for animals. We will discuss current commercial adjuvants and experimental formulations with attention to mineral salts, emulsions, bacterial-derived components, saponins, and several other immunoactive compounds. In addition, we will also examine the mechanisms of action for different adjuvants, examples of adjuvant combinations in one vaccine formulation, and challenges in the research and development of veterinary vaccine adjuvants.
Collapse
Affiliation(s)
- Yulia Burakova
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas.,2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Rachel Madera
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Scott McVey
- 3 United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas
| | - John R Schlup
- 2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Jishu Shi
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| |
Collapse
|
16
|
Chou WK, Chen CH, Vuong CN, Abi-Ghanem D, Waghela SD, Mwangi W, Bielke LR, Hargis BM, Berghman LR. Significant mucosal sIgA production after a single oral or parenteral administration using in vivo CD40 targeting in the chicken. Res Vet Sci 2016; 108:112-5. [PMID: 27663378 DOI: 10.1016/j.rvsc.2016.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 08/07/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Many pathogens enter the host through mucosal surfaces and spread rapidly via the circulation. The most effective way to prevent disease is to establish mucosal and systemic immunity against the pathogen. However, current vaccination programs in poultry industry require repeated administrations of live-attenuated virus or large amounts (10 to 100μg) of antigen together with adjuvant to induce specific secretory IgA immune responses at the mucosal effector sites. In the present study, we show that a single administration of 0.4μg of oligopeptide complexed with an agonistic anti-chicken CD40 (chCD40) monoclonal antibody (Mab) effectively targets antigen-presenting cells of the bird's mucosa-associated lymphoid tissue in vivo, and induces peptide-specific secretory IgA (sIgA) in the trachea 7days post administration. Anti-chCD40 Mab-peptide complex was administered once to four-week old male Leghorns via various mucosal routes (orally, via cloacal drinking, or oculo-nasally) or via subcutaneous (s.c.) immunization. Immunization through any of the three mucosal induction routes induced significant peptide-specific mucosal sIgA responses 7 and 14days after immunization. Interestingly, s.c. injection of the complex also induced mucosal sIgA. Our data suggest in vivo targeting of CD40 as a potential adjuvant platform, particularly for the purpose of enhancing and speeding up mucosal vaccine responses in chickens, and potentially other food animals. This is the first study able to elicit specific sIgA immune responses in remote mucosal sites with a single administration of only 0.4μg of antigen.
Collapse
Affiliation(s)
- Wen-Ko Chou
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Chang-Hsin Chen
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Christine N Vuong
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Daad Abi-Ghanem
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Suryakant D Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Lisa R Bielke
- JKS Poultry Health Laboratory, University of Arkansas, Fayetteville, AR, USA
| | - Billy M Hargis
- JKS Poultry Health Laboratory, University of Arkansas, Fayetteville, AR, USA
| | - Luc R Berghman
- Department of Poultry Science, Texas A&M University, College Station, TX, USA; Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
17
|
Jafari M, Moghaddam Pour M, Taghizadeh M, Masoudi S, Bayat Z. Comparative assessment of humoral immune responses of aluminum hydroxide and oil-emulsion adjuvants in Influenza (H9N2) and Newcastle inactive vaccines to chickens. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:84-89. [PMID: 26757848 DOI: 10.3109/21691401.2015.1129626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Context Adjuvants are compounds used in the preparation of inactive vaccines to enhance the immune response. Aluminum hydroxide (alum) is one of the first compounds approved by the Food and Drug Administration, which is used as adjuvants in vaccine products for humans. Montanide ISA 70 is an oil-emulsion adjuvant and is used in poultry inactive vaccines. Objective In this study, the effects of alum adjuvant on the efficiency and induction of immune response in inactive vaccines of Influenza and Newcastle are compared with those of ISA 70. Materials and methods Six groups of 7-d-old specific-pathogen-free chickens were inoculated with 0.3 ml of the prepared vaccines via the subcutaneous route in the neck. Immune response in each group after 7, 14, 21, 31, 41, and 45 d was evaluated using the technique of hemagglutination inhibition. Results The results were compared using SPSS software. Results showed that vaccines containing adjuvant ISA 70 depicted a higher increase in the immune response and adjuvant of 20% alum is similar to adjuvant of ISA 70 in boosting the immune system. There was no statistically significant difference between 10% and 20% alum, but these adjuvants are visibly different from ISA 70. Conclusion In conclusion, alum can be used as an easily accessible, harmless, and effective adjuvant; however, to increase the immune period using the inactive vaccines for poultry, more research would be necessary.
Collapse
Affiliation(s)
- Mahdie Jafari
- a Microbiology Department, Faculty of Advanced Science & Technology Pharmaceutical Sciences Branch , Islamic Azad University , Tehran , Iran
| | - Masoud Moghaddam Pour
- b Research and Development Viral Vaccine Department , Razi Vaccine and Serum Research Institute , Karaj , Iran
| | - Morteza Taghizadeh
- b Research and Development Viral Vaccine Department , Razi Vaccine and Serum Research Institute , Karaj , Iran
| | - Shahin Masoudi
- c Research and Development of Poultry Infection Bronchitis Department , Razi Vaccine and Serum Research Institute , Karaj , Iran
| | - Zahra Bayat
- a Microbiology Department, Faculty of Advanced Science & Technology Pharmaceutical Sciences Branch , Islamic Azad University , Tehran , Iran
| |
Collapse
|
18
|
Kim DK, Won KH, Moon SH, Lee HK. Identification of Molecular Signatures from Different Vaccine Adjuvants in Chicken by Integrative Analysis of Microarray Data. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 29:1044-51. [PMID: 26954188 PMCID: PMC4932582 DOI: 10.5713/ajas.14.0923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/09/2015] [Accepted: 02/11/2015] [Indexed: 11/27/2022]
Abstract
The present study compared the differential functions of two groups of adjuvants, Montanide incomplete Seppic adjuvant (ISA) series and Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC) formulations, in chicken by analyzing published microarray data associated with each type of vaccine adjuvants. In the biological function analysis for differentially expressed genes altered by two different adjuvant groups, ISA series and QCDC formulations showed differential effects when chickens were immunized with a recombinant immunogenic protein of Eimeria. Among the biological functions, six categories were modified in both adjuvant types. However, with respect to “Response to stimulus”, no biological process was modified by the two adjuvant groups at the same time. The QCDC adjuvants showed effects on the biological processes (BPs) including the innate immune response and the immune response to the external stimulus such as toxin and bacterium, while the ISA adjuvants modified the BPs to regulate cell movement and the response to stress. In pathway analysis, ISA adjuvants altered the genes involved in the functions related with cell junctions and the elimination of exogenous and endogenous macromolecules. The analysis in the present study could contribute to the development of precise adjuvants based on molecular signatures related with their immunological functions.
Collapse
Affiliation(s)
| | - Kyeong Hye Won
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Seung Hyun Moon
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
19
|
Tekleghiorghis T, Weerdmeester K, van Hemert-Kluitenberg F, Moormann RJM, Dekker A. No significant differences in the breadth of the foot-and-mouth disease serotype A vaccine induced antibody responses in cattle, using different adjuvants, mixed antigens and different routes of administration. Vaccine 2014; 32:5330-6. [PMID: 25092634 DOI: 10.1016/j.vaccine.2014.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/12/2014] [Accepted: 07/09/2014] [Indexed: 10/24/2022]
Abstract
Inactivated whole virus foot-and-mouth disease (FMD) vaccines are used worldwide for protection against FMD, but not all vaccines induce protection against all genetic variants of the same FMD virus serotype. The aim of this study is to investigate whether the "breadth" of the antibody response against different strains of the same FMD virus serotype in cattle could be improved by using a different adjuvant, a mix of antigens and/or different routes of administration. To this end, six groups of five cattle were vaccinated with different FMD virus serotype A strain vaccines formulated with Montanide ISA 206 VG adjuvant. Antibody responses for homologous and heterologous cross-reactivity against a panel of 10 different FMD virus serotype A strains were tested by a liquid-phase blocking ELISA. Results of cattle vaccinated with ISA 206 VG adjuvanted vaccine were compared with results obtained in a previous study using aluminium hydroxide-saponin adjuvant. No significant effect of adjuvant on the breadth of the antibody response was observed, neither for mixing of antigens nor for the route of administration (subcutaneous vs. intradermal). Comparison of antigen payload, however, increased both homologous and heterologous titres; a 10-fold higher antigen dose resulted in approximately four times higher titres against all tested strains. Our study shows that breadth of the antibody response depends mainly on the vaccine strain; we therefore propose that, for vaccine preparation, only FMD virus strains are selected that, among other important characteristics, will induce a wide antibody response to different field strains.
Collapse
Affiliation(s)
- Tesfaalem Tekleghiorghis
- Central Veterinary Institute, part of Wageningen UR, Houtribweg 39, 8221 RA, Lelystad, The Netherlands; National Veterinary Laboratory, Ministry of Agriculture, Asmara, Eritrea
| | - Klaas Weerdmeester
- Central Veterinary Institute, part of Wageningen UR, Houtribweg 39, 8221 RA, Lelystad, The Netherlands
| | | | - Rob J M Moormann
- Central Veterinary Institute, part of Wageningen UR, Houtribweg 39, 8221 RA, Lelystad, The Netherlands; Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Aldo Dekker
- Central Veterinary Institute, part of Wageningen UR, Houtribweg 39, 8221 RA, Lelystad, The Netherlands.
| |
Collapse
|
20
|
Bhardwaj J, Chaudhary N, Seo HJ, Kim MY, Shin TS, Kim JD. Immunomodulatory effect of tea saponin in immune T-cells and T-lymphoma cells via regulation of Th1, Th2 immune response and MAPK/ERK2 signaling pathway. Immunopharmacol Immunotoxicol 2014; 36:202-10. [PMID: 24754510 DOI: 10.3109/08923973.2014.909849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The anti-cancer activity of saponins and phenolic compounds present in green tea was previously reported. However, the immunomodulatory and adjuvanticity activity of tea saponin has never been studied. In this study, we investigated the immunomodulatory effect of tea saponin in T-lymphocytes and EL4 cells via regulation of cytokine response and mitogen-activated protein kinases (MAPK) signaling pathway. Quantitative analysis of mRNA expression level of cytokines were performed by reverse transcription polymerase chain reaction following stimulation with tea saponin, ovalbumin (OVA) alone or tea saponin in combination with OVA. Tea saponin inhibited the proliferation of EL4 cells measured in a dose-dependent manner. No cytotoxicity effect of tea saponin was detected in T-lymphocytes; rather, tea saponin enhanced the proliferation of T-lymphocytes. Tea saponin with OVA increased the expression of interleukin (IL)-1, IL-2, IL-12, interferon-γ and tumor necrosis factor (TNF)-α and decreased the expression level of IL-10 and IL-8 in T-lymphocytes. Furthermore, tea saponin, in the presence of OVA, downregulated the MAPK signaling pathway via inhibition of IL-4, IL-8 and nuclear factor kappaB (NF-κB) in EL4 cells. Th1 cytokines enhancer and Th2 cytokines and NF-κB inhibitor, tea saponin can markedly inhibit the proliferation and invasiveness of T-lymphoma (EL4) cells, possibly due to TNF-α- and NF-κB-mediated regulation of MAPK signaling pathway.
Collapse
|
21
|
Lee SH, Lee S, Chae C, Ryu DY. A recombinant chimera comprising the R1 and R2 repeat regions of M. hyopneumoniae P97 and the N-terminal region of A. pleuropneumoniae ApxIII elicits immune responses. BMC Vet Res 2014; 10:43. [PMID: 24533486 PMCID: PMC3932138 DOI: 10.1186/1746-6148-10-43] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Infection by Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae, either alone or together, causes serious respiratory diseases in pigs. Results To develop an efficient multi-disease subunit vaccine against these pathogens, we produced a chimeric protein called Ap97, which comprises a deletion derivative of the N-terminal region of the A. pleuropneumoniae ApxIII toxin (ApxN) and the R1 and R2 repeats of M. hyopneumoniae P97 adhesin (P97C), using an E. coli expression system. The levels of both IgG1 and IgG2a isotypes specific for ApxN and P97C in the sera of Ap97-immunized mice increased, and Ap97 induced the secretion of IL-4 and IFN-γ by mouse splenocytes. Antisera from mice and pigs immunized with Ap97 readily reacted with both native ApxIII and P97 proteins. In addition, immunization with the Ap97 vaccine effectively protected pigs against challenge with both pathogens. Conclusions These findings suggest that Ap97 confers immunogenicity, and is an effective vaccine that protects pigs against infection by M. hyopneumoniae and A. pleuropneumoniae.
Collapse
Affiliation(s)
| | | | | | - Doug-Young Ryu
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea.
| |
Collapse
|
22
|
Barate AK, Cho Y, Truong QL, Hahn TW. Immunogenicity of IMS 1113 plus soluble subunit and chimeric proteins containing Mycoplasma hyopneumoniae P97 C-terminal repeat regions. FEMS Microbiol Lett 2014; 352:213-20. [PMID: 24461070 DOI: 10.1111/1574-6968.12389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 12/01/2022] Open
Abstract
The surface adhesin P97 mediates the adherence of Mycoplasma hyopneumoniae to swine cilia. Two reiterated repeats R1 and R2 are located at the C-terminus of P97. The purpose of this study was to evaluate the immunogenicity of Montanide adjuvant IMS 1113 plus soluble subunit proteins rR1, rR1R2 and their chimeric forms coupled with B subunit of the heat-labile enterotoxin of Escherichia coli (LTB). Each recombinant protein in this study was capable of eliciting anti-R1 specific humoral antibodies (IgG), mucosal antibodies (IgG and IgA) and IFN-γ production. The chimeric protein rLTBR1R2 elicited the quickest humoral antibody response among the recombinant proteins. Serum and bronchoalveolar lavage analysis revealed that each recombinant protein was capable of inducing both Th1 and Th2 responses. Importantly, all of the proteins induced an anti-R1-specific Th2-biased response in both humoral and mucosal compartments, similar to the response observed in a natural infection or vaccination process. These observations indicate that rR1, rR1R2, rLTBR1 and rLTBR1R2 with IMS 1113 might represent a promising subunit vaccine strategy against porcine enzootic pneumonia in pigs.
Collapse
Affiliation(s)
- Abhijit K Barate
- Department of Veterinary Medicine, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Bermudez JM, Cid AG, Ramírez-Rigo MV, Quinteros D, Simonazzi A, Sánchez Bruni S, Palma S. Challenges and opportunities in polymer technology applied to veterinary medicine. J Vet Pharmacol Ther 2013; 37:105-24. [DOI: 10.1111/jvp.12079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/28/2013] [Indexed: 12/11/2022]
Affiliation(s)
- J. M. Bermudez
- Instituto de Investigaciones para la Industria Química (INIQUI); Universidad Nacional de Salta; CONICET; Salta Argentina
| | - A. G. Cid
- Instituto de Investigaciones para la Industria Química (INIQUI); Universidad Nacional de Salta; CONICET; Salta Argentina
| | - M. V. Ramírez-Rigo
- Planta Piloto de Ingeniería Química (PLAPIQUI); Universidad Nacional del Sur; CONICET; Bahía Blanca Argentina
| | - D. Quinteros
- Facultad de Ciencias Químicas; Departamento de Farmacia; Unidad de investigación y desarrollo en tecnología farmacéutica (UNITEFA); CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - A. Simonazzi
- Instituto de Investigaciones para la Industria Química (INIQUI); Universidad Nacional de Salta; CONICET; Salta Argentina
| | - S. Sánchez Bruni
- Centro de Investigación Veterinaria de Tandil (CIVETAN); Universidad Nacional del Centro de la Pcia. de Buenos Aires; CONICET; Tandil Argentina
| | - S. Palma
- Facultad de Ciencias Químicas; Departamento de Farmacia; Unidad de investigación y desarrollo en tecnología farmacéutica (UNITEFA); CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
24
|
Jang SI, Kim DK, Lillehoj HS, Lee SH, Lee KW, Bertrand F, Dupuis L, Deville S, Ben Arous J, Lillehoj EP. Evaluation of Montanide™ ISA 71 VG adjuvant during profilin vaccination against experimental coccidiosis. PLoS One 2013; 8:e59786. [PMID: 23593150 PMCID: PMC3620231 DOI: 10.1371/journal.pone.0059786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/18/2013] [Indexed: 12/23/2022] Open
Abstract
Chickens were immunized subcutaneously with an Eimeria recombinant profilin protein plus Montanide™ ISA 70 VG (ISA 70) or Montanide™ ISA 71 VG (ISA 71) water-in-oil adjuvants, or with profilin alone, and comparative RNA microarray hybridizations were performed to ascertain global transcriptome changes induced by profilin/ISA 70 vs. profilin alone and by profilin/ISA 71 vs. profilin alone. While immunization with profilin/ISA 70 vs. profilin alone altered the levels of more total transcripts compared with profilin/ISA 71 vs. profilin alone (509 vs. 296), the latter was associated with a greater number of unique biological functions, and a larger number of genes within these functions, compared with the former. Further, canonical pathway analysis identified 10 pathways that were associated with genes encoding the altered transcripts in animals immunized with profilin/ISA 71 vs. profilin alone, compared with only 2 pathways in profilin/ISA 70 vs. profilin alone. Therefore, ISA 71 was selected as a candidate adjuvant in conjunction with profilin vaccination for in vivo disease protection studies. Vaccination with profilin/ISA 71 was associated with greater body weight gain following E. acervulina infection, and decreased parasite fecal shedding after E. maxima infection, compared with profilin alone. Anti-profilin antibody levels were higher in sera of E. maxima- and E. tenella-infected chickens vaccinated with profilin/ISA 71 compared with profilin alone. Finally, the levels of transcripts encoding interferon-γ, interleukin (IL)-2, IL-10, and IL-17A were increased in intestinal lymphocytes from E. acervulina-, E. maxima-, and/or E. tenella-infected chickens vaccinated with profilin/ISA 71 compared with profilin alone. None of these effects were seen in chickens injected with ISA 71 alone indicating that the adjuvant was not conferring non-specific immune stimulation. These results suggest that profilin plus ISA 71 augments protective immunity against selective Eimeria species in chickens.
Collapse
Affiliation(s)
- Seung I. Jang
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Duk Kyung Kim
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Hyun S. Lillehoj
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
- * E-mail:
| | - Sung Hyen Lee
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Kyung Woo Lee
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service-U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | | | | | | | | | - Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
25
|
Intradermal immunization using coated microneedles containing an immunoadjuvant. Vaccine 2012; 30:4355-60. [DOI: 10.1016/j.vaccine.2011.09.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/17/2011] [Accepted: 09/14/2011] [Indexed: 11/23/2022]
|
26
|
KUSHWAHA S, SONI VK, SINGH PK, BANO N, KUMAR A, SANGWAN RS, MISRA-BHATTACHARYA S. Withania somnifera chemotypes NMITLI 101R, NMITLI 118R, NMITLI 128R and withaferin A protect Mastomys coucha from Brugia malayi infection. Parasite Immunol 2012; 34:199-209. [DOI: 10.1111/j.1365-3024.2012.01352.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Mohler VL, Heithoff DM, Mahan MJ, Hornitzky MA, Thomson PC, House JK. Development of a novel in-water vaccination protocol for DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in adult sheep. Vaccine 2011; 30:1481-91. [PMID: 22214887 DOI: 10.1016/j.vaccine.2011.12.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/11/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Intensive livestock production is associated with an increased incidence of salmonellosis. The risk of infection and the subsequent public health concern is attributed to increased pathogen exposure and disease susceptibility due to multiple stressors experienced by livestock from farm to feedlot. Traditional parenteral vaccine methods can further stress susceptible populations and cause carcass damage, adverse reactions, and resultant increased production costs. As a potential means to address these issues, in-water delivery of live attenuated vaccines affords a low cost, low-stress method for immunization of livestock populations that is not associated with the adverse handling stressors and injection reactions associated with parenteral administration. We have previously established that in-water administration of a Salmonella enterica serovar Typhimurium dam vaccine conferred significant protection in livestock. While these experimental trials hold significant promise, the ultimate measure of the vaccine will not be established until it has undergone clinical testing in the field wherein environmental and sanitary conditions are variable. Here we show that in-water administration of a S. Typhimurium dam attenuated vaccine was safe, stable, and well-tolerated in adult sheep. The dam vaccine did not alter water consumption or vaccine dosing; remained viable under a wide range of temperatures (21-37°C); did not proliferate within fecal-contaminated trough water; and was associated with minimal fecal shedding and clinical disease as a consequence of vaccination. The capacity of Salmonella dam attenuated vaccines to be delivered in drinking water to protect livestock from virulent Salmonella challenge offers an effective, economical, stressor-free Salmonella prophylaxis for intensive livestock production systems.
Collapse
Affiliation(s)
- V L Mohler
- University of Sydney, Faculty of Veterinary Science, Camden, NSW 2570, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Li D, Xue M, Wang C, Wang J, Chen P. Bursopentine as a novel immunoadjuvant enhances both humoral and cell-mediated immune responses to inactivated H9N2 Avian Influenza virus in chickens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1497-502. [PMID: 21795462 PMCID: PMC3165222 DOI: 10.1128/cvi.05133-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/18/2011] [Indexed: 11/20/2022]
Abstract
There is an urgent need for identification of a new adjuvant capable of selectively promoting an efficient immune response for use with vaccines and especially subunit vaccines. Our pervious study showed that Bursopentine (BP5) is a novel immunomodulatory peptide and has the ability to significantly stimulate an antigen-specific immune response in mice. In this study, the potential adjuvant activities of BP5 were examined in chickens by coinjection of BP5 and an inactivated avian influenza virus (AIV) (A/Duck/Jiangsu/NJ08/05 [AIV H9N2 subtype]). The results suggested that BP5 markedly elevated serum hemagglutination inhibition (HI) titers and antigen-specific antihemagglutinin (anti-HA) antibody (IgG) levels, induced both Th1 (interleukin 2 [IL-2] and gamma interferon [IFN-γ])- and Th2 (IL-4)-type cytokines, promoted the proliferation of peripheral blood lymphocytes, and increased populations of CD3(+) T cells and their subsets CD4(+) (CD3(+) CD4(+)) T cells and CD8(+) (CD3(+) CD8(+)) T cells. Furthermore, a virus challenge experiment revealed that BP5 contributes to protection against homologous avian influenza virus challenge by reducing viral replication in chicken lungs. This study indicates that the combination of inactivated AIVs and BP5 gives a strong immune response at both the humoral and cellular levels and implies that BP5 is a novel immunoadjuvant suitable for vaccine design.
Collapse
Affiliation(s)
- Deyuan Li
- Division of Key Lab of Animal Disease Diagnosis and Immunology, China's Department of Agriculture, Nanjing Agricultural University, Nanjing Agricultural University, 1 Weigang, Nanjing, JingSu 210095, China.
| | | | | | | | | |
Collapse
|
29
|
Leclercq SY, dos Santos RMM, Macedo LB, Campos PC, Ferreira TC, de Almeida JG, Seniuk JGT, Serakides R, Silva-Cunha A, Fialho SL. Evaluation of water-in-oil-in-water multiple emulsion and microemulsion as potential adjuvants for immunization with rabies antigen. Eur J Pharm Sci 2011; 43:378-85. [DOI: 10.1016/j.ejps.2011.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/16/2011] [Accepted: 05/12/2011] [Indexed: 01/04/2023]
|
30
|
Montanide™ ISA 71 VG adjuvant enhances antibody and cell-mediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella. Exp Parasitol 2011; 127:178-83. [DOI: 10.1016/j.exppara.2010.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/18/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022]
|
31
|
Jang SI, Lillehoj HS, Lee SH, Lee KW, Park MS, Bauchan GR, Lillehoj EP, Bertrand F, Dupuis L, Deville S. Immunoenhancing effects of Montanide™ ISA oil-based adjuvants on recombinant coccidia antigen vaccination against Eimeria acervulina infection. Vet Parasitol 2010; 172:221-8. [DOI: 10.1016/j.vetpar.2010.04.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 12/01/2022]
|
32
|
Florindo H, Pandit S, Gonçalves L, Alpar H, Almeida A. Surface modified polymeric nanoparticles for immunisation against equine strangles. Int J Pharm 2010; 390:25-31. [DOI: 10.1016/j.ijpharm.2009.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 09/08/2009] [Accepted: 10/03/2009] [Indexed: 12/22/2022]
|
33
|
Kumaran T, Michaelbab M, Selvaraj T, Albindhas S, Citarasu T. Production of Anti WSSV IgY Edible Antibody Using Herbal Immunoadjuvant Asparagus racemosus and its Immunological Influence against WSSV Infection in Penaeus monodon. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/joafsnu.2010.1.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Gong CY, Shi S, Peng XY, Kan B, Yang L, Huang MJ, Luo F, Zhao X, Wei YQ, Qian ZY. Biodegradable thermosensitive injectable PEG-PCL-PEG hydrogel for bFGF antigen delivery to improve humoral immunity. Growth Factors 2009; 27:377-83. [PMID: 19919526 DOI: 10.3109/08977190903159938] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this contribution, a biodegradable and injectable thermosensitive poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) hydrogel system was successfully prepared for basic fibroblastic growth factor (bFGF) antigen delivery. bFGF encapsulated PECE hydrogel system (bFGF-hydrogel) is an injectable free-flowing sol at ambient temperature, and forms a non-flowing gel at physiological temperature acting as antigen depot. Furthermore, the cytotoxicity results showed that the PECE hydrogel could be regarded as a safe carrier, and bFGF could be released from the hydrogel system in an extended period in vitro. Otherwise, the immunogenicity of bFGF was improved significantly after encapsulated into the hydrogel. Strong humoral immunity created by bFGF-hydrogel was maintained for more than 14 weeks. Therefore, the prepared bFGF loaded PECE hydrogel might have great potential as a novel vaccine adjuvant for protein antigen.
Collapse
Affiliation(s)
- Chang-Yang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, and School of Life Sciences, Sichuan University, Chengdu, 610041, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Plant-derived biologicals for use in animal health are becoming an increasingly important target for research into alternative, improved methods for disease control. Although there are no commercial products on the market yet, the development and testing of oral, plant-based vaccines is now beyond the proof-of-principle stage. Vaccines, such as those developed for porcine transmissible gastroenteritis virus, have the potential to stimulate both mucosal and systemic, as well as, lactogenic immunity as has already been seen in target animal trials. Plants are a promising production system, but they must compete with existing vaccines and protein production platforms. In addition, regulatory hurdles will need to be overcome, and industry and public acceptance of the technology are important in establishing successful products.
Collapse
Affiliation(s)
- R W Hammond
- USDA-ARS, BARC-West, Rm.252, Bldg. 011, Beltsville, MD 20705, USA.
| | | |
Collapse
|
36
|
Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 2009; 98:1278-316. [PMID: 18704954 PMCID: PMC8092333 DOI: 10.1002/jps.21523] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For humans, companion animals, and food producing animals, vaccination has been touted as the most successful medical intervention for the prevention of disease in the twentieth century. However, vaccination is not without problems. With the development of new and less reactogenic vaccine antigens, which take advantage of molecular recombinant technologies, also comes the need for more effective adjuvants that will facilitate the induction of adaptive immune responses. Furthermore, current vaccine adjuvants are successful at generating humoral or antibody mediated protection but many diseases currently plaguing humans and animals, such as tuberculosis and malaria, require cell mediated immunity for adequate protection. A comprehensive discussion is presented of current vaccine adjuvants, their effects on the induction of immune responses, and vaccine adjuvants that have shown promise in recent literature.
Collapse
Affiliation(s)
- Jennifer H Wilson-Welder
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
37
|
Mutwiri G, van Drunen Littel-van den Hurk S, Babiuk LA. Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides. Adv Drug Deliv Rev 2009; 61:226-32. [PMID: 19162103 DOI: 10.1016/j.addr.2008.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 12/14/2022]
Abstract
CpG oligodeoxynucleotides (ODN) activate the immune system and are promising immunotherapeutic agents against infectious diseases, allergy/asthma and cancer. It has become apparent that while CpG ODN are potent immune activators in mice, their immune stimulatory effects are often less dramatic in humans and large animals. This disparity between rodents and mammals has been attributed to the differences in TLR9 expression in different species. This along with the sometimes transient activity of ODN may limit its potential immunotherapeutic applications. Several approaches to enhance the activity of CpG ODN have been explored including formulation of ODN in depot-forming adjuvants, and more recently, coadministration with polyphosphazenes, inhibitors of cytokines that downregulate TLR9 activation, and simultaneous activation with multiple TLR agonists. We will discuss these approaches and the mechanisms involved, with emphasis on what we have learned from large animal models.
Collapse
Affiliation(s)
- George Mutwiri
- Vaccine & Infectious Disease Organization/International Vaccine Center, University of Saskatchewan, SK, Canada.
| | | | | |
Collapse
|
38
|
Patel JR, Heldens JGM. Immunoprophylaxis against important virus disease of horses, farm animals and birds. Vaccine 2009; 27:1797-1810. [PMID: 19402200 PMCID: PMC7130586 DOI: 10.1016/j.vaccine.2008.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/24/2008] [Accepted: 12/18/2008] [Indexed: 01/31/2023]
Abstract
Since the refinement of tissue culture techniques for virus isolation and propagation from the mid 1960s onwards, veterinary virology has received much academic and industrial interest, and has now become a major global industry largely centred on vaccine development against economically important virus diseases of food animals. Bio-tech approaches have been widely used for improved vaccines development. While many viral diseases are controlled through vaccination, many still lack safe and efficacious vaccines. Additional challenges faced by academia, industry and governments are likely to come from viruses jumping species and also from the emergence of virulent variants of established viruses due to natural mutations. Also viral ecology is changing as the respective vectors adapt to new habitats as has been shown in the recent incursion by bluetongue virus into Europe. In this paper the current vaccines for livestock, horses and birds are described in a species by species order. The new promising bio-tech approaches using reverse genetics, non-replicating viral vectors, alpha virus vectors and genetic vaccines in conjunction with better adjuvants and better ways of vaccine delivery are discussed as well
Collapse
Affiliation(s)
- J R Patel
- JAS Biologicals Limited, The Centre for Veterinary Science, Madingley Road, Cambridge, CB3 0ES, UK.
| | | |
Collapse
|
39
|
Ginseng stem-leaf saponins (GSLS) and mineral oil act synergistically to enhance the immune responses to vaccination against foot-and-mouth disease in mice. Vaccine 2009; 27:51-5. [PMID: 18973783 DOI: 10.1016/j.vaccine.2008.10.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 10/04/2008] [Accepted: 10/12/2008] [Indexed: 11/22/2022]
Abstract
Saponins extracted from ginseng stems and leaves (GSLS) as well as the synergistic effect between GSLS and oil emulsion were investigated for their adjuvant effects on the immune responses of mice to vaccination against foot-and-mouth disease virus (FMDV) serotype Asia 1. In experiment A, ICR mice were subcutaneously immunized twice with FMDV antigen with or without GSLS (0, 1, 5, 10 and 20 microg) at 3 week intervals. Highest FMDV-specific IgG level was observed 2 weeks after the boosting in mice immunized with FMDV antigen plus 10 microg of GSLS. In experiment B, mice were subcutaneously injected with FMDV antigen with or without GSLS (10 microg), or in oil emulsion with or without GSLS (10 microg) on days 1 and 21. Results indicated that when co-administered with a mixture of oil and GSLS, FMDV antigen induced significantly higher IgG titer and IgG1, IgG2a, IgG2b and IgG3 responses, production of IFN-gamma (Th1 cytokine) and IL-5 (Th2 cytokine) by splenocytes, as well as T and B lymphocyte proliferation in response to Con A and LPS than when FMDV antigen was used alone or mixed with either GSLS or oil. This suggests that GSLS and oil adjuvant synergistically promote both Th1 and Th2 immune responses. As protection against FMDV requires both cellular and humoral immune responses, the combined effects of GSLS and oil deserve further study in other animals such as cattle and pigs in order to induce effective immunity against FMDV infection.
Collapse
|
40
|
Mateus AYP, Barrias CC, Ribeiro C, Ferraz MP, Monteiro FJ. Comparative study of nanohydroxyapatite microspheres for medical applications. J Biomed Mater Res A 2008; 86:483-93. [PMID: 17975824 DOI: 10.1002/jbm.a.31634] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study concerns the preparation, physical, and in vitro characterization of two different types of hydroxyapatite (HA) microspheres, which are intended to be used as drug-delivery systems and bone-regeneration matrices. Hydroxyapatite nanoparticles (HA-1 and HA-2) were prepared using the chemical precipitation synthesis with H(3)PO(4), Ca(OH)(2), and a surfactant, SDS (sodium dodecyl sulfate), as starting reagents. The HA powders were dispersed in a sodium alginate solution, and spherical particles were obtained by droplet extrusion coupled with ionotropic gelation in the presence of Ca(2+). These were subsequently sintered to produce HA-1 and HA-2 microspheres with a uniform size and interconnected microporosity. Both powders and microspheres were characterized using FTIR and X-ray diffraction. Moreover, SEM and mercury intrusion porosimetry were used to analyze the microspheres, and TEM was used to analyze the powders. Results showed that pure HA and mixtures of HA/beta-TCP in the nanometer range and needlelike shape were obtained for HA-1 and HA-2 powders, respectively. Neutral Red, scanning electron microscopy and confocal microscopy were used to evaluate the behavior of osteoblastic-like MG-63 cells cultured on HA microspheres surfaces for 7 days. Results showed that good adhesion and proliferation of osteoblasts on the HA microspheres surface. Cells built bridges between adjacent microspheres, forming microspheres-cells clusters in both types of materials.
Collapse
Affiliation(s)
- Alis Yovana Pataquiva Mateus
- INEB-Instituto de Engenharia Biomédica, Laboratório de Biomateriais, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| | | | | | | | | |
Collapse
|
41
|
Preparation of mannan modified anionic PCL-PEG-PCL nanoparticles at one-step for bFGF antigen delivery to improve humoral immunity. Colloids Surf B Biointerfaces 2008; 64:135-9. [PMID: 18249528 DOI: 10.1016/j.colsurfb.2007.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 12/11/2007] [Accepted: 12/19/2007] [Indexed: 02/05/2023]
Abstract
In this article, blank anionic poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCEC) and anionic mannan modified PCEC (MPCEC) nanoparticles with nearly the same particle size and zeta potential were prepared by emulsion solvent evaporation method. Human basic fibroblast growth factor (bFGF) was absorbed onto anionic nanoparticles surface due to electrostatic interaction. The obtained bFGF-nanoparticles complexes were injected subcutaneously into C57BL/6 mice at 20 microg of bFGF/dose on week 0, 1, 2 and 3. The mice serum was collected on week 4, and bFGF-specific autoantibody total IgG, IgG1 and IgG2a titer in serum was determined by ELISA. The results indicated that the autoantibody IgG, IgG1 and IgG2a titer of the mice immunized by bFGF-MPCEC complexes were higher than that immunized by either bFGF-PCEC or bFGF-Alum. This phenomenon might be due to that mannan functionalized MPCEC nanoparticles could be targeted to dendritic cells (DCs) to improve humoral immunity. The prepared anionic mannan modified PCEC nanoparticles (MPCEC) might have great potential application in vaccine delivery systems.
Collapse
|
42
|
Abstract
Thiolated polymers have been studied by many researchers because of the mucoadhesive
properties of thiol group. Alginate is a natural and biocompatible polymer that has been widely used
in drug delivery. In this study, thiolated chitosan microspheres (TCMs) were prepared by ionic
gelation process with tripolyphosphate and then, the bovine growth hormone (BGH) was loaded as
a model drug. Finally, the BGH-loaded TCMs (BTCMs) were coated with alginate to improve the
stability in gastrointestinal (GI) track. The alginate-coated BTCMs (ABTCMs) were observed as
spherical shapes. The average particle sizes of ABTCMs were 6.97±0.55 -m and the sizedistribution
was shown uniformly. Release of BGH from ABTCMs was decreased by coating with
alginate and increased rapidly with the change in medium pH from 1.2 to 7.4. Results indicate that
the ABTCMs have a potential as a drug carrier for oral drug delivery.
Collapse
|
43
|
Xiao C, Rajput ZI, Hu S. Improvement of a commercial foot-and-mouth disease vaccine by supplement of Quil A. Vaccine 2007; 25:4795-800. [PMID: 17509735 DOI: 10.1016/j.vaccine.2007.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/28/2007] [Accepted: 04/07/2007] [Indexed: 11/25/2022]
Abstract
In model animal experiment A, ICR mice were immunized with ovalbumin (OVA) adjuvanted with Quil A or mineral oil or their combination (Quil A+oil). In model animal experiment B, ICR mice were immunized with foot-and-mouth disease virus (FMDV) antigens or with a commercially available oil adjuvanted foot-and-mouth disease (FMD) vaccine (type O) alone or mixed with Quil A. After that, serum samples were collected to analyze specific IgG and IgG subclasses IgG1, IgG2a, IgG2b, and IgG3. In experiment C, pigs were immunized with FMD (type O) vaccine alone or together with Quil A. Serum samples were collected before and 4 weeks after immunization to analyze indirect haemagglutination (IHA) titers. Results from experiment A indicated a synergistic effect of Quil A and oil on IgG and the subclass responses. Experiment B revealed that supplement of Quil A in FMD vaccine significantly increased IgG and the subclass responses in mice. Experiment C demonstrated that supplement of Quil A in the FMD vaccine significantly enhanced humeral immune responses (as determined by IHA test) in pigs. It is concluded that supplement of Quil A in FMD vaccine can significantly enhanced immune responses and could be an alternative way to improve FMD vaccination in pigs.
Collapse
Affiliation(s)
- Chenwen Xiao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
44
|
Rajput ZI, Hu SH, Xiao CW, Arijo AG. Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 2007; 8:153-61. [PMID: 17323426 PMCID: PMC1810383 DOI: 10.1631/jzus.2007.b0153] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 05/26/2006] [Indexed: 11/11/2022]
Abstract
Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund's complete adjuvant, Freund's incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed.
Collapse
Affiliation(s)
- Zahid Iqbal Rajput
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Song-hua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chen-wen Xiao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Abdullah G. Arijo
- Department of Parasitology, Sindh Agriculture University, Tando Jam 70060, Pakistan
| |
Collapse
|
45
|
Frey J. Biological safety concepts of genetically modified live bacterial vaccines. Vaccine 2006; 25:5598-605. [PMID: 17239999 DOI: 10.1016/j.vaccine.2006.11.058] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/23/2006] [Accepted: 11/27/2006] [Indexed: 11/29/2022]
Abstract
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Collapse
Affiliation(s)
- Joachim Frey
- Institute of Veterinary Bacteriology, Laenggassstrasse 122, CH-3001 Bern, Switzerland.
| |
Collapse
|
46
|
Abstract
Advancement in technology and science and our detailed knowledge of immunology, molecular biology, microbiology, and biochemistry among other basic science disciplines have defined new directions for vaccine development strategies. The applicability of genetic engineering and proteomics along with other new technologies have played pivotal roles in introducing novel ideas in vaccinology, and resulted in developing new vaccines and improving the quality of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines and vectored vaccines are rapidly gaining scientific and public acceptance as the new generation of vaccines and are seriously considered as alternatives to current conventional vaccines. The present review focuses on recent advances in veterinary vaccinology and addresses the effects and impact of modern microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Homayoun Shams
- Center for Pulmonary and Infectious Diseases Control, University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA.
| |
Collapse
|
47
|
Pasquali P, Zalcman A, Murtas S, Adone R, Brambilla G, Marianelli C, Cagiola M, Ciuchini F. In vitro stimulation of murine peritoneal monocytes induced by alginates. Arch Pharm Res 2005; 28:936-41. [PMID: 16178420 DOI: 10.1007/bf02973880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this trial we assessed the effect of soluble alginates on murine cells. Mouse peritoneal monocytes were stimulated in vitro with a solution of alginate. The production of TNF-alpha and nitric oxide (NO), the expression of surface molecules CD80 and CD86, and the ability of monocytes to phagocyte bacteria were assessed, in order to evaluate the effect of alginate on cell functionality. We showed that mouse peritoneal monocytes stimulated with alginate produce NO and TNF-alpha. In addition, alginate is able also to increase their phagocytic activity and to a lesser extent also to increase the expression of CD80. Even with different degrees, it implies that alginates per se act directly on immune response, being able to effectively stimulate proinflammatory activity. These findings corroborate the idea that alginates can represent interesting adjuvants to use to increase the efficacy of antigenic stimulation.
Collapse
Affiliation(s)
- Paolo Pasquali
- Dipartimento di Sanità Alimentare ed Animale, Istituto Superiore di Sanità, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Homhuan A, Prakongpan S, Poomvises P, Maas RA, Crommelin DJA, Kersten GFA, Jiskoot W. Virosome and ISCOM vaccines against Newcastle disease: preparation, characterization and immunogenicity. Eur J Pharm Sci 2005; 22:459-68. [PMID: 15265516 DOI: 10.1016/j.ejps.2004.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/26/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to prepare and characterize virosomes and ISCOMs containing envelope proteins of Newcastle disease virus (NDV) and to evaluate their immunogenicity in target animals (chickens). Virosomes were prepared by solubilization of virus with either Triton X-100 or octyl glucoside (OG) followed by detergent removal. Biochemical analysis revealed that these virosomes contained both the haemagglutinin-neuraminidase protein (HN) and the fusion protein (F), with preserved biological activity. Acidic environment triggered the fusion between virosomes and chicken erythrocyte ghosts. Formation of ISCOMs was achieved by solubilizing phospholipids, cholesterol, envelope protein antigen and Quil A in Triton X-100. The ISCOM particles were formed by removal of the detergent. In each formulation the relative HN content correlated with the capability to agglutinate red blood cells. The immunogenicity of these lipid-based subunit vaccines was determined in chickens after subcutaneous immunization. The relative HN content of the subunit vaccines correlated with the haemagglutination-inhibition (HI) antibody titres. Virosomes prepared with Triton X-100 and ISCOMs offered high clinical protection (> 80%) upon challenge with virulent NDV. Virosomes prepared with OG yielded lower clinical protection despite high HI antibody titres. Virosomes with reduced antigen density showed poor immunogenicity and protection. In conclusion, ND virosomes and ISCOMs were found to be immunogenic and provided good protection.
Collapse
Affiliation(s)
- Atthachai Homhuan
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | |
Collapse
|
49
|
Bardiya N, Bae JH. Influenza vaccines: recent advances in production technologies. Appl Microbiol Biotechnol 2005; 67:299-305. [PMID: 15660212 DOI: 10.1007/s00253-004-1874-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 11/16/2004] [Accepted: 11/16/2004] [Indexed: 12/01/2022]
Abstract
In spite of ongoing annual vaccination programs, the seasonal influenza epidemics remain a major cause of high morbidity and mortality. The currently used "inactivated" vaccines provide very short-term and highly specific humoral immunity due to the frequent antigenic variations in the influenza virion. These intra-muscularly administered vaccines also fail to induce protective mucosal immunity at the portal of viral entry and destruction of the virally infected cells by induction of cytotoxic T lymphocytes. Therefore, it is necessary to develop immunologically superior vaccines. This article highlights some of the recent developments in investigational influenza vaccines. The most notable recent developments of interest include the use of immunopotentiators, development of DNA vaccines, use of reverse genetics, and the feasibility of mammalian cell-based production processes. Presently, due to their safety and efficacy, the cold-adapted "live attenuated" vaccines are seen as viable alternatives to the "inactivated vaccines". The DNA vaccines are gaining importance due to the induction of broad-spectrum immunity. In addition, recent advances in recombinant technologies have shown the possibility of constructing pre-made libraries of vaccine strains, so that adequately preparations can be made for epidemics and pandemics.
Collapse
Affiliation(s)
- N Bardiya
- Department of Civil and Environmental Engineering, Inha University, 253 YoungHyun Dong, Nam Gu, Inchon 402751, South Korea
| | | |
Collapse
|
50
|
Asif M, Jenkins KA, Hilton LS, Kimpton WG, Bean AGD, Lowenthal JW. Cytokines as adjuvants for avian vaccines. Immunol Cell Biol 2004; 82:638-43. [PMID: 15550122 DOI: 10.1111/j.1440-1711.2004.01295.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The worldwide trend towards a reduced reliance on in-feed antibiotics has increased the pressure to develop alternative strategies to manage infectious diseases in poultry. With this in mind, there is a great emphasis on vaccine use and the enhancement of existing vaccines to provide long-term protection. Currently existing adjuvants for poultry can have deleterious side-effects, such as inflammation, resulting in the down-grading of meat quality and a subsequent reduction in profits. Therefore, to enhance the use of vaccination, alternative adjuvants must be developed. The use of recombinant cytokines as adjuvants in poultry is attracting considerable attention, and their potential role as such has been addressed by several studies. The recent identification of a number of chicken cytokine genes has provided the possibility to study their effectiveness in enhancing the immune response during infection and vaccination. This review focuses on the recent studies involving the assessment of cytokines as vaccine adjuvants.
Collapse
Affiliation(s)
- Manija Asif
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Australia.
| | | | | | | | | | | |
Collapse
|