1
|
Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity. Proc Natl Acad Sci U S A 2013; 110:17486-91. [PMID: 24101478 DOI: 10.1073/pnas.1310402110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations.
Collapse
|
2
|
Angulo-Barturen I, Jiménez-Díaz MB, Mulet T, Rullas J, Herreros E, Ferrer S, Jiménez E, Mendoza A, Regadera J, Rosenthal PJ, Bathurst I, Pompliano DL, Gómez de las Heras F, Gargallo-Viola D. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PLoS One 2008; 3:e2252. [PMID: 18493601 PMCID: PMC2375113 DOI: 10.1371/journal.pone.0002252] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 04/02/2008] [Indexed: 01/19/2023] Open
Abstract
To counter the global threat caused by Plasmodium falciparum malaria, new drugs and vaccines are urgently needed. However, there are no practical animal models because P. falciparum infects human erythrocytes almost exclusively. Here we describe a reliable falciparum murine model of malaria by generating strains of P. falciparum in vivo that can infect immunodeficient mice engrafted with human erythrocytes. We infected NOD(scid/beta2m-/-) mice engrafted with human erythrocytes with P. falciparum obtained from in vitro cultures. After apparent clearance, we obtained isolates of P. falciparum able to grow in peripheral blood of engrafted NOD(scid/beta2m-/-) mice. Of the isolates obtained, we expanded in vivo and established the isolate Pf3D7(0087/N9) as a reference strain for model development. Pf3D7(0087/N9) caused productive persistent infections in 100% of engrafted mice infected intravenously. The infection caused a relative anemia due to selective elimination of human erythrocytes by a mechanism dependent on parasite density in peripheral blood. Using this model, we implemented and validated a reproducible assay of antimalarial activity useful for drug discovery. Thus, our results demonstrate that P. falciparum contains clones able to grow reproducibly in mice engrafted with human erythrocytes without the use of myeloablative methods.
Collapse
Affiliation(s)
- Iñigo Angulo-Barturen
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery, GlaxoSmithKline, Tres Cantos, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Moreno A, Pérignon JL, Morosan S, Mazier D, Benito A. Plasmodium falciparum-infected mice: more than a tour de force. Trends Parasitol 2007; 23:254-9. [PMID: 17434343 DOI: 10.1016/j.pt.2007.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 02/19/2007] [Accepted: 04/05/2007] [Indexed: 01/11/2023]
Abstract
Up until recently, the relevance of Plasmodium falciparum-infected humanized mice for malaria studies has been questioned because of the low percentage of mice in which the parasite develops. Advances in the generation of new immunodeficient mouse strains combined with the use of protocols that modulate the innate immune defenses of mice have facilitated the harvesting of exoerythrocytic and intraerythrocytic stages of the parasite. These results renew the hope of working with P. falciparum in a laboratory animal and indicate that the next challenge (i.e. a complete parasite cycle in the same mouse, including transmission to mosquito) could be reached in the future.
Collapse
Affiliation(s)
- Alicia Moreno
- Université Pierre & Marie Curie-Paris 6, UMR S511, Paris F-75013, France.
| | | | | | | | | |
Collapse
|
4
|
Moreno A, Ferrer E, Arahuetes S, Eguiluz C, Van Rooijen N, Benito A. The course of infections and pathology in immunomodulated NOD/LtSz-SCID mice inoculated with Plasmodium falciparum laboratory lines and clinical isolates. Int J Parasitol 2006; 36:361-9. [PMID: 16443227 DOI: 10.1016/j.ijpara.2005.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 09/29/2005] [Accepted: 10/28/2005] [Indexed: 11/26/2022]
Abstract
Human chimeras are potentially invaluable models for hemoprotozoan parasites such as Plasmodium falciparum. The work presented assesses the susceptibility of immunomodulated NOD/LtSz-SCID mice to genetically distinct P. falciparum parasites. To this end, mice grafted with human erythrocytes were inoculated with two P. falciparum laboratory lines, 3D7 and Dd2 and four clinical isolates, ISCIII-230, ISCIII-231, ISCIII-381 and ISCIII-399. The results showed that, without a previous period of parasite adaptation, 100% of the inoculated mice developed an infection, generally self-limited, though some mice died. The parasitemias ranged from 0.05 to 8% and lasted an average of 19 days (15-26 days) depending on the line or isolate studied. Sexual forms of different maturity, stage II-IV and mature gametocytes were observed in the peripheral blood of mice in 22, 50, 25, 72 and 80% of the mice infected with Dd2, ISCIII-399, ISCIII-230, ISCIII-231 and ISCIII-381 isolates, respectively. The study of the clinical symptoms, the haematological parameters and the histopathological changes in the infected mice showed that most of the malaria features were present in the infected mice except that the sequestration of infected erythrocytes was absent or at most a minor phenomenon, as also indicated by the presence of mature forms of the parasites in the peripheral blood. This study shows that the human chimeras allow the complete asexual and sexual erythrocytic cycle of different P. falciparum lines and clinical isolates to be observed in vivo. It opens a new way to investigate any parasite population in terms of infectivity, transmission, and drug resistance.
Collapse
Affiliation(s)
- Alicia Moreno
- Parasitology Unit, Instituto de Salud Carlos III, National Centre of Microbiology, Crta. Majadahonda-Pozuelo Km2, 28220 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
5
|
Ishihara C, Zamoto A, Tsuji M, Wei Q, Azuma I, Hioki K. Erythrocyte-replaced mouse model for Haemoparasite studies: comparison of NOD/shi-scid and C.B-17/Jcl-scid mouse upon acceptability of human erythrocytes. J Vet Med Sci 2003; 65:831-7. [PMID: 12951413 DOI: 10.1292/jvms.65.831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The erythrocyte-exchanged chimera mouse model has become to be a significant tool for studying animal and human (hu) protozoan haemoparasites, though the usefulness of this model varies depending primarily on the acceptability of xenogeneic red blood cells (RBC). To find a superior recipient in comparison with C.B-17/Jcl mouse with severe combined immuno-deficiency (scid) mutation, we examined in this report the non-obese diabetes (NOD)/shi-scid mouse, a recently available strain of SCID. When 2.5 x 10(8) of fluorescent dye-labeled hu-RBCs were transfused, C.B-17scid mouse eliminated them logarithmically by a simple linear regression, while NOD-scid mouse eradicated hu-RBCs by a unique two-step fashion, i.e., a potent but only briefly functioning RBC eradication followed by a weak steadily functioning step. The means of regression line constance +/- their standard deviations (SD) of 205 C.B-17scid and of 213 NOD-scid mice for their short- and long-lasting steps were -0.73 +/- 0.63, -0.53 +/- 0.25 and -0.16 +/- 0.10, respectively. Hu-RBC half-lives determined from these means of C.B-17scid mice and of NOD-scid mice for the short- and long-living steps were 3.6, 4.9 and 16.3 hr, respectively. Higher hu-RBC acceptability of NOD-scid mouse, especially at their long-lasting step, was also demonstrated under at an activated state of mouse innate immunity. Treatment with 1.0 mg heat-killed Candida cells caused an acceleration of hu-RBC elimination in both mouse strains but the magnitudes for the short- and long-living steps of NOD-scid mice evaluated by "stimulation index" were only 1/2.6 and 1/7.6 of C.B-17scid mice, respectively.
Collapse
Affiliation(s)
- Chiaki Ishihara
- School of Veterinary Medicine, Rakuno Gakuen University, Buankyo-dai, Ebetsu, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Matsuoka H, Yoshida S, Hirai M, Ishii A. A rodent malaria, Plasmodium berghei, is experimentally transmitted to mice by merely probing of infective mosquito, Anopheles stephensi. Parasitol Int 2002; 51:17-23. [PMID: 11880224 DOI: 10.1016/s1383-5769(01)00095-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We found that infection of a rodent malaria, Plasmodium berghei, occurred when the sporozoites were injected into the skin, the muscle, the peritoneal cavity and the tail end. Mice, which were injected with sporozoites in the tail end and had the site cut 5 min later, did not develop malaria. We also found that mice developed malaria when malaria infective mosquitoes, Anopheles stephensi, were forced not to take blood but only to probe into the skin. Moreover, the mice probed by the infective mosquitoes were protected from malaria infection if the site was treated with Kyu (heat treatment) after the mosquitoes had probed. These findings indicate that malaria infection occurs not only by blood feeding of the infective mosquito but also by probing of the mosquito. Sporozoites injected into the skin remain at the injected site for at least 5 min, then migrate to the blood vessels and invade into the blood stream. At present, the mechanism is not clear, although we propose here the existence of the skin stage of malaria parasites before the liver stage and the blood stage.
Collapse
Affiliation(s)
- Hiroyuki Matsuoka
- Department of Medical Zoology, Jichi Medical School, Minami-kawachi, Tochigi 329-0498, Japan.
| | | | | | | |
Collapse
|
7
|
Schetters TP, Eling WM. Can Babesia infections be used as a model for cerebral malaria? PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:492-7. [PMID: 10557150 DOI: 10.1016/s0169-4758(99)01566-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infections with certain species of Plasmodium and Babesia induce, among other symptoms, cerebral pathology. The finding of heavily parasitized cerebral capillaries upon postmortem examination has led to the assumption that blockage of capillaries with infected red blood cells caused the cerebral symptoms and subsequent death. As this type of cerebrovascular pathology is found both in humans dying from malaria and in cattle dying from babesiosis, the latter could possibly be used as an animal model for the study of human cerebral malaria. However, before such a model system is adopted, the experimental data concerning cerebral pathology of babesiosis needs critical evaluation. Here, Theo Schetters and Wijnand Eling review the pathological mechanisms in cerebral babesiosis and relate these to cerebral malaria. Finally, they discuss the use of animal model systems for specific aspects of the pathological picture.
Collapse
Affiliation(s)
- T P Schetters
- Intervet International b.v., Parasitology R&D Department, PO Box 31, 5830 AA Boxmeer, The Netherlands.
| | | |
Collapse
|
8
|
Ishihara C, Hiratai R, Tsuji M, Yagi K, Nose M, Azuma I. Mannan decelerates the clearance of human red blood cells in SCID mouse. IMMUNOPHARMACOLOGY 1998; 38:223-8. [PMID: 9506821 DOI: 10.1016/s0162-3109(97)00054-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mannans and its related compounds decelerated human (Hu) red blood cell (RBC)-clearance in severe combined immunodeficiency (SCID) mice by inhibiting erythro-phagocytosis of macrophages. Chimeric SCID mice for Hu-RBC which are generated by repeated transfusions with mature Hu-RBCs are described recently as a model for Plasmodium falciparum infection, though the Hu-RBC clearance in the mice at present is very rapid and the parasitemia in the mice is only erratic. Here, we aimed to study the method to decelerate Hu-RBC clearance in SCID mice, to establish a suitable mouse model for malaria parasites. Yeast and Candida mannans as well as lactoferrin, a glycoprotein containing both oligomannoside- and N-acetyllactosamine-type glycans, decelerated Hu-RBC clearance, but instead other saccharides such as carboxymethyl chitin, N-acetylglucosamine, and D-glucose did not. Yeast mannan and lactoferrin interfered significantly with in vitro Hu-RBC-phagocytosis which was also inhibited by mannopentaose and mannotoriose. D-mannose exhibited a moderate inhibitory activity. N-acetyl-D-glucosamine, however, showed only a slight inhibitory activity, but D-glucose had no inhibitory activity on Hu-RBC phagocytosis. These results may postulate that Hu-RBC clearance in SCID mouse might be mediated by receptor-ligand binding by a macrophage lectin like receptor with mannose specificity.
Collapse
Affiliation(s)
- C Ishihara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | | | | | | | | | | |
Collapse
|