1
|
Vuosku J, Muilu-Mäkelä R, Avia K, Suokas M, Kestilä J, Läärä E, Häggman H, Savolainen O, Sarjala T. Thermospermine Synthase ( ACL5) and Diamine Oxidase ( DAO) Expression Is Needed for Zygotic Embryogenesis and Vascular Development in Scots Pine. FRONTIERS IN PLANT SCIENCE 2019; 10:1600. [PMID: 31921249 PMCID: PMC6934065 DOI: 10.3389/fpls.2019.01600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/14/2019] [Indexed: 05/27/2023]
Abstract
Unlike in flowering plants, the detailed roles of the enzymes in the polyamine (PA) pathway in conifers are poorly known. We explored the sequence conservation of the PA biosynthetic genes and diamine oxidase (DAO) in conifers and flowering plants to reveal the potential functional diversification of the enzymes between the plant lineages. The expression of the genes showing different selective constraints was studied in Scots pine zygotic embryogenesis and early seedling development. We found that the arginine decarboxylase pathway is strongly preferred in putrescine production in the Scots pine as well as generally in conifers and that the reduced use of ornithine decarboxylase (ODC) has led to relaxed purifying selection in ODC genes. Thermospermine synthase (ACL5) genes evolve under strong purifying selection in conifers and the DAO gene is also highly conserved in pines. In developing Scots pine seeds, the expression of both ACL5 and DAO increased as embryogenesis proceeded. Strong ACL5 expression was present in the procambial cells of the embryo and in the megagametophyte cells destined to die via morphologically necrotic cell death. Thus, the high sequence conservation of ACL5 genes in conifers may indicate the necessity of ACL5 for both embryogenesis and vascular development. Moreover, the result suggests the involvement of ACL5 in morphologically necrotic cell death and supports the view of the genetic regulation of necrosis in Scots pine embryogenesis and in plant development. DAO transcripts were located close to the cell walls and between the walls of adjacent cells in Scots pine zygotic embryos and in the roots of young seedlings. We propose that DAO, in addition to the role in Put oxidation for providing H2O2 during the cell-wall structural processes, may also participate in cell-to-cell communication at the mRNA level. To conclude, our findings indicate that the PA pathway of Scots pines possesses several special functional characteristics which differ from those of flowering plants.
Collapse
Affiliation(s)
- Jaana Vuosku
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | | | - Komlan Avia
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Marko Suokas
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Johanna Kestilä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Esa Läärä
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Hely Häggman
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Tytti Sarjala
- Production Systems, Natural Resources Institute Finland, Espoo, Finland
| |
Collapse
|
2
|
Wang XW, Zhao QY, Luan JB, Wang YJ, Yan GH, Liu SS. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species. BMC Genomics 2012; 13:529. [PMID: 23036081 PMCID: PMC3478168 DOI: 10.1186/1471-2164-13-529] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/28/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. RESULTS More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. CONCLUSIONS Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
3
|
Loewe L. A framework for evolutionary systems biology. BMC SYSTEMS BIOLOGY 2009; 3:27. [PMID: 19239699 PMCID: PMC2663779 DOI: 10.1186/1752-0509-3-27] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 02/24/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. RESULTS Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. CONCLUSION EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.
Collapse
Affiliation(s)
- Laurence Loewe
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
4
|
Abstract
The problem of jointly estimating the intensity of past selection affecting an allele and the allele's age is formulated in a Bayesian framework. The prior distribution of allele age given its frequency is obtained from existing population genetics theory. The prior distribution of selection intensity is assumed to reflect the fact that positive selection on a new mutant is more likely to be weak than strong. The general approach is illustrated by the development of an importance sampling method applicable to low-frequency alleles. This method can be used either when the haplotypes of closely linked marker loci are known or when the lengths of linked ancestral chromosomal segments can be inferred. The method is illustrated with an application to the A-allele of G6PD in Africa. Because changes in allele frequency and recombination are both intrinsically stochastic, there are limits to the accuracy achievable with any method.
Collapse
|
5
|
Xing Y, Frei U, Schejbel B, Asp T, Lübberstedt T. Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. BMC PLANT BIOLOGY 2007; 7:43. [PMID: 17683574 PMCID: PMC1978496 DOI: 10.1186/1471-2229-7-43] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 08/04/2007] [Indexed: 05/16/2023]
Abstract
BACKGROUND Association analysis is an alternative way for QTL mapping in ryegrass. So far, knowledge on nucleotide diversity and linkage disequilibrium in ryegrass is lacking, which is essential for the efficiency of association analyses. RESULTS 11 expressed disease resistance candidate (R) genes including 6 nucleotide binding site and leucine rich repeat (NBS-LRR) like genes and 5 non-NBS-LRR genes were analyzed for nucleotide diversity. For each of the genes about 1 kb genomic fragments were isolated from 20 heterozygous genotypes in ryegrass. The number of haplotypes per gene ranged from 9 to 27. On average, one single nucleotide polymorphism (SNP) was present per 33 bp between two randomly sampled sequences for the 11 genes. NBS-LRR like gene fragments showed a high degree of nucleotide diversity, with one SNP every 22 bp between two randomly sampled sequences. NBS-LRR like gene fragments showed very high non-synonymous mutation rates, leading to altered amino acid sequences. Particularly LRR regions showed very high diversity with on average one SNP every 10 bp between two sequences. In contrast, non-NBS LRR resistance candidate genes showed a lower degree of nucleotide diversity, with one SNP every 112 bp. 78% of haplotypes occurred at low frequency (<5%) within the collection of 20 genotypes. Low intragenic LD was detected for most R genes, and rapid LD decay within 500 bp was detected. CONCLUSION Substantial LD decay was found within a distance of 500 bp for most resistance candidate genes in this study. Hence, LD based association analysis is feasible and promising for QTL fine mapping of resistance traits in ryegrass.
Collapse
Affiliation(s)
- Yongzhong Xing
- University of Århus, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse DK-4200, Denmark
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Uschi Frei
- University of Århus, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse DK-4200, Denmark
| | - Britt Schejbel
- University of Århus, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse DK-4200, Denmark
| | - Torben Asp
- University of Århus, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse DK-4200, Denmark
| | - Thomas Lübberstedt
- University of Århus, Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse DK-4200, Denmark
| |
Collapse
|
6
|
Gang W, Zhen-Kuan W, Yong-Xiang W, Li-Ye C, Hong-Bo S. The mutual responses of higher plants to environment: physiological and microbiological aspects. Colloids Surf B Biointerfaces 2007; 59:113-9. [PMID: 17566717 DOI: 10.1016/j.colsurfb.2007.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/02/2007] [Accepted: 05/03/2007] [Indexed: 11/22/2022]
Abstract
Higher plants are different from animals in many aspects, but the important difference may be that plants are more easily influenced by environment. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. The relationship between higher plants and environment is influenced mutually. The component in environment provides higher plants with nutrients for shaping themselves and higher plants simultaneously bring photosynthetic products and metabolites to surroundings, which is the most important part of natural circle. Photosynthetic products are realized mainly by physiological mechanisms, and microbiological aspects in environment (for instance, soil environment) impact the above processes greatly. The complete understanding of the relationship will extremely promote the sustainable utilization of plant resources and make the best use of its current potential under different scales.
Collapse
Affiliation(s)
- Wu Gang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | |
Collapse
|
7
|
Shao HB, Guo QJ, Chu LY, Zhao XN, Su ZL, Hu YC, Cheng JF. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces 2006; 54:37-45. [PMID: 16914294 DOI: 10.1016/j.colsurfb.2006.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/02/2006] [Accepted: 07/07/2006] [Indexed: 01/08/2023]
Abstract
Higher plants play the most important role in keeping a stable environment on the earth, which regulate global circumstances in many ways in terms of different levels (molecular, individual, community, and so on), but the nature of the mechanism is gene expression and control temporally and spatially at the molecular level. In persistently changing environment, there are many adverse stress conditions such as cold, drought, salinity and UV-B (280-320 mm), which influence plant growth and crop production greatly. Plants differ from animals in many aspects, but the important may be that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. These mechanisms are involved in many aspects of anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, in which the adaptive machinery related to molecular biology is the most important. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least include environmental signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimensional network system and contain many levels of gene expression and regulation. We will focus on the molecular adaptive machinery of higher plant plasticity under abiotic stresses.
Collapse
Affiliation(s)
- Hong-Bo Shao
- Molecular Biology Laboratory, Bio-informatics College, Chongqing University of Posts & Telecom, Chongqing 400065, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
8
|
De Mita S, Santoni S, Hochu I, Ronfort J, Bataillon T. Molecular evolution and positive selection of the symbiotic gene NORK in Medicago truncatula. J Mol Evol 2006; 62:234-44. [PMID: 16474986 DOI: 10.1007/s00239-004-0367-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Understanding the selective constraints of partner specificity in mutually beneficial symbiosis is a significant, yet largely unexplored, prospect of evolutionary biology. These selective constraints can be explored through the study of nucleotide polymorphism at loci controlling specificity. The membrane-anchored receptor NORK (nodulation receptor kinase) of the legume Medicago truncatula controls early steps of root infection by two symbiotic microorganisms: nitrogen-fixing bacteria (rhizobia) and endomycorrhizal fungi (Glomales). We analyzed the diversity of the gene NORK by sequencing 4 kilobases in 28 inbred lines sampled from natural populations. We detected 33 polymorphic sites with only one nonsynonymous change. Analysis based on Tajima's D and Fay and Wu's H summary statistics revealed no departure from the neutral model. We analyzed divergence using sequences from the closely related species M. coerulea. The McDonald-Kreitman test indicated a significant excess of nonsynonymous changes contributing to this divergence. Furthermore, maximum-likelihood analysis of a molecular phylogeny of a few legume species indicated that a number of amino acid sites, likely located in the receptor domain of the protein, evolved under the regime of positive selection. Further research should focus on the rate and direction of molecular coevolution between microorganisms' signaling molecules and legumes' receptors.
Collapse
Affiliation(s)
- Stéphane De Mita
- UMR 1097, Diversité et Génome des Plantes Cultivées, Montpellier, France.
| | | | | | | | | |
Collapse
|
9
|
Abstract
A unique combination of disciplines is emerging--evolutionary and ecological functional genomics--which focuses on the genes that affect ecological success and evolutionary fitness in natural environments and populations. Already this approach has provided new insights that were not available from its disciplinary components in isolation. However, future advances will necessitate the re-engineering of scientific attitudes, training and institutions, to achieve extensive multidisciplinarity.
Collapse
Affiliation(s)
- Martin E Feder
- Committee on Evolutionary Biology, and Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
10
|
Feng X, Carlton JM, Joy DA, Mu J, Furuya T, Suh BB, Wang Y, Barnwell JW, Su XZ. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc Natl Acad Sci U S A 2003; 100:8502-7. [PMID: 12799466 PMCID: PMC166258 DOI: 10.1073/pnas.1232502100] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Indexed: 01/26/2023] Open
Abstract
The study of genetic variation in malaria parasites has practical significance for developing strategies to control the disease. Vaccines based on highly polymorphic antigens may be confounded by allelic restriction of the host immune response. In response to drug pressure, a highly plastic genome may generate resistant mutants more easily than a monomorphic one. Additionally, the study of the distribution of genomic polymorphisms may provide information leading to the identification of genes associated with traits such as parasite development and drug resistance. Indeed, the age and diversity of the human malaria parasite Plasmodium falciparum has been the subject of recent debate, because an ancient parasite with a complex genome is expected to present greater challenges for drug and vaccine development. The genome diversity of the important human pathogen Plasmodium vivax, however, remains essentially unknown. Here we analyze an approximately 100-kb contiguous chromosome segment from five isolates, revealing 191 single-nucleotide polymorphisms (SNPs) and 44 size polymorphisms. The SNPs are not evenly distributed across the segment with blocks of high and low diversity. Whereas the majority (approximately 63%) of the SNPs are in intergenic regions, introns contain significantly less SNPs than intergenic sequences. Polymorphic tandem repeats are abundant and are more uniformly distributed at a frequency of about one polymorphic tandem repeat per 3 kb. These data show that P. vivax has a highly diverse genome, and provide useful information for further understanding the genome diversity of the parasite.
Collapse
Affiliation(s)
- Xiaorong Feng
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Jane M. Carlton
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Deirdre A. Joy
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Tetsuya Furuya
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Bernard B. Suh
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Yufeng Wang
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - John W. Barnwell
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| |
Collapse
|
11
|
Lawton-Rauh A, Robichaux RH, Purugganan MD. Patterns of nucleotide variation in homoeologous regulatory genes in the allotetraploid Hawaiian silversword alliance (Asteraceae). Mol Ecol 2003; 12:1301-13. [PMID: 12694292 DOI: 10.1046/j.1365-294x.2003.01814.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genome-wide duplication (polyploidization) is prevalent in a large number of eukaryotic organisms and is particularly widespread in flowering plants. Polyploid species appear to vary from their diploid progenitors in a variety of ecologically important traits, suggesting that genome duplications provide a mechanism for ecological diversification. Studies of nucleotide variation at duplicate genes that arise via polyploidization allow us to infer the evolutionary forces that act on these polyploid loci. In an effort to examine the evolutionary dynamics of homoeologous loci, molecular population genetic analyses were undertaken for duplicate regulatory genes in the allopolyploid Hawaiian silversword alliance, a premier example of adaptive radiation. The levels and patterns of nucleotide variation for the floral homeotic genes ASAPETALA1 (ASAP1) and ASAPETALA3/TM6 (ASAP3/TM6) were studied in two species representing different lineages within the Hawaiian silversword alliance: Argyroxiphium sandwicense ssp. macrocephalum and Dubautia ciliolata ssp. glutinosa. Homoeologueous copies of ASAP1 and ASAP3/TM6 show differing levels and patterns of nucleotide polymorphism. Duplicate ASAP1 copies have similar levels of nucleotide diversity and haplotype structure in both species; by contrast, duplicate ASAP3/TM6 genes display different levels and patterns of variation in D. ciliolata ssp. glutinosa. Additionally, D. ciliolata ssp. glutinosa appears to be segregating for a moderate frequency null allele in one ASAP3/TM6 homoeologue. These results suggest that differing evolutionary forces can affect duplicate loci arising from allopolyploidization.
Collapse
Affiliation(s)
- Amy Lawton-Rauh
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
12
|
Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 2002; 32:569-77. [PMID: 12457190 DOI: 10.1038/ng1202-569] [Citation(s) in RCA: 582] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 09/09/2002] [Indexed: 11/09/2022]
Abstract
Co-evolution between host and pathogen is, in principle, a powerful determinant of the biology and genetics of infection and disease. Yet co-evolution has proven difficult to demonstrate rigorously in practice, and co-evolutionary thinking is only just beginning to inform medical or veterinary research in any meaningful way, even though it can have a major influence on how genetic variation in biomedically important traits is interpreted. Improving our understanding of the biomedical significance of co-evolution will require changing the way in which we look for it, complementing the phenomenological approach traditionally favored by evolutionary biologists with the exploitation of the extensive data becoming available on the molecular biology and molecular genetics of host-pathogen interactions.
Collapse
Affiliation(s)
- Mark E J Woolhouse
- Centre for Infectious Diseases, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK.
| | | | | | | | | |
Collapse
|
13
|
Nuclear and Cytoplasmic Diversity in Manifestation of Disease Control and Genepool Conservation for Sustainable Crop Productivity. ACTA ACUST UNITED AC 2002. [DOI: 10.1300/j064v21n02_06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhang L, Vision TJ, Gaut BS. Patterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana. Mol Biol Evol 2002; 19:1464-73. [PMID: 12200474 DOI: 10.1093/oxfordjournals.molbev.a004209] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We characterized rates and patterns of synonymous and nonsynonymous substitution in 242 duplicated gene pairs on chromosomes 2 and 4 of Arabidopsis thaliana. Based on their collinear order along the two chromosomes, the gene pairs were likely duplicated contemporaneously, and therefore comparison of genetic distances among gene pairs provides insights into the distribution of nucleotide substitution rates among plant nuclear genes. Rates of synonymous substitution varied 13.8-fold among the duplicated gene pairs, but 90% of gene pairs differed by less than 2.6-fold. Average nonsynonymous rates were approximately fivefold lower than average synonymous rates; this rate difference is lower than that of previously studied nonplant lineages. The coefficient of variation of rates among genes was 0.65 for nonsynonymous rates and 0.44 for synonymous rates, indicating that synonymous and nonsynonymous rates vary among genes to roughly the same extent. The causes underlying rate variation were explored. Our analyses tentatively suggest an effect of physical location on synonymous substitution rates but no similar effect on nonsynonymous rates. Nonsynonymous substitution rates were negatively correlated with GC content at synonymous third codon positions, and synonymous substitution rates were negatively correlated with codon bias, as observed in other systems. Finally, the 242 gene pairs permitted investigation of the processes underlying divergence between paralogs. We found no evidence of positive selection, little evidence that paralogs evolve at different rates, and no evidence of differential codon usage or third position GC content.
Collapse
Affiliation(s)
- Liqing Zhang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 92697-2525, USA
| | | | | |
Collapse
|
15
|
Ford MJ. Applications of selective neutrality tests to molecular ecology. Mol Ecol 2002; 11:1245-62. [PMID: 12144648 PMCID: PMC7201874 DOI: 10.1046/j.1365-294x.2002.01536.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2001] [Revised: 04/10/2002] [Accepted: 04/10/2002] [Indexed: 11/20/2022]
Abstract
This paper reviews how statistical tests of neutrality have been used to address questions in molecular ecology are reviewed. The work consists of four major parts: a brief review of the current status of the neutral theory; a review of several particularly interesting examples of how statistical tests of neutrality have led to insight into ecological problems; a brief discussion of the pitfalls of assuming a strictly neutral model if it is false; and a discussion of some of the opportunities and problems that molecular ecologists face when using neutrality tests to study natural selection.
Collapse
Affiliation(s)
- Michael J Ford
- Northwest Fisheries Science Center, Conservation Biology Division, 2725 Montlake Blvd E, Seattle, WA 98112, USA.
| |
Collapse
|
16
|
de Brevern AG, Loirat F, Badel-Chagnon A, André C, Vincens P, Hazout S. Genome compartimentation by a hybrid chromosome model (HXM). Application to Saccharomyces cerevisae subtelomeres. COMPUTERS & CHEMISTRY 2002; 26:437-45. [PMID: 12144174 DOI: 10.1016/s0097-8485(02)00006-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this paper is to present a new approach, called 'Hybrid Chromosome Model' (HXM), which allows both the extraction of regions of similarity between two sequences, and the compartimentation of a set of DNA sequences. The principle of the method consists in compacting a set of sequences (split into fragments of fixed length) into a 'hybrid chromosome', which results from the stacking of the whole sequence fragments. We have illustrated our approach on the 32 subtelomeres of Saccharomyces cerevisae. The compartimentation of these chromosome extremities into common regions of similarity has been carried out. The approach HXM is a fast and efficient tool for mapping entire genomes and for extracting ancient duplications within or between genomes.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- Equipe de Bioinformatique Génomique et Moléculaire, Unité INSERM U436, Université Denis Diderot-Paris 7, Paris, France
| | | | | | | | | | | |
Collapse
|
17
|
Haubold B, Kroymann J, Ratzka A, Mitchell-Olds T, Wiehe T. Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana. Genetics 2002; 161:1269-78. [PMID: 12136029 PMCID: PMC1462186 DOI: 10.1093/genetics/161.3.1269] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Arabidopsis thaliana is a highly selfing plant that nevertheless appears to undergo substantial recombination. To reconcile its selfing habit with the observations of recombination, we have sampled the genetic diversity of A. thaliana at 14 loci of approximately 500 bp each, spread across 170 kb of genomic sequence centered on a QTL for resistance to herbivory. A total of 170 of the 6321 nucleotides surveyed were polymorphic, with 169 being biallelic. The mean silent genetic diversity (pi(s)) varied between 0.001 and 0.03. Pairwise linkage disequilibria between the polymorphisms were negatively correlated with distance, although this effect vanished when only pairs of polymorphisms with four haplotypes were included in the analysis. The absence of a consistent negative correlation between distance and linkage disequilibrium indicated that gene conversion might have played an important role in distributing genetic diversity throughout the region. We tested this by coalescent simulations and estimate that up to 90% of recombination is due to gene conversion.
Collapse
Affiliation(s)
- Bernhard Haubold
- Max-Planck-Institut für Chemische Okologie, Department of Genetics and Evolution, D-07745 Jena, Germany.
| | | | | | | | | |
Collapse
|
18
|
Caetano-Anollés G. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res 2002; 30:2575-87. [PMID: 12034847 PMCID: PMC117177 DOI: 10.1093/nar/30.11.2575] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 03/19/2002] [Accepted: 04/02/2002] [Indexed: 11/12/2022] Open
Abstract
The elucidation of ribosomal structure has shown that the function of ribosomes is fundamentally confined to dynamic interactions established between the RNA components of the ribosomal ensemble. These findings now enable a detailed analysis of the evolution of ribosomal RNA (rRNA) structure. The origin and diversification of rRNA was studied here using phylogenetic tools directly at the structural level. A rooted universal tree was reconstructed from the combined secondary structures of large (LSU) and small (SSU) subunit rRNA using cladistic methods and considerations in statistical mechanics. The evolution of the complete repertoire of structural ribosomal characters was formally traced lineage-by-lineage in the tree, showing a tendency towards molecular simplification and a homogeneous reduction of ribosomal structural change with time. Character tracing revealed patterns of evolution in inter-subunit bridge contacts and tRNA-binding sites that were consistent with the proposed coupling of tRNA translocation and subunit movement. These patterns support the concerted evolution of tRNA-binding sites in the two subunits and the ancestral nature and common origin of certain structural ribosomal features, such as the peptidyl (P) site, the functional relay of the penultimate stem helix of SSU rRNA, and other structures participating in ribosomal dynamics. Overall results provide a rare insight into the evolution of ribosomal structure.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Laboratory of Molecular Ecology and Evolution and Division of Molecular Biology, Department of Biology, University of Oslo, N-0316 Oslo, Norway and Vital NRG, Knoxville, TN, USA
| |
Collapse
|
19
|
Abstract
Evolutionary genomics combines functional and evolutionary analyses of genome conservation and differentiation. Gene duplication and polyploidy have fundamentally shaped the genomes of Arabidopsis and all angiosperms. Recent comparative studies have focussed on gene regulation, the function of untranscribed genomic regions, and the effects of natural selection on protein function. A large fraction of interspecific protein divergence is probably adaptive, and may be useful for experimental studies of genes and proteins.
Collapse
Affiliation(s)
- Thomas Mitchell-Olds
- Department of Genetics and Evolution, Max-Planck Institute of Chemical Ecology, 07745, Jena, Germany.
| | | |
Collapse
|
20
|
Mitchell-Olds T. Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 2001. [DOI: 10.1016/s0169-5347(01)02291-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447222 DOI: 10.1002/cfg.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|