1
|
Liu M, Chambers A, Chambers B, Aleman A, Stift M, Mamonova K, Freeland J, Dorken M. SNP-RFLP Markers for the Study of Arabidopsis lyrata. Ecol Evol 2025; 15:e71056. [PMID: 40270795 PMCID: PMC12015635 DOI: 10.1002/ece3.71056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 04/25/2025] Open
Abstract
Arabidopsis lyrata has become a useful system for the study of comparative genomics, hybridization, polyploidization, and evolutionary transitions from outcrossing to selfing. Previous studies of its mating system have used microsatellite loci, but low allelic diversity, particularly in self-compatible populations characterized by low levels of outcrossing, reduces the utility of these markers for more detailed studies. Here, we aimed to develop population-level SNP markers for A. lyrata ssp. lyrata sampled from a self-compatible population at Rondeau Provincial Park, Ontario, Canada. We performed de novo SNP discovery and identified 6808 putative SNPs from genome-wide sequences of 22 individuals originating from a highly selfing population. Further filtering and marker validation enabled the development of 17 SNP marker loci that can be visualized using standard PCR-RFLP protocols. These markers had average minor-allele frequencies of 0.40 in the target population, and four of seven markers were variable in a small sample from nine other A. lyrata populations. These PCR-RFLP markers have the potential to be useful for the analysis of mating patterns within and beyond the inbred self-compatible populations of A. lyrata studied here and enable the continued development of A. lyrata as a model for studying evolutionary transitions from outcrossing to selfing.
Collapse
Affiliation(s)
- Michelle Liu
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Avery Chambers
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Braidy Chambers
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Alberto Aleman
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| | - Marc Stift
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Katya Mamonova
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Joanna Freeland
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| | - Marcel Dorken
- Department of BiologyTrent UniversityPeterboroughOntarioCanada
| |
Collapse
|
2
|
Lopez L, Lang PLM, Marciniak S, Kistler L, Latorre SM, Haile A, Cerda EV, Gamba D, Xu Y, Woods P, Yifru M, Kerby J, McKay JK, Oakley CG, Ågren J, Wondimu T, Bulafu C, Perry GH, Burbano HA, Lasky JR. Museum genomics reveals temporal genetic stasis and global genetic diversity in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636844. [PMID: 39975324 PMCID: PMC11839143 DOI: 10.1101/2025.02.06.636844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Global patterns of population genetic variation through time offer a window into evolutionary processes that maintain diversity. Over time, lineages may expand or contract their distribution, causing turnover in population genetic composition. At individual loci, migration, drift, environmental change (among other processes) may affect allele frequencies. Museum specimens of widely distributed species offer a unique window into the genetics of understudied populations and changes over time. Here, we sequenced genomes of 130 herbarium specimens and 91 new field collections of Arabidopsis thaliana and combined these with published genomes. We sought a broader view of genomic diversity across the species, and to test if population genomic composition is changing through time. We documented extensive and previously uncharacterized diversity in a range of populations in Africa, populations that are under threat from anthropogenic climate change. Through time, we did not find dramatic changes in genomic composition of populations. Instead, we found a pattern of genetic change every 100 years of the same magnitude seen when comparing Eurasian populations that are 185 km apart, potentially due to a combination of drift and changing selection. We found only mixed signals of polygenic adaptation at phenology and physiology QTL. We did find that genes conserved across eudicots show altered levels of directional allele frequency change, potentially due to variable purifying and background selection. Our study highlights how museum specimens can reveal new dimensions of population diversity and show how wild populations are evolving in recent history.
Collapse
Affiliation(s)
- Lua Lopez
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Biology, California State University, San Bernardino, San Bernardino, CA, USA
| | - Patricia L. M. Lang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | | | - Sergio M. Latorre
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Asnake Haile
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Diana Gamba
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yuxing Xu
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Patrick Woods
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Mistire Yifru
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jeffrey Kerby
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - John K. McKay
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, and The Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Jon Ågren
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Tigist Wondimu
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Collins Bulafu
- Department of Plant Sciences, Microbiology, and Biotechnology, Makarere University, Kampala, Uganda
| | - George H. Perry
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Hernán A. Burbano
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, England, UK
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- PAC Herbarium, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Huve MAP, Bittner N, Kunze R, Hilker M, Remus-Emsermann MNP, Paniagua Voirol LR, Lortzing V. Butterfly eggs prime anti-herbivore defense in an annual but not perennial Arabidopsis species. PLANTA 2024; 260:112. [PMID: 39361039 PMCID: PMC11450040 DOI: 10.1007/s00425-024-04541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
MAIN CONCLUSION Unlike Arabidopsis thaliana, defenses of Arabidopsis lyrata against Pieris brassicae larval feeding are not primable by P. brassicae eggs. Thus, egg primability of plant anti-herbivore defenses is not phylogenetically conserved in the genus Arabidopsis. While plant anti-herbivore defenses of the annual species Arabidopsis thaliana were shown to be primable by Pieris brassicae eggs, the primability of the phylogenetically closely related perennial Arabidopsis lyrata has not yet been investigated. Previous studies revealed that closely related wild Brassicaceae plant species, the annual Brassica nigra and the perennial B. oleracea, exhibit an egg-primable defense trait, even though they have different life spans. Here, we tested whether P. brassicae eggs prime anti-herbivore defenses of the perennial A. lyrata. We exposed A. lyrata to P. brassicae eggs and larval feeding and assessed their primability by (i) determining the biomass of P. brassicae larvae after feeding on plants with and without prior P. brassicae egg deposition and (ii) investigating the plant transcriptomic response after egg deposition and/or larval feeding. For comparison, these studies were also conducted with A. thaliana. Consistent with previous findings, A. thaliana's response to prior P. brassicae egg deposition negatively affected conspecific larvae feeding upon A. thaliana. However, this was not observed in A. lyrata. Arabidopsis thaliana responded to P. brassicae eggs with strong transcriptional reprogramming, whereas A. lyrata responses to eggs were negligible. In response to larval feeding, A. lyrata exhibited a greater transcriptome change compared to A. thaliana. Among the strongly feeding-induced A. lyrata genes were those that are egg-primed in feeding-induced A. thaliana, i.e., CAX3, PR1, PR5, and PDF1.4. These results suggest that A. lyrata has evolved a robust feeding response that is independent from prior egg exposure.
Collapse
Affiliation(s)
- Maryse A P Huve
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Mitja N P Remus-Emsermann
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Luis R Paniagua Voirol
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany.
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
4
|
Aguilar JM, Gloss AD, Suzuki HC, Verster KI, Singhal M, Hoff J, Grebenok R, Nabity PD, Behmer ST, Whiteman NK. Insights into the evolution of herbivory from a leaf-mining fly. Ecosphere 2024; 15:e4764. [PMID: 39247255 PMCID: PMC11378976 DOI: 10.1002/ecs2.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024] Open
Abstract
Herbivorous insects and their host plants comprise most known species on Earth. Illuminating how herbivory repeatedly evolved in insects from non-herbivorous lineages is critical to understanding how this biodiversity is created and maintained. We characterized the trophic niche of Scaptomyza flava, a representative of a lineage nested within the Drosophila that transitioned to herbivory ~10-15 million years ago. We used natural history studies to determine if S. flava is a true herbivore or a cryptic microbe-feeder, given that the ancestral character state for the family Drosophilidae is likely microbe-feeding. Specifically, we quantified oviposition substrate choice and larval viability across food-types, trophic-related morphological traits, and nitrogen isotope and sterol profiles across putatively herbivorous and non-herbivorous drosophilids. The results of these studies show that S. flava is an obligate herbivore of living plants. Paired with its genetic model host, Arabidopsis thaliana, S. flava is a novel and powerful system for exploring mechanisms underlying the evolution of herbivory, a complex trait that enabled the exceptional diversification of insects.
Collapse
Affiliation(s)
- Jessica M. Aguilar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Andrew D. Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Hiromu C. Suzuki
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Kirsten I. Verster
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Jordan Hoff
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Robert Grebenok
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - Paul D. Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Spencer T. Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Hay NM, Windham MD, Mandáková T, Lysak MA, Hendriks KP, Mummenhoff K, Lens F, Pryer KM, Bailey CD. A Hyb-Seq phylogeny of Boechera and related genera using a combination of Angiosperms353 and Brassicaceae-specific bait sets. AMERICAN JOURNAL OF BOTANY 2023; 110:e16226. [PMID: 37561651 DOI: 10.1002/ajb2.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
PREMISE Although Boechera (Boechereae, Brassicaceae) has become a plant model system for both ecological genomics and evolutionary biology, all previous phylogenetic studies have had limited success in resolving species relationships within the genus. The recent effective application of sequence data from target enrichment approaches to resolve the evolutionary relationships of several other challenging plant groups prompted us to investigate their usefulness in Boechera and Boechereae. METHODS To resolve the phylogeny of Boechera and closely related genera, we utilized the Hybpiper pipeline to analyze two combined bait sets: Angiosperms353, with broad applicability across flowering plants; and a Brassicaceae-specific bait set designed for use in the mustard family. Relationships for 101 samples representing 81 currently recognized species were inferred from a total of 1114 low-copy nuclear genes using both supermatrix and species coalescence methods. RESULTS Our analyses resulted in a well-resolved and highly supported phylogeny of the tribe Boechereae. Boechereae is divided into two major clades, one comprising all western North American species of Boechera, the other encompassing the eight other genera of the tribe. Our understanding of relationships within Boechera is enhanced by the recognition of three core clades that are further subdivided into robust regional species complexes. CONCLUSIONS This study presents the first broadly sampled, well-resolved phylogeny for most known sexual diploid Boechera. This effort provides the foundation for a new phylogenetically informed taxonomy of Boechera that is crucial for its continued use as a model system.
Collapse
Affiliation(s)
- Nikolai M Hay
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - Michael D Windham
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kasper P Hendriks
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, Osnabrück, D-49076, Germany
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA, The Netherlands
| | - Klaus Mummenhoff
- Department of Biology/Botany, University of Osnabrück, Barbarastraße 11, Osnabrück, D-49076, Germany
| | - Frederic Lens
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA, The Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Kathleen M Pryer
- Department of Biology, Duke University, Durham, 27708, North Carolina, USA
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
6
|
Niu Y, Lazár D, Holzwarth AR, Kramer DM, Matsubara S, Fiorani F, Poorter H, Schrey SD, Nedbal L. Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport. THE NEW PHYTOLOGIST 2023. [PMID: 37429324 DOI: 10.1111/nph.19083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Alfred R Holzwarth
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1105, NL-1081 HV, Amsterdam, the Netherlands
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Fabio Fiorani
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Hendrik Poorter
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia D Schrey
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
7
|
Veatch-Blohm ME, Medina G, Butler J. Early lateral root formation in response to calcium and nickel shows variation within disjunct populations of Arabidopsis lyrata spp. lyrata. Heliyon 2023; 9:e13632. [PMID: 36846704 PMCID: PMC9950942 DOI: 10.1016/j.heliyon.2023.e13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Root architecture is important in nutrient uptake and avoidance of toxic compounds within the soil. Arabidopsis lyrata spp. lyrata has widespread distribution in disjunct environments that encounter unique stressors starting at germination. Five populations of A. lyrata spp. lyrata show local adaptation to Nickel (Ni) but cross-tolerance to variations in Calcium (Ca) concentration within the soil. Differentiation among the populations begins early in development and appears to impact timing of lateral root formation; therefore the purpose of the study was to understand changes in root architecture and root exploration in response to Ca and Ni within the first three weeks of growth. Lateral root formation was first characterized under one concentration of Ca and Ni. Lateral root formation and tap root length were reduced in all five populations in response to Ni compared to Ca, with the least reduction in the three serpentine populations. When the populations were exposed to a gradient (either Ca or Ni) there were differences in population response based on the nature of the gradient. Start side was the greatest determinant of root exploration and lateral root formation under a Ca gradient, while population was the greatest determinant of root exploration and lateral root formation under a Ni gradient. All populations exhibited about the same frequency of root exploration under a Ca gradient, while the serpentine populations exhibited much higher levels of root exploration under a Ni gradient compared to the two non-serpentine populations. Differences among populations in response to Ca and Ni demonstrate the importance of stress responses early in development, particularly in species that have widespread distribution among disparate habitats.
Collapse
|
8
|
Ahmed S, Chouhan R, Junaid A, Jamwal VL, Thakur J, Mir BA, Gandhi SG. Transcriptome analysis and differential expression in Arabidopsis thaliana in response to rohitukine (a chromone alkaloid) treatment. Funct Integr Genomics 2023; 23:35. [PMID: 36629976 DOI: 10.1007/s10142-023-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
Rohitukine is a chromone alkaloid and precursor of potent anticancer drugs flavopiridol, P-276-00, and 2,6-dichloro-styryl derivative (11d) (IIIM-290). The metabolite is reported to possess anticancer, anti-inflammatory, antiadipogenic, immunomodulatory, gastroprotective, anti-implantation, antidyslipidemic, anti-arthritic, and anti-fertility properties. However, the physiological role of rohitukine in plant system is yet to be explored. Here, we studied the effect of rohitukine isolated from Dysoxylum gotadhora on Arabidopsis thaliana. The A. thaliana plants grown on a medium fortified with different rohitukine concentrations showed a significant effect on the growth and development. The root growth of A. thaliana seedlings showed considerable inhibition when grown on medium containing 1.0 mM of rohitukine. Transcriptomic analysis indicated the expression of 895 and 932 genes in control and treated samples respectively at a cut-off of FPKM ≥ 1 and P-value < 0.05. Gene ontology (GO) analysis revealed the upregulation of genes related to photosynthesis, membrane transport, antioxidation, xenobiotic degradation, and some transcription factors (TFs) in response to rohitukine. Conversely, rohitukine downregulated several genes including RNA helicases and those involved in nitrogen compound metabolism. The RNA-seq result was also validated by real-time qRT-PCR analysis. In light of these results, we discuss (i) likely ecological importance of rohitukine in parent plant as well as (ii) comparison between responses to rohitukine treatment in plants and mammals.
Collapse
Affiliation(s)
- Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India.,Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rekha Chouhan
- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Alim Junaid
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Vijay Lakshmi Jamwal
- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Jitendra Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Ladakh, Kargil Campus, Kargil, 194103, Ladakh, India.,Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Tsuchimatsu T, Fujii S. The selfing syndrome and beyond: diverse evolutionary consequences of mating system transitions in plants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200510. [PMID: 35634918 PMCID: PMC9149797 DOI: 10.1098/rstb.2020.0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/04/2021] [Indexed: 07/20/2023] Open
Abstract
The shift from outcrossing to self-fertilization (selfing) is considered one of the most prevalent evolutionary transitions in flowering plants. Selfing species tend to share similar reproductive traits in morphology and function, and such a set of traits is called the 'selfing syndrome'. Although the genetic basis of the selfing syndrome has been of great interest to evolutionary biologists, knowledge of the causative genes or mutations was limited until recently. Thanks to advances in population genomic methodologies combined with high-throughput sequencing technologies, several studies have successfully unravelled the molecular and genetic basis for evolution of the selfing syndrome in Capsella, Arabidopsis, Solanum and other genera. Here we first introduce recent research examples that have explored the loci, genes and mutations responsible for the selfing syndrome traits, such as reductions in petal size or in pollen production, that are mainly relevant to pre-pollination processes. Second, we review the relationship between the evolution of selfing and interspecific pollen transfer, highlighting the findings of post-pollination reproductive barriers at the molecular level. We then discuss the emerging view of patterns in evolution of the selfing syndrome, such as the pervasive involvement of loss-of-function mutations and the relative importance of selection versus neutral degradation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE) Fellow, Bunkyo, Japan
| |
Collapse
|
10
|
Liang YY, Chen XY, Zhou BF, Mitchell-Olds T, Wang B. Globally Relaxed Selection and Local Adaptation in Boechera stricta. Genome Biol Evol 2022; 14:evac043. [PMID: 35349686 PMCID: PMC9011030 DOI: 10.1093/gbe/evac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The strength of selection varies among populations and across the genome, but the determinants of efficacy of selection remain unclear. In this study, we used whole-genome sequencing data from 467 Boechera stricta accessions to quantify the strength of selection and characterize the pattern of local adaptation. We found low genetic diversity on 0-fold degenerate sites and conserved non-coding sites, indicating functional constraints on these regions. The estimated distribution of fitness effects and the proportion of fixed substitutions suggest relaxed negative and positive selection in B. stricta. Among the four population groups, the NOR and WES groups have smaller effective population size (Ne), higher proportions of effectively neutral sites, and lower rates of adaptive evolution compared with UTA and COL groups, reflecting the effect of Ne on the efficacy of natural selection. We also found weaker selection on GC-biased sites compared with GC-conservative (unbiased) sites, suggested that GC-biased gene conversion has affected the strength of selection in B. stricta. We found mixed evidence for the role of the recombination rate on the efficacy of selection. The positive and negative selection was stronger in high-recombination regions compared with low-recombination regions in COL but not in other groups. By scanning the genome, we found different subsets of selected genes suggesting differential adaptation among B. stricta groups. These results show that differences in effective population size, nucleotide composition, and recombination rate are important determinants of the efficacy of selection. This study enriches our understanding of the roles of natural selection and local adaptation in shaping genomic variation.
Collapse
Affiliation(s)
- Yi-Ye Liang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue-Yan Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | | | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences,
Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Matsunaga T, Reisenman CE, Goldman-Huertas B, Brand P, Miao K, Suzuki HC, Verster KI, Ramírez SR, Whiteman NK. Evolution of Olfactory Receptors Tuned to Mustard Oils in Herbivorous Drosophilidae. Mol Biol Evol 2022; 39:msab362. [PMID: 34963012 PMCID: PMC8826531 DOI: 10.1093/molbev/msab362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The diversity of herbivorous insects is attributed to their propensity to specialize on toxic plants. In an evolutionary twist, toxins betray the identity of their bearers when herbivores coopt them as cues for host-plant finding, but the evolutionary mechanisms underlying this phenomenon are poorly understood. We focused on Scaptomyza flava, an herbivorous drosophilid specialized on isothiocyanate (ITC)-producing (Brassicales) plants, and identified Or67b paralogs that were triplicated as mustard-specific herbivory evolved. Using in vivo heterologous systems for the expression of olfactory receptors, we found that S. flava Or67bs, but not the homologs from microbe-feeding relatives, responded selectively to ITCs, each paralog detecting different ITC subsets. Consistent with this, S. flava was attracted to ITCs, as was Drosophila melanogaster expressing S. flava Or67b3 in the homologous Or67b olfactory circuit. ITCs were likely coopted as olfactory attractants through gene duplication and functional specialization (neofunctionalization and subfunctionalization) in S. flava, a recently derived herbivore.
Collapse
Affiliation(s)
- Teruyuki Matsunaga
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Carolina E Reisenman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Benjamin Goldman-Huertas
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Philipp Brand
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Kevin Miao
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Hiromu C Suzuki
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kirsten I Verster
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Noah K Whiteman
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Boinot M, Karakas E, Koehl K, Pagter M, Zuther E. Cold stress and freezing tolerance negatively affect the fitness of Arabidopsis thaliana accessions under field and controlled conditions. PLANTA 2022; 255:39. [PMID: 35032192 PMCID: PMC8761124 DOI: 10.1007/s00425-021-03809-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 05/15/2023]
Abstract
Higher acclimated freezing tolerance improved winter survival, but reduced reproductive fitness of Arabidopsis thaliana accessions under field and controlled conditions. Low temperature is one of the most important abiotic factors influencing plant fitness and geographical distribution. In addition, cold stress is known to influence crop yield and is therefore of great economic importance. Increased freezing tolerance can be acquired by the process of cold acclimation, but this may be associated with a fitness cost. To assess the influence of cold stress on the fitness of plants, long-term field trials over 5 years were performed with six natural accessions of Arabidopsis thaliana ranging from very tolerant to very sensitive to freezing. Fitness parameters, as seed yield and 1000 seed mass, were measured and correlation analyses with temperature and freezing tolerance data performed. The results were compared with fitness parameters from controlled chamber experiments over 3 years with application of cold priming and triggering conditions. Winter survival and seed yield per plant were positively correlated with temperature in field experiments. In addition, winter survival and 1000 seed mass were correlated with the cold-acclimated freezing tolerance of the selected Arabidopsis accessions. The results provide strong evidence for a trade-off between higher freezing tolerance and reproductive fitness in A. thaliana, which might have ecological impacts in the context of global warming.
Collapse
Affiliation(s)
- Maximilian Boinot
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Karin Koehl
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Majken Pagter
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
13
|
Zhang H, Rutherford S, Qi S, Huang P, Dai Z, Du D. Transcriptome profiling of Arabidopsis thaliana roots in response to allelopathic effects of Conyza canadensis. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:53-63. [PMID: 34647200 DOI: 10.1007/s10646-021-02489-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The molecular mechanisms underlying allelopathy and their role in the interactions between invasive weeds and native species remain unclear. In this study, we aimed to explore the physiological and molecular response of plant roots of a native species to allelopathy from an invasive weed. We examined the growth and development of roots of native Arabidopsis thaliana for a 2-week period after being treated with aqueous extracts at different concentrations from invasive Conyza canadensis. Extracts with higher concentration in the Murashige and Skoog (MS) media (i.e., 4 mg of extract/mL of MS) significantly affected the root growth of A. thaliana. Roots of A. thaliana displayed weakened root tip activity and an accumulation of reactive oxygen species (ROS) in response to extracts from C. canadensis. The transcriptome analysis of A. thaliana roots exposed to phytotoxicity revealed differentially expressed genes (DEGs) involved in cell wall formation, abiotic stress, transporter genes and signal transduction. We found that genes associated with nutrient transport, such as major facilitator superfamily (MFS) and amino acid permease (AAP3) transporters as well as genes involved in stress response, including leucine-rich repeat receptor-like protein kinases (LRR-RLKs) were down-regulated. In addition, we found that many transcription factors associated with plant stress (such as APETALA2/ethylene response factors) were up-regulated while others (e.g., zinc-finger proteins) were down-regulated. Allelochemicals from C. canadensis also induced the up-regulation of detoxification (DTX) genes, ROS related genes, calcineurin B-like interacting protein kinases (CIPKs) and calmodulin. Overall, our findings provided insights into allelopathy in C. canadensis at the molecular level, and contributes to our understanding of invasion mechanisms of alien plant species. CLINICAL TRIALS REGISTRATION: This study does not contain any studies with clinical trials performed by any of the authors.
Collapse
Affiliation(s)
- Haiyan Zhang
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China
- Changzhou Environmental Monitoring Center, Puqian Street 149, Changzhou, 213000, PR China
| | - Susan Rutherford
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China
- The Royal Botanic Gardens and Domain Trust, MrsMacquaries Road, Sydney, NSW, 2000, Australia
| | - Shanshan Qi
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China
| | - Ping Huang
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China.
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China.
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment Safety Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China.
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, PR China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
14
|
Tateyama H, Chimura K, Tsuchimatsu T. Evolution of seed mass associated with mating systems in multiple plant families. J Evol Biol 2021; 34:1981-1987. [PMID: 34662478 PMCID: PMC9298147 DOI: 10.1111/jeb.13949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
In flowering plants, the evolution of self‐fertilization (selfing) from obligate outcrossing is regarded as one of the most prevalent evolutionary transitions. The evolution of selfing is often accompanied by various changes in genomic, physiological and morphological properties. In particular, a set of reproductive traits observed typically in selfing species is called the “selfing syndrome”. A mathematical model based on the kinship theory of genetic imprinting predicted that seed mass should become smaller in selfing species compared with outcrossing congeners, as a consequence of the reduced conflict between maternally and paternally derived alleles in selfing plants. Here, we test this prediction by examining the association between mating system and seed mass across a wide range of taxa (642 species), considering potential confounding factors: phylogenetic relationships and growth form. We focused on three plant families—Solanaceae, Brassicaceae and Asteraceae—where information on mating systems is abundant, and the analysis was performed for each family separately. When phylogenetic relationships were controlled, we consistently observed that selfers (represented by self‐compatible species) tended to have a smaller seed mass compared with outcrossers (represented by self‐incompatible species) in these families. In summary, our analysis suggests that small seeds should also be considered a hallmark of the selfing syndrome, although we note that mating systems have relatively small effects on seed mass variation.
Collapse
Affiliation(s)
- Hirofumi Tateyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Science and Technology, Chiba University, Chiba, Japan
| | - Kaori Chimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Genome-wide identification and expression analysis of U-box gene family in wild emmer wheat (Triticum turgidum L. ssp. dicoccoides). Gene 2021; 799:145840. [PMID: 34274467 DOI: 10.1016/j.gene.2021.145840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
In this study, 82 U-box genes were identified in wild emmer wheat (TdPUBs) through a genome-search method. Phylogenetic analysis classified them into seven groups and the genes belonging to the same group shared the similar exon-intron structure, motif organization and cis-element compositions. Synteny analysis of the U-box genes between different species revealed that segmental duplication and polyploidization mainly contributed to the expansion of TdPUBs. Furthermore, the genetic variations of U-box were investigated in wild emmer, domesticated emmer and durum wheat. Results showed that significant genetic bottleneck has occurred during domestication process of tetraploid emmer wheat. Meanwhile, 12 TdPUBs were co-located with known domestication related QTLs. Finally, the tissue-specific and stress-responsive TdPUB genes were identified through RNA-seq analysis. Combined with qPCR validation of 19 salt-responsive TdPUBs, the candidates involving in salt response were obtained. It lays the foundation to better understand the regulatory roles of U-box family in emmer wheat and beyond.
Collapse
|
16
|
Swartzwelter BJ, Mayall C, Alijagic A, Barbero F, Ferrari E, Hernadi S, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Auguste M. Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1528. [PMID: 34207693 PMCID: PMC8230276 DOI: 10.3390/nano11061528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.
Collapse
Affiliation(s)
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, 1000 Ljubljana, Slovenia;
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy;
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain;
| | - Eleonora Ferrari
- Center for Plant Molecular Biology–ZMBP Eberhard-Karls University Tübingen, 72076 Tübingen, Germany;
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, 5020 Salzburg, Austria;
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK;
| | - Manon Auguste
- Department of Earth Environment and Life Sciences, University of Genova, 16126 Genova, Italy
| |
Collapse
|
17
|
Hamidinekoo A, Garzón-Martínez GA, Ghahremani M, Corke FMK, Zwiggelaar R, Doonan JH, Lu C. DeepPod: a convolutional neural network based quantification of fruit number in Arabidopsis. Gigascience 2021; 9:5780255. [PMID: 32129846 PMCID: PMC7055469 DOI: 10.1093/gigascience/giaa012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/18/2019] [Indexed: 11/28/2022] Open
Abstract
Background High-throughput phenotyping based on non-destructive imaging has great potential in plant biology and breeding programs. However, efficient feature extraction and quantification from image data remains a bottleneck that needs to be addressed. Advances in sensor technology have led to the increasing use of imaging to monitor and measure a range of plants including the model Arabidopsis thaliana. These extensive datasets contain diverse trait information, but feature extraction is often still implemented using approaches requiring substantial manual input. Results The computational detection and segmentation of individual fruits from images is a challenging task, for which we have developed DeepPod, a patch-based 2-phase deep learning framework. The associated manual annotation task is simple and cost-effective without the need for detailed segmentation or bounding boxes. Convolutional neural networks (CNNs) are used for classifying different parts of the plant inflorescence, including the tip, base, and body of the siliques and the stem inflorescence. In a post-processing step, different parts of the same silique are joined together for silique detection and localization, whilst taking into account possible overlapping among the siliques. The proposed framework is further validated on a separate test dataset of 2,408 images. Comparisons of the CNN-based prediction with manual counting (R2 = 0.90) showed the desired capability of methods for estimating silique number. Conclusions The DeepPod framework provides a rapid and accurate estimate of fruit number in a model system widely used by biologists to investigate many fundemental processes underlying growth and reproduction
Collapse
Affiliation(s)
- Azam Hamidinekoo
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY233DB, UK
| | - Gina A Garzón-Martínez
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY233EB, UK
| | - Morteza Ghahremani
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY233DB, UK.,National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY233EB, UK
| | - Fiona M K Corke
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY233EB, UK
| | - Reyer Zwiggelaar
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY233DB, UK
| | - John H Doonan
- National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY233EB, UK
| | - Chuan Lu
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY233DB, UK
| |
Collapse
|
18
|
Abstract
Whereas scientists interested in subterranean life typically insist that their research is exciting, adventurous, and important to answer general questions, this enthusiasm and potential often fade when the results are translated into scientific publications. This is because cave research is often written by cave scientists for cave scientists; thus, it rarely “leaves the cave”. However, the status quo is changing rapidly. We analysed 21,486 articles focused on subterranean ecosystems published over the last three decades and observed a recent, near-exponential increase in their annual citations and impact factor. Cave research is now more often published in non-specialized journals, thanks to a number of authors who are exploiting subterranean habitats as model systems for addressing important scientific questions. Encouraged by this positive trend, we here propose a few personal ideas for improving the generality of subterranean literature, including tips for framing broadly scoped research and making it accessible to a general audience, even when published in cave-specialized journals. Hopefully, this small contribution will succeed in condensing and broadcasting even further the collective effort taken by the subterranean biology community to bring their research “outside the cave”.
Collapse
|
19
|
Afrin T, Seok M, Terry BC, Pajerowska-Mukhtar KM. Probing natural variation of IRE1 expression and endoplasmic reticulum stress responses in Arabidopsis accessions. Sci Rep 2020; 10:19154. [PMID: 33154475 PMCID: PMC7645728 DOI: 10.1038/s41598-020-76114-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The environmental effects shape genetic changes in the individuals within plant populations, which in turn contribute to the enhanced genetic diversity of the population as a whole. Thus, individuals within the same species can acquire and accumulate genetic differences in their genomes depending on their local environment and evolutionary history. IRE1 is a universal endoplasmic reticulum (ER) stress sensor that activates an evolutionarily conserved signalling cascade in response to biotic and abiotic stresses. Here, we selected nine different Arabidopsis accessions along with the reference ecotype Columbia-0, based on their geographical origins and differential endogenous IRE1 expression under steady-state conditions to investigate the natural variation of ER stress responses. We cloned and analysed selected upstream regulatory regions of IRE1a and IRE1b, which revealed differential levels of their inducibility. We also subjected these accessions to an array of biotic and abiotic stresses including heat, ER stress-inducing chemical tunicamycin, phytohormone salicylic acid, and pathogen infection. We measured IRE1-mediated splicing of its evolutionarily conserved downstream client as well as transcript accumulation of ER-resident chaperones and co-chaperones. Collectively, our results illustrate the expression polymorphism of a major plant stress receptor and its relationship with molecular and physiological ER stress sensitivity.
Collapse
Affiliation(s)
- Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Minye Seok
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Brenna C Terry
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | | |
Collapse
|
20
|
Pacey EK, Maherali H, Husband BC. Endopolyploidy is associated with leaf functional traits and climate variation in Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2020; 107:993-1003. [PMID: 32691866 DOI: 10.1002/ajb2.1508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Endopolyploidy is widespread throughout the tree of life and is especially prevalent in herbaceous angiosperms. Its prevalence in this clade suggests that endopolyploidy may be adaptive, but its functional roles are poorly understood. To address this gap in knowledge, we explored whether endopolyploidy was associated with climatic factors and correlated with phenotypic traits related to growth. METHODS We sampled stem and leaf endopolyploidy in 56 geographically separated accessions of Arabidopsis thaliana grown in a common garden to explore species variation and to determine whether this variation was correlated with climatic variables and other plant traits. RESULTS Stem endopolyploidy was not associated with climate or other traits. However, leaf endopolyploidy was significantly higher in accessions from drier and colder environments. Moreover, leaf endopolyploidy was positively correlated with apparent chlorophyll content and leaf dry mass. CONCLUSIONS Endopolyploidy may have a functional role in the storage of chloroplasts and starch, and it may offer an adaptive avenue of tissue growth in cold and dry environments.
Collapse
Affiliation(s)
- Evan K Pacey
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Brian C Husband
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
21
|
Bouzid M, He F, Schmitz G, Häusler RE, Weber APM, Mettler-Altmann T, De Meaux J. Arabidopsis species deploy distinct strategies to cope with drought stress. ANNALS OF BOTANY 2019; 124:27-40. [PMID: 30668651 PMCID: PMC6676377 DOI: 10.1093/aob/mcy237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/17/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Water limitation is an important determinant of the distribution, abundance and diversity of plant species. Yet, little is known about how the response to limiting water supply changes among closely related plant species with distinct ecological preferences. Comparison of the model annual species Arabidopsis thaliana with its close perennial relatives A. lyrata and A. halleri, can help disentangle the molecular and physiological changes contributing to tolerance and avoidance mechanisms, because these species must maintain tolerance and avoidance mechanisms to increase long-term survival, but they are exposed to different levels of water stress and competition in their natural habitat. METHODS A dry-down experiment was conducted to mimic a period of missing precipitation. The covariation of a progressive decrease in soil water content (SWC) with various physiological and morphological plant traits across a set of representative genotypes in A. thaliana, A. lyrata and A. halleri was quantified. Transcriptome changes to soil dry-down were further monitored. KEY RESULTS The analysis of trait covariation demonstrates that the three species differ in the strategies they deploy to respond to drought stress. Arabidopsis thaliana showed a drought avoidance reaction but failed to survive wilting. Arabidopsis lyrata efficiently combined avoidance and tolerance mechanisms. In contrast, A. halleri showed some degree of tolerance to wilting but it did not seem to protect itself from the stress imposed by drought. Transcriptome data collected just before plant wilting and after recovery corroborated the phenotypic analysis, with A. lyrata and A. halleri showing a stronger activation of recovery- and stress-related genes, respectively. CONCLUSIONS The response of the three Arabidopsis species to soil dry-down reveals that they have evolved distinct strategies to face drought stress. These strategic differences are in agreement with the distinct ecological priorities of the stress-tolerant A. lyrata, the competitive A. halleri and the ruderal A. thaliana.
Collapse
Affiliation(s)
- M Bouzid
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - F He
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - G Schmitz
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - R E Häusler
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - A P M Weber
- Institut of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - T Mettler-Altmann
- Institut of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - J De Meaux
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Wang B, Mojica JP, Perera N, Lee CR, Lovell JT, Sharma A, Adam C, Lipzen A, Barry K, Rokhsar DS, Schmutz J, Mitchell-Olds T. Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol 2019; 20:126. [PMID: 31227026 PMCID: PMC6587263 DOI: 10.1186/s13059-019-1729-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genomic variation is widespread, and both neutral and selective processes can generate similar patterns in the genome. These processes are not mutually exclusive, so it is difficult to infer the evolutionary mechanisms that govern population and species divergence. Boechera stricta is a perennial relative of Arabidopsis thaliana native to largely undisturbed habitats with two geographic and ecologically divergent subspecies. Here, we delineate the evolutionary processes driving the genetic diversity and population differentiation in this species. RESULTS Using whole-genome re-sequencing data from 517 B. stricta accessions, we identify four genetic groups that diverged around 30-180 thousand years ago, with long-term small effective population sizes and recent population expansion after the Last Glacial Maximum. We find three genomic regions with elevated nucleotide diversity, totaling about 10% of the genome. These three regions of elevated nucleotide diversity show excess of intermediate-frequency alleles, higher absolute divergence (dXY), and lower relative divergence (FST) than genomic background, and significant enrichment in immune-related genes, reflecting long-term balancing selection. Scattered across the genome, we also find regions with both high FST and dXY among the groups, termed FST-islands. Population genetic signatures indicate that FST-islands with elevated divergence, which have experienced directional selection, are derived from divergent sorting of ancient polymorphisms. CONCLUSIONS Our results suggest that long-term balancing selection on disease resistance genes may have maintained ancestral haplotypes across different geographical lineages, and unequal sorting of balanced polymorphisms may have generated genomic regions with elevated divergence. This study highlights the importance of ancestral balanced polymorphisms as crucial components of genome-wide variation.
Collapse
Affiliation(s)
- Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA.
| | - Julius P Mojica
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Nadeesha Perera
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology and Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Aditi Sharma
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Catherine Adam
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Daniel S Rokhsar
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | |
Collapse
|
23
|
Hovick SM, Whitney KD. Propagule pressure and genetic diversity enhance colonization by a ruderal species: a multi‐generation field experiment. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephen M. Hovick
- Department of Evolution, Ecology, and Organismal Biology The Ohio State University Columbus Ohio 43210 USA
| | - Kenneth D. Whitney
- Department of Biology University of New Mexico Albuquerque New Mexico 87131 USA
| |
Collapse
|
24
|
Montes N, Alonso-Blanco C, García-Arenal F. Cucumber mosaic virus infection as a potential selective pressure on Arabidopsis thaliana populations. PLoS Pathog 2019; 15:e1007810. [PMID: 31136630 PMCID: PMC6555541 DOI: 10.1371/journal.ppat.1007810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/07/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
It has been proposed that in wild ecosystems viruses are often plant mutualists, whereas agroecosystems favour pathogenicity. We seek evidence for virus pathogenicity in wild ecosystems through the analysis of plant-virus coevolution, which requires a negative effect of infection on the host fitness. We focus on the interaction between Arabidopsis thaliana and Cucumber mosaic virus (CMV), which is significant in nature. We studied the genetic diversity of A. thaliana for two defence traits, resistance and tolerance, to CMV. A set of 185 individuals collected in 76 A. thaliana Iberian wild populations were inoculated with different CMV strains. Resistance was estimated from the level of virus multiplication in infected plants, and tolerance from the effect of infection on host progeny production. Resistance and tolerance to CMV showed substantial genetic variation within and between host populations, and depended on the virus x host genotype interaction, two conditions for coevolution. Resistance and tolerance were co-occurring independent traits that have evolved independently from related life-history traits involved in adaptation to climate. The comparison of the genetic structure for resistance and tolerance with that for neutral traits (QST/FST analyses) indicated that both defence traits are likely under uniform selection. These results strongly suggest that CMV infection selects for defence on A. thaliana populations, and support plant-virus coevolution. Thus, we propose that CMV infection reduces host fitness under the field conditions of the wild A. thaliana populations studied.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
25
|
Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc Natl Acad Sci U S A 2019; 116:7137-7146. [PMID: 30894495 PMCID: PMC6452661 DOI: 10.1073/pnas.1817580116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C. himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C. himalaica's adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the S-locus, the reason for the transition to self-fertilization of C. himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments.
Collapse
|
26
|
Biology in Bloom: A Primer on the Arabidopsis thaliana Model System. Genetics 2018; 208:1337-1349. [PMID: 29618591 DOI: 10.1534/genetics.118.300755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Arabidopsis thaliana could have easily escaped human scrutiny. Instead, Arabidopsis has become the most widely studied plant in modern biology despite its absence from the dinner table. Pairing diminutive stature and genome with prodigious resources and tools, Arabidopsis offers a window into the molecular, cellular, and developmental mechanisms underlying life as a multicellular photoautotroph. Many basic discoveries made using this plant have spawned new research areas, even beyond the verdant fields of plant biology. With a suite of resources and tools unmatched among plants and rivaling other model systems, Arabidopsis research continues to offer novel insights and deepen our understanding of fundamental biological processes.
Collapse
|
27
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
28
|
Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ, Smilanich AM, Forister ML, Parchman TL, Galland LM, Hurtado PJ, Espeset AE, Glassmire AE, Harrison JG, Mo C, Yoon S, Pardikes NA, Muchoney ND, Jahner JP, Slinn HL, Shelef O, Dodson CD, Kato MJ, Yamaguchi LF, Jeffrey CS. Modern approaches to study plant–insect interactions in chemical ecology. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0009-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Zuther E, Lee YP, Erban A, Kopka J, Hincha DK. Natural Variation in Freezing Tolerance and Cold Acclimation Response in Arabidopsis thaliana and Related Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:81-98. [DOI: 10.1007/978-981-13-1244-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Singh A, Roy S. High altitude population of Arabidopsis thaliana is more plastic and adaptive under common garden than controlled condition. BMC Ecol 2017; 17:39. [PMID: 29237449 PMCID: PMC5729231 DOI: 10.1186/s12898-017-0149-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Population differentiation and their adaptation to a particular environment depend on their ability to respond to a new environment. This, in turn is governed to an extent, by the degree of phenotypic plasticity exhibited by the populations. The populations of same species inhabiting different climatic conditions may differ in their phenotypic plasticity. Himalayan populations of Arabidopsis thaliana originating from a steep altitude are exposed to different climatic conditions ranging from sub-tropical to temperate. Thus they might have experienced different selection pressures during evolution and may respond differently under common environmental condition. RESULTS Phenotypic plasticity and differentiation of natural populations of A. thaliana grown under common garden and controlled conditions were determined. A total of seventeen morphological traits, their plasticity, association between traits and environment were performed using 45 accessions from three populations. Plants from different altitudes differed in phenotypes, their selection and fitness under two conditions. Under both the conditions lower altitude population was characterized by higher leaf count and larger silique than higher and middle altitude population. Flowering time of high altitude population increased while that of low and medium altitude decreased under controlled condition compared to open field. An increase in seed weight and germination was observed for all the population under open field than controlled. Rosette area was under divergent selection in both the condition. The heritability of lower altitude population was the highest under both the conditions, where as it was the least for higher altitude population further indicating that the high altitude populations are more responsive towards phenotypic changes under new environmental conditions. Ninety-nine percent of variability in traits and their plasticity co-varied with the altitude of their origin. The population of high altitude was more plastic and differentiated as compared to the lower altitude one. CONCLUSIONS Arabidopsis thaliana population native to different altitudes of the west Himalaya responds differently when grown under common environments. The success of high altitude population is more in common garden than the controlled conditions. The significant variability in phenotype and its association with altitude of origin predicts for non-random genetic differentiation among the populations.
Collapse
Affiliation(s)
- Akanksha Singh
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001 India
| | - Sribash Roy
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001 India
| |
Collapse
|
31
|
Mesa JM, Scholes DR, Juvik JA, Paige KN. Molecular constraints on resistance–tolerance trade‐offs. Ecology 2017; 98:2528-2537. [DOI: 10.1002/ecy.1948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/23/2017] [Indexed: 01/15/2023]
Affiliation(s)
- J. Miles Mesa
- School of Integrative Biology University of Illinois at Urbana‐Champaign 505 South Goodwin Avenue Urbana Illinois 61801 USA
| | - Daniel R. Scholes
- Department of Biology University of Indianapolis 1400 East Hanna Avenue Indianapolis Indiana 46227 USA
| | - John A. Juvik
- Department of Crop Sciences University of Illinois at Urbana‐Champaign 1201 West Gregory Drive Urbana Illinois 61801 USA
| | - Ken N. Paige
- School of Integrative Biology University of Illinois at Urbana‐Champaign 505 South Goodwin Avenue Urbana Illinois 61801 USA
| |
Collapse
|
32
|
Akman M, Kleine R, van Tienderen PH, Schranz EM. Identification of the Submergence Tolerance QTL Come Quick Drowning1 (CQD1) in Arabidopsis thaliana. J Hered 2017; 108:308-317. [DOI: 10.1093/jhered/esx014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/12/2017] [Indexed: 01/03/2023] Open
|
33
|
Lim SL, D'Agui HM, Enright NJ, He T. Characterization of Leaf Transcriptome in Banksia hookeriana. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:49-56. [PMID: 28161492 PMCID: PMC5339403 DOI: 10.1016/j.gpb.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022]
Abstract
Banksia is a significant element in vegetation of southwestern Australia, a biodiversity hotspot with global significance. In particular, Banksia hookeriana represents a species with significant economic and ecological importance in the region. For better conservation and management, we reported an overview of transcriptome of B. hookeriana using RNA-seq and de novo assembly. We have generated a total of 202.7 million reads (18.91 billion of nucleotides) from four leaf samples in four plants of B. hookeriana, and assembled 59,063 unigenes (average size = 1098 bp) through de novotranscriptome assembly. Among them, 39,686 unigenes were annotated against the Swiss-Prot, Clusters of Orthologous Groups (COG), and NCBI non-redundant (NR) protein databases. We showed that there was approximately one single nucleotide polymorphism (SNP) per 5.6–7.1 kb in the transcriptome, and the ratio of transitional to transversional polymorphisms was approximately 1.82. We compared unigenes of B. hookeriana to those of Arabidopsis thaliana and Nelumbo nucifera through sequence homology, Gene Ontology (GO) annotation, and KEGG pathway analyses. The comparative analysis revealed that unigenes of B. hookeriana were closely related to those of N. nucifera. B. hookeriana, N. nucifera, and A. thaliana shared similar GO annotations but different distributions in KEGG pathways, indicating that B. hookeriana has adapted to dry-Mediterranean type shrublands via regulating expression of specific genes. In total 1927 potential simple sequence repeat (SSR) markers were discovered, which could be used in the genotype and genetic diversity studies of the Banksia genus. Our results provide valuable sequence resource for further study in Banksia.
Collapse
Affiliation(s)
- Sim Lin Lim
- Department of Environment and Agriculture, Curtin University, Perth, WA 6845, Australia
| | - Haylee M D'Agui
- Department of Environment and Agriculture, Curtin University, Perth, WA 6845, Australia
| | - Neal J Enright
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Tianhua He
- Department of Environment and Agriculture, Curtin University, Perth, WA 6845, Australia.
| |
Collapse
|
34
|
Kerdaffrec E, Filiault DL, Korte A, Sasaki E, Nizhynska V, Seren Ü, Nordborg M. Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. eLife 2016; 5. [PMID: 27966430 PMCID: PMC5226650 DOI: 10.7554/elife.22502] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/13/2016] [Indexed: 12/30/2022] Open
Abstract
Seed dormancy is a complex life history trait that determines the timing of germination and is crucial for local adaptation. Genetic studies of dormancy are challenging, because the trait is highly plastic and strongly influenced by the maternal environment. Using a combination of statistical and experimental approaches, we show that multiple alleles at the previously identified dormancy locus DELAY OF GERMINATION1 jointly explain as much as 57% of the variation observed in Swedish Arabidopsis thaliana, but give rise to spurious associations that seriously mislead genome-wide association studies unless modeled correctly. Field experiments confirm that the major alleles affect germination as well as survival under natural conditions, and demonstrate that locally adaptive traits can sometimes be dissected genetically.
Collapse
Affiliation(s)
- Envel Kerdaffrec
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Danièle L Filiault
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Arthur Korte
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Eriko Sasaki
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Ümit Seren
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
35
|
Kenta T, Edwards JEM, Butlin RK, Burke T, Quick WP, Urwin P, Davey MP. Tissue Culture as a Source of Replicates in Nonmodel Plants: Variation in Cold Response in Arabidopsis lyrata ssp. petraea. G3 (BETHESDA, MD.) 2016; 6:3817-3823. [PMID: 27729439 PMCID: PMC5144953 DOI: 10.1534/g3.116.034314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/26/2016] [Indexed: 11/23/2022]
Abstract
While genotype-environment interaction is increasingly receiving attention by ecologists and evolutionary biologists, such studies need genetically homogeneous replicates-a challenging hurdle in outcrossing plants. This could be potentially overcome by using tissue culture techniques. However, plants regenerated from tissue culture may show aberrant phenotypes and "somaclonal" variation. Here, we examined somaclonal variation due to tissue culturing using the response to cold treatment of photosynthetic efficiency (chlorophyll fluorescence measurements for Fv/Fm, Fv'/Fm', and ΦPSII, representing maximum efficiency of photosynthesis for dark- and light-adapted leaves, and the actual electron transport operating efficiency, respectively, which are reliable indicators of photoinhibition and damage to the photosynthetic electron transport system). We compared this to variation among half-sibling seedlings from three different families of Arabidopsis lyrata ssp. petraea Somaclonal variation was limited, and we could detect within-family variation in change in chlorophyll fluorescence due to cold shock successfully with the help of tissue-culture derived replicates. Icelandic and Norwegian families exhibited higher chlorophyll fluorescence, suggesting higher performance after cold shock, than a Swedish family. Although the main effect of tissue culture on Fv/Fm, Fv'/Fm', and ΦPSII was small, there were significant interactions between tissue culture and family, suggesting that the effect of tissue culture is genotype-specific. Tissue-cultured plantlets were less affected by cold treatment than seedlings, but to a different extent in each family. These interactive effects, however, were comparable to, or much smaller than the single effect of family. These results suggest that tissue culture is a useful method for obtaining genetically homogenous replicates for studying genotype-environment interaction related to adaptively-relevant phenotypes, such as cold response, in nonmodel outcrossing plants.
Collapse
Affiliation(s)
- Tanaka Kenta
- Department of Animal & Plant Sciences, University of Sheffield, S10 2TN, UK
| | | | - Roger K Butlin
- Department of Animal & Plant Sciences, University of Sheffield, S10 2TN, UK
| | - Terry Burke
- Department of Animal & Plant Sciences, University of Sheffield, S10 2TN, UK
| | - W Paul Quick
- Department of Animal & Plant Sciences, University of Sheffield, S10 2TN, UK
| | - Peter Urwin
- Centre for Plant Sciences, Institute of Integrative and Comparative Biology, University of Leeds, LS2 9JT, UK
| | - Matthew P Davey
- Department of Animal & Plant Sciences, University of Sheffield, S10 2TN, UK
| |
Collapse
|
36
|
Monroe JG, McGovern C, Lasky JR, Grogan K, Beck J, McKay JK. Adaptation to warmer climates by parallel functional evolution of
CBF
genes in
Arabidopsis thaliana. Mol Ecol 2016; 25:3632-44. [DOI: 10.1111/mec.13711] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/20/2016] [Indexed: 01/05/2023]
Affiliation(s)
- J. Grey Monroe
- Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins CO 80523 USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO 80523 USA
| | - Cullen McGovern
- Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins CO 80523 USA
| | - Jesse R. Lasky
- Department of Biology Pennsylvania State University University Park PA 16802 USA
| | - Kelsi Grogan
- Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins CO 80523 USA
| | - James Beck
- Department of Biological Sciences Wichita State University Wichita KS 67260 USA
- Botanical Research Institute of Texas Fort Worth TX 76107 USA
| | - John K. McKay
- Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins CO 80523 USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO 80523 USA
| |
Collapse
|
37
|
|
38
|
Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences. PLANTS 2016; 5:plants5010013. [PMID: 27135233 PMCID: PMC4844423 DOI: 10.3390/plants5010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/04/2016] [Accepted: 02/23/2016] [Indexed: 11/25/2022]
Abstract
Low elevation “trailing edge” range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts.
Collapse
|
39
|
Qiao Q, Wang Q, Han X, Guan Y, Sun H, Zhong Y, Huang J, Zhang T. Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau. Sci Rep 2016; 6:21729. [PMID: 26906946 PMCID: PMC4764839 DOI: 10.1038/srep21729] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
The extreme environment of the Qinghai-Tibet Plateau (QTP) provides an ideal natural laboratory for studies on adaptive evolution. Few genome/transcriptome based studies have been conducted on how plants adapt to the environments of QTP compared to numerous studies on vertebrates. Crucihimalaya himalaica is a close relative of Arabidopsis with typical QTP distribution, and is hoped to be a new model system to study speciation and ecological adaptation in extreme environment. In this study, we de novo generated a transcriptome sequence of C. himalaica, with a total of 49,438 unigenes. Compared to five relatives, 10,487 orthogroups were shared by all six species, and 4,286 orthogroups contain putative single copy gene. Further analysis identified 487 extremely significantly positively selected genes (PSGs) in C. himalaica transcriptome. Theses PSGs were enriched in functions related to specific adaptation traits, such as response to radiation, DNA repair, nitrogen metabolism, and stabilization of membrane. These functions are responsible for the adaptation of C. himalaica to the high radiation, soil depletion and low temperature environments on QTP. Our findings indicate that C. himalaica has evolved complex strategies for adapting to the extreme environments on QTP and provide novel insights into genetic mechanisms of highland adaptation in plants.
Collapse
Affiliation(s)
- Qin Qiao
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xi Han
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yanlong Guan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yang Zhong
- Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Ticao Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
40
|
Alsdurf J, Anderson C, Siemens DH. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development. AOB PLANTS 2015; 8:plv146. [PMID: 26685218 PMCID: PMC4722181 DOI: 10.1093/aobpla/plv146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/19/2015] [Indexed: 05/26/2023]
Abstract
Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented a drought-induced trans-generational plastic trade-off that could contribute to range limit development. Offspring of parents who were drought treated had higher drought tolerance, but lower levels of glucosinolate toxins. Both drought tolerance and defence are thought to be needed to expand the range to lower elevations. Here, we used methylation-sensitive amplified fragment length polymorphisms to determine whether environmentally induced DNA methylation and thus epigenetics could be a mechanism involved in the observed trans-generational plastic trade-off. We compared 110 offspring from the same self-fertilizing lineages whose parents were exposed to experimental drought stress treatments in the laboratory. Using three primer combinations, 643 polymorphic epi-loci were detected. Discriminant function analysis (DFA) on the amount of methylation detected resulted in significant combinations of epi-loci that distinguished the parent drought treatments in the offspring. Principal component (PC) and univariate association analyses also detected the significant differences, even after controlling for lineage, planting flat, developmental differences and multiple testing. Univariate tests also indicated significant associations between the amount of methylation and drought tolerance or glucosinolate toxin concentration. One epi-locus that was implicated in DFA, PC and univariate association analysis may be directly involved in the trade-off because increased methylation at this site on the genome decreased drought tolerance, but increased glucosinolate concentration.
Collapse
Affiliation(s)
- Jacob Alsdurf
- Integrative Genomics Program, Black Hills State University, Spearfish, SD 77799, USA Present address: Division of Biology, Kansas State University, Ackert Hall, Room 315, Manhattan, KS 66506-4901, USA
| | - Cynthia Anderson
- Integrative Genomics Program, Black Hills State University, Spearfish, SD 77799, USA
| | - David H Siemens
- Integrative Genomics Program, Black Hills State University, Spearfish, SD 77799, USA
| |
Collapse
|
41
|
Tyagi A, Singh S, Mishra P, Singh A, Tripathi AM, Jena SN, Roy S. Genetic diversity and population structure of Arabidopsis thaliana along an altitudinal gradient. AOB PLANTS 2015; 8:plv145. [PMID: 26672075 PMCID: PMC4719038 DOI: 10.1093/aobpla/plv145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/06/2015] [Indexed: 05/27/2023]
Abstract
The natural genetic variation within a plant species is primarily a consequence of its phylogeography and evolutionary history. This variation largely determines its present-day population structure. Arabidopsis thaliana, as a model plant, has been studied in great detail including its probable origin, local as well as global genetic diversity pattern, population structure, adaptation, etc. However, no such studies have so far been reported from the Indian Himalayan region. Here, we describe a comprehensive study on the genetic diversity and population structure of A. thaliana from an altitudinal range of 700-3400 m above mean sea level the highest altitudinal range reported so far. We also compare these populations with previously reported worldwide populations. A total of 48 accessions representing six populations were analysed using 19 microsatellites and 11 chloroplast markers. Genetic diversity analysis indicated populations to be highly diverse and comparable with worldwide populations. STRUCTURE, principal coordinate and isolation by distance (IBD) analyses showed that genetic variation in different populations is structured at geographical and altitudinal level. Further analyses indicate that these populations are genetically distinct from the rest of the world populations. Different parameters of the demographic expansion model support a rapid expansion. Based on mismatch distribution, the initial time of expansion of west Himalayan populations was found to be about 130 000 years. Bayesian analysis of divergence time indicated that these populations have a long evolutionary history in this region. Based on the results of genetic diversity parameters, demographic expansion and divergence time estimation, it appears that west Himalayan populations may be the source of the west-east expansion model.
Collapse
Affiliation(s)
- Antariksh Tyagi
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Shivani Singh
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Parneeta Mishra
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Akanksha Singh
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Abhinandan Mani Tripathi
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India
| | - Satya Narayan Jena
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Sribash Roy
- Genetics and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110 001, India Present address: CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| |
Collapse
|
42
|
Oakley CG, Spoelhof JP, Schemske DW. Increased heterosis in selfing populations of a perennial forb. AOB PLANTS 2015; 7:plv122. [PMID: 26507567 PMCID: PMC4671326 DOI: 10.1093/aobpla/plv122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
Quantifying the importance of random genetic drift in natural populations is central to understanding the potential limits to natural selection. One approach is to estimate the magnitude of heterosis, the increased fitness of progeny derived from crosses between populations relative to crosses within populations caused by the heterozygous masking of deleterious recessive or nearly recessive alleles that have been fixed by drift within populations. Self-fertilization is expected to reduce the effective population size by half relative to outcrossing, and population bottlenecks may be common during the transition to selfing. Therefore, chance fixation of deleterious alleles due to drift in selfing populations should increase heterosis between populations. Increased homozygosity due to fixation or loss of alleles should also decrease inbreeding depression within populations. Most populations of the perennial herb Arabidopsis lyrata ssp. lyrata are self-incompatible (SI), but several have evolved self-compatibility and are highly selfing. We quantified heterosis and inbreeding depression in two predominantly self-compatible (SC) and seven SI populations in a field common garden experiment within the species' native range and examined the correlation between these metrics to gauge the similarity in their genetic basis. We measured proportion germination in the lab, and survival and fecundity (flower and seed production) for 2 years in the field, and calculated estimates of cumulative fitness. We found 7.2-fold greater heterosis in SC compared with SI populations, despite substantial heterosis in SI populations (56 %). Inbreeding depression was >61 %, and not significantly different between SC and SI populations. There was no correlation between population estimates of heterosis and inbreeding depression, suggesting that they have somewhat different genetic bases. Combined with other sources of information, our results suggest a history of bottlenecks in all of these populations. The bottlenecks in SC populations may have been severe, but their strong inbreeding depression remains enigmatic.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | - Jonathan P Spoelhof
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
43
|
Remington DL, Figueroa J, Rane M. Timing of shoot development transitions affects degree of perenniality in Arabidopsis lyrata (Brassicaceae). BMC PLANT BIOLOGY 2015; 15:226. [PMID: 26381240 PMCID: PMC4573309 DOI: 10.1186/s12870-015-0606-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/06/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Perenniality is best understood in quantitative terms, involving the relationship between production vs. turnover of meristems, biomass, or energy reserves. Previous quantitative trait locus (QTL) studies using divergent populations of the perennial rock cress Arabidopsis lyrata have shown that trade-offs in vegetative growth vs. reproduction are due to cascading effects of differences in early vegetative development, which contribute to local adaptation. However, details of the developmental differences and how they affect perenniality remained unclear. In this study, we investigated in detail the developmental differences in perenniality between populations. A. lyrata from Norway and North Carolina populations, representing contrasting environments and degrees of perenniality, were grown under controlled conditions, and data were collected on plant phenology and shoot-level development. We tested hypotheses that differences in perenniality involve strict allocation of lateral meristems to vegetative vs. reproductive fates, or alternatively quantitative effects of pre-reproductive vegetative development. RESULTS The two populations showed large differences in the degree of vegetative development on individual shoots prior to reproductive transitions. The number of leaves produced on shoots prior to bolting, and not strict meristem allocation or variation in apical dominance, was able to explain variation in the number of inflorescences on individual plants. These results suggested that allocation of time to shoot vegetative vs. reproductive development could be a major factor in resource allocation differences between the populations. CONCLUSIONS Based on these results and those of previous QTL studies, we propose a model in which the degree of shoot vegetative development shapes the developmental context for reproduction and subsequent vegetative growth in different environments. Climate-specific effects of shoot development patterns on reproductive output and survival may result in divergent evolutionary trajectories along a perenniality continuum, which may have broader relevance for plant life history evolution.
Collapse
Affiliation(s)
- David L Remington
- Department of Biology, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, USA.
| | - Jennifer Figueroa
- Department of Biology, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, USA.
| | - Mitali Rane
- Department of Biology, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC, 27402, USA.
| |
Collapse
|
44
|
Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A. Bacterial diversity amplifies nutrient‐based plant–soil feedbacks. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12445] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simone Weidner
- Institute of Environmental Biology Utrecht University Padualaan 83584 CH Utrecht The Netherlands
- JF Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Str. 28 37073 Göttingen Germany
| | - Robert Koller
- Department of Terrestrial Ecology Institute of Zoology University of Cologne Zülpicher Str. 47b 50674 Cologne Germany
- Forschungszentrum Jülich Institute of Bio‐ and Geosciences IBG‐2: Plant Sciences 52425 Jülich Germany
| | - Ellen Latz
- JF Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Str. 28 37073 Göttingen Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e04103 Leipzig Germany
- Institute of Ecology Friedrich Schiller University Jena Dornburger‐Str.159 07743 Jena Germany
| | - George Kowalchuk
- Institute of Environmental Biology Utrecht University Padualaan 83584 CH Utrecht The Netherlands
| | - Michael Bonkowski
- Department of Terrestrial Ecology Institute of Zoology University of Cologne Zülpicher Str. 47b 50674 Cologne Germany
| | - Stefan Scheu
- JF Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Str. 28 37073 Göttingen Germany
| | - Alexandre Jousset
- Institute of Environmental Biology Utrecht University Padualaan 83584 CH Utrecht The Netherlands
- JF Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Str. 28 37073 Göttingen Germany
| |
Collapse
|
45
|
Tedder A, Helling M, Pannell JR, Shimizu-Inatsugi R, Kawagoe T, van Campen J, Sese J, Shimizu KK. Female sterility associated with increased clonal propagation suggests a unique combination of androdioecy and asexual reproduction in populations of Cardamine amara (Brassicaceae). ANNALS OF BOTANY 2015; 115:763-76. [PMID: 25776435 PMCID: PMC4373288 DOI: 10.1093/aob/mcv006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/29/2014] [Accepted: 12/23/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The coexistence of hermaphrodites and female-sterile individuals, or androdioecy, has been documented in only a handful of plants and animals. This study reports its existence in the plant species Cardamine amara (Brassicaceae), in which female-sterile individuals have shorter pistils than seed-producing hermaphrodites. METHODS Morphological analysis, in situ manual pollination, microsatellite genotyping and differential gene expression analysis using Arabidopsis microarrays were used to delimit variation between female-sterile individuals and hermaphrodites. KEY RESULTS Female sterility in C. amara appears to be caused by disrupted ovule development. It was associated with a 2.4- to 2.9-fold increase in clonal propagation. This made the pollen number of female-sterile genets more than double that of hermaphrodite genets, which fulfils a condition of co-existence predicted by simple androdioecy theories. When female-sterile individuals were observed in wild androdioecious populations, their ramet frequencies ranged from 5 to 54 %; however, their genet frequencies ranged from 11 to 29 %, which is consistent with the theoretically predicted upper limit of 50 %. CONCLUSIONS The results suggest that a combination of sexual reproduction and increased asexual proliferation by female-sterile individuals probably explains the invasion and maintenance of female sterility in otherwise hermaphroditic populations. To our knowledge, this is the first report of the coexistence of female sterility and hermaphrodites in the Brassicaceae.
Collapse
Affiliation(s)
- Andrew Tedder
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Matthias Helling
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - John R Pannell
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Rie Shimizu-Inatsugi
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Tetsuhiro Kawagoe
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Julia van Campen
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Jun Sese
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| | - Kentaro K Shimizu
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland, Department of Ecology and Evolution, University of Lausanne, Lausanne CH-1015, Switzerland, Center for Ecological Research (CER), Kyoto University, 2-509-3, Hirano, Otsu, Shiga 520-2113, Japan and Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
46
|
Functional loss of yeast detectors parallels transition to herbivory. Proc Natl Acad Sci U S A 2015; 112:2927-8. [PMID: 25717056 DOI: 10.1073/pnas.1501319112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Hollister JD. Genomic variation in Arabidopsis: tools and insights from next-generation sequencing. Chromosome Res 2015; 22:103-15. [PMID: 24801344 DOI: 10.1007/s10577-014-9420-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The release of a reference genome for Arabidopsis thaliana in 2000 has been an enormous boon for the study of plant genetics. Less than a decade later, however, a revolution in sequencing technology had enabled rapid and inexpensive re-sequencing of whole A. thaliana genomes. Large-scale efforts to characterize natural genomic variation in A. thaliana have revealed remarkable intra-specific variation in this species, ranging from single-nucleotide differences to large structural rearrangements. The partitioning of this variation by geography and local adaptation has been described using powerful new methods and tools. Simultaneously, an ambitious research agenda has emerged to sequence 1001 A. thaliana lines from around the world, while sequencing of related species is enabling powerful evolutionary genomic analyses. In this review, I summarize recent progress in genomic analysis of natural variation in A. thaliana and its close relatives. This progress has set the stage for the emergence of Arabidopsis as a model genus for evolutionary and functional genomics.
Collapse
Affiliation(s)
- Jesse D Hollister
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 1G8, Canada,
| |
Collapse
|
48
|
Interspecific Competition in Arabidopsis thaliana: A Knowledge Gap Is Starting to Close. PROGRESS IN BOTANY 2015. [DOI: 10.1007/978-3-319-08807-5_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay JK, Richards JH, Keitt TH, Juenger TE. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana. Mol Biol Evol 2014; 31:2283-96. [PMID: 24850899 PMCID: PMC4137704 DOI: 10.1093/molbev/msu170] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.
Collapse
Affiliation(s)
- Jesse R Lasky
- Department of Integrative Biology, University of Texas at AustinEarth Institute and Department of Ecology, Evolution and Environmental Biology, Columbia University
| | | | - David B Lowry
- Department of Integrative Biology, University of Texas at Austin
| | - Inna Povolotskaya
- Bioinformatics and Genomics Program, Centre for Genomic Regulation, Barcelona, Spain
| | - John K McKay
- Bioagricultural Sciences and Pest Management, Colorado State University
| | | | - Timothy H Keitt
- Department of Integrative Biology, University of Texas at Austin
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin
| |
Collapse
|
50
|
Naithani KJ, Ewers BE, Adelman JD, Siemens DH. Abiotic and biotic controls on local spatial distribution and performance of Boechera stricta. FRONTIERS IN PLANT SCIENCE 2014; 5:348. [PMID: 25101102 PMCID: PMC4106276 DOI: 10.3389/fpls.2014.00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
This study investigates the relative influence of biotic and abiotic factors on community dynamics using an integrated approach and highlights the influence of space on genotypic and phenotypic traits in plant community structure. We examined the relative influence of topography, environment, spatial distance, and intra- and interspecific interactions on spatial distribution and performance of Boechera stricta (rockcress), a close perennial relative of model plant Arabidopsis. First, using Bayesian kriging, we mapped the topography and environmental gradients and explored the spatial distribution of naturally occurring rockcress plants and two neighbors, Taraxacum officinale (dandelion) and Solidago missouriensis (goldenrod) found in close proximity within a typical diverse meadow community across topographic and environmental gradients. We then evaluated direct and indirect relationships among variables using Mantel path analysis and developed a network displaying abiotic and biotic interactions in this community. We found significant spatial autocorrelation among rockcress individuals, either because of common microhabitats as displayed by high density of individuals at lower elevation and high soil moisture area, or limited dispersal as shown by significant spatial autocorrelation of naturally occurring inbred lines, or a combination of both. Goldenrod and dandelion density around rockcress does not show any direct relationship with rockcress fecundity, possibly due to spatial segregation of resources. However, dandelion density around rockcress shows an indirect negative influence on rockcress fecundity via herbivory, indicating interspecific competition. Overall, we suggest that common microhabitat preference and limited dispersal are the main drivers for spatial distribution. However, intra-specific interactions and insect herbivory are the main drivers of rockcress performance in the meadow community.
Collapse
Affiliation(s)
- Kusum J. Naithani
- Program in Ecology, University of WyomingLaramie, WY, USA
- Department of Botany, University of WyomingLaramie, WY, USA
| | - Brent E. Ewers
- Program in Ecology, University of WyomingLaramie, WY, USA
- Department of Botany, University of WyomingLaramie, WY, USA
| | | | - David H. Siemens
- Department of Biology, Black Hills State UniversitySpearfish, SD, USA
| |
Collapse
|