1
|
Zaytseva AV, Karelina NR, Bedyaev EV, Vavilov PS, Sesorova IS, Mironov AA. During Postnatal Ontogenesis, the Development of a Microvascular Bed in an Intestinal Villus Depends on Intussusceptive Angiogenesis. Int J Mol Sci 2024; 25:10322. [PMID: 39408652 PMCID: PMC11476829 DOI: 10.3390/ijms251910322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The mechanisms responsible for the growth and development of vascular beds in intestinal villi during postnatal ontogenesis remain enigmatic. For instance, according to the current consensus, in the sprouting type of angiogenesis, there is no blood flow in the rising capillary sprout. However, it is known that biomechanical forces resulting from blood flow play a key role in these processes. Here, we present evidence for the existence of the intussusception type of angiogenesis during the postnatal development of micro-vessel patterns in the intestinal villi of rats. This process is based on the high-level flattening of blood capillaries on the flat surfaces of intestinal villi, contacts among the opposite apical plasma membrane of endothelial cells in the area of inter-endothelial contacts, or the formation of bridges composed of blood leucocytes or local microthrombi. We identified factors that, in our opinion, ensure the splitting of the capillary lumen and the formation of two parallel vessels. These phenomena are in agreement with previously described features of intussusception angiogenesis.
Collapse
Affiliation(s)
- Anna V. Zaytseva
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| | - Natalia R. Karelina
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, Saint Petersburg 194100, Russia;
| | - Eugeny V. Bedyaev
- Department of Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (E.V.B.); (P.S.V.); (I.S.S.)
| | - Pavel S. Vavilov
- Department of Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (E.V.B.); (P.S.V.); (I.S.S.)
| | - Irina S. Sesorova
- Department of Anatomy, Ivanovo State Medical University, Ivanovo 153012, Russia; (E.V.B.); (P.S.V.); (I.S.S.)
| | - Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
2
|
The Diffusion Model of Intra-Golgi Transport Has Limited Power. Int J Mol Sci 2023; 24:ijms24021375. [PMID: 36674888 PMCID: PMC9861033 DOI: 10.3390/ijms24021375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay. When the GC was empty before the re-initiation of the intra-Golgi transport, this parameter of the curves describing the kinetics of different cargoes (which are deleted in Golgi vesicles) with different diffusional mobilities within the GZ as well as their exit from the GZ was maximal for the piecewise nonlinear regression, wherein the first segment was horizontal, while the second segment was similar to the exponential decay. The kinetic curve describing cargo exit from the GC per se resembled a linear decay. The Monte-Carlo simulation revealed that such curves reflect the role of microtubule growth in cells with a central GC or the random hovering of ministacks in cells lacking a microtubule. The synchronization of cargo exit from the GC already filled with a cargo using the wave synchronization protocol did not reveal the equilibration of cargo within a Golgi stack, which would be expected from the diffusion model (DM) of IGT. Moreover, not all cisternae are connected to each other in mini-stacks that are transporting membrane proteins. Finally, the kinetics of post-Golgi carriers and the important role of SNAREs for IGT at different level of IGT also argue against the DM of IGT.
Collapse
|
3
|
Mironov AA, Beznoussenko GV. Algorithm for Modern Electron Microscopic Examination of the Golgi Complex. Methods Mol Biol 2022; 2557:161-209. [PMID: 36512216 DOI: 10.1007/978-1-0716-2639-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi complex (GC) is an essential organelle of the eukaryotic exocytic pathway. It has a very complexed structure and thus localization of its resident proteins is not trivial. Fast development of microscopic methods generates a huge difficulty for Golgi researchers to select the best protocol to use. Modern methods of light microscopy, such as super-resolution light microscopy (SRLM) and electron microscopy (EM), open new possibilities in analysis of various biological structures at organelle, cell, and organ levels. Nowadays, new generation of EM methods became available for the study of the GC; these include three-dimensional EM (3DEM), correlative light-EM (CLEM), immune EM, and new estimators within stereology that allow realization of maximal goal of any morphological study, namely, to achieve a three-dimensional model of the sample with optimal level of resolution and quantitative determination of its chemical composition. Methods of 3DEM have partially overlapping capabilities. This requires a careful comparison of these methods, identification of their strengths and weaknesses, and formulation of recommendations for their application to cell or tissue samples. Here, we present an overview of 3DEM methods for the study of the GC and some basics for how the images are formed and how the image quality can be improved.
Collapse
|
4
|
Comparison of the Cisterna Maturation-Progression Model with the Kiss-and-Run Model of Intra-Golgi Transport: Role of Cisternal Pores and Cargo Domains. Int J Mol Sci 2022; 23:ijms23073590. [PMID: 35408951 PMCID: PMC8999060 DOI: 10.3390/ijms23073590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
The Golgi complex is the central station of the secretory pathway. Knowledge about the mechanisms of intra-Golgi transport is inconsistent. Here, we compared the explanatory power of the cisterna maturation-progression model and the kiss-and-run model. During intra-Golgi transport, conventional cargoes undergo concentration and form cisternal distensions or distinct membrane domains that contain only one membrane cargo. These domains and distension are separated from the rest of the Golgi cisternae by rows of pores. After the arrival of any membrane cargo or a large cargo aggregate at the Golgi complex, the cis-Golgi SNAREs become enriched within the membrane of cargo-containing domains and then replaced by the trans-Golgi SNAREs. During the passage of these domains, the number of cisternal pores decreases. Restoration of the cisternal pores is COPI-dependent. Our observations are more in line with the kiss-and-run model.
Collapse
|
5
|
Pre-embedding labeling for subcellular detection of molecules with electron microscopy. Tissue Cell 2019; 57:103-110. [DOI: 10.1016/j.tice.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Milesi C, Alberici P, Pozzi B, Oldani A, Beznoussenko GV, Raimondi A, Soppo BE, Amodio S, Caldieri G, Malabarba MG, Bertalot G, Confalonieri S, Parazzoli D, Mironov AA, Tacchetti C, Di Fiore PP, Sigismund S, Offenhäuser N. Redundant and nonredundant organismal functions of EPS15 and EPS15L1. Life Sci Alliance 2019; 2:2/1/e201800273. [PMID: 30692166 PMCID: PMC6350104 DOI: 10.26508/lsa.201800273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/24/2022] Open
Abstract
This study unveils a redundant function for the endocytic proteins Eps15 and Eps15L1 in mouse embryo development and erythropoiesis, and a unique nonredundant role for Eps15L1 in the nervous system. EPS15 and its homologous EPS15L1 are endocytic accessory proteins. Studies in mammalian cell lines suggested that EPS15 and EPS15L1 regulate endocytosis in a redundant manner. However, at the organismal level, it is not known to which extent the functions of the two proteins overlap. Here, by exploiting various constitutive and conditional null mice, we report redundant and nonredundant functions of the two proteins. EPS15L1 displays a unique nonredundant role in the nervous system, whereas both proteins are fundamental during embryo development as shown by the embryonic lethality of -Eps15/Eps15L1-double KO mice. At the cellular level, the major process redundantly regulated by EPS15 and EPS15L1 is the endocytosis of the transferrin receptor, a pathway that sustains the development of red blood cells and controls iron homeostasis. Consequently, hematopoietic-specific conditional Eps15/Eps15L1-double KO mice display traits of microcytic hypochromic anemia, due to a cell-autonomous defect in iron internalization.
Collapse
Affiliation(s)
- Cinzia Milesi
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Paola Alberici
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Benedetta Pozzi
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Amanda Oldani
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,Cogentech Società Benefit Srl, Milan, Italy
| | - Galina V Beznoussenko
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Blanche Ekalle Soppo
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Stefania Amodio
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Giusi Caldieri
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
| | - Maria Grazia Malabarba
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
| | - Giovanni Bertalot
- IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Stefano Confalonieri
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Dario Parazzoli
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,Cogentech Società Benefit Srl, Milan, Italy
| | - Alexander A Mironov
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy.,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy .,IEO, Istituto Europeo di Oncologia IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy.,Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
| | - Nina Offenhäuser
- IFOM, Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) di Oncologia Molecolare, Milan, Italy .,Cogentech Società Benefit Srl, Milan, Italy
| |
Collapse
|
7
|
Mironov AA, Dimov ID, Beznoussenko GV. Role of Intracellular Transport in the Centriole-Dependent Formation of Golgi Ribbon. Results Probl Cell Differ 2019; 67:49-79. [PMID: 31435792 DOI: 10.1007/978-3-030-23173-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intracellular transport is the most confusing issue in the field of cell biology. The Golgi complex (GC) is the central station along the secretory pathway. It contains Golgi glycosylation enzymes, which are responsible for protein and lipid glycosylation, and in many cells, it is organized into a ribbon. Position and structure of the GC depend on the position and function of the centriole. Here, we analyze published data related to the role of centriole and intracellular transport (ICT) for the formation of Golgi ribbon and specifically stress the importance of the delivery of membranes containing cargo and membrane proteins to the cell centre where centriole/centrosome is localized. Additionally, we re-examined the formation of Golgi ribbon from the point of view of different models of ICT.
Collapse
Affiliation(s)
| | - Ivan D Dimov
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, Saint Petersburg, Russia
| | | |
Collapse
|
8
|
Publisher Note. Tissue Cell 2018. [DOI: 10.1016/j.tice.2018.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Višnjar T, Chesi G, Iacobacci S, Polishchuk E, Resnik N, Robenek H, Kreft M, Romih R, Polishchuk R, Kreft ME. Uroplakin traffic through the Golgi apparatus induces its fragmentation: new insights from novel in vitro models. Sci Rep 2017; 7:12842. [PMID: 28993693 PMCID: PMC5634464 DOI: 10.1038/s41598-017-13103-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/20/2017] [Indexed: 11/10/2022] Open
Abstract
Uroplakins (UPs) play an essential role in maintaining an effective urothelial permeability barrier at the level of superficial urothelial cell (UC) layer. Although the organization of UPs in the apical plasma membrane (PM) of UCs is well known, their transport in UCs is only partially understood. Here, we dissected trafficking of UPs and its differentiation-dependent impact on Golgi apparatus (GA) architecture. We demonstrated that individual subunits UPIb and UPIIIa are capable of trafficking from the endoplasmic reticulum to the GA in UCs. Moreover, UPIb, UPIIIa or UPIb/UPIIIa expressing UCs revealed fragmentation and peripheral redistribution of Golgi-units. Notably, expression of UPIb or UPIb/UPIIIa triggered similar GA fragmentation in MDCK and HeLa cells that do not express UPs endogenously. The colocalization analysis of UPIb/UPIIIa-EGFP and COPI, COPII or clathrin suggested that UPs follow constitutively the post-Golgi route to the apical PM. Depolymerisation of microtubules leads to complete blockade of the UPIb/UPIIIa-EGFP post-Golgi transport, while disassembly of actin filaments shows significantly reduced delivery of UPIb/UPIIIa-EGFP to the PM. Our findings show the significant effect of the UPs expression on the GA fragmentation, which enables secretory Golgi-outpost to be distributed as close as possible to the sites of cargo delivery at the PM.
Collapse
Affiliation(s)
- Tanja Višnjar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Giancarlo Chesi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Simona Iacobacci
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Horst Robenek
- Institute for experimental musculoskeletal medicine, University of Münster, Albert-Schweitzer-Campus 1, Domagkstrasse 3, 48149, Münster, Germany
| | - Marko Kreft
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia & LN-MCP, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana & Celica Biomedical Center, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 2017; 49:186-201. [DOI: 10.1016/j.tice.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023]
|
11
|
Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae. Histochem Cell Biol 2016; 146:515-527. [DOI: 10.1007/s00418-016-1483-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2016] [Indexed: 01/07/2023]
|
12
|
Setti M, Osti D, Richichi C, Ortensi B, Del Bene M, Fornasari L, Beznoussenko G, Mironov A, Rappa G, Cuomo A, Faretta M, Bonaldi T, Lorico A, Pelicci G. Extracellular vesicle-mediated transfer of CLIC1 protein is a novel mechanism for the regulation of glioblastoma growth. Oncotarget 2016; 6:31413-27. [PMID: 26429879 PMCID: PMC4741615 DOI: 10.18632/oncotarget.5105] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/18/2015] [Indexed: 01/09/2023] Open
Abstract
Little progresses have been made in the treatment of glioblastoma (GBM), the most aggressive and lethal among brain tumors. Recently we have demonstrated that Chloride Intracellular Channel-1 (CLIC1) is overexpressed in GBM compared to normal tissues, with highest expression in patients with poor prognosis. Moreover, CLIC1-silencing in cancer stem cells (CSCs) isolated from human GBM patients negatively influences proliferative capacity and self-renewal properties in vitro and impairs the in vivo tumorigenic potential. Here we show that CLIC1 exists also as a circulating protein, secreted via extracellular vesicles (EVs) released by either cell lines or GBM-derived CSCs. Extracellular vesicles (EVs), comprising exosomes and microvesicles based on their composition and biophysical properties, have been shown to sustain tumor growth in a variety of model systems, including GBM. Interestingly, treatment of GBM cells with CLIC1-containing EVs stimulates cell growth both in vitro and in vivo in a CLIC1-dose dependent manner. EVs derived from CLIC1-overexpressing GBM cells are strong inducers of proliferation in vitro and tumor engraftment in vivo. These stimulations are significantly attenuated by treatment of GBM cells with EVs derived from CLIC1-silenced cells. However, CLIC1 modulation appears to have no direct role in EV structure, biogenesis and secretion. These findings reveal that, apart from the function of CLIC1 cellular reservoir, CLIC1 contained in EVs is a novel regulator of GBM growth.
Collapse
Affiliation(s)
- Matteo Setti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Barbara Ortensi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Galina Beznoussenko
- Institute of Molecular Oncology (IFOM) of The Italian Foundation for Cancer Research (FIRC), Milan, Italy
| | - Alexandre Mironov
- Institute of Molecular Oncology (IFOM) of The Italian Foundation for Cancer Research (FIRC), Milan, Italy
| | - Germana Rappa
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Aurelio Lorico
- Cancer Research Center, Roseman University of Health Sciences with Roseman University College of Medicine, Las Vegas, NV, USA
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
13
|
Beznoussenko GV, Pilyugin SS, Geerts WJC, Kozlov MM, Burger KNJ, Luini A, Derganc J, Mironov AA. Trans-membrane area asymmetry controls the shape of cellular organelles. Int J Mol Sci 2015; 16:5299-333. [PMID: 25761238 PMCID: PMC4394477 DOI: 10.3390/ijms16035299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/04/2015] [Accepted: 02/13/2015] [Indexed: 01/08/2023] Open
Abstract
Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50–60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant.
Collapse
Affiliation(s)
- Galina V Beznoussenko
- The FIRC Institute of Molecular Oncology, Milan 20139, Italy.
- Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti 66030, Italy.
| | - Sergei S Pilyugin
- Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA.
| | - Willie J C Geerts
- Department of Biochemical Physiology, Institute of Biomembranes, 3584 CH Utrecht, The Netherlands.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Koert N J Burger
- Department of Biochemical Physiology, Institute of Biomembranes, 3584 CH Utrecht, The Netherlands.
| | - Alberto Luini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biochimica delle Proteine, Naples 80131, Italy.
| | - Jure Derganc
- Institute of Biophysics, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Alexander A Mironov
- The FIRC Institute of Molecular Oncology, Milan 20139, Italy.
- Consorzio Mario Negri Sud, S. Maria Imbaro, Chieti 66030, Italy.
| |
Collapse
|
14
|
Kumar A, Mazzanti M, Mistrik M, Kosar M, Beznoussenko GV, Mironov AA, Garrè M, Parazzoli D, Shivashankar GV, Scita G, Bartek J, Foiani M. ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress. Cell 2015; 158:633-46. [PMID: 25083873 PMCID: PMC4121522 DOI: 10.1016/j.cell.2014.05.046] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 04/14/2014] [Accepted: 05/28/2014] [Indexed: 11/16/2022]
Abstract
ATR controls chromosome integrity and chromatin dynamics. We have previously shown that yeast Mec1/ATR promotes chromatin detachment from the nuclear envelope to counteract aberrant topological transitions during DNA replication. Here, we provide evidence that ATR activity at the nuclear envelope responds to mechanical stress. Human ATR associates with the nuclear envelope during S phase and prophase, and both osmotic stress and mechanical stretching relocalize ATR to nuclear membranes throughout the cell cycle. The ATR-mediated mechanical response occurs within the range of physiological forces, is reversible, and is independent of DNA damage signaling. ATR-defective cells exhibit aberrant chromatin condensation and nuclear envelope breakdown. We propose that mechanical forces derived from chromosome dynamics and torsional stress on nuclear membranes activate ATR to modulate nuclear envelope plasticity and chromatin association to the nuclear envelope, thus enabling cells to cope with the mechanical strain imposed by these molecular processes. ATR localizes at the nuclear envelope in S phase and prophase ATR responds to mechanical stress by relocalizing to the nuclear envelope The ATR mechanical response is fast and reversible ATR coordinates chromatin condensation and nuclear envelope breakdown
Collapse
Affiliation(s)
- Amit Kumar
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | | | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77115 Olomouc, Czech Republic
| | - Martin Kosar
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Galina V Beznoussenko
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Alexandre A Mironov
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Massimiliano Garrè
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Dario Parazzoli
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore, Singapore
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77115 Olomouc, Czech Republic; Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic.
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
15
|
Abstract
Correlative microscopy is a method when for the analysis of the very same cell or tissue area, several different methods of light microscopy (LM) and then electron microscopy (EM) are used consecutively. The combination of LM and EM allows researchers to study phenomena at a global scale and then to look for unique or rare events for their subsequent EM examination. Unfortunately, the observation of living cells under EM is still impossible. LM provides the possibility to examine quickly many live cells, whereas EM provides the high level of resolution. On the other side, the final goal of any morphological analysis of a biological sample, whether it is an organism, organ, tissue, cell, organelle, or molecule, is to get an averaged three-dimensional model of the structure examined and to determine the chemical composition of it. This chapter describes the methodology of imaging with the help of CVLEM. The guidelines presented herein enable researchers to analyze structure of organelles and to obtain the three-dimensional model of the structure examined, and in particular rare events captured by low-resolution imaging of a population or transient events captured by live imaging can now also be studied at high resolution by EM.
Collapse
|
16
|
Ito Y, Uemura T, Nakano A. Formation and maintenance of the Golgi apparatus in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:221-87. [PMID: 24725428 DOI: 10.1016/b978-0-12-800180-6.00006-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Live Cell Molecular Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan.
| |
Collapse
|
17
|
Beznoussenko GV, Parashuraman S, Rizzo R, Polishchuk R, Martella O, Di Giandomenico D, Fusella A, Spaar A, Sallese M, Capestrano MG, Pavelka M, Vos MR, Rikers YGM, Helms V, Mironov AA, Luini A. Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. eLife 2014; 3:e02009. [PMID: 24867214 PMCID: PMC4070021 DOI: 10.7554/elife.02009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/25/2014] [Indexed: 12/18/2022] Open
Abstract
The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression-maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence for a transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes.
Collapse
Affiliation(s)
- Galina V Beznoussenko
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare (IFOM-IEO Campus), Milan, Italy
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Seetharaman Parashuraman
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
- Institute of Protein Biochemistry, Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry, Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
| | - Roman Polishchuk
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
- Telethon Institute for Genetics and Medicine (TIGEM), Naples, Italy
| | - Oliviano Martella
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Daniele Di Giandomenico
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Aurora Fusella
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Alexander Spaar
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Michele Sallese
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Maria Grazia Capestrano
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Alexandre A Mironov
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare (IFOM-IEO Campus), Milan, Italy
| | - Alberto Luini
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
- Institute of Protein Biochemistry, Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
- Telethon Institute for Genetics and Medicine (TIGEM), Naples, Italy
| |
Collapse
|
18
|
Mironov AA, Sesorova IV, Beznoussenko GV. Golgi's way: a long path toward the new paradigm of the intra-Golgi transport. Histochem Cell Biol 2013; 140:383-93. [PMID: 24068461 DOI: 10.1007/s00418-013-1141-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
The transport of proteins and lipids is one of the main cellular functions. The vesicular model, compartment (or cisterna) maturation model, and the diffusion model compete with each other for the right to be the paradigm within the field of the intra-Golgi transport. These models have significant difficulties explaining the existing experimental data. Recently, we proposed the kiss-and-run (KAR) model of intra-Golgi transport (Mironov and Beznoussenko in Int J Mol Sci 13(6):6800-6819, 2012), which can be symmetric, when fusion and fission occur in the same location, and asymmetric, when fusion and fission take place at different sites. Here, we compare the ability of main models of the intra-Golgi transport to explain the existing results examining the evidence in favor and against each model. We propose that the KAR model has the highest potential for the explanation of the majority of experimental observations existing within the field of intracellular transport.
Collapse
Affiliation(s)
- Alexander A Mironov
- Istituto di Oncologia Molecolare di Fondazione Italiana per la Ricerca sul Cancro, 20139, Milan, Italy,
| | | | | |
Collapse
|
19
|
Shitara A, Shibui T, Okayama M, Arakawa T, Mizoguchi I, Sakakura Y, Shakakura Y, Takuma T. VAMP4 is required to maintain the ribbon structure of the Golgi apparatus. Mol Cell Biochem 2013; 380:11-21. [PMID: 23677696 PMCID: PMC3695666 DOI: 10.1007/s11010-013-1652-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/11/2013] [Indexed: 10/31/2022]
Abstract
The Golgi apparatus forms a twisted ribbon-like network in the juxtanuclear region of vertebrate cells. Vesicle-associated membrane protein 4 (VAMP4), a v-SNARE protein expressed exclusively in the vertebrate trans-Golgi network (TGN), plays a role in retrograde trafficking from the early endosome to the TGN, although its precise function within the Golgi apparatus remains unclear. To determine whether VAMP4 plays a functional role in maintaining the structure of the Golgi apparatus, we depleted VAMP4 gene expression using RNA interference technology. Depletion of VAMP4 from HeLa cells led to fragmentation of the Golgi ribbon. These fragments were not uniformly distributed throughout the cytoplasm, but remained in the juxtanuclear area. Electron microscopy and immunohistochemistry showed that in the absence of VAMP4, the length of the Golgi stack was shortened, but Golgi stacking was normal. Anterograde trafficking was not impaired in VAMP4-depleted cells, which contained intact microtubule arrays. Depletion of the cognate SNARE partners of VAMP4, syntaxin 6, syntaxin 16, and Vti1a also disrupted the Golgi ribbon structure. Our findings suggested that the maintenance of Golgi ribbon structure requires normal retrograde trafficking from the early endosome to the TGN, which is likely to be mediated by the formation of VAMP4-containing SNARE complexes.
Collapse
Affiliation(s)
- Akiko Shitara
- Division of Biochemistry, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu Hokkaido, Ishikari 061-0293, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cutrona MB, Beznoussenko GV, Fusella A, Martella O, Moral P, Mironov AA. Silencing of mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. Traffic 2013; 14:691-708. [PMID: 23433038 DOI: 10.1111/tra.12060] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 01/01/2023]
Abstract
The Sar1 GTPase coordinates the assembly of coat protein complex-II (COPII) at specific sites of the endoplasmic reticulum (ER). COPII is required for ER-to-Golgi transport, as it provides a structural and functional framework to ship out protein cargoes produced in the ER. To investigate the requirement of COPII-mediated transport in mammalian cells, we used small interfering RNA (siRNA)-mediated depletion of Sar1A and Sar1B. We report that depletion of these two mammalian forms of Sar1 disrupts COPII assembly and the cells fail to organize transitional elements that coordinate classical ER-to-Golgi protein transfer. Under these conditions, minimal Golgi stacks are seen in proximity to juxtanuclear ER membranes that contain elements of the intermediate compartment, and from which these stacks coordinate biosynthetic transport of protein cargo, such as the vesicular stomatitis virus G protein and albumin. Here, transport of procollagen-I is inhibited. These data provide proof-of-principle for the contribution of alternative mechanisms that support biosynthetic trafficking in mammalian cells, providing evidence of a functional boundary associated with a bypass of COPII.
Collapse
Affiliation(s)
- Meritxell B Cutrona
- Department of Cellular and Translational Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 2012; 102:593-607. [DOI: 10.1042/bc20100024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Passage through the Golgi. Curr Opin Cell Biol 2010; 22:471-8. [DOI: 10.1016/j.ceb.2010.05.003] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/07/2010] [Accepted: 05/03/2010] [Indexed: 11/19/2022]
|
23
|
Kondylis V, Rabouille C. The Golgi apparatus: lessons from Drosophila. FEBS Lett 2009; 583:3827-38. [PMID: 19800333 DOI: 10.1016/j.febslet.2009.09.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/26/2009] [Indexed: 11/19/2022]
Abstract
Historically, Drosophila has been a model organism for studying molecular and developmental biology leading to many important discoveries in this field. More recently, the fruit fly has started to be used to address cell biology issues including studies of the secretory pathway, and more specifically on the functional integrity of the Golgi apparatus. A number of advances have been made that are reviewed below. Furthermore, with the development of RNAi technology, Drosophila tissue culture cells have been used to perform genome-wide screens addressing similar issues. Last, the Golgi function has been involved in specific developmental processes, thus shedding new light on the functions of a number of Golgi proteins.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Cell Microscopy Centre, Department of Cell Biology, UMC Utrecht, AZU H02.313, Heidelberglaan 100, Utrecht, The Netherlands.
| | | |
Collapse
|
24
|
Kondylis V, van Nispen tot Pannerden HE, Herpers B, Friggi-Grelin F, Rabouille C. The golgi comprises a paired stack that is separated at G2 by modulation of the actin cytoskeleton through Abi and Scar/WAVE. Dev Cell 2007; 12:901-15. [PMID: 17543863 DOI: 10.1016/j.devcel.2007.03.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 02/02/2007] [Accepted: 03/09/2007] [Indexed: 11/19/2022]
Abstract
During the cell cycle, the Golgi, like other organelles, has to be duplicated in mass and number to ensure its correct segregation between the two daughter cells. It remains unclear, however, when and how this occurs. Here we show that in Drosophila S2 cells, the Golgi likely duplicates in mass to form a paired structure during G1/S phase and remains so until G2 when the two stacks separate, ready for entry into mitosis. We show that pairing requires an intact actin cytoskeleton which in turn depends on Abi/Scar but not WASP. This actin-dependent pairing is not limited to flies but also occurs in mammalian cells. We further show that preventing the Golgi stack separation at G2 blocks entry into mitosis, suggesting that this paired organization is part of the mitotic checkpoint, similar to what has been proposed in mammalian cells.
Collapse
Affiliation(s)
- Vangelis Kondylis
- The Cell Microscopy Centre, Department of Cell Biology, Institute of Biomembranes, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Sokolova YY, Dolgikh VV, Morzhina EV, Nassonova ES, Issi IV, Terry RS, Ironside JE, Smith JE, Vossbrinck CR. Establishment of the new genus Paranosema based on the ultrastructure and molecular phylogeny of the type species Paranosema grylli Gen. Nov., Comb. Nov. (Sokolova, Selezniov, Dolgikh, Issi 1994), from the cricket Gryllus bimaculatus Deg. J Invertebr Pathol 2004; 84:159-72. [PMID: 14726239 DOI: 10.1016/j.jip.2003.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ultrastructure of the microsporidian parasite Nosema grylli, which parasitizes primarily fat body cells and haemocytes of the cricket Gryllus bimaculatus (Orthoptera, Gryllidae) is described. All observed stages (meront, meront/sporont transitional stage ("second meront"), sporont, sporoblast, and spore) are found in direct contact with the host cell cytoplasm. Nuclei are diplokaryotic during almost all stages of the life cycle, but a brief stage with one nucleus containing an abundance of electron-dense material is observed during a "second merogony." Sporogony is disporous. Mature spores are ovocylindrical in shape and measure 4.5+/-0.16micromx2.2+/-0.07 microm (n=10) on fresh smears and 3.3+/-0.06 micromx1.4+/-0.07 microm (n=10) on ultrathin sections. Spores contain 15-18 coils of an isofilar polar filament arranged in one or two layers. Comparative phylogenetic analysis using rDNA shows N. grylli to be closely related to another orthopteran microsporidian, Nosema locustae, and to Nosema whitei from the confused flour beetle, Tribolium confusum. Antonospora scoticae, a parasite of the communal bee Andrena scotica, is a sister taxon to these three Nosema species. The sequence divergence and morphological traits clearly separate this group of "Nosema" parasites from the "true" Nosema clade containing Nosema bombycis. We therefore propose to change the generic name of N. grylli and its close relative N. locustae to Paranosema n. comb. We leave N. whitei in former status until more data on fine morphology of the species are obtained.
Collapse
Affiliation(s)
- Y Y Sokolova
- All-Russian Institute for Plant Protection, St. Petersburg, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Does the Golgi apparatus proliferate by adding new material to a permanent template, or do Golgi structures form de novo by a process of self-organization? Recent work suggests that the Golgi is capable of forming de novo.
Collapse
|
27
|
Hammond AT, Glick BS. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol Biol Cell 2000; 11:3013-30. [PMID: 10982397 PMCID: PMC14972 DOI: 10.1091/mbc.11.9.3013] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A typical vertebrate cell contains several hundred sites of transitional ER (tER). Presumably, tER sites generate elements of the ER-Golgi intermediate compartment (ERGIC), and ERGIC elements then generate Golgi cisternae. Therefore, characterizing the mechanisms that influence tER distribution may shed light on the dynamic behavior of the Golgi. We explored the properties of tER sites using Sec13 as a marker protein. Fluorescence microscopy confirmed that tER sites are long-lived ER subdomains. tER sites proliferate during interphase but lose Sec13 during mitosis. Unlike ERGIC elements, tER sites move very little. Nevertheless, when microtubules are depolymerized with nocodazole, tER sites redistribute rapidly to form clusters next to Golgi structures. Hence, tER sites have the unusual property of being immobile, yet dynamic. These findings can be explained by a model in which new tER sites are created by retrograde membrane traffic from the Golgi. We propose that the tER-Golgi system is organized by mutual feedback between these two compartments.
Collapse
Affiliation(s)
- A T Hammond
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
28
|
Mironov AA, Polishchuk RS, Luini A. Visualizing membrane traffic in vivo by combined video fluorescence and 3D electron microscopy. Trends Cell Biol 2000; 10:349-53. [PMID: 10884688 DOI: 10.1016/s0962-8924(00)01787-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In studies of dynamic cellular processes, it would be ideal to be able to combine the capability of in vivo fluorescence video microscopy with the power of resolution of electron microscopy (EM). This article describes an approach based on the association of these two techniques, by which an individual intracellular structure can be monitored in vivo, typically through the use of markers fused with green-fluorescent protein, and then analysed by EM and three-dimensional reconstruction methods, resulting in a 'snapshot' of its fine structure at any chosen time in its life cycle. The potential of this approach is discussed in relation to various aspects of cell biology and especially to the question of the morpho-functional organization of the intracellular membrane trafficking pathways.
Collapse
Affiliation(s)
- A A Mironov
- Dept of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche 'Mario Negri', Consorzio Mario Negri Sud, Maria Imbaro (Chieti), Italy
| | | | | |
Collapse
|
29
|
Abstract
Investigators are revisiting basic concepts of the structure-function relationships of the Golgi apparatus. A key issue is the properties of the transport carriers that operate within the secretory pathway. Golgi morphology and dynamics differ between species but data from various model systems are pointing toward an integrated view of Golgi organization.
Collapse
Affiliation(s)
- B S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, 60637, USA.
| |
Collapse
|
30
|
Colanzi A, Deerinck TJ, Ellisman MH, Malhotra V. A specific activation of the mitogen-activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis. J Cell Biol 2000; 149:331-9. [PMID: 10769026 PMCID: PMC2175149 DOI: 10.1083/jcb.149.2.331] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1999] [Accepted: 02/07/2000] [Indexed: 11/22/2022] Open
Abstract
Incubation of permeabilized cells with mitotic extracts results in extensive fragmentation of the pericentriolarly organized stacks of cisternae. The fragmented Golgi membranes are subsequently dispersed from the pericentriolar region. We have shown previously that this process requires the cytosolic protein mitogen-activated protein kinase kinase 1 (MEK1). Extracellular signal-regulated kinase (ERK) 1 and ERK2, the known downstream targets of MEK1, are not required for this fragmentation (Acharya et al. 1998). We now provide evidence that MEK1 is specifically phosphorylated during mitosis. The mitotically phosphorylated MEK1, upon partial proteolysis with trypsin, generates a different peptide population compared with interphase MEK1. MEK1 cleaved with the lethal factor of the anthrax toxin can still be activated by its upstream mitotic kinases, and this form is fully active in the Golgi fragmentation process. We believe that the mitotic phosphorylation induces a change in the conformation of MEK1 and that this form of MEK1 recognizes Golgi membranes as a target compartment. Immunoelectron microscopy analysis reveals that treatment of permeabilized normal rat kidney (NRK) cells with mitotic extracts, treated with or without lethal factor, converts stacks of pericentriolar Golgi membranes into smaller fragments composed predominantly of tubuloreticular elements. These fragments are similar in distribution, morphology, and size to the fragments observed in the prometaphase/metaphase stage of the cell cycle in vivo.
Collapse
Affiliation(s)
- Antonino Colanzi
- Department of Biology, Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0347
| | - Thomas J. Deerinck
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0347
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0347
| | - Vivek Malhotra
- Department of Biology, Department of Neurosciences, University of California San Diego, La Jolla, California 92093-0347
| |
Collapse
|
31
|
Greener T, Zhao X, Nojima H, Eisenberg E, Greene LE. Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J Biol Chem 2000; 275:1365-70. [PMID: 10625686 DOI: 10.1074/jbc.275.2.1365] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Auxilin is a brain-specific DnaJ homolog that is required for Hsc70 to dissociate clathrin from bovine brain clathrin-coated vesicles. However, Hsc70 is also involved in uncoating clathrin-coated vesicles formed at the plasma membrane of non-neuronal cells suggesting that an auxilin homolog may be required for uncoating in these cells. One candidate is cyclin G-associated kinase (GAK), a 150-kDa protein expressed ubiquitously in various tissues. GAK has a C-terminal domain with high sequence similarity to auxilin; like auxilin this C-terminal domain consists of three subdomains, an N-terminal tensin-like domain, a clathrin-binding domain, and a C-terminal J-domain. Western blot analysis shows that GAK is present in rat liver, bovine testes, and bovine brain clathrin-coated vesicles. More importantly, liver clathrin-coated vesicles, which contain GAK but not auxilin, are uncoated by Hsc70, suggesting that GAK acts as an auxilin homolog in non-neuronal cells. In support of this view, the clathrin-binding domain of GAK alone induces clathrin polymerization into baskets and the combined clathrin-binding domain and J-domain of GAK supports uncoating of AP180-clathrin baskets by Hsc70 at pH 7 and induces Hsc70 binding to clathrin baskets at pH 6. Immunolocalization studies suggest that GAK is a cytosolic protein that is concentrated in the perinuclear region; it appears to be highly associated with the trans-Golgi where the budding of clathrin-coated vesicles occurs. We propose that GAK is a required cofactor for the uncoating of clathrin-coated vesicles by Hsc70 in non-neuronal cells.
Collapse
Affiliation(s)
- T Greener
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-0301, USA
| | | | | | | | | |
Collapse
|
32
|
Polishchuk RS, Polishchuk EV, Marra P, Alberti S, Buccione R, Luini A, Mironov AA. Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J Cell Biol 2000; 148:45-58. [PMID: 10629217 PMCID: PMC2156208 DOI: 10.1083/jcb.148.1.45] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transport intermediates (TIs) have a central role in intracellular traffic, and much effort has been directed towards defining their molecular organization. Unfortunately, major uncertainties remain regarding their true structure in living cells. To address this question, we have developed an approach based on the combination of the green fluorescent protein technology and correlative light-electron microscopy, by which it is possible to monitor an individual carrier in vivo and then take a picture of its ultrastructure at any moment of its life-cycle. We have applied this technique to define the structure of TIs operating from the Golgi apparatus to the plasma membrane, whose in vivo dynamics have been characterized recently by light microscopy. We find that these carriers are large (ranging from 0.3-1.7 microm in maximum diameter, nearly half the size of a Golgi cisterna), comprise almost exclusively tubular-saccular structures, and fuse directly with the plasma membrane, sometimes minutes after docking to the fusion site.
Collapse
Affiliation(s)
- Roman S. Polishchuk
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, 66030 S. Maria Imbaro (Chieti), Italy
| | - Elena V. Polishchuk
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, 66030 S. Maria Imbaro (Chieti), Italy
| | - Pierfrancesco Marra
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, 66030 S. Maria Imbaro (Chieti), Italy
| | - Saverio Alberti
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, 66030 S. Maria Imbaro (Chieti), Italy
| | - Roberto Buccione
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, 66030 S. Maria Imbaro (Chieti), Italy
| | - Alberto Luini
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, 66030 S. Maria Imbaro (Chieti), Italy
| | - Alexander A. Mironov
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche “Mario Negri,” Consorzio Mario Negri Sud, 66030 S. Maria Imbaro (Chieti), Italy
| |
Collapse
|
33
|
Lippincott-Schwartz J, Roberts TH, Hirschberg K. Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 2000; 16:557-89. [PMID: 11031247 PMCID: PMC4781643 DOI: 10.1146/annurev.cellbio.16.1.557] [Citation(s) in RCA: 355] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Green fluorescent protein chimerae acting as reporters for protein localization and trafficking within the secretory membrane system of living cells have been used in a wide variety of applications, including time-lapse imaging, double-labeling, energy transfer, quantitation, and photobleaching experiments. Results from this work are clarifying the steps involved in the formation, translocation, and fusion of transport intermediates; the organization and biogenesis of organelles; and the mechanisms of protein retention, sorting, and recycling in the secretory pathway. In so doing, they are broadening our thinking about the temporal and spatial relationships among secretory organelles and the membrane trafficking pathways that operate between them.
Collapse
Affiliation(s)
- J Lippincott-Schwartz
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
34
|
Zaal KJ, Smith CL, Polishchuk RS, Altan N, Cole NB, Ellenberg J, Hirschberg K, Presley JF, Roberts TH, Siggia E, Phair RD, Lippincott-Schwartz J. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 1999; 99:589-601. [PMID: 10612395 DOI: 10.1016/s0092-8674(00)81548-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quantitative imaging and photobleaching were used to measure ER/Golgi recycling of GFP-tagged Golgi proteins in interphase cells and to monitor the dissolution and reformation of the Golgi during mitosis. In interphase, recycling occurred every 1.5 hr, and blocking ER egress trapped cycling Golgi enzymes in the ER with loss of Golgi structure. In mitosis, when ER export stops, Golgi proteins redistributed into the ER as shown by quantitative imaging in vivo and immuno-EM. Comparison of the mobilities of Golgi proteins and lipids ruled out the persistence of a separate mitotic Golgi vesicle population and supported the idea that all Golgi components are absorbed into the ER. Moreover, reassembly of the Golgi complex after mitosis failed to occur when ER export was blocked. These results demonstrate that in mitosis the Golgi disperses and reforms through the intermediary of the ER, exploiting constitutive recycling pathways. They thus define a novel paradigm for Golgi genesis and inheritance.
Collapse
Affiliation(s)
- K J Zaal
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Istitutes of Health, Bethesda, Maryland 20892-5430, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Drecktrah D, Brown WJ. Phospholipase A(2) antagonists inhibit nocodazole-induced Golgi ministack formation: evidence of an ER intermediate and constitutive cycling. Mol Biol Cell 1999; 10:4021-32. [PMID: 10588640 PMCID: PMC25740 DOI: 10.1091/mbc.10.12.4021] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Evidence has been presented both for and against obligate retrograde movement of resident Golgi proteins through the endoplasmic reticulum (ER) during nocodazole-induced Golgi ministack formation. Here, we studied the nocodazole-induced formation of ministacks using phospholipase A(2) (PLA(2)) antagonists, which have been shown previously to inhibit brefeldin A-stimulated Golgi-to-ER retrograde transport. Examination of clone 9 rat hepatocytes by immunofluorescence and immunoelectron microscopy revealed that a subset of PLA(2) antagonists prevented nocodazole-induced ministack formation by inhibiting two different trafficking pathways for resident Golgi enzymes; at 25 microM, retrograde Golgi-to-ER transport was inhibited, whereas at 5 microM, Golgi-to-ER trafficking was permitted, but resident Golgi enzymes accumulated in the ER. Moreover, resident Golgi enzymes gradually redistributed from the juxtanuclear Golgi or Golgi ministacks to the ER in cells treated with these PLA(2) antagonists alone. Not only was ER-to-Golgi transport of resident Golgi enzymes inhibited in cells treated with these PLA(2) antagonists, but transport of the vesicular stomatitis virus G protein out of the ER was also prevented. These results support a model of obligate retrograde recycling of Golgi resident enzymes during nocodazole-induced ministack formation and provide additional evidence that resident Golgi enzymes slowly and constitutively cycle between the Golgi and ER.
Collapse
Affiliation(s)
- D Drecktrah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
36
|
Abstract
Research over the past 18 months has revealed that many membranous organelles move along both actin filaments and microtubules. It is highly likely that the activity of the microtubule motors, myosins and static linker proteins present on any organelle are co-ordinately regulated and that this control is linked to the processes of membrane traffic itself.
Collapse
Affiliation(s)
- V J Allan
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|