1
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Vadivelu K, Chandrasekar M, Das P, Kalimuthu K, Balamurugan N, Subramanian V, Selvan Christyraj JRS. Ex vivo functional whole organ in biomedical research: a review. J Artif Organs 2025; 28:131-145. [PMID: 39592544 DOI: 10.1007/s10047-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 11/28/2024]
Abstract
Model systems are critical in biomedical and preclinical research. Animal and in vitro models serve an important role in our current understanding of human physiology, disease pathophysiology, and therapy development. However, if the system is between cell culture and animal models, it may be able to overcome the knowledge gap that exists in the current system. Studies employing ex vivo organs as models have not been thoroughly investigated. Though the integration of other organs and systems has an impact on many biological mechanisms and disorders, it can add a new dimension to modeling and aid in the identification of new possible therapeutic targets. Here, we have discussed why the ex vivo organ model is desirable and the importance of the inclusion of organs from diverse species, described its historical aspects, studied organs as models in scientific research, and its ex vivo stability. We also discussed, how an ex vivo organ model might help researchers better understand organ physiology, as well as organ-specific diseases and therapeutic targets. We emphasized how this ex vivo organ dynamics will be more competent than existing models, as well as what tissues or organs would have potentially viable longevity for ex vivo modeling including human tissues, organs, and/or at least biopsies and its possible advantage in clinical medicine including organ transplantation procedure and precision medicine.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| | - Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kayalvizhi Vadivelu
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kalishwaralal Kalimuthu
- Rajiv Gandhi Centre for Biotechnology, Department of Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Vijayalakshmi Subramanian
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Poddubnaya LG, Terenina NB, Kreshсhenko ND. Confocal fluorescent study of the fish blood flukes: the serotonergic elements and ultrastructure of the nervous system of adult Sanguinicola plehnae (Digenea: Sanguinicolidae). Folia Parasitol (Praha) 2025; 72:2025.009. [PMID: 40105185 DOI: 10.14411/fp.2025.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
The first data on the neurochemical and ultrastructural organisation of the nervous system of the fish blood fluke, suckerless adult Sanguinicola plehnae Warren et Bullard in Warren, Poddubnaya, Zhokhov, Reyda, Choudhury et Bullard, 2023 (Digenea: Aporocotylidae) from the circulatory system of pike, Esox lucius Linnaeus are presented. Based on 5-HT-IP staining, the simple, uniformly developed orthogonal pattern of S. plehnae nervous system is revealed. The ventral and dorsal nerve cords originate from the brain lobes, but the lateral nerve cords originate from anterior nerves at the level of the large serotonergic neurons. In addition, several pairs of such large 5-HT-IP neurons (22-23.5 µm in diameter) are revealed along the ventral nerve cords. Unusual spindle-shaped 5-HT-IP perikarya (7.8-19.8 µm in diameter) are observed along each ventral and lateral nerve cords. The neuroblasts and developing neurons are seen between neurites in S. plehnae along with neuron somata scattered around neuropil periphery, evidencing the renewal of neuron somata population in adult digeneans. The morphological variability of both the orthogonal pattern and neuron somata and types of neurovesicles in adult digeneans are discussed.
Collapse
Affiliation(s)
- Larisa G Poddubnaya
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Nadezhda B Terenina
- Center of Parasitology, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Natalia D Kreshсhenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russia *Address for correspondence: Larisa G. Poddubnaya, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742, Borok, Yaroslavl Region, Russia. E-mail: ; ORCID-iD 0000-0003-0472-9846
| |
Collapse
|
3
|
Carrillo-Baltodano AM, Donnellan RD, Williams EA, Jékely G, Martín-Durán JM. The development of the adult nervous system in the annelid Owenia fusiformis. Neural Dev 2024; 19:3. [PMID: 38383501 PMCID: PMC10880339 DOI: 10.1186/s13064-024-00180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The evolutionary origins of animal nervous systems remain contentious because we still have a limited understanding of neural development in most major animal clades. Annelids - a species-rich group with centralised nervous systems - have played central roles in hypotheses about the origins of animal nervous systems. However, most studies have focused on adults of deeply nested species in the annelid tree. Recently, Owenia fusiformis has emerged as an informative species to reconstruct ancestral traits in Annelida, given its phylogenetic position within the sister clade to all remaining annelids. METHODS Combining immunohistochemistry of the conserved neuropeptides FVamide-lir, RYamide-lir, RGWamide-lir and MIP-lir with gene expression, we comprehensively characterise neural development from larva to adulthood in Owenia fusiformis. RESULTS The early larval nervous system comprises a neuropeptide-rich apical organ connected through peripheral nerves to a prototroch ring and the chaetal sac. There are seven sensory neurons in the prototroch. A bilobed brain forms below the apical organ and connects to the ventral nerve cord of the developing juvenile. During metamorphosis, the brain compresses, becoming ring-shaped, and the trunk nervous system develops several longitudinal cords and segmented lateral nerves. CONCLUSIONS Our findings reveal the formation and reorganisation of the nervous system during the life cycle of O. fusiformis, an early-branching annelid. Despite its apparent neuroanatomical simplicity, this species has a diverse peptidergic nervous system, exhibiting morphological similarities with other annelids, particularly at the larval stages. Our work supports the importance of neuropeptides in animal nervous systems and highlights how neuropeptides are differentially used throughout development.
Collapse
Affiliation(s)
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, UK
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Kreshchenko N, Terenina N, Mochalova N, Movsesyan S. Neuromuscular system of the causative agent of dicrocoeliosis, Dicrocoelium lanceatum. II. Neuropeptide FMRFamide immunoreactivity in nervous system. ZOOLOGY 2022; 155:126054. [PMID: 36335805 DOI: 10.1016/j.zool.2022.126054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The parasitic flatworm, trematoda Dicrocoelium lanceatum or lancet fluke is the causative agent of a widespread parasite disease of grazing ruminants, dicrocoeliosis. The aim of this work is the study of the presence and localization of neuropeptide FMRFamide immunoreactive elements in the nervous system of D. lanceatum using immunocytochemical technique and confocal scanning laser microscopy. For the first time the data on the presence and distribution of the FMRFamide-immunopositive components in the central and peripheral departments of the nervous system of D. lanceatum has been obtained. FMRFamidergic neurons and neurites were identified in paired brain ganglia, in the brain commissure, longitudinal nerve cords and connective nerve commissures. The innervation of the oral and ventral suckers by peptidergic nerve structures was revealed. The distal part of the reproductive system is innervated by FMRFamide immunopositive neurites. The data obtained suggest that the neuropeptides of FMRFamide family can be involved in the regulation of functions of the attachment organs and the reproductive system in D. lanceatum. The study of neurotransmitters and their functions in flatworms expand our knowledge on the structure and function of the nervous system of trematodes of various taxonomic groups. The results obtained on the morphological organization of D. lanceatum nervous system support the exploitation of the FMRFamidergic components as an anthelmintic target.
Collapse
Affiliation(s)
- Natalia Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya str., 3, Pushchino, Moscow Region 142290, Russia.
| | - Nadezhda Terenina
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Natalia Mochalova
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Movsesyan
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; Institute of Zoology of Scientific Center for Zoology and Hydroecology, National Academy of Sciences of Republic of Armenia, P. Sevaka str.,7, Yerevan 0014, Armenia.
| |
Collapse
|
5
|
Terenina N, Kreshchenko N, Movsesyan S. Musculature and neurotransmitters of internal organs of trematodes (the digestive, reproductive and excretory systems). ZOOLOGY 2021; 150:125986. [PMID: 34929537 DOI: 10.1016/j.zool.2021.125986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
The article analyzes the results on the presence and organization of the muscle elements in the visceral organs of parasitic flatworms, trematodes, as well as their innervations. The different regions of the digestive, reproductive and excretory systems of trematodes contain circular, longitudinal and diagonal muscle fibers. The results of immunocytochemical investigations and confocal scanning laser microscopy show the presence of serotonin and FMRFamide-like immunoreactivity in the nervous system elements in various parts of the digestive, reproductive and excretory systems of trematodes. The data suggest that serotonergic and FMRFamide-immunopositive components of parasite's nervous system are involved in the regulation of the muscle activity of the digestive, reproductive and excretory systems. Comparative analysis of the results presented for trematodes from different taxonomic groups indicates that the organization of muscle elements in the visceral organs in trematodes and their innervation by serotonergic and peptidergic components are highly conserved.
Collapse
Affiliation(s)
- Nadezhda Terenina
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| | - Natalia Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya str., 3, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey Movsesyan
- A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| |
Collapse
|
6
|
Nefedova D, Terenina N, Mochalova N, Poddubnaya L, Movsesyan S, Gordeev I, Kuchin A, Kreshchenko N. The neuromuscular system in flatworms: serotonin and FMRFamide immunoreactivities and musculature in Prodistomum alaskense (Digenea: Lepocreadiidae), an endemic fish parasite of the northwestern Pacific. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the immunocytochemical method and confocal scanning laser microscopy, we obtained pioneering data on the muscle system organization and presence and localization of biogenic amine serotonin and FMRFamide-related peptides in the nervous system of the trematode Prodistomum alaskense (Ward and Fillingham, 1934) Bray and Merrett 1998 (family Lepocreadiidae). This flatworm is an intestinal parasite of endemic representatives of the marine fauna of the northwestern Pacific Ocean — the prowfish (Zaprora silenus Jordan, 1896) and the lumpfish (Aptocyclus ventricosus (Pallas, 1769)). We provide data of scanning electron microscopy on the tegumental topography of P. alaskense. The body wall musculature of P. alaskense has three layers of muscle fibres — the outer circular, intermediate longitudinal, and inner diagonal. The muscle system elements are well developed in the attachment organs, digestive and reproductive systems, and in the excretory sphincter. Serotonin– and FMRFamide–immunopositive neurons and neurites are found in the head ganglia, circular commissure, longitudinal nerve cords, and in the transversal connective commissures. The innervation of the oral and ventral suckers, pharynx, and the reproductive system compartments by the serotonergic and FMRFamide–immunopositive neurites is revealed. The results discus connection with the published data on the presence and functional roles of the serotonin and FMRFamide-related peptides in Platyhelminthes.
Collapse
Affiliation(s)
- D.A. Nefedova
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, Moscow, Russia, 119071
| | - N.B. Terenina
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, Moscow, Russia, 119071
| | - N.V. Mochalova
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, Moscow, Russia, 119071
| | - L.G. Poddubnaya
- I.D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok 119, Yaroslavl Province, Russia, 152742
| | - S.O. Movsesyan
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, Moscow, Russia, 119071
| | - I.I. Gordeev
- Russian Federal Research Institute of Fisheries and Oceanography, Verkhn. Krasnoselskaya Str. 17, Moscow, Russia, 107140
- Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, Russia, 119234
| | - A.V. Kuchin
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya Str. 3, Pushchino, Moscow Region, Russia, 142290
| | - N.D. Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya Str. 3, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
7
|
The New Data on the Serotonin and FMRFamide Localization in the Nervous System of Opisthorchis felineus Metacercaria. Acta Parasitol 2020; 65:361-374. [PMID: 32002774 DOI: 10.2478/s11686-019-00165-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Trematoda Opisthorchis felineus Rivolta, 1884 is the causative agent of dangerous parasite disease-opisthorchiasis, widespread in the Russian Federation. The details of the neuroanatomical localization of the serotoninergic and FMRFamidergic neurotransmitter elements as well as their functional roles remain not studied enough in both adult and larval forms of O. felineus. The studies in this area are important in term of the development of a new pharmacological strategy of the struggle with the causative agent of opisthorchiasis affecting the neuronal signal substances and the function of its nervous system. PURPOSE The aim of this work was the immunocytochemical study of the neurotransmitters serotonin (5-HT, 5-Hydroxitryptamine) and neuropeptide FMRFamide localization in the nervous system of the opisthorchiasis causative agent-O. felineus metacercaria. To study the relationship between the detected neurotransmitters and the muscular elements of the parasite, the muscle staining was carried out simultaneously using fluorophore-conjugated phalloidin. METHODS The localization of 5-HTergic and FMRFamidergic nerve structures was determined by immunocytochemical method. The staining samples were analyzed using a fluorescent and confocal laser scanning microscopies. RESULTS The new data on the presence and distribution of the serotonin-immunopositive (IP)- and FMRFa-IP components in the central and peripheral departments of the nervous system of O. felineus metacercaria has been obtained. Besides that a number of the new anatomical details of the nervous system organization and of the innervation of the organs and tissues in the investigated parasite have been revealed. CONCLUSION The data obtained on the presence and localization of the 5-HTergic and peptidergic (FMRFamide) components in central and peripheral departments of the nervous system of O. felineus metacercaria elaborated and expanded the existing information about the nervous system as well as the innervations of the tissues and organs in the causative agent of opistchorchiasis.
Collapse
|
8
|
Petrov AA, Podvyaznaya IM, Zaitseva OV. Architecture of the nervous system in metacercariae of Diplostomum pseudospathaceum Niewiadomska, 1984 (Digenea). Parasitol Res 2019; 118:1193-1203. [PMID: 30725179 DOI: 10.1007/s00436-019-06231-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
The development of metacercariae of Diplostomum pseudospathaceum Niewiadomska, 1984 is accompanied by profound morphological transformations often characterized as metamorphosis, which makes these metacercariae an interesting case for studying the morphogenesis of the digenean nervous system. Although the nervous system of D. pseudospathaceum is one of the most extensively studied among digeneans, there are still gaps in our knowledge regarding the distribution patterns of some neuroactive substances, most notably neuropeptides. The present study addresses these gaps by studying pre-infective metacercariae of D. pseudospathaceum using immunochemical staining and confocal microscopy to characterize the distribution patterns of serotonin (5-HT) and two major groups of flatworm neuropeptides, FMRFamide-related (FaRPs) and substance P-related (SP) peptides. The general morphology of the nervous system was examined with antibodies to alpha-tubulin. The nervous system of the metacercariae was shown to conform to the most common morphology of the nervous system in the hermaphroditic generation, with three pairs of posterior nerve cords and four pairs of anterior nerves. The patterns of FaRP- and 5-HT immunoreactivity (IR) were similar to those revealed in earlier studies by cholinesterase activity, which is in accordance with the known role of these neurotransmitters in controlling muscle activity in flatworms. The SP-IR nervous system was significantly different and consisted of mostly bipolar cells presumably acting as mechanoreceptors. The architecture of the nervous system in D. pseudospathaceum metacercariae is discussed in comparison to that in cercariae of D. pseudospathaceum and metacercariae of related digenean species.
Collapse
Affiliation(s)
- Anatoly A Petrov
- Zoological Institute of Russian Academy of Sciences, Universitetskaya nab., 1, 199034, Saint-Petersburg, Russia.
| | - Irina M Podvyaznaya
- Zoological Institute of Russian Academy of Sciences, Universitetskaya nab., 1, 199034, Saint-Petersburg, Russia
| | - Olga V Zaitseva
- Zoological Institute of Russian Academy of Sciences, Universitetskaya nab., 1, 199034, Saint-Petersburg, Russia
| |
Collapse
|
9
|
Serotonin and Neuropeptide FMRFamide in the Attachment Organs of Trematodes. Helminthologia 2018; 55:185-194. [PMID: 31662646 PMCID: PMC6662011 DOI: 10.2478/helm-2018-0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/05/2018] [Indexed: 11/25/2022] Open
Abstract
The serotoninergic and FMRFamidergic nervous system of the attachment organs of trematodes were examined using immunocytochemical techniques and confocal scanning laser microscopy. Adult trematodes from eight families as well as cercariae and metacercariae from ten families were studied. TRITC-conjugated phalloidin was used to stain the muscle fibres. The serotonin- and FMRFamide-immunoreactive (IR) nerve cells and fibres were revealed to be near the muscle fibres of the oral and ventral suckers of the trematodes and their larvae. The results indicate the important role of neurotransmitters, serotonin and neuropeptide FMRFamide in the regulation of muscle activity in the attachment organs of trematodes and can be considered in perspective for the development of new anthelmintic drugs, which can interrupt the function of the attachment organs of the parasites.
Collapse
|
10
|
Some details of muscles innervations by FMRF-like nerve elements in planarian Girardia tigrina. ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0392-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
The nervous systems of Tylodelphys metacercariae (Digenea: Diplostomidae) from the catfish Clarias gariepinus (Clariidae) in freshwater habitats of Tanzania. J Helminthol 2015; 90:712-718. [PMID: 26620462 DOI: 10.1017/s0022149x15001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nervous systems of three Tylodelphys metacercariae (T. mashonense, Tylodelphys spp. 1 and 2) co-occurring in the cranial cavity of the catfish, Clarias gariepinus, were examined by the activity of acetylthiocholine iodide (AcThI), with the aim of better understanding the arrangement of sensillae on the body surface and the nerve trunks and commissures, for taxonomic purposes. Enzyme cytochemistry demonstrated a comparable orthogonal arrangement in the three metacercariae: the central nervous system (CNS) consisting of a pair of cerebral ganglia, from which anterior and posterior neuronal pathways arise and inter-link by cross-connectives and commissures. However, the number of transverse nerves was significantly different in the three diplostomid metacercariae: Tylodelphys sp. 1 (30), Tylodelphys sp. 2 (21) and T. mashonense (15). The observed difference in the nervous system of the three metacercariae clearly separates them into three species. These findings suggest that consistent differences in the transverse nerves of digenean metacercariae could enable the differentiation of metacercariae to the species level in the absence of molecular techniques. This, however, might require further testing on a larger number of species of digenean metacercariae.
Collapse
|
12
|
Quiroga SY, Carolina Bonilla E, Marcela Bolaños D, Carbayo F, Litvaitis MK, Brown FD. Evolution of flatworm central nervous systems: Insights from polyclads. Genet Mol Biol 2015; 38:233-48. [PMID: 26500427 PMCID: PMC4612602 DOI: 10.1590/s1415-475738320150013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/19/2015] [Indexed: 01/15/2023] Open
Abstract
The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.
Collapse
Affiliation(s)
- Sigmer Y. Quiroga
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Magdalena, Santa Marta, Colombia
| | - E. Carolina Bonilla
- Laboratorio de Biología del Desarrollo, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - D. Marcela Bolaños
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Laboratorio de Biología del Desarrollo, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Fernando Carbayo
- Laboratório de Ecologia e Evolução, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, SP, Brazil
- Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marian K. Litvaitis
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Federico D. Brown
- Laboratorio de Biología del Desarrollo, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| |
Collapse
|
13
|
Poddubnaya LG, Hemmingsen W, Gibson DI. Ultrastructural characteristics of the vaginae of the basal monogenean Chimaericola leptogaster (Leuckart, 1830). Parasitol Res 2013; 112:4053-64. [DOI: 10.1007/s00436-013-3596-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/25/2013] [Indexed: 11/30/2022]
|
14
|
Bailly X, Reichert H, Hartenstein V. The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Dev Genes Evol 2013; 223:149-57. [PMID: 23143292 PMCID: PMC3873165 DOI: 10.1007/s00427-012-0423-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022]
Abstract
Flatworms are classically considered to represent the simplest organizational form of all living bilaterians with a true central nervous system. Based on their simple body plans, all flatworms have been traditionally grouped together in a single phylum at the base of the bilaterians. Current molecular phylogenomic studies now split the flatworms into two widely separated clades, the acoelomorph flatworms and the platyhelminth flatworms, such that the last common ancestor of both clades corresponds to the urbilaterian ancestor of all bilaterian animals. Remarkably, recent comparative neuroanatomical analyses of acoelomorphs and platyhelminths show that both of these flatworm groups have complex anterior brains with surprisingly similar basic neuroarchitectures. Taken together, these findings imply that fundamental neuroanatomical features of the brain in the two separate flatworm groups are likely to be primitive and derived from the urbilaterian brain.
Collapse
Affiliation(s)
- Xavier Bailly
- UPMC-CNRS. FR2424. Station Biologique de Roscoff. 29680 Roscoff. France
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-Basel, Switzerland
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
15
|
Kreshchenko N, Tolstenkov OO. Some aspects of the immunolocalization of FMRFamide in the nervous system of turbellarians, Polycelis tenuis and Girardia tigrina. Short communication. ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 2:83-7. [PMID: 22776478 DOI: 10.1556/abiol.63.2012.suppl.2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The details of the morphology of the nervous system has been investigated in two turbellarian species Polycelis tenuis and Girardia tigrina using confocal laser scanning microscopy and immunostaining to neuropeptide FMRFamide. Abundant FMRFamide immunoreactivity (FMRF-IR) has been observed in central and peripheral nervous systems of both species. Intensive staining has been found in the sensory elements: cells and fibres surrounded the mouth opening, in the fibres enclosed the photoreceptors, triangular auricles in the head region of G. tigrina. The possible function of FMRF-IR neurons in the realization of sensory function in turbellarians is discussed.
Collapse
Affiliation(s)
- Natalia Kreshchenko
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | |
Collapse
|
16
|
Adami ML, Damborenea C, Ronderos JR. An allatotropin-like neuropeptide in Mesostoma ehrenbergii (Rhabdocoela, Platyhelminthes). ZOOMORPHOLOGY 2012. [DOI: 10.1007/s00435-012-0146-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Adami ML, Damborenea C, Ronderos JR. Expression of a neuropeptide similar to allatotropin in free living turbellaria (platyhelminthes). Tissue Cell 2011; 43:377-83. [DOI: 10.1016/j.tice.2011.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
18
|
Hoyle CH. Evolution of neuronal signalling: Transmitters and receptors. Auton Neurosci 2011; 165:28-53. [DOI: 10.1016/j.autneu.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 05/09/2010] [Accepted: 05/18/2010] [Indexed: 11/16/2022]
|
19
|
Abstract
Cilia-based locomotion is the major form of locomotion for microscopic planktonic organisms in the ocean. Given their negative buoyancy, these organisms must control ciliary activity to maintain an appropriate depth. The neuronal bases of depth regulation in ciliary swimmers are unknown. To gain insights into depth regulation we studied ciliary locomotor control in the planktonic larva of the marine annelid, Platynereis. We found several neuropeptides expressed in distinct sensory neurons that innervate locomotor cilia. Neuropeptides altered ciliary beat frequency and the rate of calcium-evoked ciliary arrests. These changes influenced larval orientation, vertical swimming, and sinking, resulting in upward or downward shifts in the steady-state vertical distribution of larvae. Our findings indicate that Platynereis larvae have depth-regulating peptidergic neurons that directly translate sensory inputs into locomotor output on effector cilia. We propose that the simple circuitry found in these ciliated larvae represents an ancestral state in nervous system evolution.
Collapse
|
20
|
The neuro-muscular system in fresh-water furcocercaria from Belarus. I Schistosomatidae. Parasitol Res 2011; 110:185-93. [PMID: 21614541 DOI: 10.1007/s00436-011-2468-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
The neuro-muscular system (NMS) in cercariae of the family Schistosomatidae from Belarus was studied with immunocytochemical methods and confocal scanning laser microscopy. The specimens of Bilharziella polonica were compared with Trichobilharzia szidati and Trichobilharzia franki. The patterns of F-actin in the musculature, 5-HT-immunoreactive (IR), FMRFamide-IR neuronal elements and α-tubulin-IR in sensory receptors and nerves were investigated. No indications of structural differences in the musculature, the 5-HT-IR, FMRF-IR neuronal elements and the general distribution of sensory receptors were noticed between cercariae of Trichobilharzia spp. The number of 5-HT-IR neurons in the cercarial bodies is 16. In cercaria B. polonica, the tail musculature is weaker than in Trichobilharzia spp. A detailed schematic picture of the NMS in the tail of Trichobilharzia spp. cercaria is given. The function of NMS elements in the tail is discussed.
Collapse
|
21
|
A PAL for Schistosoma mansoni PHM. Mol Biochem Parasitol 2010; 173:97-106. [PMID: 20488212 DOI: 10.1016/j.molbiopara.2010.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/23/2022]
Abstract
Parasitic helminth neuromuscular function is a proven target for chemotherapeutic control. Although neuropeptide signalling plays a key role in helminth motor function, it has not yet provided targets for known anthelmintics. The majority of biologically active neuropeptides display a C-terminal amide (NH(2)) motif, generated exclusively by the sequential action of two enzymes, peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidylglycine alpha-amidating lyase (PAL). Further to our previous description of a monofunctional PHM enzyme (SmPHM) from the human blood fluke Schistosoma mansoni, here we describe a cDNA encoding S. mansoni PAL (SmPAL). SmPAL is a monofunctional enzyme which, following heterologous expression, we find to have functionally similar catalytic activity and optimal pH values, but key catalytic core amino acid substitutions, when compared to other known PALs including those found in humans. We have used in situ hybridisation to demonstrate that in adult schistosomes, SmPAL mRNA (Sm-pal-1) is expressed in neuronal cell bodies of the central nervous system, consistent with a role for amidated neuropeptides in S. mansoni neuromuscular function. In order to validate SmPAL as a putative drug target we applied published RNA interference (RNAi) methods in efforts to trigger knockdown of Sm-pal-1 transcript in larval schistosomula. Although transcript knockdown was recorded on several occasions, silencing was variable and inconsistent and did not associate with any observable aberrant phenotype. The inconsistent outcomes of RNAi suggest that there may be tissue-specific differences in the applicability of RNAi methods for S. mansoni, with neuronal targets proving more difficult or refractory to knockdown. The key role played by schistosome amidating enzymes in neuropeptide maturation make them appealing as drug targets; their validation as such will depend on the development of more robust reverse genetic tools to facilitate efficient neuronal gene function studies.
Collapse
|
22
|
Walker RJ, Papaioannou S, Holden-Dye L. A review of FMRFamide- and RFamide-like peptides in metazoa. INVERTEBRATE NEUROSCIENCE 2010; 9:111-53. [PMID: 20191373 DOI: 10.1007/s10158-010-0097-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Neuropeptides are a diverse class of signalling molecules that are widely employed as neurotransmitters and neuromodulators in animals, both invertebrate and vertebrate. However, despite their fundamental importance to animal physiology and behaviour, they are much less well understood than the small molecule neurotransmitters. The neuropeptides are classified into families according to similarities in their peptide sequence; and on this basis, the FMRFamide and RFamide-like peptides, first discovered in molluscs, are an example of a family that is conserved throughout the animal phyla. In this review, the literature on these neuropeptides has been consolidated with a particular emphasis on allowing a comparison between data sets in phyla as diverse as coelenterates and mammals. The intention is that this focus on the structure and functional aspects of FMRFamide and RFamide-like neuropeptides will inform understanding of conserved principles and distinct properties of signalling across the animal phyla.
Collapse
Affiliation(s)
- Robert J Walker
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
23
|
Marks NJ, Maule AG. Neuropeptides in Helminths: Occurrence and Distribution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 692:49-77. [DOI: 10.1007/978-1-4419-6902-6_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
24
|
|
25
|
Terenina NB, Poddubnaya LG, Tolstenkov OO, Gustafsson MKS. An immunocytochemical, histochemical and ultrastructural study of the nervous system of the tapeworm Cyathocephalus truncatus (Cestoda, Spathebothriidea). Parasitol Res 2008; 104:267-75. [DOI: 10.1007/s00436-008-1187-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/28/2008] [Indexed: 11/29/2022]
|
26
|
Kreshchenko ND, Sedelnikov Z, Sheiman IM, Reuter M, Maule AG, Gustafsson MKS. Effects of neuropeptide F on regeneration in Girardia tigrina (Platyhelminthes). Cell Tissue Res 2007; 331:739-50. [PMID: 18095002 DOI: 10.1007/s00441-007-0519-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
The effects of neuropeptide F (NPF; from Moniezia expansa) on the regeneration of Girardia tigrina were studied. The animals were decapitated and incubated in water (control) or NPF. The dynamics of the proliferation of the neoblasts in the developing tissue were studied during the course of regeneration by monitoring the mitotic index (MI). The effects of incubation in FMRFamide and GYIRFamide on the MI were also tested. The course of cephalic regeneration was followed with in vivo computer-assisted morphometry for up to 7 days. The development of the regenerating nervous system and the musculature was visualised by immunostaining with a primary antiserum to the C-terminal decapeptide of NPF (YFAIIGRPRFa) and tetramethylrhodamine-isothiocyanate-conjugated phalloidin, which stains F-actin in muscle filaments. The study showed that NPF had a stimulatory effect on the mitotic activity of the neoblasts. FMRFamide and GYIRFamide did not have this effect. NPF also stimulated the growth of the regenerating head and the growing nervous system and musculature. NPF is postulated to have a morphogenetic action in the regenerating animals.
Collapse
|
27
|
Morris J, Cardona A, De Miguel-Bonet MDM, Hartenstein V. Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile. Dev Genes Evol 2007; 217:569-84. [PMID: 17611771 DOI: 10.1007/s00427-007-0166-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
We have analyzed brain structure in Macrostomum lignano, a representative of the basal platyhelminth taxon Macrostomida. Using confocal microscopy and digital 3D modeling software on specimens labeled with general markers for neurons (tyrTub), muscles (phalloidin), and nuclei (Sytox), an atlas and digital model of the juvenile Macrostomum brain was generated. The brain forms a ganglion with a central neuropile surrounded by a cortex of neuronal cell bodies. The neuropile contains a stereotypical array of compact axon bundles, as well as branched terminal axons and dendrites. Muscle fibers penetrate the flatworm brain horizontally and vertically at invariant positions. Beside the invariant pattern of neurite bundles, these "cerebral muscles" represent a convenient system of landmarks that help define discrete compartments in the juvenile brain. Commissural axon bundles define a dorsal and ventro-medial neuropile compartment, respectively. Longitudinal axons that enter the neuropile through an invariant set of anterior and posterior nerve roots define a ventro-basal and a central medial compartment in the neuropile. Flanking these "fibrous" compartments are neuropile domains that lack thick axon bundles and are composed of short collaterals and terminal arborizations of neurites. Two populations of neurons, visualized by antibodies against FMRFamide and serotonin, respectively, were mapped relative to compartment boundaries. This study will aid in the documentation and interpretation of patterns of gene expression, as well as functional studies, in the developing Macrostomum brain.
Collapse
Affiliation(s)
- Joshua Morris
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
28
|
The nervous system of Convolutriloba (Acoela) and its patterning during regeneration after asexual reproduction. ZOOMORPHOLOGY 2007. [DOI: 10.1007/s00435-007-0039-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Mousley A, Marks NJ, Maule AG. Neuropeptide signalling: a repository of targets for novel endectocides? Trends Parasitol 2004; 20:482-7. [PMID: 15363442 DOI: 10.1016/j.pt.2004.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The only available parasiticides with a spectrum of action that includes a broad range of helminth and arthropod parasites are the macrocyclic lactones. Designated endectocides, these drugs have action against both endoparasitic nematodes and ectoparasitic arthropods. Unfortunately, the discovery of such drugs is exceedingly rare and there is no evidence that novel endectocidal agents will be identified and developed in the short to medium term. However, the discovery of neuropeptides with motor-modulatory activities in both arthropods and helminths, coupled with recent progress in the characterization of invertebrate neuropeptide receptors, has the potential to propel neuropeptide signalling to the forefront of efforts to develop a novel endectocide.
Collapse
Affiliation(s)
- Angela Mousley
- Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Rd, Belfast, Northern Ireland, BT9 7BL, UK
| | | | | |
Collapse
|
30
|
Abstract
Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians.
Collapse
Affiliation(s)
- Charles E Cook
- University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | |
Collapse
|
31
|
Abstract
Schistosome parasites are muticellular eucaryotic organisms with a complex life cycle that involves mammalian and snail hosts. Unlike other trematode parasites, schistosomes (along with the Didymozoidae) have evolved separate sexes or dioecy. Sex is determined by a chromosomal mechanism. The dioecious state created an opportunity for the sexes to play a role in schistosome evolution that has resulted in an interesting interplay between the sexes. The classical observation, made more than 50 years ago, is that female schistosomes do not develop unless a male worm is present. Studies up through the 1990s focused on dissecting the role of the sexes in mate attraction, mate choice, mating behavior, female growth, female reproductive development, egg production, and other sex-evolved functions. In the mid-1980s, studies began to address the molecular events of male–female interactions. The classic morphological observation that female schistosomes do not complete reproductive development unless a male worm is present has been redefined in molecular terms. The male by an unknown mechanism transduces a signal that regulates female gene expression in a stage-, tissue-, and temporal-specific manner. A number of female-specific genes have been identified, along with signaling pathways and nuclear receptors, that play a role in female reproductive development. In addition, a number of host factors such as cytokines have also been demonstrated to affect adult male and female development and egg production. This review focuses on the biological interactions of the male and female schistosome and the role of parasite and host factors in these interactions as they contribute to the life cycle of Schistosoma mansoni.
Collapse
|
32
|
Reuter M, Kreshchenko N. Flatworm asexual multiplication implicates stem cells and regeneration. CAN J ZOOL 2004. [DOI: 10.1139/z03-219] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phenomenon of asexual multiplication is rare in the animal kingdom, but it occurs in all main flatworm taxa. In the present paper, we review data regarding the presence of different forms of asexual multiplication in flatworms and argue that the presence of a population of totipotent or pluripotent stem cells, "neoblasts", is a primitive feature of decisive importance for the developing potential of flatworms. Next we present information on the role of stem cells in fission, head regeneration, and pharynx regeneration of planarians. Furthermore, the tracing of neoblasts in lower flatworms and cestodes is presented, and the results indicating heterogeneity of the neoblast pool are discussed. Finally, the mode by which the neoblasts are stimulated to divide, migrate, and differentiate and the nature of the interactions are discussed. We focus on (i) biogenic amines and neuropeptides, (ii) the role of neuropeptides in the early stage of regeneration, (iii) the evidence for the influences of growth factors and nitric oxide, and (iv) the influence of weak electromagnetic fields. We discuss the pattern in which a gradient system of morphogens and (or) a hierarchical system of inductions is expressed in development.
Collapse
|