1
|
Bhardwaj P, Raigond B, Raigond P, Verma A, Verma G, Kochhar T, Patroti P, Das IK, Satyavathi CT. Antiviral activity of ribosome inactivating proteins for management of plant viral infection. Virology 2025; 603:110403. [PMID: 39894605 DOI: 10.1016/j.virol.2025.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
In nature, plants exhibit various defense mechanisms to protect themselves from viral infection. Reported to harbor virus-inhibiting compounds like Ribosome inactivating proteins (RIPs). It's a matter of how we explore, identify, and utilize RIPs in managing a given stress. RIPs have been found to contain antiviral, anticancer, and neurotoxic effects and are used in various biomedical and agricultural fields. The expression of RIPs could be enhanced in plants to improve their defense against biotic and abiotic stresses. Identification of new RIPs and genetic sequencing led to the development of new phylogenetic theories. Studies on the interaction between RIPs and cells have increased the knowledge regarding the handling of exogenous proteins by cells. The review provides a brief historical preview, classification, mode of action, and broader applications with a special focus on managing plant viral diseases and concerns to mankind.
Collapse
Affiliation(s)
- Pooja Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Baswaraj Raigond
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; Centre for Rabi Sorghum, ICAR-Indian Institute of Millets Research, Regional Station, Solapur, 413006, Maharashtra, India.
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; ICAR-National Research Centre on Pomegranate, Solapur, 413255, Maharashtra, India
| | - Ambika Verma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Gaurav Verma
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, 263601, Uttarakhand, India
| | - Tarvinder Kochhar
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Parashuram Patroti
- Centre for Rabi Sorghum, ICAR-Indian Institute of Millets Research, Regional Station, Solapur, 413006, Maharashtra, India
| | - I K Das
- ICAR- ICAR-Indian Institute of Millets Research, Hyderabad, 500030, Telangana, India
| | - C Tara Satyavathi
- ICAR- ICAR-Indian Institute of Millets Research, Hyderabad, 500030, Telangana, India
| |
Collapse
|
2
|
Slavokhotova AA, Shelenkov AA, Rogozhin EA. Computational Prediction and Structural Analysis of α-Hairpinins, a Ubiquitous Family of Antimicrobial Peptides, Using the Cysmotif Searcher Pipeline. Antibiotics (Basel) 2024; 13:1019. [PMID: 39596714 PMCID: PMC11591084 DOI: 10.3390/antibiotics13111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND α-Hairpinins are a family of antimicrobial peptides, promising antimicrobial agents, which includes only 12 currently revealed members with proven activity, although their real number is supposed to be much higher. α-Hairpinins are short peptides containing four cysteine residues arranged in a specific Cys-motif. These antimicrobial peptides (AMPs) have a characteristic helix-loop-helix structure with two disulfide bonds. Isolation of α-hairpinins by biochemical methods is cost- and labor-consuming, thus requiring reliable preliminary in silico prediction. METHODS In this study, we developed a special algorithm for the prediction of putative α-hairpinins on the basis of characteristic motifs with four (4C) and six (6C) cysteines deduced from translated plant transcriptome sequences. We integrated this algorithm into the Cysmotif searcher pipeline and then analyzed all transcriptomes available from the One Thousand Plant Transcriptomes project. RESULTS We predicted more than 2000 putative α-hairpinins belonging to various plant sources including algae, mosses, ferns, and true flowering plants. These data make α-hairpinins one of the ubiquitous antimicrobial peptides, being widespread among various plants. The largest numbers of α-hairpinins were revealed in the Papaveraceae family and in Papaver somniferum in particular. CONCLUSIONS By analyzing the primary structure of α-hairpinins, we concluded that more predicted peptides with the 6C motif are likely to have potent antimicrobial activity in comparison to the ones possessing 4C motifs. In addition, we found 30 α-hairpinin precursors containing from two to eight Cys-rich modules. A striking similarity between some α-hairpinin modules belonging to diverse plants was revealed. These data allowed us to assume that the evolution of α-hairpinin precursors possibly involved changing the number of Cys-rich modules, leading to some missing middle and C-terminal modules, in particular.
Collapse
Affiliation(s)
- Anna A. Slavokhotova
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, 117437 Moscow, Russia;
| | - Andrey A. Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str., 16/10, 117437 Moscow, Russia;
- All-Russian Institute for Plant Protection, Podbelskogo Str., 196608 Saint-Petersburg-Pushkin, Russia
| |
Collapse
|
3
|
Baindara P, Mandal SM. Plant-Derived Antimicrobial Peptides: Novel Preservatives for the Food Industry. Foods 2022; 11:foods11162415. [PMID: 36010415 PMCID: PMC9407122 DOI: 10.3390/foods11162415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Food spoilage is a widespread issue brought on by the undesired growth of microbes in food products. Thousands of tons of usable food or food products are wasted every day due to rotting in different parts of the world. Several food preservation techniques are employed to prevent food from rotting, including the use of natural or manufactured chemicals or substances; however, the issue persists. One strategy for halting food deterioration is the use of plant-derived antimicrobial peptides (AMPs), which have been investigated for possible bioactivities against a range of human, plant, and food pathogens. The food industry may be able to benefit from the development of synthetic AMPs, produced from plants that have higher bioactivity, better stability, and decreased cytotoxicity as a means of food preservation. In order to exploit plant-derived AMPs in various food preservation techniques, in this review, we also outline the difficulties in developing AMPs for use as commercial food preservatives. Nevertheless, as technology advances, it will soon be possible to fully explore the promise of plant-derived AMPs as food preservatives.
Collapse
Affiliation(s)
- Piyush Baindara
- Departments of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
4
|
Bertonceli MAA, Oliveira AEA, Ferreira ATS, Perales J, Fernandes KVS. A vicilin-like protein extracted from Clitoria fairchildiana cotyledons was toxic to Callosobruchus maculatus (Coleoptera: Chrysomelidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105129. [PMID: 35715067 DOI: 10.1016/j.pestbp.2022.105129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Callosobruchus maculatus is the main pest cowpea (Vigna unguiculata). Given its relevance as an insect pest, studies have focused in finding toxic compounds which could prevent its predatory action towards the seeds. Clitoria fairchildiana is a native Amazon species, whose seeds are refractory to insect predation. This characteristic was the basis of our interest in evaluating the toxicity of its seed proteins to C. maculatus larvae. Seed proteins were fractioned, according to their solubility, to albumins (F1), globulins (F2), kaphyrins (F3), glutelins (F4), linked kaphyrins (F5) and cross-linked glutelins (F6). The fractionated proteins were quantified, analysed by tricine-SDS-PAGE and inserted into the diet of this insect pest in order to evaluate their insecticidal potential. The most toxic fraction to C. maculatus, the propanol soluble F3, was submitted to molecular exclusion chromatography and all of the peaks obtained, F3P1, F3P2, F3P3, caused a reduction of larval mass, especially F3P1, seen as a major ~12 kDa electrophoretic band. This protein was identified as a vicilin-like protein by mass spectrometry and BLAST analysis. The alignment of the Cfvic (C. fairchildiana vicilin) peptides with a V. unguiculata vicilin sequence, revealed that Cfvic has at least five peptides (ALLTLVNPDGR, AILTLVNPDGR, NFLAGGKDNV, ISDINSAMDR, NFLAGEK) which lined up with two chitin binding sites (ChBS). This finding was corroborated by chitin affinity chromatography and molecular docking of chitin-binding domains for N-Acetyl-D-glucosamine and by the reduction of Cfvic chitin affinity after chemical modification of its Lys residues. In conclusion, Cfvic is a 12 kDa vicilin-like protein, highly toxic to C. maculatus, acting as an insect toxin through its ability to bind to chitin structures present in the insect midgut.
Collapse
Affiliation(s)
- Maria A A Bertonceli
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, CEP 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Antônia E A Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, CEP 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - André T S Ferreira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Toxinologia, Rio de Janeiro, RJ, Brazil
| | - Jonas Perales
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Toxinologia, Rio de Janeiro, RJ, Brazil
| | - Kátia V S Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, CEP 28013-602, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
5
|
Barashkova AS, Ryazantsev DY, Rogozhin EA. Rational Design of Plant Hairpin-like Peptide EcAMP1: Structural-Functional Correlations to Reveal Antibacterial and Antifungal Activity. Molecules 2022; 27:molecules27113554. [PMID: 35684491 PMCID: PMC9182383 DOI: 10.3390/molecules27113554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Plant antimicrobial peptides from the α-hairpinins family (hairpin-like peptides) are known to possess a wide range of biological activities. However, less is known about the structural determinants of their antimicrobial activity. Here, we suggest that spatial structure as well as surface charge and hydrophobicity level contribute to the antimicrobial properties of α-hairpinin EcAMP1 from barnyard grass (Echinochloa cruss-galli) seeds. To examine the role of the peptide spatial structure, two truncated forms of EcAMP1 restricted by inner and outer cysteine pairs were synthesized. It was shown that both truncated forms of EcAMP1 lost their antibacterial activity. In addition, their antifungal activity became weaker. To review the contribution of surface charge and hydrophobicity, another two peptides were designed. One of them carried single amino acid substitution from tryptophan to alanine residue at the 20th position. The second one represented a truncated form of the native EcAMP1 lacking six C-terminal residues. But the α-helix was kept intact. It was shown that the antifungal activity of both modified peptides weakened. Thereby we can conclude that the secondary structural integrity, hydrophobic properties, and surface charge all play roles in the antimicrobial properties of α-hairpinins. In addition, the antibacterial activity of cereal α-hairpinins against Gram-positive bacteria was described for the first time. This study expands on the knowledge of structure–function interactions in antimicrobial α-hairpinins.
Collapse
Affiliation(s)
- Anna S. Barashkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Natural Sciences (RAS), ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.S.B.); (D.Y.R.)
| | - Dmitry Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Natural Sciences (RAS), ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.S.B.); (D.Y.R.)
| | - Eugene A. Rogozhin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Natural Sciences (RAS), ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.S.B.); (D.Y.R.)
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Foo AC, Nesbit JB, Gipson SA, Cheng H, Bushel P, DeRose EF, Schein CH, Teuber SS, Hurlburt BK, Maleki SJ, Mueller GA. Structure, Immunogenicity, and IgE Cross-Reactivity among Walnut and Peanut Vicilin-Buried Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2389-2400. [PMID: 35139305 PMCID: PMC8959100 DOI: 10.1021/acs.jafc.1c07225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Vicilin-buried peptides (VBPs) from edible plants are derived from the N-terminal leader sequences (LSs) of seed storage proteins. VBPs are defined by a common α-hairpin fold mediated by conserved CxxxCx(10-14)CxxxC motifs. Here, peanut and walnut VBPs were characterized as potential mediators of both peanut/walnut allergenicity and cross-reactivity despite their low (∼17%) sequence identity. The structures of one peanut (AH1.1) and 3 walnut (JR2.1, JR2.2, JR2.3) VBPs were solved using solution NMR, revealing similar α-hairpin structures stabilized by disulfide bonds with high levels of surface similarity. Peptide microarrays identified several peptide sequences primarily on AH1.1 and JR2.1, which were recognized by peanut-, walnut-, and dual-allergic patient IgE, establishing these peanut and walnut VBPs as potential mediators of allergenicity and cross-reactivity. JR2.2 and JR2.3 displayed extreme resilience against endosomal digestion, potentially hindering epitope generation and likely contributing to their reduced allergic potential.
Collapse
Affiliation(s)
- Alexander C.Y. Foo
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr, MD-MR01, Research Triangle Park, NC 27615
| | - Jacqueline B. Nesbit
- US Department of Agriculture -Agricultural Research Service, 1100 Robert E. Lee Blvd, New Orleans, LA 70122
| | - Stephen A.Y. Gipson
- US Department of Agriculture -Agricultural Research Service, 1100 Robert E. Lee Blvd, New Orleans, LA 70122
| | - Hsiaopo Cheng
- US Department of Agriculture -Agricultural Research Service, 1100 Robert E. Lee Blvd, New Orleans, LA 70122
| | - Pierre Bushel
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr, MD-MR01, Research Triangle Park, NC 27615
| | - Eugene F. DeRose
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr, MD-MR01, Research Triangle Park, NC 27615
| | - Catherine H. Schein
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555
| | - Suzanne S. Teuber
- University of California Davis School of Medicine, 2315 Stockton Blvd, Sacramento, CA 95817
| | - Barry K. Hurlburt
- US Department of Agriculture -Agricultural Research Service, 1100 Robert E. Lee Blvd, New Orleans, LA 70122
| | - Soheila J. Maleki
- US Department of Agriculture -Agricultural Research Service, 1100 Robert E. Lee Blvd, New Orleans, LA 70122
| | - Geoffrey A. Mueller
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr, MD-MR01, Research Triangle Park, NC 27615
| |
Collapse
|
7
|
Pathanraj D, Choowongkomon K, Roytrakul S, Yokthongwattana C. Structural Distinctive 26SK, a Ribosome-Inactivating Protein from Jatropha curcas and Its Biological Activities. Appl Biochem Biotechnol 2021; 193:3877-3897. [PMID: 34669111 DOI: 10.1007/s12010-021-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are a group of proteins exhibiting N-glycosidase activity leading to an inactivation of protein synthesis. Thirteen predicted Jatropha curcas RIP sequences could be grouped into RIP types 1 or 2. The expression of the RIP genes was detected in seed kernels, seed coats, and leaves. The full-length cDNA of two RIP genes (26SK and 34.7(A)SK) were cloned and studied. The 34.7(A)SK protein was successfully expressed in the host cells while it was difficult to produce even only a small amount of the 26SK protein. Therefore, the crude proteins were used from E. coli expressing 26SK and 34.7(A)SK constructs and they showed RIP activity. Only the cell lysate from 26SK could inhibit the growth of E. coli. In addition, the crude protein extracted from 26SK expressing cells displayed the effect on the growth of MDA-MB-231, a human breast cancer cell line. Based on in silico analysis, all 13 J. curcas RIPs contained RNA and ribosomal P2 stalk protein binding sites; however, the C-terminal region of the P2 stalk binding site was lacking in the 26SK structure. In addition, an amphipathic distribution between positive and negative potential was observed only in the 26SK protein, similar to that found in the anti-microbial peptide. These findings suggested that this 26SK protein structure might have contributed to its toxicity, suggesting potential uses against pathogenic bacteria in the future.
Collapse
Affiliation(s)
- Danulada Pathanraj
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand.
| |
Collapse
|
8
|
Cytotoxic potential of bioactive seed proteins from Mallotus philippensis against various cancer cell lines. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01974-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
10
|
Payne CD, Vadlamani G, Fisher MF, Zhang J, Clark RJ, Mylne JS, Rosengren KJ. Defining the Familial Fold of the Vicilin-Buried Peptide Family. JOURNAL OF NATURAL PRODUCTS 2020; 83:3030-3040. [PMID: 32997497 DOI: 10.1021/acs.jnatprod.0c00594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plants and their seeds have been shown to be a rich source of cystine-stabilized peptides. Recently a new family of plant seed peptides whose sequences are buried within precursors for seed storage vicilins was identified. Members of this Vicilin-Buried Peptide (VBP) family are found in distantly related plant species including the monocot date palm, as well as dicotyledonous species like pumpkin and sesame. Genetic evidence for their widespread occurrence indicates that they are of ancient origin. Limited structural studies have been conducted on VBP family members, but two members have been shown to adopt a helical hairpin fold. We present an extensive characterization of VBPs using solution NMR spectroscopy, to better understand their structural features. Four peptides were produced by solid phase peptide synthesis and shown to favor a helix-loop-helix hairpin fold, as a result of the I-IV/II-III ladderlike connectivity of their disulfide bonds. Interhelical interactions, including hydrophobic contacts and salt bridges, are critical for the fold stability and control the angle at which the antiparallel α-helices interface. Activities reported for VBPs include trypsin inhibitory activity and inhibition of ribosomal function; however, their diverse structural features despite a common fold suggest that additional bioactivities yet to be revealed are likely.
Collapse
Affiliation(s)
- Colton D Payne
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Slavokhotova AA, Rogozhin EA. Defense Peptides From the α-Hairpinin Family Are Components of Plant Innate Immunity. FRONTIERS IN PLANT SCIENCE 2020; 11:465. [PMID: 32391035 PMCID: PMC7191063 DOI: 10.3389/fpls.2020.00465] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/30/2020] [Indexed: 05/28/2023]
Abstract
Plant immunity represents a sophisticated system, including both basal and inducible mechanisms, to prevent pathogen infection. Antimicrobial peptides (AMPs) are among the innate immunity components playing a key role in effective and rapid response against various pathogens. This review is devoted to a small family of defense peptides called α-hairpinins. The general characters of the family, as well as the individual features of each member, including biological activities, structures of precursor proteins, and spatial structures, are described. Possible applications of α-hairpinin peptides in drug design are discussed.
Collapse
Affiliation(s)
- Anna A. Slavokhotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Eugene A. Rogozhin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- All-Russian Institute of Plant Protection, St. Petersburg-Pushkin, Russia
- Gause Institute of New Antibiotics, Moscow, Russia
| |
Collapse
|
12
|
Wong JH, Bao H, Ng TB, Chan HHL, Ng CCW, Man GCW, Wang H, Guan S, Zhao S, Fang EF, Rolka K, Liu Q, Li C, Sha O, Xia L. New ribosome-inactivating proteins and other proteins with protein synthesis-inhibiting activities. Appl Microbiol Biotechnol 2020; 104:4211-4226. [PMID: 32193575 DOI: 10.1007/s00253-020-10457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Ribosome-inactivating proteins (RIPs) consist of three varieties. Type 1 RIPs are single-chained and approximately 30-kDa in molecular weight. Type 2 RIPs are double-chained and composed of a type 1 RIP chain and a lectin chain. Type III RIPs, such as maize b-32 barley and JIP60 which are produced as single-domain proenzymes, possess an N-terminal domain corresponding to the A domain of RIPs and fused to a C-terminal domain. In addition to the aforementioned three types of RIPs originating from flowering plants, there are recently discovered proteins and peptides with ribosome-inactivating and protein synthesis inhibitory activities but which are endowed with characteristics such as molecular weights distinctive from those of the regular RIPs. These new/unusual RIPs discussed in the present review encompass metazoan RIPs from Anopheles and Culex mosquitos, antimicrobial peptides derived from RIP of the pokeweed Phytolacca dioica, maize RIP (a type III RIP derived from a precursor form), RIPs from the garden pea and the kelp. In addition, RIPs with a molecular weight smaller than those of regular type 1 RIPs are produced by plants in the Cucurbitaceae family including the bitter gourd, bottle gourd, sponge gourd, ridge gourd, wax gourd, hairy gourd, pumpkin, and Chinese cucumber. A small type II RIP from camphor tree (Cinnamomum camphora) seeds and a snake gourd type II RIP with its catalytic chain cleaved into two have been reported. RIPs produced from mushrooms including the golden needle mushroom, king tuber mushroom, straw mushroom, and puffball mushroom are also discussed in addition to a type II RIP from the mushroom Polyporus umbellatus. Bacterial (Spiroplasma) RIPs associated with the fruitfly, Shiga toxin, and Streptomyces coelicolor RIP are also dealt with. The aforementioned proteins display a diversity of molecular weights, amino acid sequences, and mechanisms of action. Some of them are endowed with exploitable antipathogenic activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| | - Hui Bao
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | - Gene Chi Wai Man
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- Department of Microbiology, China Agricultural University, Beijing, China
| | - Suzhen Guan
- Department of Social Medicine, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, and Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing, China
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, Poland
| | - Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chunman Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Barashkova AS, Rogozhin EA. Isolation of antimicrobial peptides from different plant sources: Does a general extraction method exist? PLANT METHODS 2020; 16:143. [PMID: 33110440 PMCID: PMC7585225 DOI: 10.1186/s13007-020-00687-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/17/2020] [Indexed: 05/06/2023]
Abstract
Plants are good sources of biologically active compounds with antimicrobial activity, including polypeptides. Antimicrobial peptides (AMPs) represent one of the main barriers of plant innate immunity to environmental stress factors and are attracting much research interest. There are some extraction methods for isolation of AMPs from plant organs based on the type of extractant and initial fractionation stages. But most methods are directed to obtain some specific structural types of AMPs and do not allow to understand the molecular diversity of AMP inside a whole plant. In this mini-review, we suggest an optimized scheme of AMP isolation from plants followed by obtaining a set of peptides belonging to various structural families. This approach can be performed for large-scale screening of plants to identify some novel or homologous AMPs for fundamental and applied studies.
Collapse
Affiliation(s)
- Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow, Russia 117997
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow, Russia 117997
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow, Russia 119021
| |
Collapse
|
14
|
Zhang J, Payne CD, Pouvreau B, Schaefer H, Fisher MF, Taylor NL, Berkowitz O, Whelan J, Rosengren KJ, Mylne JS. An Ancient Peptide Family Buried within Vicilin Precursors. ACS Chem Biol 2019; 14:979-993. [PMID: 30973714 DOI: 10.1021/acschembio.9b00167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New proteins can evolve by duplication and divergence or de novo, from previously noncoding DNA. A recently observed mechanism is for peptides to evolve within a "host" protein and emerge by proteolytic processing. The first examples of such interstitial peptides were ones hosted by precursors for seed storage albumin. Interstitial peptides have also been observed in precursors for seed vicilins, but current evidence for vicilin-buried peptides (VBPs) is limited to seeds of the broadleaf plants pumpkin and macadamia. Here, an extensive sequence analysis of vicilin precursors suggested that peptides buried within the N-terminal region of preprovicilins are widespread and truly ancient. Gene sequences indicative of interstitial peptides were found in species from Amborellales to eudicots and include important grass and legume crop species. We show the first protein evidence for a monocot VBP in date palm seeds as well as protein evidence from other crops including the common tomato, sesame and pumpkin relatives, cucumber, and the sponge loofah ( Luffa aegyptiaca). Their excision was consistent with asparaginyl endopeptidase-mediated maturation, and sequences were confirmed by tandem mass spectrometry. Our findings suggest that the family is large and ancient and that based on the NMR solution structures for loofah Luffin P1 and tomato VBP-8, VBPs adopt a helical hairpin fold stapled by two internal disulfide bonds. The first VBPs characterized were a protease inhibitor, antimicrobials, and a ribosome inactivator. The age and evolutionary retention of this peptide family suggest its members play important roles in plant biology.
Collapse
Affiliation(s)
| | - Colton D. Payne
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Hanno Schaefer
- Department of Ecology and Ecosystem Management, Plant Biodiversity Research, Technical University of Munich, 85354, Freising, Germany
| | | | | | - Oliver Berkowitz
- Department of Animal, Plant, and Soil Sciences, School of Life Sciences and ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086 Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Sciences, School of Life Sciences and ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086 Australia
| | - K. Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
15
|
He W, Yan J, Sui F, Wang S, Su X, Qu Y, Yang Q, Guo H, Ji M, Lu W, Shao Y, Hou P. Turning a Luffa Protein into a Self-Assembled Biodegradable Nanoplatform for Multitargeted Cancer Therapy. ACS NANO 2018; 12:11664-11677. [PMID: 30335959 DOI: 10.1021/acsnano.8b07079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The peptide-derived self-assembly platform has attracted increasing attention for its great potential to develop into multitargeting nanomedicines as well as its inherent biocompatibility and biodegradability. However, their clinical application potentials are often compromised by low stability, weak membrane penetrating ability, and limited functions. Herein, inspired by a natural protein from the seeds of Luffa cylindrica, we engineered via epitope grafting and structure design a hybrid peptide-based nanoplatform, termed Lupbin, which is capable of self-assembling into a stable superstructure and concurrently targeting multiple protein-protein interactions (PPIs) located in cytoplasm and nuclei. We showed that Lupbin can efficiently penetrate cell membrane, escape from early endosome-dependent degradation, and subsequently disassemble into free monomers with wide distribution in cytosol and nucleus. Importantly, Lupbin abrogated tumor growth and metastasis through concurrent blockade of the Wnt/β-catenin signaling and reactivation of the p53 signaling, with a highly favorable in vivo biosafety profile. Our strategy expands the application of self-assembled nanomedicines into targeting intercellular PPIs, provides a potential nanoplatform with high stability for multitargeted cancer therapy, and likely reinvigorates the development of peptide-based therapeutics for the treatment of different human diseases including cancer.
Collapse
Affiliation(s)
- Wangxiao He
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Jin Yan
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Fang Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Xi Su
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Yiping Qu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Qingchen Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Hui Guo
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Meiju Ji
- Center for Translational Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Yongping Shao
- Frontier Institute of Science and Technology, Center for Translational Medicine, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| |
Collapse
|
16
|
Characterization of Hydroxyproline-Containing Hairpin-Like Antimicrobial Peptide EcAMP1-Hyp from Barnyard Grass ( Echinochloa crusgalli L.) Seeds: Structural Identification and Comparative Analysis of Antifungal Activity. Int J Mol Sci 2018; 19:ijms19113449. [PMID: 30400225 PMCID: PMC6274906 DOI: 10.3390/ijms19113449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/04/2022] Open
Abstract
Herein, we describe a modified form of the antimicrobial hairpin-like peptide EcAMP1, isolated from barnyard grass (E. crusgalli) seeds, which is structurally characterized by a combination of high-pressure liquid chromatography, mass spectrometry, and automated Edman sequencing. This derivate has a single amino acid substitution (Pro19Hyp) in the second α-helical region of the molecule, which is critical for the formation of the hydrophobic core and the secondary structure elements. Comparing the antifungal activity of these two peptides, we found that the modified EcAMP1-Hyp had a significantly weaker activity towards the most-sensitive plant pathogenic fungus Fusarium solani. Molecular dynamics simulations and in vitro binding to the commercial polysaccharides allowed us to conclude that the Pro-19 residue is important for binding to carbohydrates located in the spore cell wall and it chiefly exhibits a fungistatic action representing the hyphal growth inhibition. These data are novel and significant for understanding a role of α-hairpinins in plant immunity.
Collapse
|
17
|
Rogozhin E, Ryazantsev D, Smirnov A, Zavriev S. Primary Structure Analysis of Antifungal Peptides from Cultivated and Wild Cereals. PLANTS 2018; 7:plants7030074. [PMID: 30213105 PMCID: PMC6160967 DOI: 10.3390/plants7030074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Cereal-derived bioactive peptides with antimicrobial activity have been poorly explored compared to those from dicotyledonous plants. Furthermore, there are a few reports addressing the structural differences between antimicrobial peptides (AMPs) from cultivated and wild cereals, which may shed light on significant varieties in the range and level of their antimicrobial activity. We performed a primary structure analysis of some antimicrobial peptides from wild and cultivated cereals to find out the features that are associated with the much higher antimicrobial resistance characteristic of wild plants. In this review, we identified and analyzed the main parameters determining significant antifungal activity. They relate to a high variability level in the sequences of C-terminal fragments and a high content of hydrophobic amino acid residues in the biologically active defensins in wild cereals, in contrast to AMPs from cultivated forms that usually exhibit weak, if any, activity. We analyzed the similarity of various physicochemical parameters between thionins and defensins. The presence of a high divergence on a fixed part of any polypeptide that is close to defensins could be a determining factor. For all of the currently known hevein-like peptides of cereals, we can say that the determining factor in this regard is the structure of the chitin-binding domain, and in particular, amino acid residues that are not directly involved in intermolecular interaction with chitin. The analysis of amino acid sequences of alpha-hairpinins (hairpin-like peptides) demonstrated much higher antifungal activity and more specificity of the peptides from wild cereals compared with those from wheat and corn, which may be associated with the presence of a mini cluster of positively charged amino acid residues. In addition, at least one hydrophobic residue may be responsible for binding to the components of fungal cell membranes.
Collapse
Affiliation(s)
- Eugene Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.
| | - Dmitry Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | - Alexey Smirnov
- Department of Plant Protection Timiryazev Russian Agricultural University, ul. Timiryazevskaya 49, 127550 Moscow, Russia.
| | - Sergey Zavriev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| |
Collapse
|
18
|
Barkhordari F, Raigani M, Garoosi YT, Mahboudi F, Davami F. Optimization of EnBase Fed-Batch Cultivation to Improve Soluble Fraction Ratio of α-Luffin Ribosome Inactivating Protein. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1482. [PMID: 30555837 PMCID: PMC6217263 DOI: 10.21859/ijb.1482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/04/2017] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Background The increase of the protein expression via ribosomal manipulation is one of the suggested cellular mechanisms involved in EnBase fed-batch mode of cultivation. However, this system has not been implemented for cytotoxic proteins. Objectives Here, the expression pattern of α-Luffin, a ribosome inactivation protein (RIP) with an innate toxicity, was investigated in EnBase system and the effect of low temperature cultivation on the increase of α-Luffin solubility was determined. Materials and Methods The encoding cDNA for mature α-Luffin was synthesized and subcloned into pET28a plasmid under the control of T7 promoter. The E. coli expression yield in EnBase® Flo fed-batch system was compared with traditional batch mode at two temperatures: 25 °C and 30 °C. Sampling was performed at several time intervals and solubility of recombinant-protein was checked on SDS-PAGE in pellet and supernatant samples. The purification of recombinant protein was performed by Ni-NTA column. Results In fed-batch cultivation mode, the early incubation time was desirable at 30 °C whereas the maximum amount of soluble α-Luffin was achieved from the extended protein synthesis period (12 and 24h post induction) at 25 °C. Conclusions Our founding showed that EnBase had a greater efficacy in producing higher soluble protein ratios compared to batch cultivation growth rate, however for cytotoxic proteins, incubation temperature and time need to be optimized. Owing to the advantages of natural toxins from RIP family for producing anticancer immune-conjugates, well optimization of this protein expression is of importance regarding industrial aspects. The optimized condition proposed here is promising in terms of large scale soluble production of α-Luffin without the need for refolding.
Collapse
Affiliation(s)
- Farzaneh Barkhordari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biology, Faculty of Sciences, Science and Technology Branch, Islamic Azad University, Tehran, Iran
| | - Mozhgan Raigani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Cui X, Du J, Li J, Wang Z. Inhibitory site of α-hairpinin peptide from tartary buckwheat has no effect on its antimicrobial activities. Acta Biochim Biophys Sin (Shanghai) 2018; 50:408-416. [PMID: 29509838 DOI: 10.1093/abbs/gmy015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/29/2018] [Indexed: 11/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) are known to play important roles in the innate host defense mechanisms of most living organisms. Protease inhibitors from plants potently inhibit the growth of a variety of pathogenic bacteria and fungi. Therefore, there are excellent candidates for the development of novel antimicrobial agents. In this study, an antimicrobial peptide derived from tartary buckwheat seeds (FtAMP) was obtained by gene cloning, expression and purification, which exhibited inhibitory activity toward trypsin. Furthermore, the relationship between the antimicrobial and inhibitory activities of FtAMP was investigated. Two mutants (FtAMP-R21A and FtAMP-R21F) were generated through site-directed mutagenesis. Inhibitory activity analysis showed that both FtAMP-R21A and FtAMP-R21F lost trypsin-inhibitory activity. However, FtAMP-R21A and FtAMP-R21F showed novel inhibitory activities against elastase and α-chymotrypsin, respectively, suggesting that Arg-21 in the inhibitory site loop is specific for the inhibitory activity of FtAMP against trypsin. Antimicrobial assays showed that all three peptides exhibited strong antifungal activity against Trichoderma koningii, Rhizopus sp., and Fusarium oxysporum. These results showed that the changes in FtAMP inhibitory site have no effect on their antifungal properties.
Collapse
Affiliation(s)
- Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jingjing Du
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jiao Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Umehara M, Yamamoto T, Ito R, Nonaka S, Yanae K, Sai M. Effects of phenolic constituents of Luffa cylindrica on UVB-damaged mouse skin and on dome formation by MDCK I cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Zhu F, Zhou YK, Ji ZL, Chen XR. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks. FRONTIERS IN PLANT SCIENCE 2018; 9:146. [PMID: 29479367 PMCID: PMC5811460 DOI: 10.3389/fpls.2018.00146] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/25/2018] [Indexed: 05/20/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS) against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can be beneficial to engineer crops tolerance to biotic stress.
Collapse
|
22
|
Recombinant Immunotoxin Therapy of Glioblastoma: Smart Design, Key Findings, and Specific Challenges. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7929286. [PMID: 28752098 PMCID: PMC5511670 DOI: 10.1155/2017/7929286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.
Collapse
|
23
|
Błażejewska K, Kapusta M, Zielińska E, Tukaj Z, Chincinska IA. Mature Luffa Leaves ( Luffa cylindrica L.) as a Tool for Gene Expression Analysis by Agroinfiltration. FRONTIERS IN PLANT SCIENCE 2017; 8:228. [PMID: 28270826 PMCID: PMC5318407 DOI: 10.3389/fpls.2017.00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 05/23/2023]
Abstract
We exploited the potential of cucurbits for ectopic gene expression. Agroinfiltration is a simple and commonly used method to obtain transient expression of foreign genes in plants. In contrast to in vitro transformation techniques, agroinfiltration can be used for genetic modification of mature plant tissues. Although the cucurbits are commonly used as model plants for molecular biology and biotechnology studies, to date there are no literature sources on the possibility of transient gene expression in mature cucurbit tissues. Our research has shown that mature leaves of Luffa cylindrica L. (luffa), in contrast to other cucurbit species, can be successfully transiently transformed with Agrobacterium tumefaciens. We efficiently transformed luffa leaves with a reporter gene encoding β-glucuronidase (GUS). The GUS activity in transiently transformed leaf tissues was detected within 24 h after the infiltration with bacteria. Additionally, we have shown that the activity of a transiently expressed the GUS gene can be monitored directly in the EDTA-exudates collected from the cut petioles of the agroinfiltrated leaves. The results suggest that luffa leaves can be useful as a plant expression system for studies of physiological and biochemical processes in cucurbits.
Collapse
Affiliation(s)
- Kamila Błażejewska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Elżbieta Zielińska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| | - Izabela A. Chincinska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of GdańskGdańsk, Poland
| |
Collapse
|
24
|
Slavokhotova AA, Shelenkov AA, Korostyleva TV, Rogozhin EA, Melnikova NV, Kudryavtseva AV, Odintsova TI. Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing. Biochimie 2016; 135:15-27. [PMID: 28038935 DOI: 10.1016/j.biochi.2016.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022]
Abstract
Being perfectly adapted to diverse environments, chickweed (Stellaria media (L.) Vill), a ubiquitous garden weed, grows widely in Europe and North America. As opposed to the model plants, many weeds, and S. media in particular, have been poorly studied, although they are likely to contain promising components of immunity and novel resistance genes. In this study, for the first time RNA-seq analysis of healthy and infected with Fusarium oxysporum chickweed seedlings, as well as de novo transcriptome assembly and annotation, are presented. Note, this research is focused on antimicrobial peptides (AMPs), the major components of plant immune system. Using custom software developed earlier, 145 unique putative AMPs (pAMPs) including defensins, thionins, hevein-like peptides, snakins, alpha-hairpinins, LTPs, and cysteine-rich peptides with novel cysteine motifs were predicted. Furthermore, changes in AMP expression profile in response to fungal infection were traced. In addition, the comparison of chickweed AMP repertoire with those of other Caryophyllaceae plants whose transcriptomes are presently available is made. As a result, alpha-hairpinins and hevein-like peptides which display characteristic modular structure appear to be specific AMPs distinguishing S. media from Dianthus caryophyllus, Silene vulgaris, and Silene latifolia. Finally, revealing several AMPs with proven antimicrobial activity gives opportunity to conclude that the presented method of AMP repertoire analysis reveals highly active AMPs playing vital role in plant immunity.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., 119991 Moscow, Russian Federation.
| | - Andrey A Shelenkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., 119991 Moscow, Russian Federation.
| | - Tatyana V Korostyleva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., 119991 Moscow, Russian Federation.
| | - Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russian Federation.
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow 119991, Russian Federation.
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Str., Moscow 119991, Russian Federation.
| | - Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., 119991 Moscow, Russian Federation.
| |
Collapse
|
25
|
Sousa DA, Porto WF, Silva MZ, da Silva TR, Franco OL. Influence of Cysteine and Tryptophan Substitution on DNA-Binding Activity on Maize α-Hairpinin Antimicrobial Peptide. Molecules 2016; 21:E1062. [PMID: 27529210 PMCID: PMC6273665 DOI: 10.3390/molecules21081062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 12/03/2022] Open
Abstract
For almost four decades, antimicrobial peptides have been studied, and new classes are being discovered. However, for therapeutic use of these molecules, issues related to the mechanism of action must be answered. In this work, the antimicrobial activity of the hairpinin MBP-1 was studied by the synthesis of two variants, one replacing cysteines and one tryptophan with alanine. Antibacterial activity was abolished in both variants. No membrane disturbance, even in concentrations higher than those required to inhibit the bacteria, was observed in SEM microscopy. The gel retardation assay showed that MBP-1 possesses a higher DNA-binding ability than variants. Finally, molecular modelling showed that the lack of cysteines resulted in structure destabilization and lack of tryptophan resulted in a less flexible peptide, with less solvent assessable surface area, both characteristics that could contribute to absence of activity. In summary, the data here reported add more information about the multiple mechanisms of action of α-hairpinins.
Collapse
Affiliation(s)
- Daniel A Sousa
- Programa de Pós Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790-160, Brazil.
| | - William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790-160, Brazil.
| | - Maria Z Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790-160, Brazil.
| | - Tatiane R da Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790-160, Brazil.
| | - Octávio L Franco
- Programa de Pós Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790-160, Brazil.
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Catolica Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
26
|
Slavokhotova AA, Shelenkov AA, Odintsova TI. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. PLANT MOLECULAR BIOLOGY 2015; 89:203-14. [PMID: 26369913 DOI: 10.1007/s11103-015-0346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/14/2015] [Indexed: 05/06/2023]
Abstract
Leymus arenarius is a unique wild growing Poaceae plant exhibiting extreme tolerance to environmental conditions. In this study we for the first time performed whole-transcriptome sequencing of lymegrass seedlings using Illumina platform followed by de novo transcriptome assembly and functional annotation. Our goal was to identify transcripts encoding antimicrobial peptides (AMPs), one of the key components of plant innate immunity. Using the custom software developed for this study that predicted AMPs and classified them into families, we revealed more than 160 putative AMPs in lymegrass seedlings. We classified them into 7 families based on their cysteine motifs and sequence similarity. The families included defensins, thionins, hevein-like peptides, snakins, cyclotide, alfa-hairpinins and LTPs. This is the first communication about the presence of almost all known AMP families in trascriptomic data of a single plant species. Additionally, cysteine-rich peptides that potentially represent novel families of AMPs were revealed. We have confirmed by RT-PCR validation the presence of 30 transcripts encoding selected AMPs in lymegrass seedlings. In summary, the presented method of pAMP prediction developed by us can be applied for relatively fast and simple screening of novel components of plant immunity system and is well suited for whole-transcriptome or genome analysis of uncharacterized plants.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991.
| | - Andrey A Shelenkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991
| | - Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991
| |
Collapse
|
27
|
Schrot J, Weng A, Melzig MF. Ribosome-inactivating and related proteins. Toxins (Basel) 2015; 7:1556-615. [PMID: 26008228 PMCID: PMC4448163 DOI: 10.3390/toxins7051556] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs.
Collapse
Affiliation(s)
- Joachim Schrot
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Alexander Weng
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| |
Collapse
|
28
|
Slavokhotova AA, Rogozhin EA, Musolyamov AK, Andreev YA, Oparin PB, Berkut AA, Vassilevski AA, Egorov TA, Grishin EV, Odintsova TI. Novel antifungal α-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution. PLANT MOLECULAR BIOLOGY 2014; 84:189-202. [PMID: 24081691 DOI: 10.1007/s11103-013-0127-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/03/2013] [Indexed: 05/06/2023]
Abstract
Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C(1)X3C(2)XnC(3)X3C(4)), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C(1)-C(4) and C(2)-C(3). Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal "tail" regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S-S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, 119991, Moscow, Russian Federation,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ryazantsev DY, Rogozhin EA, Dimitrieva TV, Drobyazina PE, Khadeeva NV, Egorov TA, Grishin EV, Zavriev SK. A novel hairpin-like antimicrobial peptide from barnyard grass (Echinochloa crusgalli L.) seeds: Structure-functional and molecular-genetics characterization. Biochimie 2013; 99:63-70. [PMID: 24275143 DOI: 10.1016/j.biochi.2013.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/08/2013] [Indexed: 11/26/2022]
Abstract
A novel plant hairpin-like defense polypeptide named EcAMP3 was isolated from latent barnyard grass (Echinochloa crusgalli L.) seeds. The native peptide and its recombinant analogue were characterized. EcAMP3 displays antifungal and antibacterial activity in vitro. The gene family encoding EcAMPs precursor protein was also characterized; the genes and pseudogenes of this family show 97-100% homology. Every member of EcAMPs precursor family contains seven identical cysteine motifs: C1XXXC2(11-13)C3XXXC4. One of those motifs corresponds to the isolated peptide. EcAMP3 is the first member of the plant hairpin-like peptide family that inhibits the growth of phytopathogenic bacteria. Obtained results can explain the nature of the complex resistance of barnyard grass to a variety of pathogenic microorganisms.
Collapse
Affiliation(s)
- Dmitry Yu Ryazantsev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| | - Eugene A Rogozhin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| | - Tatiana V Dimitrieva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| | - Polina E Drobyazina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation; All-Russian Research Institute of Biotechnology, Russian Academy of Agricultural Sciences, ul. Timiryazevskaya 42, 127550 Moscow, Russian Federation.
| | - Natalia V Khadeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, 117809 Moscow, Russian Federation.
| | - Tsezi A Egorov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | - Eugene V Grishin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| | - Sergey K Zavriev
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation.
| |
Collapse
|
30
|
Nuchsuk C, Wetprasit N, Roytrakul S, Choowongkomon K, T-Thienprasert N, Yokthongwattana C, Arpornsuwan T, Ratanapo S. Bioactivities of Jc-SCRIP, a Type 1 Ribosome-Inactivating Protein fromJatropha curcasSeed Coat. Chem Biol Drug Des 2013; 82:453-62. [DOI: 10.1111/cbdd.12175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/24/2013] [Accepted: 05/30/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Chanthakan Nuchsuk
- Department of Biochemistry; Faculty of Science; Kasetsart University; 50 Ngamwongwan Rd. Chatujak Bangkok 10900 Thailand
| | - Nuanchawee Wetprasit
- Department of Biotechnology; Faculty of Science; Ramkhamhaeng University; Ramkamhaeng Rd. Bangkapi Bangkok 10240 Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency (NSTDA); 113 Clong-Luang Pathumthani 12120 Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry; Faculty of Science; Kasetsart University; 50 Ngamwongwan Rd. Chatujak Bangkok 10900 Thailand
| | - Nattanan T-Thienprasert
- Department of Biochemistry; Faculty of Science; Kasetsart University; 50 Ngamwongwan Rd. Chatujak Bangkok 10900 Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry; Faculty of Science; Kasetsart University; 50 Ngamwongwan Rd. Chatujak Bangkok 10900 Thailand
| | - Theerakul Arpornsuwan
- Department of Medical Technology; Faculty of Allied Health Sciences; Thammasat University; Rangsit, Pathumthani 12120 Thailand
| | - Sunanta Ratanapo
- Department of Biochemistry; Faculty of Science; Kasetsart University; 50 Ngamwongwan Rd. Chatujak Bangkok 10900 Thailand
| |
Collapse
|
31
|
Liu SL, He W, Wang RP, Li Z, Wu J, Zhao Y, Hu XH. Effects of recombinant hIL-2-Luffin P1 immunotoxin combining with arotinoid ethylester on the proliferation and apoptosis of Hut-78 cells. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-012-0041-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochem J 2012; 446:69-77. [DOI: 10.1042/bj20120548] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg19. The inhibition constant was determined for BWI-2c against trypsin (1.7×10−10 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.
Collapse
|
33
|
Synthesis and purification of a toxin-linked conjugate targeting epidermal growth factor receptor in Escherichia coli. Protein Expr Purif 2012; 83:1-7. [DOI: 10.1016/j.pep.2012.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 01/01/2023]
|
34
|
Nolde SB, Vassilevski AA, Rogozhin EA, Barinov NA, Balashova TA, Samsonova OV, Baranov YV, Feofanov AV, Egorov TA, Arseniev AS, Grishin EV. Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J Biol Chem 2011; 286:25145-53. [PMID: 21561864 DOI: 10.1074/jbc.m110.200378] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study presents purification, activity characterization, and (1)H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold.
Collapse
Affiliation(s)
- Svetlana B Nolde
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russian Federation
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ng YM, Yang Y, Sze KH, Zhang X, Zheng YT, Shaw PC. Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica). J Struct Biol 2011; 174:164-72. [DOI: 10.1016/j.jsb.2010.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 01/29/2023]
|
36
|
Liu L, Wang R, He W, He F, Huang G. Cloning and soluble expression of mature alpha-luffin from Luffa cylindrica and its antitumor activities in vitro. Acta Biochim Biophys Sin (Shanghai) 2010; 42:585-92. [PMID: 20705600 DOI: 10.1093/abbs/gmq056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Luffin-a, a single-chain Type I ribosome-inactivating protein, which is known to be the most toxic of the luffin family and apparently possesses antitumor activity, was isolated from Luffa cylindrica seeds. In the present study, mature alpha-luffin was cloned from L. cylindrica and it was found that mature alpha-luffin shared 96% amino acid similarity with luffin-a. The recombinant mature alpha-luffin was successfully expressed in a partly soluble form in Escherichia coli after optimization of expression conditions. The effects of the recombinant protein on bacterial growth and its in vitro protein synthesis inhibition activity were tested. Then, its antitumor activities against different human cancer cell lines were evaluated by CCK-8 assay and flow cytometry. The results indicated that the recombinant alpha-luffin was slightly toxic to E. coli. It could inhibit protein synthesis in the rabbit reticulocyte lysate system. At the same time, it inhibited the growth of the tumor cell lines in a dose- and time-dependent manner. Additionally, recombinant alpha-luffin was able to induce cell death by apoptosis. The cytotoxicity of alpha-luffin towards tumor cells makes it a potential antitumor agent.
Collapse
Affiliation(s)
- Liling Liu
- Department of Dermatology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
37
|
Shu SH, Xie GZ, Guo XL, Wang M. Purification and characterization of a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii Maxim. Protein Expr Purif 2009; 67:120-5. [DOI: 10.1016/j.pep.2009.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
|
38
|
Wang R, Gan C, Gao W, He W, Wang X, Peng Y, Zhuo J, Tan J, Peng X, Wu J, Luo G. A novel recombinant immunotoxin with the smallest ribosome-inactivating protein Luffin P1: T-cell cytotoxicity and prolongation of allograft survival. J Cell Mol Med 2009; 14:578-86. [PMID: 19583807 PMCID: PMC3823457 DOI: 10.1111/j.1582-4934.2009.00840.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In the creation of stable tolerance to MHC-incompatible allografts, reducing the large mass of donor-reactive cells via apoptosis is often required. Apoptosis induction by immunotoxins targeting surface molecules specifically presented on donor-reactive cytopathic T effector (Teff) cells is a promising strategy. Traditionally, the toxin moieties are bacterial exotoxins or plant-derived ribosome-inactivating proteins (RIPs) with large molecular size and strong immunogenicity, hence causing the problems of tissue penetration, host immune reaction and quick clearance. We have identified a novel class of small molecule RIPs (<10 kD) from the seeds of the plant Luffa cylindrica. The smallest member of this family, Luffin P1, has a molecular weight of 5226.8 Da, yet possessing a highly potent inhibitory activity on cell-free protein synthesis with IC50 of 0.88 nM. We now report a recombinant hIL-2-Luffin P1 immunotoxin, which strongly inhibited T-cell proliferation in mixed lymphocyte reaction and ConA response with IC50 of 1.8–10 nM. In vivo, hIL-2-Luffin P1 significantly prolonged the survival of major MHC-mismatched skin and kidney allografts in animal models. Thus, we demonstrate for the first time the efficacy of the smallest immunotoxin that could be further combined with other pharmacological and immunological reagents for synergistic control of pathogenic lymphocytes in immune-mediated diseases.
Collapse
Affiliation(s)
- Rupeng Wang
- Chongqing Key Lab for Diseases Proteomics, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|