1
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Dickinson PS, Calkins A, Stevens JS. Related neuropeptides use different balances of unitary mechanisms to modulate the cardiac neuromuscular system in the American lobster, Homarus americanus. J Neurophysiol 2014; 113:856-70. [PMID: 25392168 DOI: 10.1152/jn.00585.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To produce flexible outputs, neural networks controlling rhythmic motor behaviors can be modulated at multiple levels, including the pattern generator itself, sensory feedback, and the response of the muscle to a given pattern of motor output. We examined the role of two related neuropeptides, GYSDRNYLRFamide (GYS) and SGRNFLRFamide (SGRN), in modulating the neurogenic lobster heartbeat, which is controlled by the cardiac ganglion (CG). When perfused though an isolated whole heart at low concentrations, both peptides elicited increases in contraction amplitude and frequency. At higher concentrations, both peptides continued to elicit increases in contraction amplitude, but GYS caused a decrease in contraction frequency, while SGRN did not alter frequency. To determine the sites at which these peptides induce their effects, we examined the effects of the peptides on the periphery and on the isolated CG. When we removed the CG and stimulated the motor nerve with constant bursts of stimuli, both GYS and SGRN increased contraction amplitude, indicating that each peptide modulates the muscle or the neuromuscular junction. When applied to the isolated CG, neither peptide altered burst frequency at low peptide concentrations; at higher concentrations, SGRN decreased burst frequency, whereas GYS continued to have no effect on frequency. Together, these data suggest that the two peptides elicit some of their effects using different mechanisms; in particular, given the known feedback pathways within this system, the importance of the negative (nitric oxide) relative to the positive (stretch) feedback pathways may differ in the presence of the two peptides.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology and Neuroscience Program, Bowdoin College, Brunswick, Maine
| | - Andrew Calkins
- Department of Biology and Neuroscience Program, Bowdoin College, Brunswick, Maine
| | - Jake S Stevens
- Department of Biology and Neuroscience Program, Bowdoin College, Brunswick, Maine
| |
Collapse
|
3
|
Abstract
In a search for more environmentally benign alternatives to chemical pesticides, insect neuropeptides have been suggested as ideal candidates. Neuropeptides are neuromodulators and/or neurohormones that regulate most major physiological and behavioral processes in insects. The major neuropeptide structures have been identified through peptide purification in insects (peptidomics) and insect genome projects. Neuropeptide receptors have been identified and characterized in Drosophila and similar receptors are being targeted in other insects considered to be economically detrimental pests in agriculture and forestry. Defining neuropeptide action in different insect systems has been more challenging and as a consequence, identifying unique targets for potential pest control is also a challenge. In this chapter, neuropeptide biosynthesis as well as select physiological processes are examined with a view to pest control targets. The application of molecular techniques to transform insects with neuropeptide or neuropeptide receptor genes, or knockout genes to identify potential pest control targets, is a relatively new area that offers promise to insect control. Insect immune systems may also be manipulated through neuropeptides which may aid in compromising the insects ability to defend against foreign invasion.
Collapse
|
4
|
Mousley A, Maule AG, Halton DW, Marks NJ. Inter-phyla studies on neuropeptides: the potential for broad-spectrum anthelmintic and/or endectocide discovery. Parasitology 2007; 131 Suppl:S143-67. [PMID: 16569287 DOI: 10.1017/s0031182005008553] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of parasitic helminths and pest arthropod species remains an attractive target for the discovery of novel endectocide targets. Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited understanding of the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into these systems has the potential to facilitate target characterization and its offshoots (screen development and drug identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide signalling as a target system that could uncover novel endectocidal agents.
Collapse
Affiliation(s)
- A Mousley
- Parasitology Research Group, School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
5
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
6
|
Na SY, Sung DK, Kim KK, Kim KM, Kim JH, Park HH, Lee SM, Seong SI, Chang JS, Hwang JS, Kang SW, Kim HR, Lee BH. FMRFamide-Expressing Efferent Neurons in Eighth Abdominal Ganglion Innervate Hindgut in the Silkworm, Bombyx mori. Zoolog Sci 2004; 21:805-11. [PMID: 15333991 DOI: 10.2108/zsj.21.805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tetrapeptide FMRFamide is known to affect both neural function and gut contraction in a wide variety of invertebrates and vertebrates, including insect species. This study aimed to find a pattern of innervation of specific FMRFamide-labeled neurons from the abdominal ganglia to the hindgut of the silkworm Bombyx mori using the immunocytochemical method. In the 1st to the 7th abdominal ganglia, labeled efferent neurons that would innervate the hindgut could not be found. However, in the 8th abdominal ganglion, three pairs of labeled specific efferent neurons projected axons into the central neuropil to eventually innervate the hindgut. Both axons of two pairs of labeled cell bodies in the lateral rind and axons of one pair of labeled cell bodies in the posterior rind extended to the central neuropil and formed contralateral tracts of a labeled neural tract with a semi-circular shape. These labeled axons ran out to one pair of bilateral cercal nerves that extended out from the posterior end of the 8th abdominal ganglion and finally to the innervated hindgut. These results provide valuable information for detecting the novel function of FMRFamide-related peptides in metamorphic insect species.
Collapse
Affiliation(s)
- So Young Na
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mispelon M, Thakur K, Chinn L, Owen R, Nichols R. A nonpeptide provides insight into mechanisms that regulate Drosophila melanogaster heart contractions. Peptides 2003; 24:1599-605. [PMID: 14706539 DOI: 10.1016/j.peptides.2003.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report the effect of a nonpeptide, benzethonium chloride (bztc), on Drosophila melanogaster larval, pupal, and adult heart rates in vivo. Benzethonium chloride reduced the frequency of spontaneous contractions in the D. melanogaster pupal heart, but not in the larval heart or the adult heart as measured in noninvasive whole animal preparations. When applied directly to the D. melanogaster heart, in the absence of hemolymph, bztc reduced the frequency of spontaneous contractions in larval, pupal, and adult hearts. These findings are consistent with the conclusion that bztc acts through or is regulated by different mechanisms in these three developmental stages. An alternative explanation is that larval hemolymph and adult hemolymph contain a material that interferes with the effect of the nonpeptide on heart contractions. Bztc mimicked the effect of the peptide dromyosuppressin (DMS) on the heart at an equivalent concentration; in contrast, 103-fold more nonpeptide is required to mimic the effect of DMS on fly gut. These findings are consistent with the presence of tissue-specific myosuppressin receptors or mechanisms.
Collapse
Affiliation(s)
- Melissa Mispelon
- Undergraduate Cell and Molecular Biology Program, Biological Chemistry Department, University of Michigan Medical School, 4444 Medical Sciences Building I, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | |
Collapse
|
8
|
Weiss T, Kreissl S, Rathmayer W. Localization of a FMRFamide-related peptide in efferent neurons and analysis of neuromuscular effects of DRNFLRFamide (DF2) in the crustacean Idotea emarginata. Eur J Neurosci 2003; 17:239-48. [PMID: 12542660 DOI: 10.1046/j.1460-9568.2003.02455.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the ventral nerve cord of the isopod Idotea emarginata, FMRFamide-immunoreactive efferent neurons are confined to pereion ganglion 5 where a single pair of these neurons was identified. Each neuron projects an axon into the ipsilateral ventral and dorsal lateral nerves, which run through the entire animal. The immunoreactive axons form numerous varicosities on the ventral flexor and dorsal extensor muscle fibres, and in the pericardial organs. To analyse the neuromuscular effects of a FMRFamide, we used the DRNFLRFamide (DF2). DF2 acted both pre- and postsynaptically. On the presynaptic side, DF2 increased transmitter release from neuromuscular endings. Postsynaptically, DF2 depolarized muscle fibres by approximately 10 mV. This effect was not observed in leg muscles of a crab. The depolarization required Ca2+, was blocked by substituting Ca2+ with Co2+, but not affected by nifedipine or amiloride. In Idotea, DF2 also potentiated evoked extensor muscle contractions. The amplitude of high K+ contractures was increased in a dose dependent manner with an EC50 value of 40 nm. In current-clamped fibres, DF2 strongly potentiated contractions evoked by current pulses exceeding excitation-contraction threshold. In voltage-clamped fibres, the inward current through l-type Ca2+ channels was increased by the peptide. The observed physiological effects together with the localization of FMRFamide-immunoreactive efferent neurons suggest a role for this type of peptidergic modulation for the neuromuscular performance in Idotea. The pre- and postsynaptic effects of DF2 act synergistically and, in vivo, all should increase the efficacy of motor input to muscles resulting in potentiation of contractions.
Collapse
Affiliation(s)
- Torsten Weiss
- Department of Biology, University of Konstanz, D 78457 Konstanz, Germany
| | | | | |
Collapse
|
9
|
Duttlinger A, Berry K, Nichols R. The different effects of three Drosophila melanogaster dFMRFamide-containing peptides on crop contractions suggest these structurally related peptides do not play redundant functions in gut. Peptides 2002; 23:1953-7. [PMID: 12431733 DOI: 10.1016/s0196-9781(02)00179-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A Drosophila melanogaster dFMRFamide gene product, TPAEDFMRFamide, decreased crop contractions. However, DPKQDFMRFamide and SDNFMRFamide, also encoded in dFMRFamide, did not affect crop motility, which suggests these peptides are not functionally redundant in the crop and their unique N-terminal structures are important for activity. TPAEDFMRFamide-specific antisera did not stain the crop, which suggests it acts as a hormone. TDVDHVFLRFamide (DMS), encoded in D. melanogaster myosuppressin, stops crop contractions. TPAEDFMRFamide and DMS each contains a RFamide C-terminus; however, their effects on crop contractions differ, which suggests that unique receptors or different ligand:receptor binding requirements exist for these structurally related peptides.
Collapse
Affiliation(s)
- Amanda Duttlinger
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| | | | | |
Collapse
|
10
|
Chartrel N, Dujardin C, Leprince J, Desrues L, Tonon MC, Cellier E, Cosette P, Jouenne T, Simonnet G, Vaudry H. Isolation, characterization, and distribution of a novel neuropeptide, Rana RFamide (R-RFa), in the brain of the European green frog Rana esculenta. J Comp Neurol 2002; 448:111-27. [PMID: 12012424 DOI: 10.1002/cne.10253] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel neuropeptide of the RFamide peptide family was isolated in pure form from a frog (Rana esculenta) brain extract by using reversed-phase high performance liquid chromatography in combination with a radioimmunoassay for mammalian neuropeptide FF (NPFF). The primary structure of the peptide was established as Ser-Leu-Lys- Pro-Ala-Ala-Asn-Leu-Pro-Leu- Arg-Phe-NH(2). The sequence of this neuropeptide, designated Rana RFamide (R-RFa), exhibits substantial similarities with those of avian LPLRFamide, gonadotropin-inhibitory hormone, and human RFRP-1. The distribution of R-RFa was investigated in the frog central nervous system by using an antiserum directed against bovine NPFF. In the brain, immunoreactive cell bodies were primarily located in the hypothalamus, i.e., the anterior preoptic area, the suprachiasmatic nucleus, and the dorsal and ventral hypothalamic nuclei. The most abundant population of R-RFa-containing neurons was found in the periependymal region of the suprachiasmatic nucleus. R-RFa- containing fibers were widely distributed throughout the brain from the olfactory bulb to the brainstem, and were particularly abundant in the external layer of the median eminence. In the spinal cord, scattered immunoreactive neurons were found in the gray matter. R-RFa-positive processes were found in all regions of the spinal cord, but they were more abundant in the dorsal horn. This study provides the first characterization of a member of the RFamide peptide family in amphibians. The occurrence of this novel neuropeptide in the hypothalamus and median eminence and in the dorsal region of the spinal cord suggests that, in frog, R-RFa may exert neuroendocrine activities and/or may be involved in the transmission of nociceptive stimuli.
Collapse
Affiliation(s)
- Nicolas Chartrel
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U-413, UA CNRS, University of Rouen, 76821 Mont- Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee E, Lange A, Orchard I, Fusé M, Tobe SS, Bendena WG, Donly BC. Characterization and baculovirus-directed expression of a myosuppressin encoding cDNA from the true armyworm, Pseudaletia unipuncta. Peptides 2002; 23:747-56. [PMID: 11897394 DOI: 10.1016/s0196-9781(01)00668-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insect myosuppressins are a highly conserved sub-family of peptides which are primarily characterized by the ability to suppress contraction of visceral muscles in a variety of insect species. We have isolated a cDNA from the true armyworm, Pseudaletia unipuncta, that encodes a prohormone containing a peptide identical to ManducaFLRFamide. We have shown that this myosuppressin gene appears to be expressed in late larval and adult insects. In Manduca sexta, a number of extended-FLRFamide peptides have previously been purified including ManducaFLRFamide, F7D (DPSFLRFamide), F7G (GNSFLRFamide) and two larger peptides F24 and F39 that contain the shorter ManducaFLRFamide sequence at their C-terminus. Comparison with the true armyworm prepropeptide characterized here identifies F24 and F39 as partially processed products from the same precursor. Expression in the true armyworm was shown by in situ hybridization to occur in over 150 cells throughout the adult brain and nerve cord, and also to occur in both open and closed endocrine type cells of the gut. Overexpression of the P. unipuncta FLRFamide cDNA from a baculovirus vector in cabbage looper caterpillars was used to assess the potential for myosuppressin expression as a means of enhancing virus efficacy. Viral expression of the armyworm prohormone cDNA resulted in raised levels of RFamide-like products in the hemolymph of infected insects, but the products were found to be chemically distinguishable from authentic mature peptide and probably represent partially processed hormone.
Collapse
Affiliation(s)
- E Lee
- Department of Biology, Queen's University, K7L 3N6, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
A putative SchistoFLRFamide receptor in CNS membrane preparations of Locusta migratoria was characterized by cold competition binding and kinetic binding assays using [125I][Y(1)]SchistoFLRFamide ([125I]YDVDHVFLRFamide) as a radioligand. Binding to this site was saturable, specific, reversible, and of high-affinity. Data fit to a single-site binding model by non-linear regression (r(2) = 0.99) estimated K(d) = 1.73 +/- 0.45 x 10(-9) M and B(max) = 49.0 +/- 12.2 fmol.mg(-1) tissue. Total binding of [125I][Y(1)]SchistoFLRFamide to membrane preparations was reduced in the presence of GTPgammaS, an indication that the putative receptor is G protein-coupled. Structure-activity studies determined that the minimum sequence required for binding was HVFLRFamide. Other aspects of the ligand receptor interaction were also examined.
Collapse
Affiliation(s)
- Rodney Kwok
- Department of Zoology, University of Toronto, Ontario, M5S 3G5, Toronto, Canada.
| | | |
Collapse
|
13
|
Abstract
As part of continuous research on the neurobiology of the locust, the distribution and functions of neurotransmitter candidates in the nervous system have been analyzed particularly well. In the locust brain, acetylcholine, glutamate, gamma-aminobutyric acid (GABA), and the biogenic amines serotonin, dopamine, octopamine, and histamine most likely serve a transmitter function. Increasing evidence, furthermore, supports a signalling function for the gaseous molecule nitric oxide, but a role for neuroptides is so far suggested only by immunocytochemistry. Acetylcholine, glutamate, and GABA appear to be present in large numbers of interneurons. As in other insects, antennal sensory afferents might be cholinergic, while glutamate is the transmitter candidate of antennal motoneurons. GABA is regarded as the principle inhibitory transmitter of the brain, which is supported by physiological studies in the antennal lobe. The cellular distribution of biogenic amines has been analyzed particularly well, in some cases down to physiologically characterized neurons. Amines are present in small numbers of interneurons, often with large branching patterns, suggesting neuromodulatory roles. Histamine, furthermore, is the transmitter of photoreceptor neurons. In addition to these "classical transmitter substances," more than 60 neuropeptides were identified in the locust. Many antisera against locust neuropeptides label characteristic patterns of neurosecretory neurons and interneurons, suggesting that these peptides have neuroactive functions in addition to hormonal roles. Physiological studies supporting a neuroactive role, however, are still lacking. Nitric oxide, the latest addition to the list of neurotransmitter candidates, appears to be involved in early stages of sensory processing in the visual and olfactory systems.
Collapse
Affiliation(s)
- Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, Universität Marburg, D-35032 Marburg, Germany.
| |
Collapse
|
14
|
Abstract
FMRFamide-related peptides (FaRPs) are expressed throughout the animal kingdom and regulate a multitude of physiological activities. FaRPs have an RFamide C-terminal consensus structure that is important for interaction with the receptor. The ease of genetic manipulation and availability of genomic sequences makes Drosophila melanogaster an important experimental organism. Multiple classes of FaRPs encoded by different genes have been identified within this species. Here, we review FMRFamide-containing peptides encoded by the D. melanogaster FMRFamide gene in order to review the data on the expression, regulation, and activity of these peptides as well as acknowledge further endeavors required to elucidate FaRP signaling.
Collapse
Affiliation(s)
- Janna Merte
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1048, USA
| | | |
Collapse
|
15
|
Rastogi RK, D'Aniello B, Pinelli C, Fiorentino M, Di Fiore MM, Di Meglio M, Iela L. FMRFamide in the amphibian brain: a comprehensive survey. Microsc Res Tech 2001; 54:158-72. [PMID: 11458399 DOI: 10.1002/jemt.1130] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mapping of FMRFamidergic neural circuitry in the amphibian brain has been done by immunohistochemical methods. Comparative evidence suggests that there are similarities and differences in the overall pattern of distribution of FMRFamide-ir elements in the brain among the three amphibian orders and within each order. FMRFamide is expressed in neurons in some circumscribed areas of the brain. A part of these neurons is concentrated in classical neurosecretory areas of the hypothalamus in a bilaterally symmetrical fashion. Similar neurons occur occasionally in the midbrain, but are virtually absent from the hindbrain. Anurans are unique among amphibians to show FMRFamide neurons in the medial septum and diagonal band of Broca. A viviparous gymnophione is known to possess a small population of such neurons in the dorsal thalamus. Together, the FMRFamide neurons contribute to an extensive fiber network throughout the amphibian brain. Descriptive developmental studies suggest that the rostral forebrain-located FMRFamide neurons originate in the olfactory placode and then migrate into the brain along the route of the vomeronasal-olfactory-terminal nerve complex. Olfactory placodal ablation in an anuran and a urodele provide experimental support to this contention. Other FMRFamide neuronal cell groups, in the hypothalamus and dorsal thalamus, are supposed to arise from non-placodal precursors. The neuroanatomical distribution (projection of immunoreactive processes to areas of the fore-, mid-, and hindbrain as well as to cerebrospinal fluid, co-localization with other neuropeptides, and presence in the median eminence) has furnished morphological correlates of possible functions of FMRFamide in the amphibian CNS. While amphibian FMRFamide-like or structurally related peptides remain to be isolated and characterized, the sum of the distribution pattern of FMRFamide-like immunoreactivity suggests that it may act as a neurotransmitter or a neuromodulator, and also may have endocrine regulatory functions.
Collapse
Affiliation(s)
- R K Rastogi
- Dipartimento di Zoologia, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|