1
|
Abstract
Mechanisms for elimination of metabolites from ISF include metabolism, blood-brain barrier transport and non-selective, perivascular efflux, this last being assessed by measuring the clearance of markers like inulin. Clearance describes elimination. Clearance of a metabolite generated within the brain is determined as its elimination rate divided by its concentration in interstitial fluid (ISF). However, the more frequently measured parameter is the rate constant for elimination determined as elimination rate divided by amount present, which thus depends on both the elimination processes and the distribution of the metabolite in the brain. The relative importance of the various elimination mechanisms depends on the particular metabolite. Little is known about the effects of sleep on clearance via metabolism or blood-brain barrier transport, but studies with inulin in mice comparing perivascular effluxes during sleep and wakefulness reveal a 4.2-fold increase in clearance. Amongst the important brain metabolites considered, CO2 is eliminated so rapidly across the blood-brain barrier that clearance is blood flow limited and elimination quickly balances production. Glutamate is removed from ISF primarily by uptake into astrocytes and conversion to glutamine, but also by transport across the blood-brain barrier. Both lactate and amyloid-β are eliminated by metabolism, blood-brain barrier transport and perivascular efflux and both show decreased production, decreased ISF concentration and increased perivascular clearance during sleep. Taken altogether available data indicate that sleep increases perivascular and non-perivascular clearances for amyloid-β which reduces its concentration and may have long-term consequences for the formation of plaques and cerebral arterial deposits.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK.
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
2
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
3
|
Sonnay S, Poirot J, Just N, Clerc AC, Gruetter R, Rainer G, Duarte JMN. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex. Glia 2017; 66:477-491. [DOI: 10.1002/glia.23259] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Sarah Sonnay
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Jordan Poirot
- Department of Medicine, Visual Cognition Laboratory; University of Fribourg; Fribourg Switzerland
| | | | - Anne-Catherine Clerc
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Radiology; University de Lausanne; Lausanne Switzerland
- Department of Radiology; University de Geneva; Geneva Switzerland
| | - Gregor Rainer
- Department of Medicine, Visual Cognition Laboratory; University of Fribourg; Fribourg Switzerland
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging (LIFMET); Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Experimental Medical Science, Faculty of Medicine; Lund University; Lund Sweden
- Wallenberg Centre for Molecular Medicine, Lund University; Lund Sweden
| |
Collapse
|
4
|
Yamada J, Ohgomori T, Jinno S. Alterations in expression of Cat-315 epitope of perineuronal nets during normal ageing, and its modulation by an open-channel NMDA receptor blocker, memantine. J Comp Neurol 2017; 525:2035-2049. [PMID: 28271508 DOI: 10.1002/cne.24198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 02/04/2023]
Abstract
The perineuronal net (PNN), a specialized aggregate of the extracellular matrix, is involved in neuroprotection against oxidative stress, which is now recognized as a major contributor to age-related decline in brain functions. In this study, we investigated the age-related molecular changes of PNNs using monoclonal antibody Cat-315, which recognizes human natural killer-1 (HNK-1) glycan on aggrecan-based PNNs. Western blot analysis showed that the expression levels of Cat-315 epitope in the hippocampus were higher in middle-aged (MA, 12-month-old) mice than in young adult (YA, 2-month-old) mice. Although there were no differences in the expression levels of Cat-315 epitope between old age (OA, 20-month-old) and MA mice, Cat-315 immunoreactivity was also detected in astrocytes of OA mice. To focus on Cat-315 epitope in PNNs, we used YA and MA mice in the following experiments. Optical disector analysis showed that there were no differences in the numbers of Cat-315-positive (Cat-315+ ) PNNs between YA and MA mice. Fluorescence intensity analysis indicated that Cat-315 immunoreactivity in PNNs increased with age in the dorsal hippocampus, which is mainly involved in cognitive functions. Administration of an open-channel blocker of NMDA receptor, memantine, reduced the expression levels of Cat-315 epitope in the hippocampus. Furthermore, the numbers of glutamatergic and GABAergic terminals colocalized with Cat-315 epitope around parvalbumin-positive neurons were decreased by memantine. These findings provide novel insight into the involvement of PNNs in normal brain ageing, and suggest that memantine may counteract the age-related alterations in expression levels of Cat-315 epitope via regulation of its subcellular localization.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Mason S. Lactate Shuttles in Neuroenergetics-Homeostasis, Allostasis and Beyond. Front Neurosci 2017; 11:43. [PMID: 28210209 PMCID: PMC5288365 DOI: 10.3389/fnins.2017.00043] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Understanding brain energy metabolism—neuroenergetics—is becoming increasingly important as it can be identified repeatedly as the source of neurological perturbations. Within the scientific community we are seeing a shift in paradigms from the traditional neurocentric view to that of a more dynamic, integrated one where astrocytes are no longer considered as being just supportive, and activated microglia have a profound influence. Lactate is emerging as the “good guy,” contrasting its classical “bad guy” position in the now superseded medical literature. This review begins with the evolution of the concept of “lactate shuttles”; goes on to the recent shift in ideas regarding normal neuroenergetics (homeostasis)—specifically, the astrocyte–neuron lactate shuttle; and progresses to covering the metabolic implications whereby homeostasis is lost—a state of allostasis, and the function of microglia. The role of lactate, as a substrate and shuttle, is reviewed in light of allostatic stress, and beyond—in an acute state of allostatic stress in terms of physical brain trauma, and reflected upon with respect to persistent stress as allostatic overload—neurodegenerative diseases. Finally, the recently proposed astrocyte–microglia lactate shuttle is discussed in terms of chronic neuroinflammatory infectious diseases, using tuberculous meningitis as an example. The novelty extended by this review is that the directionality of lactate, as shuttles in the brain, in neuropathophysiological states is emerging as crucial in neuroenergetics.
Collapse
Affiliation(s)
- Shayne Mason
- Centre for Human Metabolomics, North-West University Potchefstroom, South Africa
| |
Collapse
|
6
|
Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery. Brain Res Bull 2016; 124:76-84. [PMID: 27040711 DOI: 10.1016/j.brainresbull.2016.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022]
Abstract
Previously, we showed that carnosine upregulated the expression level of glutamate transporter 1 (GLT-1), which has been recognized as an important participant in the astrocyte-neuron lactate shuttle (ANLS), with ischemic model in vitro and in vivo. This study was designed to investigate the protective effect of carnosine on neuron/astrocyte co-cultures exposed to OGD/recovery, and to explore whether the ANLS or any other mechanism contributes to carnosine-induced neuroprotection on neuron/astrocyte. Co-cultures were treated with carnosine and exposed to OGD/recovery. Cell death and the extracellular levels of glutamate and GABA were measured. The mitochondrial respiration and glycolysis were detected by Seahorse Bioscience XF96 Extracellular Flux Analyzer. Results showed that carnosine decreased neuronal cell death, increased extracellular GABA level, and abolished the increase in extracellular glutamate and reversed the mitochondrial energy metabolism disorder induced by OGD/recovery. Carnosine also upregulated the mRNA level of neuronal glutamate transporter EAAC1 at 2h after OGD. Dihydrokainate, a specific inhibitor of GLT-1, decreased glycolysis but it did not affect mitochondrial respiration of the cells, and it could not reverse the increase in mitochondrial OXPHOS induced by carnosine in the co-cultures. The levels of mRNAs for monocarboxylate transporter1, 4 (MCT1, 4), which were expressed in astrocytes, and MCT2, the main neuronal MCT, were significantly increased at the early stage of recovery. Carnosine only partly reversed the increased expression of astrocytic MCT1 and MCT4. These results suggest that regulating astrocytic energy metabolism and extracellular glutamate and GABA levels but not the ANLS are involved in the carnosine-induced neuroprotection.
Collapse
|
7
|
Kim Y, Davidson JO, Gunn KC, Phillips AR, Green CR, Gunn AJ. Role of Hemichannels in CNS Inflammation and the Inflammasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 104:1-37. [DOI: 10.1016/bs.apcsb.2015.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Geng X, Sy CA, Kwiecien TD, Ji X, Peng C, Rastogi R, Cai L, Du H, Brogan D, Singh S, Rafols JA, Ding Y. Reduced cerebral monocarboxylate transporters and lactate levels by ethanol and normobaric oxygen therapy in severe transient and permanent ischemic stroke. Brain Res 2015; 1603:65-75. [PMID: 25641040 DOI: 10.1016/j.brainres.2015.01.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Neuroprotective benefits of ethanol (EtOH) and normobaric oxygenation (NBO) were previously demonstrated in transient and permanent ischemic stroke. Here we sought to identify whether the enhanced lactic acidosis and increased expression of monocarboxylate transporters (MCTs) observed after stroke might be attenuated by single and/or combined EtOH and NBO therapies. METHODS Sprague-Dawley rats (n=96) were subjected to right middle cerebral artery occlusion (MCAO) for 2 or 4h (transient ischemia), or 28 h (permanent ischemia) followed by 3, 24h, or no reperfusion. Rats received: (1) either an intraperitoneal injection of saline (sham treatment), one dose of EtOH (1.5 g/kg), two doses of EtOH (1.5 g/kg at 2h of MCAO, followed by 1.0 g/kg 2h after 1st dose), or (2) EtOH+95% NBO (at 2h of MCAO for 6h in permanent ischemia). Lactate levels were detected at 3 and 24h of reperfusion. Gene and protein expressions of MCT-1, -2, -4 were assessed by real-time PCR and western blotting. RESULTS A dose-dependent EtOH neuroprotection was found in transient ischemia. Following transient ischemia, a single dose of EtOH (in 2h-MCAO) or a double dose (in 4h-MCAO), significantly attenuated lactate levels, as well as the mRNAs and protein expressions of MCT-1, MCT-2, and MCT-4. However, while two doses of EtOH alone was ineffective in permanent stroke, the combined therapy (EtOH+95% NBO) resulted in a more significant attenuation in all the above levels and expressions. CONCLUSIONS Our study demonstrates that acute EtOH administration attenuated lactic acidosis in transient or permanent ischemic stroke. This EtOH-induced beneficial effect was potentiated by NBO therapy in permanent ischemia. Because both EtOH and NBO are readily available, inexpensive and easy to administer, their combination could be implemented in the clinics shortly after stroke.
Collapse
Affiliation(s)
- Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA
| | - Christopher A Sy
- Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA
| | - Timothy D Kwiecien
- Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA
| | - Xunming Ji
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Xuanwu Hospital, China-America Institute of Neuroscience, Luhe Hospital Capital Medical University, Beijing 100053, China.
| | - Changya Peng
- Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA
| | - Radhika Rastogi
- Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA
| | - Lipeng Cai
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA
| | - Huishan Du
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - David Brogan
- Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA
| | - Sunpreet Singh
- Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA
| | - Jose A Rafols
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, 550 E Canfield, Detroit, MI 48201, USA.
| |
Collapse
|
9
|
Jolivet R, Coggan JS, Allaman I, Magistretti PJ. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput Biol 2015; 11:e1004036. [PMID: 25719367 PMCID: PMC4342167 DOI: 10.1371/journal.pcbi.1004036] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022] Open
Abstract
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. The brain has remarkable information processing capacity, yet is also very energy efficient. How this metabolic efficiency is achieved given the spatial and metabolic constraints inherent to the designs and energy requirements of brain cells is a fundamental question in neurobiology. The major cell classes in mammalian nervous systems include neurons, glia and the microvasculature that supplies the molecular substrates of energy and metabolism. Together, this neuron-glia-vasculature (NGV) ensemble constitutes the functional unit that underlies the cost infrastructure of computation. In spite of its importance, a comprehensive understanding of this dynamic system remains elusive. While it is well established that glucose feeds the brain, few of the details regarding the destiny of glucose intermediates in metabolic pathways are known. Controversy remains regarding the degree of cooperativity between glia and neurons in sharing lactate, the product of aerobic glycolysis (Warburg effect) and one of the substrates for further energy extraction by oxidative processes. Specifically, while experimental data support the occurrence of a flow of lactate from glia to neurons, the astrocyte-neuron lactate shuttle (ANLS), some theoretical considerations have been proposed to support the occurrence of lactate transport in the other direction (NALS). Our computational model is the first to integrate multiple timescales of the NGV unit. It provides a quantitative mathematical description of metabolic activation in neurons and astrocytes, and of the macroscopic measurements obtained during brain imaging that uses metabolism as a proxy for neuronal activity.
Collapse
Affiliation(s)
- Renaud Jolivet
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- * E-mail: (RJ) (PJM)
| | - Jay S. Coggan
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- NeuroLinx Research Institute, La Jolla, California, United States of America
| | - Igor Allaman
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre J. Magistretti
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (RJ) (PJM)
| |
Collapse
|
10
|
Khowaja A, Choi IY, Seaquist ER, Öz G. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans. Metab Brain Dis 2015; 30:255-61. [PMID: 24676563 PMCID: PMC4392006 DOI: 10.1007/s11011-014-9530-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 01/31/2023]
Abstract
Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of (13)C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the (13)C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness.
Collapse
Affiliation(s)
- Ameer Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, Department of Neurology, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Elizabeth R. Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Affiliation(s)
- Raymond A Swanson
- Department of Neurology, University of California, San Francisco, CA, 94143, USA,
| |
Collapse
|
12
|
Rodrigues TB, Valette J, Bouzier-Sore AK. (13)C NMR spectroscopy applications to brain energy metabolism. FRONTIERS IN NEUROENERGETICS 2013; 5:9. [PMID: 24367329 PMCID: PMC3856424 DOI: 10.3389/fnene.2013.00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/15/2013] [Indexed: 12/31/2022]
Abstract
(13)C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of (13)C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the (13)C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of (13)C NMR data. Finally, new perspectives and applications offered by (13)C hyperpolarization are described.
Collapse
Affiliation(s)
- Tiago B. Rodrigues
- Cancer Research UK Cambridge Institute and Department of Biochemistry, University of CambridgeCambridge, UK
| | - Julien Valette
- Commissariat à l’Energie Atomique, Institut d’Imagerie Biomédicale, Molecular Imaging Research CenterFontenay-Aux-Roses, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen - Centre National de la Recherche ScientifiqueBordeaux, France
| |
Collapse
|
13
|
McKenna MC. Substrate competition studies demonstrate oxidative metabolism of glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate in cortical astrocytes from rat brain. Neurochem Res 2012; 37:2613-26. [PMID: 23079895 DOI: 10.1007/s11064-012-0901-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 01/14/2023]
Abstract
It is well established that astrocytes can utilize many substrates to support oxidative energy metabolism; however, use of energy substrates in the presence of other substrates, as would occur in vivo, has not been systematically evaluated. Substrate competition studies were used to determine changes in the rates of (14)CO(2) production since little is known about the interaction of energy substrates in astrocytes. The rates of (14)CO(2) production from 1 mM D-[6-(14)C]glucose, L-[U-(14)C]glutamate, L-[U-(14)C]glutamine, D-3-hydroxy[3-(14)C]butyrate, L-[U-(14)C]lactate and L-[U-(14)C]malate by primary cultures of astrocytes from rat brain were determined to be 1.17 ± 0.19, 85.30 ± 12.25, 28.04 ± 2.84, 13.55 ± 4.56, 14.84 ± 2.40 and 5.20 ± 1.20 nmol/h/mg protein (mean ± SEM), respectively. The rate of (14)CO(2) production from glutamate oxidation was higher than that of the other substrates Addition of unlabeled glutamate significantly decreased the rates of (14)CO(2) production from all other substrates studied; however, glutamate oxidation was not altered by the addition of any of the other substrates. The rate of (14)CO(2) production of glutamine was decreased by glutamate, but not altered by other substrates. The rate of (14)CO(2) production from glucose was significantly decreased by the addition of unlabeled glutamate, glutamine or lactate, but not by 3-hydroxybutyrate or malate. Addition of unlabeled glucose did not significantly alter the (14)CO(2) production from any other substrate. (14)CO(2) production from lactate was decreased by the addition of unlabeled glutamine or glutamate and increased by addition of malate. The (14)CO(2) production from malate was decreased by the addition of unlabeled glutamate or lactate, but was not altered by the other substrates. The substrate utilization for oxidative energy metabolism in astrocytes is very different than the profile previously reported for synaptic terminals. These studies demonstrate the potential use of multiple substrates including glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate as energy substrates for astrocytes. The data also provide evidence of interactions of substrates and multiple compartments of TCA cycle activity in cultured astrocytes.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Takahashi S, Izawa Y, Suzuki N. [Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia]. Rinsho Shinkeigaku 2012; 52:41-51. [PMID: 22260979 DOI: 10.5692/clinicalneurol.52.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reactive oxygen species (ROS) derived from mitochondria play an essential role in stroke as well as in neurodegenerative disorders. Although hyperglycemia associated with diabetes mellitus is well known to enhance ROS production in vascular endothelial cells, the effects of either acute or chronic high glucose environments on neurons and glial cells remain unclear. Astroglia play a pivotal role in glucose metabolism. Thus, the astroglial metabolic response to high glucose environments is an interesting subject. In particular, the glutathione/pentose phosphate pathway (PPP) system, which is a major defense mechanism against ROS in the brain, contributes to glucose metabolism and is more active in astroglia. We propose that high glucose environments activate PPP through an increased flux to the hexosamine biosynthetic pathway (HBP). HBP is known to induce endoplasmic reticulum (ER) stress under hyperglycemia, resulting in the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nrf2), a master regulator of phase 2 detoxifying enzymes including glucose-6-phosphate dehydrogenase that regulates PPP activity, as Nrf2 is reported to be a direct substrate of protein kinase RNA (PKR)-like ER kinase (PERK), a transducer of ER stress. Therefore, the phosphorylation of Nrf2 by hyperglycemia-induced ER stress facilitates Nrf2 translocation through PERK, thus activating the PPP. If acute or chronic hyperglycemia induces PPP activation in astroglia to reduce ROS, reducing the glucose concentration may be accompanied by a risk, which may explain the lack of evidence that strict glycemic control during the acute phase of stroke conveys no beneficial effect.
Collapse
|
15
|
Abstract
Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an 'opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain.
Collapse
|
16
|
Lauritzen F, Heuser K, de Lanerolle NC, Lee TSW, Spencer DD, Kim JH, Gjedde A, Eid T, Bergersen LH. Redistribution of monocarboxylate transporter 2 on the surface of astrocytes in the human epileptogenic hippocampus. Glia 2012; 60:1172-81. [PMID: 22535546 DOI: 10.1002/glia.22344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/30/2012] [Indexed: 01/05/2023]
Abstract
Emerging evidence points to monocarboxylates as key players in the pathophysiology of temporal lobe epilepsy (TLE) with hippocampal sclerosis (mesial temporal lobe epilepsy, MTLE). Monocarboxylate transporters (MCTs) 1 and 2, which are abundantly present on brain endothelial cells and perivascular astrocyte endfeet, respectively, facilitate the transport of monocarboxylates and protons across cell membranes. Recently, we reported that the density of MCT1 protein is reduced on endothelial cells and increased on astrocyte plasma membranes in the hippocampal formation in patients with MTLE and in several animal models of the disorder. Because the perivascular astrocyte endfeet comprise an important part of the neurovascular unit, we now assessed the distribution of the MCT2 in hippocampal formations in TLE patients with (MTLE) or without hippocampal sclerosis (non-MTLE). Light microscopic immunohistochemistry revealed significantly less perivascular MCT2 immunoreactivity in the hippocampal formation in MTLE (n = 6) than in non-MTLE (n = 6) patients, and to a lesser degree in non-MTLE than in nonepilepsy patients (n = 4). Immunogold electron microscopy indicated that the loss of MCT2 protein occurred on perivascular astrocyte endfeet. Interestingly, the loss of MCT2 on astrocyte endfeet in MTLE (n = 3) was accompanied by an upregulation of the protein on astrocyte membranes facing synapses in the neuropil, when compared with non-MTLE (n = 3). We propose that the altered distribution of MCT1 and MCT2 in TLE (especially MTLE) limits the flux of monocarboxylates across the blood-brain barrier and enhances the exchange of monocarboxylates within the brain parenchyma.
Collapse
Affiliation(s)
- Fredrik Lauritzen
- The Brain and Muscle Energy Group, Department of Anatomy and Centre for Molecular Biology and Neuroscience, University of Oslo, Blindern, NO-0317 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
MOTIVATION Multicellular systems, such as tissues, are composed of different cell types that form a heterogeneous community. Behavior of these systems is determined by complex regulatory networks within (intracellular networks) and between (intercellular networks) cells. Increasingly more studies are applying genome-wide experimental approaches to delineate the contributions of individual cell types (e.g. stromal, epithelial, vascular cells) to collective behavior of heterogeneous cell communities (e.g. tumors). Although many computational methods have been developed for analyses of intracellular networks based on genome-scale data, these efforts have not been extended toward analyzing genomic data from heterogeneous cell communities. RESULTS Here, we propose a network-based approach for analyses of genome-scale data from multiple cell types to extract community-wide molecular networks comprised of intra- and intercellular interactions. Intercellular interactions in this model can be physical interactions between proteins or indirect interactions mediated by secreted metabolites of neighboring cells. Applying this method on data from a recent study on xenograft mouse models of human lung adenocarcinoma, we uncover an extensive network of intra- and intercellular interactions involved in the acquired resistance to angiogenesis inhibitors. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kakajan Komurov
- Divisions of Experimental Hematology and Cancer Biology, Human Genetics and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Seifert T, Secher NH. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 2011; 95:406-26. [PMID: 21963551 DOI: 10.1016/j.pneurobio.2011.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/26/2022]
Abstract
This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF as evidenced by pharmacological manipulation of adrenergic and cholinergic receptors. Cholinergic blockade by glycopyrrolate blocks the exercise-induced increase in the transcranial Doppler determined mean flow velocity (MCA Vmean). Conversely, alpha-adrenergic activation increases that expression of cerebral perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip, but increases during cycling exercise. The increase in CMRO(2) is unaffected by beta-adrenergic blockade even though CBF is reduced suggesting that cerebral oxygenation becomes critical and a limited cerebral mitochondrial oxygen tension may induce fatigue. Also, sympathetic activity may drive cerebral non-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade, but not by beta1-adrenergic blockade. Furthermore, endurance training appears to lower the cerebral non-oxidative carbohydrate uptake and preserve cerebral oxygenation during submaximal exercise. This is possibly related to an attenuated catecholamine response. Finally, exercise promotes brain health as evidenced by increased release of brain-derived neurotrophic factor (BDNF) from the brain.
Collapse
Affiliation(s)
- Thomas Seifert
- Department of Anaesthesia and The Copenhagen Muscle Research Centre, Rigshospitalet 2041, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
19
|
Tesfaye N, Seaquist ER, Oz G. Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism. J Neurosci Res 2011; 89:1905-12. [PMID: 21732401 DOI: 10.1002/jnr.22703] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/19/2011] [Accepted: 05/02/2011] [Indexed: 11/11/2022]
Abstract
Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors, including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen noninvasively, but, in the past several years, the development of a noninvasive localized (13) C nuclear magnetic resonance (NMR) spectroscopy method has allowed the study of glycogen metabolism in the conscious human. With this technique, (13) C-glucose is administered intravenously, and its incorporation into and washout from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia, and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest that glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, (13) C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions.
Collapse
Affiliation(s)
- Nolawit Tesfaye
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
20
|
Abstract
Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.
Collapse
Affiliation(s)
- Mateja Prebil
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
21
|
Hutchinson DS, Catus SL, Merlin J, Summers RJ, Gibbs ME. α₂-Adrenoceptors activate noradrenaline-mediated glycogen turnover in chick astrocytes. J Neurochem 2011; 117:915-26. [PMID: 21447002 DOI: 10.1111/j.1471-4159.2011.07261.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the brain, glycogen is primarily stored in astrocytes where it is regulated by several hormones/neurotransmitters, including noradrenaline that controls glycogen breakdown (in the short term) and synthesis. Here, we have examined the adrenoceptor (AR) subtype that mediates the glycogenic effect of noradrenaline in chick primary astrocytes by the measurement of glycogen turnover (total (14) C incorporation of glucose into glycogen) following noradrenergic activation. Noradrenaline and insulin increased glycogen turnover in a concentration-dependent manner. The effect of noradrenaline was mimicked by stimulation of α(2) -ARs (and to a lesser degree by β(3) -ARs), but not by stimulation of α(1) -, β(1) -, or β(2) -ARs, and occurred only in astrocytes and not neurons. In chick astrocytes, studies using RT-PCR and radioligand binding showed that α(2A) - and α(2C) -AR mRNA and protein were present. α(2) -AR- or insulin-mediated glycogen turnover was inhibited by phosphatidylinositol-3 kinase inhibitors, and both insulin and clonidine caused phosphorylation of Akt and glycogen synthase kinase-3 in chick astrocytes. α(2) -AR but not insulin-mediated glycogen turnover was inhibited by pertussis toxin pre-treatment indicating involvement of Gi/o proteins. These results show that the increase in glycogen turnover caused by noradrenaline is because of activation of α(2) -ARs that increase glycogen turnover in astrocytes utilizing a Gi/o-PI3K pathway.
Collapse
Affiliation(s)
- Dana S Hutchinson
- Department of Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | |
Collapse
|
22
|
Calvetti D, Somersalo E. Dynamic activation model for a glutamatergic neurovascular unit. J Theor Biol 2010; 274:12-29. [PMID: 21176783 DOI: 10.1016/j.jtbi.2010.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
This article considers a dynamic spatially lumped model for brain energy metabolism and proposes to use the results of a Markov chain Monte Carlo (MCMC) based flux balance analysis to estimate the kinetic model parameters. By treating steady state reaction fluxes and transport rates as random variables we are able to propagate the uncertainty in the steady state configurations to the predictions of the dynamic model, whose responses are no longer individual but ensembles of time courses. The kinetic model consists of five compartments and is governed by kinetic mass balance equations with Michaelis-Menten type expressions for reaction rates and transports between the compartments. The neuronal activation is implemented in terms of the effect of neuronal activity on parameters controlling the blood flow and neurotransmitter transport, and a feedback mechanism coupling the glutamate concentration in the synaptic cleft and the ATP hydrolysis, thus accounting for the energetic cost of the membrane potential restoration in the postsynaptic neurons. The changes in capillary volume follow the balloon model developed for BOLD MRI. The model follows the time course of the saturation levels of the blood hemoglobin, which link metabolism and BOLD FMRI signal. Analysis of the model predictions suggest that stoichiometry alone is not enough to determine glucose partitioning between neuron and astrocyte. Lactate exchange between neuron and astrocyte is supported by the model predictions, but the uncertainty on the direction and rate is rather elevated. By and large, the model suggests that astrocyte produces and effluxes lactate, while neuron may switch from using to producing lactate. The level of ATP hydrolysis in astrocyte is substantially higher than strictly required for neurotransmitter cycling, in agreement with the literature.
Collapse
Affiliation(s)
- Daniela Calvetti
- Case Western Reserve University, Department of Mathematics and Cognitive Science, 10900 Euclid Ave., Cleveland, 44106 OH, USA
| | | |
Collapse
|
23
|
Role of connexin43 in central nervous system injury. Exp Neurol 2010; 225:250-61. [DOI: 10.1016/j.expneurol.2010.07.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/09/2010] [Accepted: 07/15/2010] [Indexed: 01/03/2023]
|
24
|
Ball KK, Cruz NF, Mrak RE, Dienel GA. Trafficking of glucose, lactate, and amyloid-beta from the inferior colliculus through perivascular routes. J Cereb Blood Flow Metab 2010; 30:162-76. [PMID: 19794399 PMCID: PMC2801760 DOI: 10.1038/jcbfm.2009.206] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metabolic brain imaging is widely used to evaluate brain function and disease, and quantitative assays require local retention of compounds used to register changes in cellular activity. As labeled metabolites of [1- and 6-(14)C]glucose are rapidly released in large quantities during brain activation, this study evaluated release of metabolites and proteins through perivascular fluid flow, a pathway that carries solutes from brain to peripheral lymphatic drainage sites. Assays with [3,4-(14)C]glucose ruled out local oxidation of glucose-derived lactate as a major contributor of label loss. Brief infusion of [1-(14)C]glucose and D-[(14)C]lactate into the inferior colliculus of conscious rats during acoustic stimulation labeled the meninges, consistent with perivascular clearance of [(14)C]metabolites from interstitial fluid. Microinfusion of Evans blue albumin and amyloid-beta(1-40) (Abeta) caused perivascular labeling in the inferior colliculus, labeled the surrounding meninges, and Abeta-labeled-specific blood vessels in the caudate and olfactory bulb and was deposited in cervical lymph nodes. Efflux of extracellular glucose, lactate, and Abeta into perivascular fluid pathways is a normal route for clearance of material from the inferior colliculus that contributes to underestimates of brain energetics. Convergence of 'watershed' drainage to common pathways may facilitate perivascular amyloid plaque formation and pathway obstruction in Alzheimer's disease.
Collapse
Affiliation(s)
- Kelly K Ball
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
25
|
Paulson OB, Hasselbalch SG, Rostrup E, Knudsen GM, Pelligrino D. Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab 2010; 30:2-14. [PMID: 19738630 PMCID: PMC2872188 DOI: 10.1038/jcbfm.2009.188] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only increases to a minor degree-the so-called uncoupling of CBF and oxidative metabolism. Several studies have dealt with these issues, and theories have been forwarded regarding the underlying mechanisms. Some reports have speculated about the existence of a potentially deficient oxygen supply to the tissue most distant from the capillaries, whereas other studies point to a shift toward a higher degree of non-oxidative glucose consumption during activation. In this review, we argue that the key mechanism responsible for the regional CBF (rCBF) increase during functional activation is a tight coupling between rCBF and glucose metabolism. We assert that uncoupling of rCBF and oxidative metabolism is a consequence of a less pronounced increase in oxygen consumption. On the basis of earlier studies, we take into consideration the functional recruitment of capillaries and attempt to accommodate the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit 9201, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
26
|
Carlton SM, Du J, Tan HY, Nesic O, Hargett GL, Bopp AC, Yamani A, Lin Q, Willis WD, Hulsebosch CE. Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury. Pain 2009; 147:265-76. [PMID: 19853381 DOI: 10.1016/j.pain.2009.09.030] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 12/13/2022]
Abstract
Central neuropathic pain (CNP) developing after spinal cord injury (SCI) is described by the region affected: above-level, at-level and below-level pain occurs in dermatomes rostral, at/near, or below the SCI level, respectively. People with SCI and rodent models of SCI develop above-level pain characterized by mechanical allodynia and thermal hyperalgesia. Mechanisms underlying this pain are unknown and the goals of this study were to elucidate components contributing to the generation of above-level CNP. Following a thoracic (T10) contusion, forelimb nociceptors had enhanced spontaneous activity and were sensitized to mechanical and thermal stimulation of the forepaws 35 days post-injury. Cervical dorsal horn neurons showed enhanced responses to non-noxious and noxious mechanical stimulation as well as thermal stimulation of receptive fields. Immunostaining dorsal root ganglion (DRG) cells and cord segments with activating transcription factor 3 (ATF3, a marker for neuronal injury) ruled out neuronal damage as a cause for above-level sensitization since few C8 DRG cells expressed AFT3 and cervical cord segments had few to no ATF3-labeled cells. Finally, activated microglia and astrocytes were present in thoracic and cervical cord at 35 days post-SCI, indicating a rostral spread of glial activation from the injury site. Based on these data, we conclude that peripheral and central sensitization as well as reactive glia in the uninjured cervical cord contribute to CNP. We hypothesize that reactive glia in the cervical cord release pro-inflammatory substances which drive chronic CNP. Thus a complex cascade of events spanning many cord segments underlies above-level CNP.
Collapse
Affiliation(s)
- Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gandhi GK, Cruz NF, Ball KK, Dienel GA. Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 2009; 111:522-36. [PMID: 19682206 DOI: 10.1111/j.1471-4159.2009.06333.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Brain is a highly-oxidative organ, but during activation, glycolytic flux is preferentially up-regulated even though oxygen supply is adequate. The biochemical and cellular basis of metabolic changes during brain activation and the fate of lactate produced within brain are important, unresolved issues central to understanding brain function, brain images, and spectroscopic data. Because in vivo brain imaging studies reveal rapid efflux of labeled glucose metabolites during activation, lactate trafficking among astrocytes and between astrocytes and neurons was examined after devising specific, real-time, sensitive enzymatic fluorescent assays to measure lactate and glucose levels in single cells in adult rat brain slices. Astrocytes have a 2- to 4-fold faster and higher capacity for lactate uptake from extracellular fluid and for lactate dispersal via the astrocytic syncytium compared to neuronal lactate uptake from extracellular fluid or shuttling of lactate to neurons from neighboring astrocytes. Astrocytes can also supply glucose to neurons as well as glucose can be taken up by neurons from extracellular fluid. Astrocytic networks can provide neuronal fuel and quickly remove lactate from activated glycolytic domains, and the lactate can be dispersed widely throughout the syncytium to endfeet along the vasculature for release to blood or other brain regions via perivascular fluid flow.
Collapse
Affiliation(s)
- Gautam K Gandhi
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
28
|
Modulation of connexin 43 in rotenone-induced model of Parkinson's disease. Neuroscience 2009; 160:61-8. [DOI: 10.1016/j.neuroscience.2009.01.080] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 01/28/2009] [Accepted: 01/31/2009] [Indexed: 12/21/2022]
|
29
|
Morgenthaler FD, Lanz BR, Petit JM, Frenkel H, Magistretti PJ, Gruetter R. Alteration of brain glycogen turnover in the conscious rat after 5h of prolonged wakefulness. Neurochem Int 2009; 55:45-51. [PMID: 19428806 DOI: 10.1016/j.neuint.2009.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/23/2009] [Accepted: 02/27/2009] [Indexed: 02/04/2023]
Abstract
Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5). Six of the rats labeled for 5h were continuously maintained awake by acoustic, tactile and olfactory stimuli during the labeling period, which resulted in slightly elevated corticosterone levels. Brain [Glyc] measured biochemically after focused microwave fixation in the rats maintained awake (3.9+/-0.2 micromol/g, n=6) was not significantly different from that of the control group (4.0+/-0.1 micromol/g, n=7; t-test, P>0.5). To account for potential variations in plasma Glc isotopic enrichment (IE), Glyc IE was normalized by N-acetyl-aspartate (NAA) IE. A simple mathematical model was developed to derive brain Glyc turnover time as 5.3h with a fit error of 3.2h and NAA turnover time as 15.6h with a fit error of 6.5h, in the control rats. A faster tau(Glyc) (2.9h with a fit error of 1.2h) was estimated in the rats maintained awake for 5h. In conclusion, 5h of prolonged wakefulness mainly activates glycogen metabolism, but has minimal effect on brain [Glyc].
Collapse
Affiliation(s)
- Florence D Morgenthaler
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Mangia S, Giove F, Tkác I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Uğurbil K. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 2009; 29:441-63. [PMID: 19002199 PMCID: PMC2743443 DOI: 10.1038/jcbfm.2008.134] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the noninvasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal microcircuitry, which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by (1)H MRS, (13)C MRS, and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI.
Collapse
Affiliation(s)
- Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dienel GA, Cruz NF. Imaging brain activation: simple pictures of complex biology. Ann N Y Acad Sci 2009; 1147:139-70. [PMID: 19076439 DOI: 10.1196/annals.1427.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elucidation of biochemical, physiological, and cellular contributions to metabolic images of brain is important for interpretation of images of brain activation and disease. Discordant brain images obtained with [(14)C]deoxyglucose and [1- or 6-(14)C]glucose were previously ascribed to increased glycolysis and rapid [(14)C]lactate release from tissue, but direct proof of [(14)C]lactate release from activated brain structures is lacking. Analysis of factors contributing to images of focal metabolic activity evoked by monotonic acoustic stimulation of conscious rats reveals that labeled metabolites of [1- or 6-(14)C]glucose are quickly released from activated cells as a result of decarboxylation reactions, spreading via gap junctions, and efflux via lactate transporters. Label release from activated tissue accounts for most of the additional [(14)C]glucose consumed during activation compared to rest. Metabolism of [3,4-(14)C]glucose generates about four times more [(14)C]lactate compared to (14)CO(2) in extracellular fluid, suggesting that most lactate is not locally oxidized. In brain slices, direct assays of lactate uptake from extracellular fluid demonstrate that astrocytes have faster influx and higher transport capacity than neurons. Also, lactate transfer from a single astrocyte to other gap junction-coupled astrocytes exceeds astrocyte-to-neuron lactate shuttling. Astrocytes and neurons have excess capacities for glycolysis, and oxidative metabolism in both cell types rises during sensory stimulation. The energetics of brain activation is quite complex, and the proportion of glucose consumed by astrocytes and neurons, lactate generation by either cell type, and the contributions of both cell types to brain images during brain activation are likely to vary with the stimulus paradigm and activated pathways.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
32
|
Morgenthaler FD, van Heeswijk RB, Xin L, Laus S, Frenkel H, Lei H, Gruetter R. Non-invasive quantification of brain glycogen absolute concentration. J Neurochem 2008; 107:1414-23. [PMID: 19013831 DOI: 10.1111/j.1471-4159.2008.05717.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 +/- 0.1 fold that of N-acetyl-aspartate (n = 11, R(2) = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean +/- SD: 5.8 +/- 0.7 micromol/g) was in excellent agreement with that in vitro (6.4 +/- 0.6 micromol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover.
Collapse
Affiliation(s)
- Florence D Morgenthaler
- Centre d'Imagerie Biomédicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Occhipinti R, Somersalo E, Calvetti D. Astrocytes as the glucose shunt for glutamatergic neurons at high activity: an in silico study. J Neurophysiol 2008; 101:2528-38. [PMID: 18922953 DOI: 10.1152/jn.90377.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The question of the preferred substrate of glutamatergic neurons at high neural activity has been vibrantly debated for over a decade since the classical hypothesis (CH) of the primacy of glucose has been challenged by the astrocyte-neuron lactate shuttle hypothesis (ANLSH), which replaces the primacy of glucose with astrocyte produced lactate. We perform Bayesian Flux Balance Analysis (BFBA) with a new mathematical model of cellular brain energetics, comprising detailed biochemical pathways in and between astrocytes and glutamatergic neurons and partitioning of each cell type into cytosol and mitochondria. Supported by the results of our in silico studies, which are in remarkable agreement with previously published results, we posit the Glucose Shunt Hypothesis (GSH) that during high activity, the inhibition of the phosphofructokinase (PFK) enzyme in neuron impairs neuronal glycolysis, enabling the process by which lactate effluxed by astrocytes is taken up by glutamatergic neurons, whereas at low activity, glucose remains the preferred substrate for neurons. We postulate that the ANLS is a shunt utilized by glutamatergic neurons to bypass their glycolysis impaired by the inhibition of PFK in connection with increased oxidative phosphorylation at high neuronal activity.
Collapse
Affiliation(s)
- Rossana Occhipinti
- Dept. of Mathematics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | |
Collapse
|
34
|
Casey PA, McKenna MC, Fiskum G, Saraswati M, Robertson CL. Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotrauma 2008; 25:603-14. [PMID: 18454682 DOI: 10.1089/neu.2007.0481] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although studies have shown alterations in cerebral metabolism after traumatic brain injury (TBI), clinical data in the developing brain is limited. We hypothesized that post-traumatic metabolic changes occur early (<24 h) and persist for up to 1 week. Immature rats underwent TBI to the left parietal cortex. Brains were removed at 4 h, 24 h, and 7 days after injury, and separated into ipsilateral (injured) and contralateral (control) hemispheres. Proton nuclear magnetic resonance (NMR) spectra were obtained, and spectra were analyzed for N-acetyl-aspartate (NAA), lactate (Lac), creatine (Cr), choline, and alanine, with metabolite ratios determined (NAA/Cr, Lac/Cr). There were no metabolic differences at any time in sham controls between cerebral hemispheres. At 4 and 24 h, there was an increase in Lac/Cr, reflecting increased glycolysis and/or decreased oxidative metabolism. At 24 h and 7 days, there was a decrease in NAA/Cr, indicating loss of neuronal integrity. The NAA/Lac ratio was decreased ( approximately 15-20%) at all times (4 h, 24 h, 7 days) in the injured hemisphere of TBI rats. In conclusion, metabolic derangements begin early (<24 h) after TBI in the immature rat and are sustained for up to 7 days. Evaluation of early metabolic alterations after TBI could identify novel targets for neuroprotection in the developing brain.
Collapse
Affiliation(s)
- Paula A Casey
- Department of Pediatrics, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
35
|
Cronin M, Anderson PN, Cook JE, Green CR, Becker DL. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 2008; 39:152-60. [PMID: 18617007 DOI: 10.1016/j.mcn.2008.06.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/01/2008] [Accepted: 06/04/2008] [Indexed: 11/17/2022] Open
Abstract
After traumatic CNS injury, a cascade of secondary events expands the initial lesion. The gap-junction protein connexin43 (Cx43), which is transiently up-regulated, has been implicated in the spread of 'bystander' damage. We have used an antisense oligodeoxynucleotide (asODN) to suppress Cx43 up-regulation in two rat models of spinal cord injury. Within 24 h of compression injury, rats treated with Cx43-asODN scored higher than sense-ODN and vehicle-treated controls on behavioural tests of locomotion. Their spinal cords showed less swelling and tissue disruption, less up-regulation of astrocytic GFAP, and less extravasation of fluorescently-labelled bovine serum albumin and neutrophils. The locomotor improvement was sustained over at least 4 weeks. Following partial spinal cord transection, Cx43-asODN treatment reduced GFAP immunoreactivity, neutrophil recruitment, and the activity of OX42(+) microglia in and around the lesion site. Cx43 has many potential roles in the pathophysiology of CNS injury and may be a valuable target for therapeutic intervention.
Collapse
Affiliation(s)
- Michael Cronin
- Research Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | | | | |
Collapse
|
36
|
Gavillet M, Allaman I, Magistretti PJ. Modulation of astrocytic metabolic phenotype by proinflammatory cytokines. Glia 2008; 56:975-89. [DOI: 10.1002/glia.20671] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Cakir T, Alsan S, Saybaşili H, Akin A, Ulgen KO. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor Biol Med Model 2007; 4:48. [PMID: 18070347 PMCID: PMC2246127 DOI: 10.1186/1742-4682-4-48] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2007] [Accepted: 12/10/2007] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons. MODEL The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled. RESULTS The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico. CONCLUSION The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism.
Collapse
Affiliation(s)
- Tunahan Cakir
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
38
|
Gibbs ME, Lloyd HGE, Santa T, Hertz L. Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: Biochemical and behavioral evidence. J Neurosci Res 2007; 85:3326-33. [PMID: 17455305 DOI: 10.1002/jnr.21307] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bead discrimination training in chicks sets in motion a tightly timed series of biochemical events, including glutamate release, increase in forebrain level of glutamate and utilization of glycogen and glucose. Inhibition of glycogen breakdown by the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) around the time of training abolishes the increase in glutamate 5 min posttraining in the left hemisphere, in spite of uninhibited glucose metabolism. It also reduces the contents of glutamate, glutamine, and aspartate in the right hemisphere. Behavioral evidence supports the conclusion that glucose breakdown serves to provide energy, whereas glycogen acts as a substrate for glutamate, glutamine, and aspartate formation, requiring both pyruvate dehydrogenation to acetyl coenzyme A and pyruvate carboxylation in astrocytes. Inhibition of memory consolidation caused by DAB or 2-deoxyglucose (2-DG), an inhibitor of glucose phosphorylation without effect on glycogen metabolism, was challenged by intracerebral administration of acetate, aspartate, glutamine, lactate or glucose. DAB-mediated memory inhibition was successfully challenged by administration at 0 or 20 min posttraining of acetate (an astrocyte-specific acetyl CoA precursor) together with aspartate, substituting for pyruvate carboxylation, or of glutamine at 0-2.5 or 30 min posttraining. 2-DG-mediated memory impairment was not challenged by acetate with or without aspartate at 0 time but was challenged by acetate without aspartate at 20 min. Lactate, a substrate for both dehydrogenation and pyruvate carboxylation challenged both DAB and 2-DG. Doses of DAB and 2-DG which, on their own were subeffective, were not additive, further supporting the existence of one pathway using glucose and another using glycogen.
Collapse
Affiliation(s)
- Marie E Gibbs
- Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
39
|
Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 2007; 27:1766-91. [PMID: 17579656 PMCID: PMC2094104 DOI: 10.1038/sj.jcbfm.9600521] [Citation(s) in RCA: 602] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucose is the obligate energetic fuel for the mammalian brain, and most studies of cerebral energy metabolism assume that the majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter (GLUT) proteins deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood-brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters (MCT): MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, that is capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and -3 in BBB endothelial cells, astrocytes, and neurons, along with the corresponding kinetic properties of the MCTs, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed on neuronal activation.
Collapse
Affiliation(s)
- Ian A Simpson
- Department of Neural and Behavioral Sciences College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
40
|
Proposed cycles for functional glutamate trafficking in synaptic neurotransmission. Neurochem Int 2007; 52:809-25. [PMID: 18006192 DOI: 10.1016/j.neuint.2007.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 09/14/2007] [Accepted: 09/19/2007] [Indexed: 11/20/2022]
Abstract
To date, the glutamate-glutamine cycle has been the dominant paradigm for understanding the coordinated, compartmentalized activities of phosphate-activated glutaminase (PAG) and glutamine synthetase (GS) in support of functional glutamate trafficking in vivo. However, studies in cell cultures have repeatedly challenged the notion that functional glutamate trafficking is accomplished via the glutamate-glutamine cycle alone. The present study introduces and elaborates alternative cycles for functional glutamate trafficking that integrate glucose metabolism, glutamate anabolism, transport, and catabolism, and trafficking of TCA cycle intermediates from astrocytes to presynaptic neurons. Detailed stoichiometry for each of these alternative cycles is established by strict application of the principle of conservation of atomic species to cytosolic and mitochondrial compartments in both presynaptic neurons and astrocytes. In contrast to the glutamate-glutamine cycle, which requires ATP, but not necessarily oxidative metabolism, to function, cycles for functional glutamate trafficking based on intercellular transport of TCA cycle intermediates require oxidative processes to function. These proposed alternative cycles are energetically more efficient than, and incorporate an inherent mechanism for transporting nitrogen from presynaptic neurons to astrocytes in support of the coordinated activities of PAG and GS that is absent in, the glutamate-glutamine cycle. In light of these newly elaborated alternative cycles, it is premature to presuppose that functional glutamate trafficking in synaptic neurotransmission in vivo is sustained by the glutamate-glutamine cycle alone.
Collapse
|
41
|
Aubert A, Costalat R. Compartmentalization of brain energy metabolism between glia and neurons: insights from mathematical modeling. Glia 2007; 55:1272-1279. [PMID: 17659526 DOI: 10.1002/glia.20360] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We review the contribution of mathematical modeling of metabolic pathways to the study of the compartmentalization of brain energy metabolism between neurons and glia. We especially focus on the role of lactate in the relationship between glia and neurons and the possible presence of an astrocyte-neuron lactate shuttle (ANLS). We first discuss models of glucose, pyruvate, and lactate kinetics, which are relevant to neuron-glia interactions. We then review models of compartmentalized energy metabolism, which deal with the concepts of 'red' and 'white' stimulations, and the ANLS hypothesis. We next show the contribution of a study of model robustness to the debate about the potential role of lactate in metabolic interactions between glia and neurons. Finally, we discuss the possible implications of modeling for further experimental studies.
Collapse
Affiliation(s)
- Agnès Aubert
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland
| | - Robert Costalat
- Laboratoire d'Imagerie Fonctionnelle, Université Pierre et Marie Curie-Paris6, INSERM U678, Paris, France
| |
Collapse
|
42
|
Origins of blood volume change due to glutamatergic synaptic activity at astrocytes abutting on arteriolar smooth muscle cells. J Theor Biol 2007; 250:172-85. [PMID: 17920632 DOI: 10.1016/j.jtbi.2007.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/20/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
The cellular mechanisms that couple activity of glutamatergic synapses with changes in blood flow, measured by a variety of techniques including the BOLD signal, have not previously been modelled. Here we provide such a model, that successfully accounts for the main observed changes in blood flow in both visual cortex and somatosensory cortex following their stimulation by high-contrast drifting grating or by single whisker stimulation, respectively. Coupling from glutamatergic synapses to smooth muscle cells of arterioles is effected by astrocytes releasing epoxyeicosatrienoic acids (EETs) onto them, following glutamate stimulation of the astrocyte. Coupling of EETs to the smooth muscle of arterioles is by means of potassium channels in their membranes, leading to hyperpolarization, relaxation and hence an increase in blood flow. This model predicts a linear increase in blood flow with increasing numbers of activated astrocytes, but a non-linear increase with increasing glutamate release.
Collapse
|
43
|
Mangia S, Tkác I, Gruetter R, Van de Moortele PF, Maraviglia B, Uğurbil K. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 2007; 27:1055-63. [PMID: 17033694 DOI: 10.1038/sj.jcbfm.9600401] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To date, functional 1H NMR spectroscopy has been utilized to report the time courses of few metabolites, primarily lactate. Benefiting from the sensitivity offered by ultra-high magnetic field (7 T), the concentrations of 17 metabolites were measured in the human visual cortex during two paradigms of visual stimulation lasting 5.3 and 10.6 mins. Significant concentration changes of approximately 0.2 micromol/g were observed for several metabolites: lactate increased by 23%+/-5% (P<0.0005), glutamate increased by 3%+/-1% (P<0.01), whereas aspartate decreased by 15%+/-6% (P<0.05). Glucose concentration also manifested a tendency to decrease during activation periods. The lactate concentration reached the new steady-state level within the first minute of activation and came back to baseline only after the stimulus ended. The changes of the concentration of metabolites implied a rise in oxidative metabolism to a new steady-state level during activation and indicated that amino-acid homeostasis is affected by physiological stimulation, likely because of an increased flux through the malate-aspartate shuttle.
Collapse
Affiliation(s)
- Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ. Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia 2007; 55:1251-1262. [PMID: 17659524 DOI: 10.1002/glia.20528] [Citation(s) in RCA: 591] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
Collapse
Affiliation(s)
- Luc Pellerin
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Anne-Karine Bouzier-Sore
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Agnès Aubert
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Sébastien Serres
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Michel Merle
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Robert Costalat
- INSERM U678, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Pierre J Magistretti
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne and Centre de Neurosciences Psychiatriques, Hôpital de Cery, Prilly, Switzerland
| |
Collapse
|
45
|
Gibbs ME, Anderson DG, Hertz L. Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 2006; 54:214-22. [PMID: 16819764 DOI: 10.1002/glia.20377] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycolysis and glycogenolysis are involved in memory processing in day-old chickens and, aside from the provision of energy for neuronal and astrocytic energy metabolism these pathways enable astrocytes to supply neurones with precursor for transmitter glutamate by glucose-based de novo synthesis. We have previously shown that memory processing for bead discrimination learning is dependent on glycolysis; however, the metabolic inhibitor used, iodoacetate, inhibits pyruvate formation from both glucose and glycogen. At specific time points after training transient reductions in brain glycogen content occur, mirrored by increases in glutamate/glutamine content. In the present study, we used intracerebral injection of a glycogen phosphorylase inhibitor, 1,4-dideoxy-1,4-imino-D-arabinitol (DAB), which does not affect glucose breakdown, to evaluate the role of glycogen metabolism in memory consolidation. Dose-dependent inhibition of learning occurred when DAB was administered at specific time periods in relation to training: (i) 5 min before training, (ii) around 30 min posttraining, and (iii) 55 min posttraining. After injection at either of the two earlier periods, memory disappeared after consolidation 30 min postlearning, and after injection 55 min after learning memory was absent at 70 min. The memory loss caused by early administration could be prevented after training by central injection of the glutamate precursor glutamine or the astrocyte-specific substrate acetate together with aspartate, substituting for pyruvate carboxylation. Thus, glycogenolysis is essential for learning in this paradigm and, aside from energy supply considerations, we suggest that an important role for glycogenolysis is to provide neurones with glutamine as the precursor for neuronal glutamate and GABA.
Collapse
Affiliation(s)
- Marie E Gibbs
- Department of Anatomy and Cell Biology, Monash University, Clayton, Australia.
| | | | | |
Collapse
|
46
|
O'Brien J, Kla KM, Hopkins IB, Malecki EA, McKenna MC. Kinetic Parameters and Lactate Dehydrogenase Isozyme Activities Support Possible Lactate Utilization by Neurons. Neurochem Res 2006; 32:597-607. [PMID: 17006762 DOI: 10.1007/s11064-006-9132-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Lactate is potentially a major energy source in brain, particularly following hypoxia/ischemia; however, the regulation of brain lactate metabolism is not well understood. Lactate dehydrogenase (LDH) isozymes in cytosol from primary cultures of neurons and astrocytes, and freshly isolated synaptic terminals (synaptosomes) from adult rat brain were separated by electrophoresis, visualized with an activity-based stain, and quantified. The activity and kinetics of LDH were determined in the same preparations. In synaptosomes, the forward reaction (pyruvate + NADH + H(+ )--> lactate + NAD(+)), which had a V (max) of 1,163 micromol/min/mg protein was 62% of the rate in astrocyte cytoplasm. In contrast, the reverse reaction (lactate + NAD(+ )--> pyruvate + NADH + H(+)), which had a V (max) of 268 micromol/min/mg protein was 237% of the rate in astrocytes. Although the relative distribution was different, all five isozymes of LDH were present in synaptosomes and primary cultures of cortical neurons and astrocytes from rat brain. LDH1 was 14.1% of the isozyme in synaptic terminals, but only 2.6% and 2.4% in neurons and astrocytes, respectively. LDH5 was considerably lower in synaptic terminals than in neurons and astrocytes, representing 20.4%, 37.3% and 34.8% of the isozyme in these preparations, respectively. The distribution of LDH isozymes in primary cultures of cortical neurons does not directly reflect the kinetics of LDH and the capacity for lactate oxidation. However, the kinetics of LDH in brain are consistent with the possible release of lactate by astrocytes and oxidative use of lactate for energy in synaptic terminals.
Collapse
Affiliation(s)
- Janet O'Brien
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201-1559, USA
| | | | | | | | | |
Collapse
|
47
|
Alexander JJ, Quigg RJ. Systemic lupus erythematosus and the brain: what mice are telling us. Neurochem Int 2006; 50:5-11. [PMID: 16989923 DOI: 10.1016/j.neuint.2006.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/26/2006] [Accepted: 08/22/2006] [Indexed: 01/18/2023]
Abstract
Neuropsychiatric symptoms occur in systemic lupus erythematosus (SLE), a complex, autoimmune disease of unknown origin. Although several pathogenic mechanisms have been suggested to play a significant role in the etiology of the disease, the exact underlying mechanisms still remain elusive. Several inbred strains of mice are used as models to study SLE, which exhibit a diversity of central nervous system (CNS) manifestations similar to that observed in patients. This review will attempt to give a brief overview of the CNS alterations observed in these models, including biochemical, structural and behavioral changes.
Collapse
Affiliation(s)
- Jessy J Alexander
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC5100, Chicago, IL 60637, United States.
| | | |
Collapse
|
48
|
Choi JW, Yoo BK, Shin CY, Ryu MK, Ryu JH, el Kouni MH, Lee JC, Kim WK, Ko KH. Uridine prevents the glucose deprivation-induced death of immunostimulated astrocytes via the action of uridine phosphorylase. Neurosci Res 2006; 56:111-8. [PMID: 16839635 DOI: 10.1016/j.neures.2006.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
We previously reported that in immunostimulated astrocytes, glucose deprivation induced cell death via the loss of ATP, reduced glutathione, and mitochondrial transmembrane potential. The cytotoxicity was due to reactive nitrogen and oxygen species and blocked by adenosine, a purine nucleoside, via the preservation of cellular ATP. Here, we investigated whether uridine, a pyrimidine nucleoside, could prevent the glucose deprivation-induced cytotoxicity in LPS+IFN-gamma-treated (immunostimulated) astrocytes. Glucose deprivation induced the death of immunostimulated cells, which was significantly reduced by uridine. Glucose deprivation rapidly decreased cellular ATP levels in immunostimulated astrocytes, which was also reversed by uridine. The inhibition of cellular uptake of uridine by S-(4-nitrobenzyl)-6-thioinosine attenuated the protective effect of uridine. mRNA and protein expression for uridine phosphorylase, an enzyme catalyzing reversible phosphorolysis of uridine, were observed in rat brain as well as primary astrocytes. 5-(Phenylthio)acyclouridine (PTAU), a specific inhibitor of uridine phosphorylase, inhibited the protective effect of uridine. Additionally, the loss of mitochondrial transmembrane potential and reduced glutathione by glucose deprivation in immunostimulated cells was attenuated by uridine, which was also reversed by PTAU. These results provide the first evidence that uridine protects immunostimulated astrocytes against the glucose deprivation-induced death by preserving intracellular ATP through the action of uridine phosphorylase.
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Pharmacology, College of Pharmacy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The metabolic response to brain activation in exercise might be expressed as the cerebral metabolic ratio (MR; uptake O2/glucose + 1/2 lactate). At rest, brain energy is provided by a balanced oxidation of glucose as MR is close to 6, but activation provokes a 'surplus' uptake of glucose relative to that of O2. Whereas MR remains stable during light exercise, it is reduced by 30% to 40% when exercise becomes demanding. The MR integrates metabolism in brain areas stimulated by sensory input from skeletal muscle, the mental effort to exercise and control of exercising limbs. The MR decreases during prolonged exhaustive exercise where blood lactate remains low, but when vigorous exercise raises blood lactate, the brain takes up lactate in an amount similar to that of glucose. This lactate taken up by the brain is oxidised as it does not accumulate within the brain and such pronounced brain uptake of substrate occurs independently of plasma hormones. The 'surplus' of glucose equivalents taken up by the activated brain may reach approximately 10 mmol, that is, an amount compatible with the global glycogen level. It is suggested that a low MR predicts shortage of energy that ultimately limits motor activation and reflects a biologic background for 'central fatigue'.
Collapse
Affiliation(s)
- Mads K Dalsgaard
- Department of Anaesthesia and The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
50
|
Abe T, Takahashi S, Suzuki N. Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation. J Cereb Blood Flow Metab 2006; 26:153-60. [PMID: 15973351 DOI: 10.1038/sj.jcbfm.9600175] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glucose concentration in the culture medium may affect the energy metabolism of cultured cells. The oxidative metabolism of glucose in astrocytes might also be affected because the glucose concentration (25 mmol/L) of many culture media is higher than the physiological levels (approximately 3 mmol/L). In the present study, we assessed the effects of reducing the glucose concentration in the culture medium on the oxidative metabolism of glucose in cultured rat astroglia by measuring the oxidation rates of L-[U-14C]lactate or D-[U-14C]glucose to 14CO2. The effects of D-aspartate and elevated extracellular K+ levels on oxidative and glycolytic metabolism in astroglia were also investigated. The rates of [14C]lactate and [14C]glucose oxidation in astroglia cultured in a medium containing 2 mmol/L of glucose (astroglia2) were approximately twofold of those in astroglia cultured in a medium containing 22 mmol/L of glucose (astroglia22). D-Aspartate (500 micromol/L) significantly increased [14C]lactate oxidation by 156% in astroglia22 and by 83% in astroglia2. D-[U-14C]glucose oxidation in astroglia22 and astroglia2 was also increased by 94% and 76%, respectively. In contrast, an elevated extracellular K+ concentration (7.4 mmol/L) did not affect glucose and lactate oxidation, although it increased 2-deoxy-D-[1-14C]glucose phosphorylation. Astroglia grown in the physiological glucose concentration are more dependent on the oxidative metabolism of glucose than that in high-glucose concentration. Glucose concentration in culture medium has a strong influence on astrocytic oxidative capacity in vitro.
Collapse
Affiliation(s)
- Takato Abe
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | | | | |
Collapse
|