1
|
Mukherjee AG, Mishra S, Gopalakrishnan AV, Kannampuzha S, Murali R, Wanjari UR, B S, Vellingiri B, Madhyastha H, Kanagavel D, Vijayan M. Unraveling the mystery of citrate transporters in Alzheimer's disease: An updated review. Ageing Res Rev 2025; 107:102726. [PMID: 40073978 DOI: 10.1016/j.arr.2025.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/26/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
A key molecule in cellular metabolism, citrate is essential for lipid biosynthesis, energy production, and epigenetic control. The etiology of Alzheimer's disease (AD), a progressive neurodegenerative illness marked by memory loss and cognitive decline, may be linked to dysregulated citrate transport, according to recent research. Citrate transporters, which help citrate flow both inside and outside of cells, are becoming more and more recognized as possible participants in the molecular processes underlying AD. Citrate synthase (CS), a key enzyme in the tricarboxylic acid (TCA) cycle, supports mitochondrial function and neurotransmitter synthesis, particularly acetylcholine (ACh), essential for cognition. Changes in CS activity affect citrate availability, influencing energy metabolism and neurotransmitter production. Choline, a precursor for ACh, is crucial for neuronal function. Lipid metabolism, oxidative stress reactions, and mitochondrial function can all be affected by aberrant citrate transport, and these changes are linked to dementia. Furthermore, the two main pathogenic characteristics of AD, tau hyperphosphorylation and amyloid-beta (Aβ) aggregation, may be impacted by disturbances in citrate homeostasis. The goal of this review is to clarify the complex function of citrate transporters in AD and provide insight into how they contribute to the development and course of the illness. We aim to provide an in-depth idea of which particular transporters are dysregulated in AD and clarify the functional implications of these dysregulated transporters in brain cells. To reduce neurodegenerative processes and restore metabolic equilibrium, we have also discussed the therapeutic potential of regulating citrate transport. Gaining insight into the relationship between citrate transporters and the pathogenesis of AD may help identify new indicators for early detection and creative targets for treatment. This study offers hope for more potent ways to fight this debilitating illness and is a crucial step in understanding the metabolic foundations of AD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shatakshi Mishra
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Stany B
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Deepankumar Kanagavel
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Koutarapu S, Ge J, Dulewicz M, Srikrishna M, Szadziewska A, Wood J, Blennow K, Zetterberg H, Michno W, Ryan NS, Lashley T, Savas JN, Schöll M, Hanrieder J. Chemical imaging delineates Aβ plaque polymorphism across the Alzheimer's disease spectrum. Nat Commun 2025; 16:3889. [PMID: 40274785 PMCID: PMC12022071 DOI: 10.1038/s41467-025-59085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Amyloid-beta (Aβ) plaque formation in Alzheimer's disease (AD) pathology is morphologically diverse. Understanding the association of polymorphic Aβ pathology with AD pathogenesis and progression is critical in light of emerging Aβ-targeting therapies. In this work, functional amyloid microscopy enhanced by deep learning was integrated with mass spectrometry imaging to delineate polymorphic plaques and to identify their associated Aβ make-up. In both sporadic AD (n = 12) and familial AD (n = 6), dense-core plaques showed higher levels of Aβ1-40 and N-terminal pyroglutamated Aβx-42 compared to diffuse plaques and plaques in non-demented, amyloid positive individuals (n = 5). Notably, a distinct dense-core plaque subtype, coarse-grained plaque, was observed in AD but not in non-demented, amyloid positive patients. Coarse-grained plaques were more abundant in early onset AD, showed increased neuritic dystrophy and higher levels of Aβ1-40 and Aβ3pE-40, an Aβ-pattern similar to cerebral amyloid angiopathy. The correlative chemical imaging paradigm presented here allowed to link structural and biochemical characteristics of Aβ plaque polymorphism across various AD etiologies.
Collapse
Affiliation(s)
- Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meera Srikrishna
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jack Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Natalie S Ryan
- UK Dementia Research Institute, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden.
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK.
- Department of Neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
3
|
Yin J, Xu X, Guo Y, Sun C, Yang Y, Liu H, Yu P, Wu T, Song X. Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs. Cell Death Discov 2024; 10:424. [PMID: 39358326 PMCID: PMC11447141 DOI: 10.1038/s41420-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As common clinical-pathological processes, wound healing and tissue remodelling following injury or stimulation are essential topics in medical research. Promoting the effective healing of prolonged wounds, improving tissue repair and regeneration, and preventing fibrosis are important and challenging issues in clinical practice. Ferroptosis, which is characterized by iron overload and lipid peroxidation, is a nontraditional form of regulated cell death. Emerging evidence indicates that dysregulated metabolic pathways and impaired iron homeostasis play important roles in various healing and regeneration processes via ferroptosis. Thus, we review the intrinsic mechanisms of tissue repair and remodeling via ferroptosis in different organs and systems under various conditions, including the inflammatory response in skin wounds, remodeling of joints and cartilage, and fibrosis in multiple organs. Additionally, we summarize the common underlying mechanisms, key molecules, and targeted drugs for ferroptosis in repair and regeneration. Finally, we discuss the potential of therapeutic agents, small molecules, and novel materials emerging for targeting ferroptosis to promote wound healing and tissue repair and attenuate fibrosis.
Collapse
Affiliation(s)
- Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Caiyu Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Huifang Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pengyi Yu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Tong Wu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
4
|
Hurtle BT, Jana S, Cai L, Pike VW. Ligand-Based Virtual Screening as a Path to New Chemotypes for Candidate PET Radioligands for Imaging Tauopathies. J Med Chem 2024; 67:14095-14109. [PMID: 39108178 DOI: 10.1021/acs.jmedchem.4c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Ligand-based virtual screening (LBVS) has rarely been tested as a method for discovering new structural scaffolds for PET radioligand development. This study used LBVS to discover potential chemotype leads for developing radioligands for PET imaging of tauopathies. ZINC12, a free database of over 12 million commercially available compounds, was searched to discover novel scaffolds based on similarities to four query compounds. Thirteen high-ranking hits were purchased and assayed for their ability to compete against three tritiated radioligands at their distinct binding sites in Alzheimer's disease brain tissue. Three hits were 2-substituted 6-methoxy naphthalenes. Synthetic elaboration of this new chemotype yielded three new ligands (25, 26, and 28) with high affinity for the [3H]6 (flortaucipur) neurofibrillary tangle binding site. Compound 28 showed remarkably high affinity (Ki, 7 nM) and other desirable properties for a candidate PET radioligand, including low topological polar surface area, moderate computed log D, and amenability for labeling with carbon-11. LBVS appears to be uniquely valuable for discovering new chemotypes for candidate PET radioligands.
Collapse
Affiliation(s)
- Bryan T Hurtle
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Bongiorni S, Catalani E, Arisi I, Lazzarini F, Del Quondam S, Brunetti K, Cervia D, Prantera G. Pathological Defects in a Drosophila Model of Alzheimer's Disease and Beneficial Effects of the Natural Product Lisosan G. Biomolecules 2024; 14:855. [PMID: 39062569 PMCID: PMC11274821 DOI: 10.3390/biom14070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) brains are histologically marked by the presence of intracellular and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increasing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumulation and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet attenuates the production of neurotoxic Aβ peptides in fly brains and reduces neuronal apoptosis. Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and reliably test the efficiency of potential therapeutic agents and diet regimens.
Collapse
Affiliation(s)
- Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00133 Rome, Italy
| | - Francesca Lazzarini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy; (E.C.); (S.D.Q.); (K.B.)
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.B.); (F.L.); (G.P.)
| |
Collapse
|
6
|
Chan DC, Kim C, Kang RY, Kuhn MK, Beidler LM, Zhang N, Proctor EA. Cytokine expression patterns predict suppression of vulnerable neural circuits in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585383. [PMID: 38559177 PMCID: PMC10979954 DOI: 10.1101/2024.03.17.585383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by progressive amyloid plaque accumulation, tau tangle formation, neuroimmune dysregulation, synapse an neuron loss, and changes in neural circuit activation that lead to cognitive decline and dementia. Early molecular and cellular disease-instigating events occur 20 or more years prior to presentation of symptoms, making them difficult to study, and for many years amyloid-β, the aggregating peptide seeding amyloid plaques, was thought to be the toxic factor responsible for cognitive deficit. However, strategies targeting amyloid-β aggregation and deposition have largely failed to produce safe and effective therapies, and amyloid plaque levels poorly correlate with cognitive outcomes. However, a role still exists for amyloid-β in the variation in an individual's immune response to early, soluble forms of aggregates, and the downstream consequences of this immune response for aberrant cellular behaviors and creation of a detrimental tissue environment that harms neuron health and causes changes in neural circuit activation. Here, we perform functional magnetic resonance imaging of awake, unanesthetized Alzheimer's disease mice to map changes in functional connectivity over the course of disease progression, in comparison to wild-type littermates. In these same individual animals, we spatiotemporally profile the immune milieu by measuring cytokines, chemokines, and growth factors across various brain regions and over the course of disease progression from pre-pathology through established cognitive deficit. We identify specific signatures of immune activation predicting hyperactivity followed by suppression of intra- and then inter-regional functional connectivity in multiple disease-relevant brain regions, following the pattern of spread of amyloid pathology.
Collapse
Affiliation(s)
- Dennis C Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, PA, USA
| | - ChaeMin Kim
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Rachel Y Kang
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Madison K Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Lynne M Beidler
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev 2023; 91:102035. [PMID: 37619619 DOI: 10.1016/j.arr.2023.102035] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Ferroptosis is an iron- and lipid peroxidation (LPO)-mediated programmed cell death type. Recently, mounting evidence has indicated the involvement of ferroptosis in neurodegenerative diseases, especially in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and so on. Treating ferroptosis presents opportunities as well as challenges for neurodegenerative diseases. This review provides a comprehensive overview of typical features of ferroptosis and the underlying mechanisms that contribute to its occurrence, as well as their implications in the pathogenesis and advancement of major neurodegenerative disorders. Meanwhile, we summarize the utilization of ferroptosis inhibition in both experimental and clinical approaches for the treatment of major neurodegenerative disorders. In addition, we specifically summarize recent advances in developing therapeutic means targeting ferroptosis in these diseases, which may guide future approaches for the effective management of these devastating medical conditions.
Collapse
Affiliation(s)
- Yi Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meng-Nan Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
8
|
Companys-Alemany J, Turcu AL, Schneider M, Müller CE, Vázquez S, Griñán-Ferré C, Pallàs M. NMDA receptor antagonists reduce amyloid-β deposition by modulating calpain-1 signaling and autophagy, rescuing cognitive impairment in 5XFAD mice. Cell Mol Life Sci 2022; 79:408. [PMID: 35810220 PMCID: PMC9271115 DOI: 10.1007/s00018-022-04438-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022]
Abstract
Overstimulation of N-methyl-d-aspartate receptors (NMDARs) is the leading cause of brain excitotoxicity and often contributes to neurodegenerative diseases such as Alzheimer’s Disease (AD), the most common form of dementia. This study aimed to evaluate a new NMDA receptor antagonist (UB-ALT-EV) and memantine in 6-month-old female 5XFAD mice that were exposed orally to a chronic low-dose treatment. Behavioral and cognitive tests confirmed better cognitive performance in both treated groups. Calcium-dependent protein calpain-1 reduction was found after UB-ALT-EV treatment but not after memantine. Changes in spectrin breakdown products (SBDP) and the p25/p35 ratio confirmed diminished calpain-1 activity. Amyloid β (Aβ) production and deposition was evaluated in 5XFAD mice and demonstrated a robust effect of NMDAR antagonists on reducing Aβ deposition and the number and size of Thioflavin-S positive plaques. Furthermore, glycogen synthase kinase 3β (GSK3β) active form and phosphorylated tau (AT8) levels were diminished after UB-ALT-EV treatment, revealing tau pathology improvement. Because calpain-1 is involved in autophagy activation, autophagic proteins were studied. Strikingly, results showed changes in the protein levels of unc-51-like kinase (ULK-1), beclin-1, microtubule-associated protein 1A/1B-light chain 3(LC3B-II)/LC3B-I ratio, and lysosomal-associated membrane protein 1 (LAMP-1) after NMDAR antagonist treatments, suggesting an accumulation of autophagolysosomes in 5XFAD mice, reversed by UB-ALT-EV. Likewise, treatment with UB-ALT-EV recovered a WT mice profile in apoptosis markers Bcl-2, Bax, and caspase-3. In conclusion, our results revealed the potential neuroprotective effect of UB-ALT-EV by attenuating NMDA-mediated apoptosis and reducing Aβ deposition and deposition jointly with the autophagy rescue to finally reduce cognitive alterations in a mice model of familial AD.
Collapse
Affiliation(s)
- Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Andreea L Turcu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Marion Schneider
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
9
|
Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer's Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int J Mol Sci 2021; 22:ijms22126355. [PMID: 34198582 PMCID: PMC8231952 DOI: 10.3390/ijms22126355] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aβ) oligomers as upstream pathogenic drivers of Alzheimer's disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aβ provide compelling evidence that inhibition of Aβ oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aβ oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aβ oligomers. These trials also show that inhibiting Aβ neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aβ oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aβ oligomers at the clinical dose.
Collapse
|
10
|
Goldwaser EL, Acharya NK, Wu H, Godsey GA, Sarkar A, DeMarshall CA, Kosciuk MC, Nagele RG. Evidence that Brain-Reactive Autoantibodies Contribute to Chronic Neuronal Internalization of Exogenous Amyloid-β1-42 and Key Cell Surface Proteins During Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2021; 74:345-361. [PMID: 32039847 PMCID: PMC7175946 DOI: 10.3233/jad-190962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Blood-brain barrier (BBB) permeability is a recognized early feature of Alzheimer’s disease (AD). In the present study, we examined consequences of increased BBB permeability on the development of AD-related pathology by tracking selected leaked plasma components and their interactions with neurons in vivo and in vitro. Histological sections of cortical regions of postmortem AD brains were immunostained to determine the distribution of amyloid-β1-42 (Aβ42), cathepsin D, IgG, GluR2/3, and alpha7 nicotinic acetylcholine receptor (α7nAChR). Results revealed that chronic IgG binding to pyramidal neurons coincided with internalization of Aβ42, IgG, GluR2/3, and α7nAChR as well as lysosomal compartment expansion in these cells in regions of AD pathology. To test possible mechanistic interrelationships of these phenomena, we exposed differentiated SH-SY5Y neuroblastoma cells to exogenous, soluble Aβ42 peptide and serum from AD and control subjects. The rate and extent of Aβ42 internalization in these cells was enhanced by serum containing neuron-binding IgG autoantibodies. This was confirmed by treating cells with individual antibodies specific for α7nAChR, purified IgG from AD or non-AD sera, and sera devoid of IgG, in the presence of 100 nM Aβ42. Initial co-localization of IgG, α7nAChR, and Aβ42 was temporally and spatially linked to early endosomes (Rab11) and later to lysosomes (LAMP-1). Aβ42 internalization was attenuated by treatment with monovalent F(ab) antibody fragments generated from purified IgG from AD serum and then rescued by coupling F(ab) fragments with divalent human anti-Fab. Overall, results suggest that cross-linking of neuron-binding autoantibodies targeting cell surface proteins can accelerate intraneuronal Aβ42 deposition in AD.
Collapse
Affiliation(s)
- Eric L Goldwaser
- University of Maryland Medical Center and Sheppard Pratt Health System, Department of Psychiatry, Baltimore, MD, USA.,Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA.,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Nimish K Acharya
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA.,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA.,Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Hao Wu
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - George A Godsey
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA.,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Abhirup Sarkar
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA.,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Cassandra A DeMarshall
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA.,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Mary C Kosciuk
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA.,Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Robert G Nagele
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA.,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA.,Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
11
|
Zhang Z, Han K, Wang C, Sun C, Jia N. Dioscin Protects against Aβ1-42 Oligomers-Induced Neurotoxicity via the Function of SIRT3 and Autophagy. Chem Pharm Bull (Tokyo) 2021; 68:717-725. [PMID: 32741912 DOI: 10.1248/cpb.c20-00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease with high incidence among old people. Dioscin is a product extracted from natural herbs, which has multiple pharmacological activities. In this study, we investigated the potential effects of disocin on amyloid-β peptide (Aβ1-42) oligomers-treated HT22 cells. Aβ1-42 oligomers induced great neurotoxicity to HT22 cells as examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results of terminal deoxynucleoitidyl transferase-mediated deoxyuridine triphosphate biotin nich end labeling (TUNEL) staining and flow cytometry indicated that Aβ1-42 oligomers led to increased apoptosis and generation of reactive oxygen species (ROS) in HT22 cells. However, dioscin could remarkably inhibit the neurotoxicity induced by Aβ1-42 oligomers, as well as decrease the apoptosis and ROS generation. Sirtuin-3 (SIRT3) staining and quantification indicated that dioscin upregulated the expression of neuroprotective SIRT3. Moreover, dioscin induced the formation of autophagosomes and autolysosomes in HT22 cells. Dioscin also enhanced the levels of Beclin-1 and LC3-II while decreased the level of p62. These results suggested that dioscin could activate autophagy in HT22 cells. It was also found that knocking down SIRT3 resulted in the downregulation of Beclin-1, LC3-II and the aggregation of p62, suggesting that SIRT3 was an important regulator in autophagy. Furthermore, we found that knocking down SIRT3 or inhibiting autophagy suppressed the protective effects of dioscin on Aβ1-42 oligomers-induced neurotoxicity, apoptosis and ROS generation. These results revealed that SIRT3 and autophagy functioned together in the neuroprotective mechanisms of dioscin. Therefore, dioscin might be a promising drug to protect against Aβ1-42 oligomers-induced neurotoxicity and reduce neuron damage or death in AD.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Geriatrics, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Kun Han
- Department of Neurology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Chunying Wang
- Department of Endocrinology, Liaocheng Dongchangfu People's Hospital (The Second Affiliated Hospital of Liaocheng University)
| | - Chengyan Sun
- Department of Neurology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| | - Ning Jia
- Department of Geriatrics, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences
| |
Collapse
|
12
|
Neuroprotective Effects of 2-Substituted 1, 3-Selenazole Amide Derivatives on Amyloid-Beta-Induced Toxicity in a Transgenic Caenorhabditis Elegans Model of Alzheimer's Disease. Neurotox Res 2021; 39:841-850. [PMID: 33400180 DOI: 10.1007/s12640-020-00321-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is an age-related neurodegenerative disease, associated with the presence of extracellular amyloid-β (Aβ) plaques and neurofibrillary tangles. Although the pathogenesis of AD remains unclear, the characteristic feature of AD was reported to be the buildup of Aβ plaques. In this study, we extensively investigated the neuroprotective effects of 2-substituted 1,3-selenazole amide derivatives (CHF11) on Aβ1-42 transgenic Caenorhabditis elegans CL4176. Results showed that worms fed with CHF11 exhibited remarkably reduced paralysis, decreased levels of toxic Aβ oligomers and Aβ plaque deposition, as well as less ROS production in comparison with the untreated worms. The effective concentrations of CHF11 were arranged in the descending order of 100 µM > 10 µM > 1 µM. Real-time PCR analysis showed that there was no significant difference in Aβ expression between CHF11-administered group and the blank control group, suggesting that CHF11-induced reduction in toxic protein deposition may be regulated at the post-transcriptional level. In the meantime, the gene expressions of hsf-1 and its downstream target hsp-12.6 were significantly increased, indicating that CHF11 against Aβ toxicity may involve in HSF-1 signaling pathway in worms. In conclusion, CHF11 exhibits a significant protective effect against β-amyloid-induced toxicity in CL4176 by reducing β-amyloid aggregation and ROS production, which may involve in HSF-1 and downstream target HSP-12.6 pathway.
Collapse
|
13
|
Age related neurodegenerative Alzheimer's disease: Usage of traditional herbs in therapeutics. Neurosci Lett 2020; 717:134679. [PMID: 31816333 DOI: 10.1016/j.neulet.2019.134679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease mainly associated with cognition impairment. Studies in last more than six decades have suggested that the disease pathology primarily includes the depleted cholinergic neurons, accumulation of amyloid beta plaques and hyper phosphorylation of tau proteins. However, the disease etiology remains enigmatic and no therapy is available to modify the disease status. Studies in experimental models and in post mortem brain of AD patients have suggested the involvement of oxidative stress, inflammatory responses, unfolded protein responses and apoptosis in disease pathology, yet the information is deficit to develop the disease modifying therapeutics. Owing to the need of novel effective treatment, chronic consumption of medicines with minimum side effects, recently the researchers turned towards the traditional medicines. This review is mainly focusing on the traditional herbs which have been suggested to contain disease related antidote activities and may be utilized for the effective treatment of AD patients.
Collapse
|
14
|
Correlation between β-amyloid deposits revealed by BF-227-PET imaging and brain atrophy detected by voxel-based morphometry-MR imaging: a pilot study. Nucl Med Commun 2020; 40:905-912. [PMID: 31246935 PMCID: PMC6708599 DOI: 10.1097/mnm.0000000000001042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate whether β-amyloid (Aβ) deposition was associated with local atrophy of corresponding areas in the brain. METHODS [11C]2-[2-(2-Dimethylaminothiazol-5-yl) ethenyl-6-[2-(fluoro)ethoxy]benzoxazole (BF-227)-PET, MRI and neuropsychological tests were carried out on 56 subjects, out of which 21 were patients with Alzheimer's disease (AD), 20 were patients with mild cognitive impairment (MCI) and 15 were normal controls (NC). The BF-227 uptake in each local brain region was set up with automated anatomical labeling atlas using Wake Forest University PickAtlas software and local standardized uptake value ratios of BF-227 were calculated as the average value of right and left using the MRIcron software. RESULTS Group comparisons of Aβ deposition as determined by BF-227 uptake using PET imaging showed no significant differences between MCI and AD. Aβ deposition was significantly higher in MCI and AD than in NC. The correlation analysis between local Aβ deposition and gray matter atrophy showed that in AD, the Aβ deposition in the inferior temporal gyrus was strongly related to the gray matter atrophy in this region. On the contrary, the Aβ deposition in the precuneus was associated with the atrophy in the right occipital-temporal region. In the NC, the Aβ deposition in the inferior temporal gyrus was associated with the atrophy in the precuneus. CONCLUSION In the AD, the relationship between the Aβ deposition and local atrophy is area-dependent. In NC, Aβ deposition in the inferior temporal gyrus correlated to the atrophy in the precuneus.
Collapse
|
15
|
Buccal Mucosa Biomarkers in Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:49-56. [DOI: 10.1007/978-3-030-32633-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Ercan-Herbst E, Ehrig J, Schöndorf DC, Behrendt A, Klaus B, Gomez Ramos B, Prat Oriol N, Weber C, Ehrnhoefer DE. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun 2019; 7:192. [PMID: 31796124 PMCID: PMC6892178 DOI: 10.1186/s40478-019-0823-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Tau is a microtubule-binding protein that can receive various post-translational modifications (PTMs) including phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Hyperphosphorylation of tau is linked to its aggregation and the formation of neurofibrillary tangles (NFTs), which are a hallmark of Alzheimer's disease (AD). While more than 70 phosphorylation sites have been detected previously on NFT tau, studies of oligomeric and detergent-soluble tau in human brains during the early stages of AD are lacking. Here we apply a comprehensive electrochemiluminescence ELISA assay to analyze twenty-five different PTM sites as well as tau oligomerization in control and sporadic AD brain. The samples were classified as Braak stages 0-I, II or III-IV, corresponding to the progression of microscopically detectable tau pathology throughout different brain regions. We found that soluble tau multimers are strongly increased at Braak stages III-IV in all brain regions under investigation, including the temporal cortex, which does not contain NFTs or misfolded oligomers at this stage of pathology. We additionally identified five phosphorylation sites that are specifically and consistently increased across the entorhinal cortex, hippocampus and temporal cortex in the same donors. Three of these sites correlate with tau multimerization in all three brain regions, but do not overlap with the epitopes of phospho-sensitive antibodies commonly used for the immunohistochemical detection of NFTs. Our results thus suggest that soluble multimers are characterized by a small set of specific phosphorylation events that differ from those dominating in mature NFTs. These findings shed light on early PTM changes of tau during AD pathogenesis in human brains.
Collapse
Affiliation(s)
- Ebru Ercan-Herbst
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Jens Ehrig
- B CUBE - Center for Molecular Bioengineering, Technische Universitaet Dresden, 01307, Dresden, Germany
| | - David C Schöndorf
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Annika Behrendt
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Bernd Klaus
- Centre for Statistical Data Analysis, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Borja Gomez Ramos
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
- Present address: Life Sciences Research Unit, University of Luxembourg, L-4367, Belvaux, Luxembourg
- Present address: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Nuria Prat Oriol
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Christian Weber
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Dagmar E Ehrnhoefer
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharm J 2019; 28:1-14. [PMID: 31920428 PMCID: PMC6950969 DOI: 10.1016/j.jsps.2019.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022] Open
Abstract
In current study is done antioxidant, anticholinesterase, and carbonic anhydrase isoenzymes I and II inhibition assays, screening of biological active compounds and electronic microscopy analysis of secretory canals of fruits, flowers, roots, and aerial parts extracts and essential oils of Angelica purpurascens. Phenolic constituents, antioxidant, and anti-lipid peroxidation potentials of variants were estimated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) processes. Cholinesterase inhibition effect was detected through Ellman’s method. The GC/ Mass Spectrometry (MS) and gas chromatography (GC)-flame Ionization Detector (FID) was used for essential oils analysis. NMR techniques was used for identification of the isolated compounds. The fruit hexane and dichloromethane fractions exhibited a greater antioxidant capacity and total phenolic content. The dichloromethane fraction of fruit demonstrated the most higher acetylcholinesterase inhibition (39.86 ± 2.63%), while the fruit hexane fraction displayed the best inhibition towards butyrylcholinesterase (84.02 ± 1.28%). Cytosolic isoenzymes of human carbonic anhydrase (hCA) I, and II isoenzymes were influentially suppressed by flower and fruit dichloromethane fractions with 1.650 and 2.020 µM IC50 values, respectively. The electronic microscopy analysis of secretory canals found that the small number of secretory canals were at leaf while the largest shape of secretory canals was at the fruit. The secretory canals of roots, aerial parts, and fruits include more monoterpene hydrocarbons, while the canals, existing in the flowers are qualified by a higher presence of sesquiterpenes β-caryophyllene (12.1%), germacrene D (4.5%) and ether octyl acetate (11.9%). The highest level of monoterpene β-phellandrene (47.6%) and limonene (8.2%) were found in the fruit essential oil. The next isolated compounds from fruits of A. purpurascens like stigmasterol, β-sitosterol, bergapten, and oxypeucedanin have shown high anticholinesterase and antioxidant activities.
Collapse
|
18
|
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener 2019; 14:32. [PMID: 31375134 PMCID: PMC6679484 DOI: 10.1186/s13024-019-0333-5] [Citation(s) in RCA: 1794] [Impact Index Per Article: 299.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The cardinal pathological features of the disease have been known for more than one hundred years, and today the presence of these amyloid plaques and neurofibrillary tangles are still required for a pathological diagnosis. Alzheimer's disease is the most common cause of dementia globally. There remain no effective treatment options for the great majority of patients, and the primary causes of the disease are unknown except in a small number of familial cases driven by genetic mutations. Confounding efforts to develop effective diagnostic tools and disease-modifying therapies is the realization that Alzheimer's disease is a mixed proteinopathy (amyloid and tau) frequently associated with other age-related processes such as cerebrovascular disease and Lewy body disease. Defining the relationships between and interdependence of various co-pathologies remains an active area of investigation. This review outlines etiologically-linked pathologic features of Alzheimer's disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies. Other disease processes that are frequent, but not inevitable, are also discussed, including pathologic processes that can clinically mimic Alzheimer's disease. These include cerebrovascular disease, Lewy body disease, TDP-43 proteinopathies and argyrophilic grain disease. The purpose of this review is to provide an overview of Alzheimer's disease pathology, its defining pathologic substrates and the related pathologies that can affect diagnosis and treatment.
Collapse
Affiliation(s)
- Michael A. DeTure
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
19
|
Karakaya S, Koca M, Yılmaz SV, Yıldırım K, Pınar NM, Demirci B, Brestic M, Sytar O. Molecular Docking Studies of Coumarins Isolated from Extracts and Essential Oils of Zosima absinthifolia Link as Potential Inhibitors for Alzheimer's Disease. Molecules 2019; 24:molecules24040722. [PMID: 30781573 PMCID: PMC6412260 DOI: 10.3390/molecules24040722] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Coumarins and essential oils are the major components of the Apiaceae family and the Zosima genus. The present study reports anticholinesterase and antioxidant activities of extracts and essential oils from aerial parts, roots, flowers, fruits and coumarins—bergapten (1); imperatorin (2), pimpinellin (3) and umbelliferone (4)—isolated of the roots from Zosima absinthifolia. The investigation by light and scanning electron microscopy of the structures of secretory canals found different chemical compositions in the various types of secretory canals which present in the aerial parts, fruits and flowers. The canals, present in the aerial parts, are characterized by terpene hydrocarbons, while the secretory canals of roots, flowers and fruits include esters. Novel data of a comparative study on essential oils constituents of aerial parts, roots, flowers and fruits of Z. absinthfolia has been presented. The roots and fruits extract showed a high content of total phenolics and antioxidant activity. The GC-FID and GC-MS analysis revealed that the main components of the aerial parts, roots, flowers and fruits extracts were octanol (8.8%), octyl octanoate (7.6%), octyl acetate (7.3%); trans-pinocarvyl acetate (26.7%), β-pinene (8.9%); octyl acetate (19.9%), trans-p-menth-2-en-1-ol (4.6%); octyl acetate (81.6%), and (Z)-4-octenyl acetate (5.1%). The dichloromethane fraction of fruit and flower essential oil was characterized by the highest phenolics level and antioxidant activity. The dichloromethane fraction of fruit had the best inhibition against butyrylcholinesterase enzyme (82.27 ± 1.97%) which was higher then acetylcholinesterase inhibition (61.09 ± 4.46%) of umbelliferone. This study shows that the flowers and fruit of Z. absinthifolia can be a new potential resource of natural antioxidant and anticholinesterase compounds.
Collapse
Affiliation(s)
- Songul Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey.
| | - Mehmet Koca
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey.
| | - Serdar Volkan Yılmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey.
| | - Kadir Yıldırım
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey.
| | - Nur Münevver Pınar
- Department of Biology, Faculty of Science, Ankara University, 06560 Ankara, Turkey.
| | - Betül Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26210 Eskisehir, Turkey.
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University in Nitra, 94976 Nitra, Slovak.
| | - Oksana Sytar
- Department of Plant Physiology, Slovak Agricultural University in Nitra, 94976 Nitra, Slovak.
- Department of Plant Biology, Educational and Scientific Center "Institute of Biology and Medicine", Kiev National University of Taras Shevchenko, Hlushkova Avenue, 2, 03127 Kyiv, Ukraine.
| |
Collapse
|
20
|
Xu J, Patassini S, Rustogi N, Riba-Garcia I, Hale BD, Phillips AM, Waldvogel H, Haines R, Bradbury P, Stevens A, Faull RLM, Dowsey AW, Cooper GJS, Unwin RD. Regional protein expression in human Alzheimer's brain correlates with disease severity. Commun Biol 2019; 2:43. [PMID: 30729181 PMCID: PMC6361956 DOI: 10.1038/s42003-018-0254-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/03/2018] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently affects 36 million people worldwide with no effective treatment available. Development of AD follows a distinctive pattern in the brain and is poorly modelled in animals. Therefore, it is vital to widen the spatial scope of the study of AD and prioritise the study of human brains. Here we show that functionally distinct human brain regions display varying and region-specific changes in protein expression. These changes provide insights into the progression of disease, novel AD-related pathways, the presence of a gradient of protein expression change from less to more affected regions and a possibly protective protein expression profile in the cerebellum. This spatial proteomics analysis provides a framework which can underpin current research and open new avenues to enhance molecular understanding of AD pathophysiology, provide new targets for intervention and broaden the conceptual frameworks for future AD research.
Collapse
Affiliation(s)
- Jingshu Xu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Stefano Patassini
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Nitin Rustogi
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
| | - Isabel Riba-Garcia
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
| | - Benjamin D. Hale
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
| | - Alexander M Phillips
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ UK
| | - Henry Waldvogel
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Robert Haines
- Research IT, The University of Manchester, Manchester, M13 9PL UK
| | - Phil Bradbury
- Research IT, The University of Manchester, Manchester, M13 9PL UK
| | - Adam Stevens
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PL UK
| | - Richard L. M. Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Andrew W. Dowsey
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
- Department of Population Health Sciences and Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 2BN UK
| | - Garth J. S. Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Richard D. Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
| |
Collapse
|
21
|
Hasecke F, Miti T, Perez C, Barton J, Schölzel D, Gremer L, Grüning CSR, Matthews G, Meisl G, Knowles TPJ, Willbold D, Neudecker P, Heise H, Ullah G, Hoyer W, Muschol M. Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Chem Sci 2018; 9:5937-5948. [PMID: 30079208 PMCID: PMC6050532 DOI: 10.1039/c8sc01479e] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023] Open
Abstract
Assembly of rigid amyloid fibrils with their characteristic cross-β sheet structure is a molecular signature of numerous neurodegenerative and non-neuropathic disorders. Frequently large populations of small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs), and have been implicated in amyloid toxicity. Yet our understanding of the origin of these metastable oligomers, their role as on-pathway precursors or off-pathway competitors, and their effects on the self-assembly of amyloid fibrils remains incomplete. Using two unrelated amyloid proteins, amyloid-β and lysozyme, we find that gO/CF formation, analogous to micelle formation by surfactants, is delineated by a "critical oligomer concentration" (COC). Below this COC, fibril assembly replicates the sigmoidal kinetics of nucleated polymerization. Upon crossing the COC, assembly kinetics becomes biphasic with gO/CF formation responsible for the lag-free initial phase, followed by a second upswing dominated by RF nucleation and growth. RF lag periods below the COC, as expected, decrease as a power law in monomer concentration. Surprisingly, the build-up of gO/CFs above the COC causes a progressive increase in RF lag periods. Our results suggest that metastable gO/CFs are off-pathway from RF formation, confined by a condition-dependent COC that is distinct from RF solubility, underlie a transition from sigmoidal to biphasic assembly kinetics and, most importantly, not only compete with RFs for the shared monomeric growth substrate but actively inhibit their nucleation and growth.
Collapse
Affiliation(s)
- Filip Hasecke
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany .
| | - Tatiana Miti
- Department of Physics , University of South Florida , Tampa , FL 33620 , USA .
| | - Carlos Perez
- Department of Physics , University of South Florida , Tampa , FL 33620 , USA .
| | - Jeremy Barton
- Department of Physics , University of South Florida , Tampa , FL 33620 , USA .
| | - Daniel Schölzel
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany .
- Institute of Complex Systems (ICS-6) , Structural Biochemistry , Research Centre Jülich , Germany
| | - Lothar Gremer
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany .
- Institute of Complex Systems (ICS-6) , Structural Biochemistry , Research Centre Jülich , Germany
| | - Clara S R Grüning
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany .
| | - Garrett Matthews
- Department of Physics , University of South Florida , Tampa , FL 33620 , USA .
| | - Georg Meisl
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Dieter Willbold
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany .
- Institute of Complex Systems (ICS-6) , Structural Biochemistry , Research Centre Jülich , Germany
| | - Philipp Neudecker
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany .
- Institute of Complex Systems (ICS-6) , Structural Biochemistry , Research Centre Jülich , Germany
| | - Henrike Heise
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany .
- Institute of Complex Systems (ICS-6) , Structural Biochemistry , Research Centre Jülich , Germany
| | - Ghanim Ullah
- Department of Physics , University of South Florida , Tampa , FL 33620 , USA .
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany .
- Institute of Complex Systems (ICS-6) , Structural Biochemistry , Research Centre Jülich , Germany
| | - Martin Muschol
- Department of Physics , University of South Florida , Tampa , FL 33620 , USA .
| |
Collapse
|
22
|
Karakaya S, Koca M, Kılıc CS, Coskun M. Antioxidant and anticholinesterase activities of Ferulago syriaca Boiss. and F. isaurica Peșmen growing in Turkey. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2196-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Chen BW, Li WX, Wang GH, Li GH, Liu JQ, Zheng JJ, Wang Q, Li HJ, Dai SX, Huang JF. A strategy to find novel candidate anti-Alzheimer's disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants. PeerJ 2018; 6:e4756. [PMID: 29770277 PMCID: PMC5951129 DOI: 10.7717/peerj.4756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/23/2018] [Indexed: 12/24/2022] Open
Abstract
Background Alzheimer’ disease (AD) is an ultimately fatal degenerative brain disorder that has an increasingly large burden on health and social care systems. There are only five drugs for AD on the market, and no new effective medicines have been discovered for many years. Chinese medicinal plants have been used to treat diseases for thousands of years, and screening herbal remedies is a way to develop new drugs. Methods We used molecular docking to screen 30,438 compounds from Traditional Chinese Medicine (TCM) against a comprehensive list of AD target proteins. TCM compounds in the top 0.5% of binding affinity scores for each target protein were selected as our research objects. Structural similarities between existing drugs from DrugBank database and selected TCM compounds as well as the druggability of our candidate compounds were studied. Finally, we searched the CNKI database to obtain studies on anti-AD Chinese plants from 2007 to 2017, and only clinical studies were included. Results A total of 1,476 compounds (top 0.5%) were selected as drug candidates. Most of these compounds are abundantly found in plants used for treating AD in China, especially the plants from two genera Panax and Morus. We classified the compounds by single target and multiple targets and analyzed the interactions between target proteins and compounds. Analysis of structural similarity revealed that 17 candidate anti-AD compounds were structurally identical to 14 existing approved drugs. Most of them have been reported to have a positive effect in AD. After filtering for compound druggability, we identified 11 anti-AD compounds with favorable properties, seven of which are found in anti-AD Chinese plants. Of 11 anti-AD compounds, four compounds 5,862, 5,863, 5,868, 5,869 have anti-inflammatory activity. The compound 28,814 mainly has immunoregulatory activity. The other six compounds have not yet been reported for any biology activity at present. Discussion Natural compounds from TCM provide a broad prospect for the screening of anti-AD drugs. In this work, we established networks to systematically study the connections among natural compounds, approved drugs, TCM plants and AD target proteins with the goal of identifying promising drug candidates. We hope that our study will facilitate in-depth research for the treatment of AD in Chinese medicine.
Collapse
Affiliation(s)
- Bi-Wen Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guang-Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jia-Qian Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Juan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hui-Juan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming, Yunnan, China
| |
Collapse
|
24
|
Wang Q, Li WX, Dai SX, Guo YC, Han FF, Zheng JJ, Li GH, Huang JF. Meta-Analysis of Parkinson's Disease and Alzheimer's Disease Revealed Commonly Impaired Pathways and Dysregulation of NRF2-Dependent Genes. J Alzheimers Dis 2018; 56:1525-1539. [PMID: 28222515 DOI: 10.3233/jad-161032] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many lines of evidence suggest that Parkinson's disease (PD) and Alzheimer's disease (AD) have common characteristics, such as mitochondrial dysfunction and oxidative stress. As the underlying molecular mechanisms are unclear, we perform a meta-analysis with 9 microarray datasets of PD studies and 7 of AD studies to explore it. Functional enrichment analysis revealed that PD and AD both showed dysfunction in the synaptic vesicle cycle, GABAergic synapses, phagosomes, oxidative phosphorylation, and TCA cycle pathways, and AD had more enriched genes. Comparing the differentially expressed genes between AD and PD, we identified 54 common genes shared by more than six tissues. Among them, 31 downregulated genes contained the antioxidant response element (ARE) consensus sequence bound by NRF2. NRF2 is a transcription factor, which protects cells against oxidative stress through coordinated upregulation of ARE-driven genes. To our surprise, although NRF2 was upregulated, its target genes were all downregulated. Further exploration found that MAFF was upregulated in all tissues and significantly negatively correlated with the 31 NRF2-dependent genes in diseased conditions. Previous studies have demonstrated over-expressed small MAFs can form homodimers and act as transcriptional repressors. Therefore, MAFF might play an important role in dysfunction of NRF2 regulatory network in PD and AD.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Institute of Health Sciences, Anhui University, Hefei, Anhui, China
| | - Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Cheng Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fei-Fei Han
- Immuno-Metabolic Computational Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun-Juan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming, Yunnan, China.,Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming, Yunnan, China.,Chinese University of Hong Kong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming, Yunnan, China
| |
Collapse
|
25
|
Mejías-Trueba M, Pérez-Moreno MA, Fernández-Arche MÁ. Systematic review of the efficacy of statins for the treatment of Alzheimer's disease. Clin Med (Lond) 2018; 18:54-61. [PMID: 29436440 PMCID: PMC6330926 DOI: 10.7861/clinmedicine.18-1-54] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Recent studies have assessed the possibility of using statins as treatment for AD. However, their efficacy is not clear. In this study, we collected the most relevant information about the efficacy of statins for the treatment of AD. We conducted a systematic literature search using MEDLINE, EMBASE and The Cochrane Library. We included clinical trials, meta-analyses and systematic reviews that analysed the efficacy of statins in AD. We also extracted the characteristics and efficacy results of the studies selected. Of the 304 articles identified, 13 complied with the inclusion criteria. The scientific quality of studies was high and their results indicated that there were no significant differences in the main efficacy variables between statins and placebo treatment for AD. Therefore, according to the available scientific evidence, statins have not shown an improvement in cognition and do not appear to offer significant benefits to patients with AD.
Collapse
|
26
|
Bao LY, Hao SJ, Xi SF, Yan X, Zhang HX, Shen R, Gu ZG. Chiral supramolecular coordination cages as high-performance inhibitors against amyloid-β aggregation. Chem Commun (Camb) 2018; 54:8725-8728. [DOI: 10.1039/c8cc04913k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A family of chiral tetrahedral Ni48+ coordination cages with tunable size and multiple interaction sites can effectively inhibit Aβ aggregation.
Collapse
Affiliation(s)
- Ling-Yu Bao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Si-Jia Hao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Sai-Fei Xi
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Hai-Xia Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Rui Shen
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
27
|
Devous MD, Joshi AD, Navitsky M, Southekal S, Pontecorvo MJ, Shen H, Lu M, Shankle WR, Seibyl JP, Marek K, Mintun MA. Test-Retest Reproducibility for the Tau PET Imaging Agent Flortaucipir F 18. J Nucl Med 2017; 59:937-943. [PMID: 29284675 DOI: 10.2967/jnumed.117.200691] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/08/2017] [Indexed: 01/16/2023] Open
Abstract
Alzheimer disease (AD) is characterized by β-amyloid (Aβ) plaques and tau neurofibrillary tangles. There are several PET imaging biomarkers for Aβ including 11C-PiB and 18F-florbetapir. Recently, PET tracers for tau neurofibrillary tangles have become available and have shown utility in detection and monitoring of neurofibrillary pathology over time. Flortaucipir F 18 is one such tracer. Initial clinical studies indicated greater tau binding in AD and mild cognitive impairment patients than in controls in a pattern consistent with tau pathology observed at autopsy. However, little is known about the reproducibility of such findings. To our knowledge, this study reports the first data regarding test-retest reproducibility of flortaucipir F 18 PET. Methods: Twenty-one subjects who completed the study (5 healthy controls, 6 mild cognitive impairment, and 10 AD) received 370 MBq of flortaucipir F 18 and were imaged for 20 min beginning 80 min after injection and again at 110 min after injection. Follow-up (retest) imaging occurred between 48 h and 4 wk after initial imaging. Images were spatially normalized to Montreal Neurological Institute template space. SUVRs were calculated using AAL (Automated Anatomical Labeling atlas) volumes of interest (VOIs) for parietal, temporal, occipital, anterior, and posterior hippocampal, parahippocampal, and fusiform regions, as well as a posterior neocortical VOI composed of average values from parietal, temporal, and occipital areas. Further, a VOI derived by discriminant analysis that maximally separated diagnostic groups (multiblock barycentric discriminant analysis [MUBADA]) was used. All VOIs were referenced to a subsection of cerebellar gray matter (cere-crus) as well as a parametrically derived white matter-based reference region (parametric estimate of reference signal intensity [PERSI]). t test, correlation analyses, and intraclass correlation coefficient were used to explore test-retest performance. Results: Test-retest analyses demonstrated low variability in flortaucipir F 18 SUVR. The SD of mean percentage change between test and retest using the PERSI reference region was 2.22% for a large posterior neocortical VOI, 1.84% for MUBADA, 1.46% for frontal, 1.98% for temporal, 2.28% for parietal, and 3.27% for occipital VOIs. Further, significant correlations (R2 > 0.85; P < 0.001) were observed for all regions, and intraclass correlation coefficient values (test-retest consistency) were greater than 0.92 for all regions. Conclusion: Significant test-retest reproducibility for flortaucipir F 18 was found across neocortical and mesial temporal lobe structures. These preliminary data suggest that flortaucipir F 18 tau imaging could be used to examine changes in tau burden over time.
Collapse
Affiliation(s)
- Michael D Devous
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia, Pennsylvania
| | - Abhinay D Joshi
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia, Pennsylvania
| | - Michael Navitsky
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia, Pennsylvania
| | - Sudeepti Southekal
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia, Pennsylvania
| | - Michael J Pontecorvo
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia, Pennsylvania
| | - Haiqing Shen
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia, Pennsylvania
| | - Ming Lu
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia, Pennsylvania
| | - William R Shankle
- Shankle Clinic Memory and Cognitive Disorders Program, Hoag Neurosciences Institute, Newport Beach, California; and
| | | | - Ken Marek
- Molecular NeuroImaging, New Haven, Connecticut
| | - Mark A Mintun
- Avid Radiopharmaceuticals, Inc. (a wholly owned subsidiary of Eli Lilly and Company), Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Bosch-Morató M, Iriondo C, Guivernau B, Valls-Comamala V, Vidal N, Olivé M, Querfurth H, Muñoz FJ. Increased amyloid β-peptide uptake in skeletal muscle is induced by hyposialylation and may account for apoptosis in GNE myopathy. Oncotarget 2017; 7:13354-71. [PMID: 26968811 PMCID: PMC4924647 DOI: 10.18632/oncotarget.7997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/23/2016] [Indexed: 12/17/2022] Open
Abstract
GNE myopathy is an autosomal recessive muscular disorder of young adults characterized by progressive skeletal muscle weakness and wasting. It is caused by a mutation in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes a key enzyme in sialic acid biosynthesis. The mutated hypofunctional GNE is associated with intracellular accumulation of amyloid β-peptide (Aβ) in patient muscles through as yet unknown mechanisms. We found here for the first time that an experimental reduction in sialic acid favors Aβ1-42 endocytosis in C2C12 myotubes, which is dependent on clathrin and heparan sulfate proteoglycan. Accordingly, Aβ1-42 internalization in myoblasts from a GNE myopathy patient was enhanced. Next, we investigated signal changes triggered by Aβ1-42 that may underlie toxicity. We observed that p-Akt levels are reduced in step with an increase in apoptotic markers in GNE myopathy myoblasts compared to control myoblasts. The same results were experimentally obtained when Aβ1-42 was overexpressed in myotubes. Hence, we propose a novel disease mechanism whereby hyposialylation favors Aβ1-42 internalization and the subsequent apoptosis in myotubes and in skeletal muscle from GNE myopathy patients.
Collapse
Affiliation(s)
- Mònica Bosch-Morató
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cinta Iriondo
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Biuse Guivernau
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Victòria Valls-Comamala
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Noemí Vidal
- Institut de Neuropatologia, Servei Anatomia Patològica, Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Montse Olivé
- Institut de Neuropatologia, Servei Anatomia Patològica, Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Henry Querfurth
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Francisco J Muñoz
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
29
|
Flanagan ME, Marshall DA, Shofer JB, Montine KS, Nelson PT, Montine TJ, Keene CD. Performance of a Condensed Protocol That Reduces Effort and Cost of NIA-AA Guidelines for Neuropathologic Assessment of Alzheimer Disease. J Neuropathol Exp Neurol 2017; 76:39-43. [PMID: 28062571 DOI: 10.1093/jnen/nlw104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Concerns regarding resource expenditures have been expressed about the 2012 NIA-AA Sponsored Guidelines for neuropathologic assessment of Alzheimer disease (AD) and related dementias. Here, we investigated a cost-reducing Condensed Protocol and its effectiveness in maintaining the diagnostic performance of Guidelines in assessing AD, Lewy body disease (LBD), microvascular brain injury, hippocampal sclerosis (HS), and congophilic amyloid angiopathy (CAA). The Condensed Protocol consolidates the same 20 regions into 5 tissue cassettes at ∼75% lower cost. A 28 autopsy brain-retrospective cohort was selected for varying levels of neuropathologic features in the Guidelines (Original Protocol), as well as an 18 consecutive autopsy brain prospective cohort. Three neuropathologists at 2 sites performed blinded evaluations of these cases. Lesion specificity was similar between Original and Condensed Protocols. Sensitivities for AD neuropathologic change, LBD, HS, and CAA were not substantially impacted by the Condensed Protocol, whereas sensitivity for microvascular lesions (MVLs) was decreased. Specificity for CAA was decreased using the Condensed Protocol when compared with the Original Protocol. Our results show that the Condensed Protocol is a viable alternative to the NIA-AA guidelines for AD neuropathologic change, LBD, and HS, but not MVLs or CAA, and may be a practical alternative in some practice settings.
Collapse
Affiliation(s)
| | | | - Jane B Shofer
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | | | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes. Eur J Med Chem 2016; 124:1026-1040. [PMID: 27783974 DOI: 10.1016/j.ejmech.2016.10.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/27/2023]
Abstract
Donepezil (DNP), an acetylcholinesterase (AChE) inhibitor, is one of the most preferred choices in Alzheimer diseases (AD) therapy. In the present study, 38 new DNP analogues were synthesized. Structures of the synthesized compounds (1-38) were elucidated by IR, 1H NMR, 13C NMR and HRMS spectroscopic methods and elemental analysis. Inhibitory potential of the compounds on cholinesterase enzymes was investigated. None of the compounds displayed significant activity on butyrylcholinesterase (BChE) enzyme. On the other hand, compounds 26-29 indicated important inhibitory activity on AChE enzyme. Kinetic studies were performed in order to observe the effects of the most active compounds on substrate-enzyme relationship. Cytotoxicity studies and theoretical calculation of pharmacokinetic properties were also carried out to get an information about toxicity and pharmacokinetic profiles of the compounds. The compounds 26-29 were found to be nontoxic at their effective concentrations against AChE. A good pharmacokinetic profile was predicted for these compounds. Docking studies were performed for the most active compounds 26-29 and interaction modes with enzyme active sites were determined. Docking studies revealed that there is a strong interaction between the active sites of AChE enzyme and analyzed compounds.
Collapse
|
31
|
Zhang J, Wang S, Huang W, Bennett DA, Dickson DW, Wang D, Wang R. Tissue Transglutaminase and Its Product Isopeptide Are Increased in Alzheimer's Disease and APPswe/PS1dE9 Double Transgenic Mice Brains. Mol Neurobiol 2016; 53:5066-78. [PMID: 26386840 PMCID: PMC4799778 DOI: 10.1007/s12035-015-9413-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by intracellular and extracellular protein aggregates, including microtubule-associated protein tau and cleavage product of amyloid precursor protein, β-amyloid (Aβ). Tissue transglutaminase (tTG) is a calcium-dependent enzyme that cross-links proteins forming a γ-glutamyl-ε-lysine isopeptide bond. Highly resistant to proteolysis, this bond can induce protein aggregation and deposition. We set out to determine if tTG may play a role in pathogenesis of AD. Previous studies have shown that tTG and isopeptide are increased in advanced AD, but they have not addressed if this is an early or late feature of AD. In the present study, we measured tTG expression levels and enzyme activity in the brains of individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD, as well as a transgenic mouse model of AD. We found that both enzyme expression and activity were increased in MCI as well as AD compared to NCI. In the transgenic model of AD, tTG expression and enzyme activity increased sharply with age and were relatively specific for the hippocampus. We also assessed overlap of isopeptide immunoreactivity with neurodegeneration-related proteins with Western blots and found neurofilament, tau, and Aβ showed co-localization with isopeptide in both AD and transgenic mice. These results suggest that tTG might be a key factor in pathogenesis of abnormal protein aggregation in AD.
Collapse
Affiliation(s)
- Ji Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Suqing Wang
- Department of Nutrition and Food Health, School of Public Health, Wuhan University, Wuhan, China
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Dennis W Dickson
- Department of Pathology (Neuropathology) and Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Dengshun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA.
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
32
|
Goldblatt G, Matos JO, Gornto J, Tatulian SA. Isotope-edited FTIR reveals distinct aggregation and structural behaviors of unmodified and pyroglutamylated amyloid β peptides. Phys Chem Chem Phys 2016. [PMID: 26214017 DOI: 10.1039/c5cp03343h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid β peptide (Aβ) is causatively associated with Alzheimer's disease (AD), and N-terminally truncated and pyroglutamylated Aβ peptides (AβpE) exert hypertoxic effect by an unknown mechanism. Recent evidence has identified the prefibrillar oligomers of Aβ, not the fibrils, as the prevalent cytotoxic species. Structural characterization of Aβ and AβpE oligomers is therefore important for better understanding of their toxic effect. Here we have used isotope-edited Fourier transform infrared (FTIR) spectroscopy to identify the conformational changes in Aβ(1-42) and AβpE(3-42) upon aggregation, individually and in 1 : 1 molar combination. During the first two hours of exposure to aqueous buffer, the peptides undergo transition from mostly α-helical to mostly β-sheet structure. Data on peptides (13)C,(15)N-labeled at K(16)L(17)V(18) or V(36)G(37)G(38)V(39) allowed construction of structural models for the monomer and early oligomers. The peptide monomer comprises a β-hairpin that involves residues upstream of the K(16)L(17)V(18) sequence and an N-terminal α-helix. The oligomers form by non-H-bonding interactions between the β-strands of neighboring β-hairpins, in lateral or staggered manner, with the strands running parallel or antiparallel. Relative α-helical and β-sheet propensities of Aβ(1-42) and AβpE(3-42) depend on the ionic strength of the buffer, emphasizing the importance of ionic interactions in Aβ peptide structure and aggregation. It is inferred that N-terminal modification of AβpE(3-42) affects the helix stability and thereby modulates β-sheet oligomer formation. The data thus provide new insight into the molecular mechanism of Aβ oligomerization by emphasizing the role of the N-terminal transient α-helical structure and by identifying structural constraints for molecular organization of the oligomers.
Collapse
Affiliation(s)
- Greg Goldblatt
- Biomedical Sciences Graduate Program, University of Central Florida, Orlando, FL, USA
| | - Jason O Matos
- Biotechnology Graduate Program, University of Central Florida, Orlando, FL, USA
| | - Jeremy Gornto
- Undergraduate student, University of Central Florida, Orlando, FL, USA
| | - Suren A Tatulian
- Department of Physics, Physical Sciences Room 456, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, USA.
| |
Collapse
|
33
|
Cai L, Qu B, Hurtle BT, Dadiboyena S, Diaz-Arrastia R, Pike VW. Candidate PET Radioligand Development for Neurofibrillary Tangles: Two Distinct Radioligand Binding Sites Identified in Postmortem Alzheimer's Disease Brain. ACS Chem Neurosci 2016; 7:897-911. [PMID: 27171905 DOI: 10.1021/acschemneuro.6b00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
[(18)F]THK-523 and [(18)F]807 are promising radioligands for imaging neurofibrillary tangles (NFTs) with positron emission tomography (PET) in neurodegenerative diseases, such as Alzheimer's disease (AD) and traumatic brain injury. Although [(18)F]THK-523 and [(18)F]T807 are considered high-affinity selective radioligands for NFTs, uncertainty has existed as to whether PET radioligands for imaging NFTs bind to the same molecular site because in vitro assays for ligands binding to NFTs have been lacking. We labeled THK-523 and T807 with tritium to serve as reference radioligands for in vitro binding assays with AD brain homogenates for newly synthesized ligands. With these radioligands, we identified two distinct binding sites for small molecules, one site with high affinity for THK-523 and the other with high affinity for T807. Moreover, binding assays with [(3)H]PIB confirmed that the two newly identified binding sites are also distinct from the thioflavin-T binding site where all current clinically useful PET radioligands for imaging β-amyloid plaque bind with high affinity. The two newly identified binding sites are considered to reside on NFTs rather than on β-amyloid plaques. Furthermore, we applied all three binding assays to a set of newly prepared compounds, based on chain modifications to THK-523. Some compounds with high affinity and selectivity for the THK-523 binding site emerged from this set, including one with amenability to labeling with fluorine-18, namely, ligand 10b.
Collapse
Affiliation(s)
- Lisheng Cai
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Baoxi Qu
- Center
for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Rockville, Maryland 20851, United States
| | - Bryan T. Hurtle
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sureshbabu Dadiboyena
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ramon Diaz-Arrastia
- Center
for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Rockville, Maryland 20851, United States
| | - Victor W. Pike
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
34
|
Liao Y, Huang Y, Liu X, Luo C, Zou D, Wei X, Huang Q, Wu Y. MicroRNA-328a regulates water maze performance in PTZ-kindled rats. Brain Res Bull 2016; 125:205-10. [PMID: 27444122 DOI: 10.1016/j.brainresbull.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 11/15/2022]
Abstract
The down-regulation of microRNA-328a (miR-328a) in pentylenetetrazole (PTZ)-kindled rats with memory impairment was demonstrated in our previous study, while any contribution of miR-328a to cognitive dysfunction of PTZ-kindled rats remains unknown. In this study we have investigated the effect and the underlying mechanism of miR-328a on the cognitive function in PTZ-kindled rats. 48 SD male rats were divided into 4 groups as follows: a PTZ kindled group, a miR-328a antagomir group, an antagomir-control group, and a sham group (n=12 for each). All rats except those from the sham group were treated with PTZ 14 times at intervals of 48h to establish the temporal lobe epilepsy (TLE) models, and miR-328a antagomir was given to the antagomir group as a treatment by lateral-ventricle injection the day after the first injection of PTZ. Morris water maze (MWM) test was performed to assay their learning and memory abilities. The down-regulation of miR-328a in the PTZ group was confirmed using RT-qPCR and the expression of miR-328a was diminished after antagomir treatment (P<0.05). In the probe test of water maze, the time and distance of the PTZ group were both shorter than those of the sham group (P<0.05), and those of the antagomir-control group were both longer than those of the antagomir group (P<0.05). In addition, we found that with the down-regulation of miR-328a, the levels of Beta-site APP-cleaving enzyme (BACE), which is a bioinformatics-predicted target of miR-328a, were up-regulated. These findings suggest that miR-328a may play a role in memory dysfunction in PTZ-kindled rats by regulating the BACE levels and this links the PTZ model with Alzheimer's disease.
Collapse
Affiliation(s)
- Yuhan Liao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yiqing Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Xixia Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Chun Luo
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Donghua Zou
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
35
|
Levenson JM, Schroeter S, Carroll JC, Cullen V, Asp E, Proschitsky M, Chung CHY, Gilead S, Nadeem M, Dodiya HB, Shoaga S, Mufson EJ, Tsubery H, Krishnan R, Wright J, Solomon B, Fisher R, Gannon KS. NPT088 reduces both amyloid-β and tau pathologies in transgenic mice. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2016; 2:141-155. [PMID: 29067301 PMCID: PMC5651359 DOI: 10.1016/j.trci.2016.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction Alzheimer's disease (AD) is characterized by appearance of both extracellular senile plaques and intracellular neurofibrillary tangles, comprised of aggregates of misfolded amyloid-β (Aβ) and hyper-phosphorylated tau, respectively. In a previous study, we demonstrated that g3p, a capsid protein from bacteriophage M13, binds to and remodels misfolded aggregates of proteins that assume an amyloid conformation. We engineered a fusion protein (“NPT088”) consisting of the active fragment of g3p and human-IgG1-Fc. Methods Aged Tg2576 mice or rTg4510 mice received NPT088 weekly via IP injection. Cognitive and/or functional motor endpoints were monitored during dosing. Pathology was quantified biochemically and immunohistochemically. Results NPT088-lowered Aβ plaque and improved cognitive performance of aged Tg2576 mice. Moreover, NPT088 reduced phospho-tau pathology, reduced brain atrophy, and improved cognition in rTg4510 mice. Discussion These observations establish NPT088 as a novel therapeutic approach and potential drug class that targets both Aβ and tau, the hallmark pathologies of AD. NPT088 binds to and remodels misfolded aggregates of both Aβ and tau. Systemic administration of NPT088 improves cognition, reduces levels of Aβ42 and lowers fibrillar Aβ plaque in aged Tg2576 hAPP mice. NPT088 does not increase levels of Aβ in CSF. Systemic administration of NPT088 improves cognition, improves motor function, reduces phospho-tau and reduces brain atrophy in rTg4510 tau mice.
Collapse
Affiliation(s)
| | | | | | | | - Eva Asp
- NeuroPhage Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | | - Sharon Gilead
- NeuroPhage Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Muhammad Nadeem
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Hemraj B Dodiya
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shadiyat Shoaga
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Haim Tsubery
- NeuroPhage Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Jason Wright
- NeuroPhage Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Beka Solomon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
36
|
da Rocha EL, Ung CY, McGehee CD, Correia C, Li H. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities. Nucleic Acids Res 2016; 44:e100. [PMID: 26975659 PMCID: PMC4889937 DOI: 10.1093/nar/gkw166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/02/2016] [Indexed: 12/30/2022] Open
Abstract
The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets.
Collapse
Affiliation(s)
- Edroaldo Lummertz da Rocha
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Cordelia D McGehee
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
37
|
Sedeyn JC, Wu H, Hobbs RD, Levin EC, Nagele RG, Venkataraman V. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures. BIOMED RESEARCH INTERNATIONAL 2015; 2015:937148. [PMID: 26697497 PMCID: PMC4677161 DOI: 10.1155/2015/937148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 11/18/2022]
Abstract
Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses-a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin-were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD.
Collapse
Affiliation(s)
- Jonathan C. Sedeyn
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Hao Wu
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Reilly D. Hobbs
- Department of Cell Biology, Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Eli C. Levin
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Robert G. Nagele
- Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
- Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Venkat Venkataraman
- Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
- Department of Cell Biology, Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
38
|
Stratmann K, Heinsen H, Korf HW, Del Turco D, Ghebremedhin E, Seidel K, Bouzrou M, Grinberg LT, Bohl J, Wharton SB, den Dunnen W, Rüb U. Precortical Phase of Alzheimer's Disease (AD)-Related Tau Cytoskeletal Pathology. Brain Pathol 2015; 26:371-86. [PMID: 26193084 DOI: 10.1111/bpa.12289] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia. We systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions in three individuals with Braak and Braak AD stage 0 cortical cytoskeletal pathology and fourteen individuals with Braak and Braak AD stage I cortical cytoskeletal pathology by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive tau cytoskeletal pathology in a subset of these subcortical nuclei in the Braak and Braak AD stage 0 individuals and in all of these subcortical nuclei in the Braak and Braak AD stage I individuals. The widespread affection of the subcortical nuclei in Braak and Braak AD stage I shows that the extent of the early subcortical tau cytoskeletal pathology has been considerably underestimated previously. In addition, our novel findings support the concept that subcortical nuclei become already affected during an early 'pre-cortical' evolutional phase before the first AD-related cytoskeletal changes occur in the mediobasal temporal lobe (i.e. allocortical transentorhinal and entorhinal regions). The very early involved subcortical brain regions may represent the origin of the AD-related tau cytoskeletal pathology, from where the neuronal cytoskeletal pathology takes an ascending course toward the secondarily affected allocortex and spreads transneuronally along anatomical pathways in predictable sequences.
Collapse
Affiliation(s)
- Katharina Stratmann
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| | - Helmut Heinsen
- Morphological Brain Research Unit, Psychiatric Clinic, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Horst-Werner Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
| | - Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| | - Mohamed Bouzrou
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, CA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Jürgen Bohl
- Neuropathology Division, University Clinic of Mainz, Mainz, Germany
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Wilfred den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
39
|
Vandal M, Bourassa P, Calon F. Can insulin signaling pathways be targeted to transport Aβ out of the brain? Front Aging Neurosci 2015; 7:114. [PMID: 26136681 PMCID: PMC4468380 DOI: 10.3389/fnagi.2015.00114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022] Open
Abstract
Although the causal role of Amyloid-β (Aβ) in Alzheimer’s disease (AD) is unclear, it is still reasonable to expect that lowering concentrations of Aβ in the brain may decrease the risk of developing the neurocognitive symptoms of the disease. Brain capillary endothelial cells forming the blood-brain barrier (BBB) express transporters regulating the efflux of Aβ out of the cerebral tissue. Age-related BBB dysfunctions, that have been identified in AD patients, might impair Aβ clearance from the brain. Thus, targeting BBB outward transport systems has been suggested as a way to stimulate the clearance of Aβ from the brain. Recent data indicate that the increase in soluble brain Aβ and behavioral impairments in 3×Tg-AD mice generated by months of intake of a high-fat diet can be acutely reversed by the administration of a single dose of insulin. A concomitant increase in plasma Aβ suggests that clearance from the brain through the BBB is a likely mechanism for this rapid effect of insulin. Here, we review how BBB insulin response pathways could be stimulated to decrease brain Aβ concentrations and improve cognitive performance, at least on the short term.
Collapse
Affiliation(s)
- Milene Vandal
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| | - Philippe Bourassa
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval Quebec, QC, Canada ; Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUL) Québec, QC, Canada ; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval Québec, QC, Canada
| |
Collapse
|
40
|
Abstract
The military conflicts of the last decade have highlighted the growing problem of traumatic brain injury in combatants returning from the battlefield. The considerable evidence pointing at the accumulation of tau aggregates and its recognition as a risk factor in neurodegenerative conditions such as Alzheimer's disease have led to a major effort to develop selective tau ligands that would allow research into the physiopathologic underpinnings of traumatic brain injury and chronic traumatic encephalopathy in military personnel and the civilian population. These tracers will allow new insights into tau pathology in the human brain, facilitating research into causes, diagnosis, and treatment of traumatic encephalopathy and major neurodegenerative dementias, such as Alzheimer's disease and some variants of frontotemporal lobar degeneration, in which tau plays a role. The field of selective tau imaging has to overcome several obstacles, some of them associated with the idiosyncrasies of tau aggregation and others related to radiotracer design. A worldwide effort has focused on the development of imaging agents that will allow selective tau imaging in vivo. Recent progress in the development of these tracers is enabling the noninvasive assessment of the extent of tau pathology in the brain, eventually allowing the quantification of changes in tau pathology over time and its relation to cognitive performance, brain volumetrics, and other biomarkers, as well as assessment of efficacy and patient recruitment for antitau therapeutic trials.
Collapse
Affiliation(s)
- Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Nobuyuki Okamura
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
41
|
Utility of Autoantibodies as Biomarkers for Diagnosis and Staging of Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:1-51. [DOI: 10.1016/bs.irn.2015.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Xu S, Guan Q, Wang C, Wei X, Chen X, Zheng B, An P, Zhang J, Chang L, Zhou W, Mody I, Wang Q. Rosiglitazone prevents the memory deficits induced by amyloid-beta oligomers via inhibition of inflammatory responses. Neurosci Lett 2014; 578:7-11. [PMID: 24933538 DOI: 10.1016/j.neulet.2014.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/06/2014] [Accepted: 06/05/2014] [Indexed: 01/06/2023]
Abstract
Rosiglitazone has been known to attenuate neurodegeneration in Alzheimer's disease (AD), but the underlying mechanisms remain unclear. In this study, Morris water maze test, ELISA and electrophysiological methods were used to examine the role and underling mechanisms of rosiglitazone on Aβ42 oligomer-induced memory impairments. We found that rosiglitazone attenuated Aβ42 oligomer-induced memory impairments in rats in a dose-dependent manner. The levels of inflammatory cytokines interleukin-1 beta (IL-1β) and interferon gamma (IFNγ) were significantly increased 7 days after injection of Aβ42 oligomers into the rat hippocampus. Inhibition of microglia activation prevented Aβ42 oligomer-induced increases in IL-1β and IFNγ levels. Rosiglitazone completely prevented the increase in the levels of IL-1β and IFNγ induced by Aβ42 oligomers. Treatment of hippocampal slices with the inflammatory cytokine IL-1β or IFNγ significantly inhibited the production of long-term potentiation (LTP) in the dentate gyrus. Rosiglitazone prevented the inhibitory effects of inflammatory cytokines on LTP. Thus, inhibition of inflammatory responses may be part of the mechanisms of action of rosiglitazone on preventing memory deficits induced by Aβ42 oligmers.
Collapse
Affiliation(s)
- Shujun Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Qiao Guan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Chuang Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xiaofei Wei
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xiaowei Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Bangxu Zheng
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Pengyuan An
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Junfang Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Lan Chang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Istvan Mody
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Qinwen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
43
|
Shokouhi S, Claassen D, Riddle WR. Imaging Brain Metabolism and Pathology in Alzheimer's Disease with Positron Emission Tomography. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2014; 4:143. [PMID: 25343059 PMCID: PMC4204649 DOI: 10.4172/2161-0460.1000143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Current Positron Emission Tomography (PET) biomarkers for Alzheimer's disease (AD) assess either neuronal function, or associated pathological features of this common neurodegenerative disease. The most widely accepted clinical PET tool for AD is 18-fluorodeoxyglucose PET (FDG-PET), which measures cerebral metabolic glucose utilization rate (CMRglc). FDG-PET is a marker of synaptic activity, neuronal function, and neuronal metabolic activity. AD is characterized by a distinct pattern of hypometabolism, as seen with the FDG images. This pattern can show variability across different subjects and is present before a patient is demented, specifically in amnestic mild cognitive impairment a clinical diagnosis defined as an intermediate state from normal aging to dementia. In addition to FDG PET, novel PET approaches assess known pathological hallmarks of AD including extracellular amyloid-beta plaques (Aβ) and intracellular neurofibrillary tangles composed of tau fibrils. Already, amyloid PET imaging is a tool that allows in vivo imaging of extracellular beta-amyloid levels. Efforts to bring tau imaging into clinical use continue, but this approach is hampered by the intracellular nature of tau protein deposition, subsequent weak radiotracer binding, and low image contrast. Several new candidate probes for tau-specific PET imaging are currently available but have not found their way into broad clinical applications. This study gives an overview of the most recent PET-based neuroimaging techniques for AD. We place special emphasis on PET data analysis and interpretation techniques, as well as radiochemistry for imaging metabolism and assessing Aβ and tau pathology.
Collapse
Affiliation(s)
- S Shokouhi
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - D Claassen
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - WR Riddle
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
44
|
Koppel J, Vingtdeux V, Marambaud P, d'Abramo C, Jimenez H, Stauber M, Friedman R, Davies P. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease. Mol Med 2014; 20:29-36. [PMID: 24722782 DOI: 10.2119/molmed.2013.00140.revised] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2(-/-) (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2(+/+) and J20 CNR2(-/-) mice. Seventeen J20 CNR2(+/+) mice (12 females, 5 males) and 16 J20 CNR2(-/-) mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2(-/-) mice relative to CNR2(+/+) mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2(-/-) mice. Total tau was significantly suppressed in J20 CNR2(-/-) mice relative to J20 CNR2(+/+) mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.
Collapse
Affiliation(s)
- Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Valerie Vingtdeux
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Cristina d'Abramo
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Heidy Jimenez
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Mark Stauber
- Yeshiva University, New York, New York, United States of America
| | - Rachel Friedman
- Queens College, New York, New York, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| |
Collapse
|
45
|
Scheff SW, Neltner JH, Nelson PT. Is synaptic loss a unique hallmark of Alzheimer's disease? Biochem Pharmacol 2014; 88:517-28. [PMID: 24412275 DOI: 10.1016/j.bcp.2013.12.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 12/13/2022]
Abstract
Synapses may represent a key nidus for dementia including Alzheimer's disease (AD) pathogenesis. Here we review published studies and present new ideas related to the question of the specificity of synapse loss in AD. Currently, AD is defined by the regional presence of neuritic plaques and neurofibrillary tangles in the brain. The severity of involvement by those pathological hallmarks tends to correlate both with antemortem cognitive status, and also with synapse loss in multiple brain areas. Recent studies from large autopsy series have led to a new standard of excellence with regard to clinical-pathological correlation and to improved comprehension of the numerous brain diseases of the elderly. These studies have provided evidence that it is the rule rather than the exception for brains of aged individuals to demonstrate pathologies (often multiple) other than AD plaques and tangles. For many of these comorbid pathologies, the extent of synapse loss is imperfectly understood but could be substantial. These findings indicate that synapse loss is probably not a hallmark specific to AD but rather a change common to many diseases associated with dementia.
Collapse
Affiliation(s)
- Stephen W Scheff
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, University of Kentucky, Lexington, KY 40536, United States; Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky Medical Center, University of Kentucky, Lexington, KY 40536, United States.
| | - Janna H Neltner
- Department of Pathology and Division of Neuropathology, University of Kentucky Medical Center, University of Kentucky, Lexington, KY 40536, United States
| | - Peter T Nelson
- Sanders-Brown Center on Aging and Alzheimer's Disease Center, University of Kentucky Medical Center, University of Kentucky, Lexington, KY 40536, United States; Department of Pathology and Division of Neuropathology, University of Kentucky Medical Center, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
46
|
Giacovazzi R, Ciofini I, Rao L, Amatore C, Adamo C. Copper–amyloid-β complex may catalyze peroxynitrite production in brain: evidence from molecular modeling. Phys Chem Chem Phys 2014; 16:10169-74. [DOI: 10.1039/c3cp54839b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The facile occurrence of an Aβ-catalyzed generation of peroxynitrite in the brain, alternative to H2O2-route, is proposed on the basis of QM/MM calculations.
Collapse
Affiliation(s)
- Roberto Giacovazzi
- Laboratoire d'Electrochimie
- Chimie des Interfaces et Modélisation pour l'Energie
- CNRS UMR-7575
- Ecole Nationale Supérieure de Chimie de Paris - Chimie-ParisTech
- F-75231 Paris Cedex 05, France
| | - Ilaria Ciofini
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
| | - Li Rao
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
| | - Christian Amatore
- Laboratoire d'Electrochimie
- Chimie des Interfaces et Modélisation pour l'Energie
- CNRS UMR-7575
- Ecole Nationale Supérieure de Chimie de Paris - Chimie-ParisTech
- F-75231 Paris Cedex 05, France
| | - Carlo Adamo
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
- Institut Universitaire de France
- 103 Boulevard Saint Michel
| |
Collapse
|
47
|
Rivabene R, Visentin S, Piscopo P, De Nuccio C, Crestini A, Svetoni F, Rosa P, Confaloni A. Thapsigargin affects presenilin-2 but not presenilin-1 regulation in SK-N-BE cells. Exp Biol Med (Maywood) 2013; 239:213-24. [PMID: 24363250 DOI: 10.1177/1535370213514317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Presenilin-1 (PS1) and presenilin-2 (PS2) are transmembrane proteins widely expressed in the central nervous system, which function as the catalytic subunits of γ-secretase, the enzyme that releases amyloid-β protein (Aβ) from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Mutations in PS1, PS2, and Aβ protein precursor are involved in the etiology of familial Alzheimer's disease (FAD), while the cause of the sporadic form of AD (SAD) is still not known. However, since similar neuropathological changes have been observed in both FAD and SAD, a common pathway in the etiology of the disease has been suggested. Given that age-related deranged Ca(2+) regulation has been hypothesized to play a role in SAD pathogenesis via PS gene regulation and γ-secretase activity, we studied the in vitro regulation of PS1 and PS2 in the human neuron-like SK-N-BE cell line treated with the specific endoplasmic reticulum (ER) calcium ATPase inhibitor Thapsigargin (THG), to introduce intracellular Ca(2+) perturbations and mimic the altered Ca(2+) homeostasis observed in AD. Our results showed a consistent and significant down-regulation of PS2, while PS1 appeared to be unmodulated. These events were accompanied by oxidative stress and a number of morphological alterations suggestive of the induction of apoptotic machinery. The administration of the antioxidant N-acetylcysteine (NAC) did not revert the THG-induced effects reported, while treatment with the Ca(2+)-independent ER stressor Brefeldin A did not modulate basal PS1 and PS2 expression. Collectively, these results suggest that Ca(2+) fluctuation rather than ER stress and/or oxidative imbalance seems to play an essential role in PS2 regulation and confirm that, despite their strong homology, PS1 and PS2 could play different roles in AD.
Collapse
Affiliation(s)
- Roberto Rivabene
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Koppel J, Vingtdeux V, Marambaud P, d'Abramo C, Jimenez H, Stauber M, Friedman R, Davies P. CB₂ receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer's disease. Mol Med 2013; 19:357-64. [PMID: 24408112 DOI: 10.2119/molmed.2013.00140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
The endocannabinoid CB₂ receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB₂ receptor system on AD pathology, a colony of mice with a deleted CB₂ receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB₂ receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2⁻/⁻ (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2⁺/⁺ and J20 CNR2⁻/⁻ mice. Seventeen J20 CNR2⁺/⁺ mice (12 females, 5 males) and 16 J20 CNR2⁻/⁻ mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2⁻/⁻ mice relative to CNR2⁺/⁺ mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2⁻/⁻ mice. Total tau was significantly suppressed in J20 CNR2⁻/⁻ mice relative to J20 CNR2⁺/⁺ mice. The results confirm the constitutive role of the CB₂ receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB₂ to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.
Collapse
Affiliation(s)
- Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Valerie Vingtdeux
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Cristina d'Abramo
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Heidy Jimenez
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Mark Stauber
- Yeshiva University, New York, New York, United States of America
| | - Rachel Friedman
- Queens College, New York, New York, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, New York, United States of America
| |
Collapse
|
49
|
Sillerud LO, Solberg NO, Chamberlain R, Orlando RA, Heidrich JE, Brown DC, Brady CI, Vander Jagt TA, Garwood M, Vander Jagt DL. SPION-enhanced magnetic resonance imaging of Alzheimer's disease plaques in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis 2013; 34:349-65. [PMID: 23229079 DOI: 10.3233/jad-121171] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In our program to develop non-invasive magnetic resonance imaging (MRI) methods for the diagnosis of Alzheimer's disease (AD), we have synthesized antibody-conjugated, superparamagnetic iron oxide nanoparticles (SPIONs) for use as an in vivo agent for MRI detection of amyloid-β plaques in AD. Here we report studies in AβPP/PS1 transgenic mice, which demonstrate the ability of novel anti-AβPP conjugated SPIONs to penetrate the blood-brain barrier to act as a contrast agent for MR imaging of plaques. The conspicuity of the plaques increased from an average Z-score of 5.1 ± 0.5 to 8.3 ± 0.2 when the plaque contrast to noise ratio was compared in control AD mice with AD mice treated with SPIONs. The number of MRI-visible plaques per brain increased from 347 ± 45 in the control AD mice, to 668 ± 86 in the SPION treated mice. These results indicated that our SPION enhanced amyloid-β detection method delivers an efficacious, non-invasive MRI detection method in transgenic mice.
Collapse
Affiliation(s)
- Laurel O Sillerud
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Knight SD, Presto J, Linse S, Johansson J. The BRICHOS Domain, Amyloid Fibril Formation, and Their Relationship. Biochemistry 2013; 52:7523-31. [DOI: 10.1021/bi400908x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan D. Knight
- Department
of Cell and Molecular Biology, Uppsala University, 751 05 Uppsala, Sweden
| | - Jenny Presto
- KI-Alzheimer’s Disease Research
Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Sara Linse
- Department
of Biochemistry and Structural Biology, Lund University, Chemical Centre, P.O.
Box 124, SE221 00 Lund, Sweden
| | - Jan Johansson
- KI-Alzheimer’s Disease Research
Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm, Sweden
- Department
of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, 751 23 Uppsala, Sweden
- Institute
of Mathematics and Natural Sciences, Tallinn University, Narva mnt
25, 101 20 Tallinn, Estonia
| |
Collapse
|