1
|
Andreescu M, Andreescu B. Immune Evasion Through Human Leukocyte Antigen Implications and Its Impact on Targeted Therapy. Cureus 2024; 16:e52737. [PMID: 38384647 PMCID: PMC10880808 DOI: 10.7759/cureus.52737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The malfunctioning of human leukocyte antigen (HLA) class I antigens has a substantial negative impact on the effectiveness of leukemia treatment, particularly in the development of immunotherapies that rely on T-cell activation. HLA-G, a molecule that suppresses the immune response, plays a role in repressing the activation and proliferation of T cells, natural killer cells, and antigen-presenting cells. The expression of HLA-G is associated with various pathological conditions. Tumor cells exploit the immune evasion capabilities of HLA, allowing them to evade detection and elimination by the immune system. Understanding and modifying the HLA molecules is crucial for the advancement of innovative immunotherapies targeting chronic lymphocytic leukemia. Numerous mechanisms have been investigated to elucidate how HLA facilitates tumor evasion in patients with chronic lymphocytic leukemia and other malignancies. These mechanisms include inhibiting immune cell cytolysis, altering cytokine production levels, promoting immune cell programmed cell death, and impairing chemotaxis. This review provides a comprehensive overview of immune evasion mediated by HLA and its implications for targeted therapy.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, ROU
- Hematology, Colentina Clinical Hospital, Bucharest, ROU
| | | |
Collapse
|
2
|
Dada S, Ellis SLS, Wood C, Nohara LL, Dreier C, Garcia NH, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Kari S, Garrovillas E, Caspani G, Al Haddad E, Gray PW, Morova T, Lack NA, Andersen RJ, Tjoelker L, Jefferies WA. Specific cannabinoids revive adaptive immunity by reversing immune evasion mechanisms in metastatic tumours. Front Immunol 2022; 13:982082. [PMID: 36923728 PMCID: PMC10010394 DOI: 10.3389/fimmu.2022.982082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 02/24/2023] Open
Abstract
Emerging cancers are sculpted by neo-Darwinian selection for superior growth and survival but minimal immunogenicity; consequently, metastatic cancers often evolve common genetic and epigenetic signatures to elude immune surveillance. Immune subversion by metastatic tumours can be achieved through several mechanisms; one of the most frequently observed involves the loss of expression or mutation of genes composing the MHC-I antigen presentation machinery (APM) that yields tumours invisible to Cytotoxic T lymphocytes, the key component of the adaptive cellular immune response. Fascinating ethnographic and experimental findings indicate that cannabinoids inhibit the growth and progression of several categories of cancer; however, the mechanisms underlying these observations remain clouded in uncertainty. Here, we screened a library of cannabinoid compounds and found molecular selectivity amongst specific cannabinoids, where related molecules such as Δ9-tetrahydrocannabinol, cannabidiol, and cannabigerol can reverse the metastatic immune escape phenotype in vitro by inducing MHC-I cell surface expression in a wide variety of metastatic tumours that subsequently sensitizing tumours to T lymphocyte recognition. Remarkably, H3K27Ac ChIPseq analysis established that cannabigerol and gamma interferon induce overlapping epigenetic signatures and key gene pathways in metastatic tumours related to cellular senescence, as well as APM genes involved in revealing metastatic tumours to the adaptive immune response. Overall, the data suggest that specific cannabinoids may have utility in cancer immunotherapy regimens by overcoming immune escape and augmenting cancer immune surveillance in metastatic disease. Finally, the fundamental discovery of the ability of cannabinoids to alter epigenetic programs may help elucidate many of the pleiotropic medicinal effects of cannabinoids on human physiology.
Collapse
Affiliation(s)
- Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Samantha L S Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Christi Wood
- Biotechnology - Biomedical Science and Technology (BST), University of Applied Sciences, Mannheim, Germany
| | - Lilian L Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Carola Dreier
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Biotechnology - Biomedical Science and Technology (BST), University of Applied Sciences, Mannheim, Germany
| | | | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Brett A Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Emmanuel Garrovillas
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Eliana Al Haddad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Nathan A Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Urological Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
4
|
Sznarkowska A, Mikac S, Pilch M. MHC Class I Regulation: The Origin Perspective. Cancers (Basel) 2020; 12:cancers12051155. [PMID: 32375397 PMCID: PMC7281430 DOI: 10.3390/cancers12051155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Viral-derived elements and non-coding RNAs that build up “junk DNA” allow for flexible and context-dependent gene expression. They are extremely dense in the MHC region, accounting for flexible expression of the MHC I, II, and III genes and adjusting the level of immune response to the environmental stimuli. This review brings forward the viral-mediated aspects of the origin and evolution of adaptive immunity and aims to link this perspective with the MHC class I regulation. The complex regulatory network behind MHC expression is largely controlled by virus-derived elements, both as binding sites for immune transcription factors and as sources of regulatory non-coding RNAs. These regulatory RNAs are imbalanced in cancer and associate with different tumor types, making them promising targets for diagnostic and therapeutic interventions.
Collapse
|
5
|
Engineering universal cells that evade immune detection. Nat Rev Immunol 2019; 19:723-733. [DOI: 10.1038/s41577-019-0200-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
|
6
|
Abstract
In this chapter I describe Tumour Immune Escape mechanisms associated with MHC/HLA class I loss in human and experimental tumours. Different altered HLA class-I phenotypes can be observed that are produced by different molecular mechanisms. Experimental and histological evidences are summarized indicating that at the early stages of tumour development there is an enormous variety of tumour clones with different MHC class I expression patterns. This phase is followed by a strong T cell mediated immune-selection of MHC/HLA class-I negative tumour cells in the primary tumour lesion. This transition period results in a formation of a tumour composed only of HLA-class I negative cells. An updated description of this process observed in a large variety of human tumors is included. In the second section I focus on MHC/HLA class I alterations observed in mouse and human metastases, and describe the generation of different tumor cell clones with altered MHC class I phenotypes, which could be similar or different from the original tumor clone. The biological and immunological relevance of these observations is discussed. Finally, the interesting phenomenon of metastatic dormancy is analyzed in association with a particular MHC class I negative tumor phenotype.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
7
|
Gejman RS, Chang AY, Jones HF, DiKun K, Hakimi AA, Schietinger A, Scheinberg DA. Rejection of immunogenic tumor clones is limited by clonal fraction. eLife 2018; 7:e41090. [PMID: 30499773 PMCID: PMC6269121 DOI: 10.7554/elife.41090] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Tumors often co-exist with T cells that recognize somatically mutated peptides presented by cancer cells on major histocompatibility complex I (MHC-I). However, it is unknown why the immune system fails to eliminate immune-recognizable neoplasms before they manifest as frank disease. To understand the determinants of MHC-I peptide immunogenicity in nascent tumors, we tested the ability of thousands of MHC-I ligands to cause tumor subclone rejection in immunocompetent mice by use of a new 'PresentER' antigen presentation platform. Surprisingly, we show that immunogenic tumor antigens do not lead to immune-mediated cell rejection when the fraction of cells bearing each antigen ('clonal fraction') is low. Moreover, the clonal fraction necessary to lead to rejection of immunogenic tumor subclones depends on the antigen. These data indicate that tumor neoantigen heterogeneity has an underappreciated impact on immune elimination of cancer cells and has implications for the design of immunotherapeutics such as cancer vaccines.
Collapse
Affiliation(s)
- Ron S Gejman
- Tri-Institutional MD-PhD Program, Memorial Sloan-Kettering Cancer CenterRockefeller University, Weill Cornell Medical CollegeNew YorkUnited States
- Weill Cornell MedicineNew YorkUnited States
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Aaron Y Chang
- Weill Cornell MedicineNew YorkUnited States
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Heather F Jones
- Weill Cornell MedicineNew YorkUnited States
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Krysta DiKun
- Weill Cornell MedicineNew YorkUnited States
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Abraham Ari Hakimi
- Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- Immunogenomics and Precision Oncology PlatformMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Andrea Schietinger
- Weill Cornell MedicineNew YorkUnited States
- Immunology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - David A Scheinberg
- Weill Cornell MedicineNew YorkUnited States
- Molecular Pharmacology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
8
|
Gravett AM, Trautwein N, Stevanović S, Dalgleish AG, Copier J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 2018; 7:e1438107. [PMID: 29930882 PMCID: PMC5990974 DOI: 10.1080/2162402x.2018.1438107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023] Open
Abstract
The antigenic makeup of tumour cells can have a profound effect on the progression of cancer and success of immunotherapies. Therefore, one strategy to improve the efficacy of cancer treatments is to augment the antigens displayed by tumours. The present study explores how the recognition of tumour cells may be altered by non-cytotoxic concentrations of gemcitabine (GEM). Testing a panel of chemotherapeutics in human cancer cell lines in vitro, it was found that GEM increased surface expression of HLA-A,B,C and that underlying this were specific increases in β-2-microglobulin and immunoproteasome subunit proteins. Furthermore, the peptide antigen repertoire displayed on HLA class I was altered, revealing a number of novel antigens, many of which that were derived from proteins involved in the DNA-damage response. Changes in the nature of the peptide antigens eluted from HLA-A,B,C after GEM treatment consisted of amino acid anchor-residue modifications and changes in peptide length which rendered peptides likely to favour alternative HLA-alleles and increased their predicted immunogenicity. Signalling through the MAPK/ERK and NFκB/RelB pathways was associated with these changes. These data may explain observations made in previous in vivo studies, advise as to which antigens should be used in future vaccination protocols and reinforce the idea that chemotherapy and immunotherapy could be used in combination.
Collapse
Affiliation(s)
- A M Gravett
- Institute for infection and immunity, St George's, University of London, London, UK
| | - N Trautwein
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - S Stevanović
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - A G Dalgleish
- Institute for infection and immunity, St George's, University of London, London, UK
| | - J Copier
- Institute for infection and immunity, St George's, University of London, London, UK
| |
Collapse
|
9
|
Song JJ, Zhao SJ, Fang J, Ma D, Liu XQ, Chen XB, Wang Y, Cheng B, Wang Z. Foxp3 overexpression in tumor cells predicts poor survival in oral squamous cell carcinoma. BMC Cancer 2016; 16:530. [PMID: 27457382 PMCID: PMC4960787 DOI: 10.1186/s12885-016-2419-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/27/2016] [Indexed: 12/29/2022] Open
Abstract
Background Forkhead Box P3 (Foxp3) is a regulatory T cells marker, and its expression correlates with prognosis in a number of malignancies. The aim of this study is to determine the relationship of Foxp3 expression with clinicopathological parameters and prognosis in oral squamous cell carcinoma (OSCC). Methods Foxp3 expression was examined using immunohistochemistry (IHC) in paraffin-embedded tissue samples from 273 OSCC patients. Statistical analysis was performed to evaluate the associations between Foxp3 expression, the clinicopathologic characteristics and prognostic factors in OSCC. Results Foxp3 protein expression was significantly associated with lymph node metastasis (P <0.01). Both univariate and multivariate analyses revealed that Foxp3 was an independent factor for both 5 years overall survival (OS) and relapse-free survival (RFS) (both P <0.01). Patients with Foxp3 overexpression had shorter OS and RFS. Conclusions Our results determined that elevated Foxp3 protein expression was a predictive factor of outcome in OSCC and could act as a promising therapeutic target.
Collapse
Affiliation(s)
- Jing-Jing Song
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China
| | - Si-Jia Zhao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juan Fang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China
| | - Da Ma
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China
| | - Xiang-Qi Liu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China
| | - Xiao-Bing Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China
| | - Yun Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China
| | - Bin Cheng
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China.
| | - Zhi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China.
| |
Collapse
|
10
|
Concha-Benavente F, Srivastava R, Ferrone S, Ferris RL. Immunological and clinical significance of HLA class I antigen processing machinery component defects in malignant cells. Oral Oncol 2016; 58:52-8. [PMID: 27264839 DOI: 10.1016/j.oraloncology.2016.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
Experimental as well as clinical studies demonstrate that the immune system plays a major role in controlling generation and progression of tumors. The cancer immunoediting theory supports the notion that tumor cell immunogenicity is dynamically shaped by the immune system, as it eliminates immunogenic tumor cells in the early stage of the disease and then edits their antigenicity. The end result is the generation of a tumor cell population able to escape from immune recognition and elimination by tumor infiltrating lymphocytes. Two major mechanisms, which affect the target cells and the effector phase of the immune response, play a crucial role in the editing process. One is represented by the downregulation of tumor antigen (TA) processing and presentation because of abnormalities in the HLA class I antigen processing machinery (APM). The other one is represented by the anergy of effector immune infiltrates in the tumor microenvironment caused by aberrant inhibitory signals triggered by immune checkpoint receptor (ICR) ligands, such as programmed death ligand-1 (PD-L1). In this review, we will focus on tumor immune escape mechanisms caused by defects in HLA class I APM component expression and/or function in different types of cancer, with emphasis on head and neck cancer (HNC). We will also discuss the immunological implications and clinical relevance of these HLA class I APM abnormalities. Finally, we will describe strategies to counteract defective TA presentation with the expectation that they will enhance tumor recognition and elimination by tumor infiltrating effector T cells.
Collapse
Affiliation(s)
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Li X, Mei Q, Nie J, Fu X, Han W. Decitabine: a promising epi-immunotherapeutic agent in solid tumors. Expert Rev Clin Immunol 2015; 11:363-75. [DOI: 10.1586/1744666x.2015.1002397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87. [PMID: 23852952 DOI: 10.1093/jnci/djt184] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Türkseven MR, Oygür T. Evaluation of natural killer cell defense in oral squamous cell carcinoma. Oral Oncol 2010; 46:e34-7. [DOI: 10.1016/j.oraloncology.2010.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 11/15/2022]
|
14
|
Sáenz-López P, Gouttefangeas C, Hennenlotter J, Concha A, Maleno I, Ruiz-Cabello F, Cózar JM, Tallada M, Stenzl A, Rammensee HG, Garrido F, Cabrera T. Higher HLA class I expression in renal cell carcinoma than in autologous normal tissue. ACTA ACUST UNITED AC 2010; 75:110-8. [DOI: 10.1111/j.1399-0039.2009.01409.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Rodriguez T, Aptsiauri N, Méndez R, Jimenez P, Ruiz-Cabello F, Garrido F. Different mechanisms can lead to the same altered HLA class I phenotype in tumors. ACTA ACUST UNITED AC 2007; 69 Suppl 1:259-63. [PMID: 17445215 DOI: 10.1111/j.1399-0039.2006.00776.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human leukocyte antigen (HLA) class I plays an important role in tumor recognition and rejection. Total or selective losses of HLA class I antigens (classified into seven HLA class I altered phenotypes) represent one of the main routes of tumor escape from immune surveillance. Abnormal expression of HLA class I has been reported in different human tumor samples with distinct underlying mechanisms. Notably, different molecular mechanisms can generate the same altered HLA class I phenotype. Here, we describe various molecular mechanisms that can lead to HLA total loss or downregulation (phenotype I) in melanoma, colorectal carcinoma and bladder cancer.
Collapse
Affiliation(s)
- T Rodriguez
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Masuda K, Hiraki A, Fujii N, Watanabe T, Tanaka M, Matsue K, Ogama Y, Ouchida M, Shimizu K, Ikeda K, Tanimoto M. Loss or down-regulation of HLA class I expression at the allelic level in freshly isolated leukemic blasts. Cancer Sci 2007; 98:102-8. [PMID: 17083564 PMCID: PMC11158761 DOI: 10.1111/j.1349-7006.2006.00356.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Loss or down-regulation of human leukocyte antigen (HLA) class I expression has been demonstrated in a variety of solid tumors. To date, such altered HLA expression has not been studied extensively in freshly isolated leukemic blasts. If it occurs, leukemic cells could escape T-cell surveillance as a consequence. Genotypes of nine leukemic cell lines were determined using a polymerase chain reaction for HLA classes I and II. Cells were also examined for HLA beta2-microglobulin, and allele-specific HLA protein expression using flow cytometry. Next, 44 samples of freshly isolated leukemic blasts from 43 patients with malignant hematological diseases were examined for allele-specific HLA expression using flow cytometry. Microsatellite analysis was performed to determine heterozygosity in the HLA region on chromosome 6. Genotype analysis for HLA class I together with microsatellite analysis demonstrated loss of HLA haplotype in HL-60 cells. No loss of HLA haplotype was observed in 44 samples of freshly isolated leukemic blasts. As reported previously, flow cytometric analysis rarely demonstrated loss or down-regulation of HLA expression at initial diagnosis (3/39; 7.7%); however, this was evident in two of five cases in relapse (40.0%), which contrasts with previous reports. In one patient with acute leukemia, HLA-A2 cell surface expression was present at initial diagnosis, lost at relapse, and completely restored after 48 h of culture in the presence of interferon-gamma. These results suggest loss of allele-specific HLA expression may be involved in the pathogenesis of relapse in patients with leukemia. The findings should be valuable in designing new strategies for clinical immunotherapy.
Collapse
Affiliation(s)
- Kozo Masuda
- Department of Medicine, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Aptsiauri N, Cabrera T, Garcia-Lora A, Lopez-Nevot MA, Ruiz-Cabello F, Garrido F. MHC Class I Antigens and Immune Surveillance in Transformed Cells. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:139-89. [PMID: 17241907 DOI: 10.1016/s0074-7696(07)56005-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MHC class I antigens play a crucial role in the interaction of tumor cells with the host immune system, in particular, in the presentation of peptides as tumor-associated antigens to cytotoxic lymphocytes (CTLs) and in the regulation of cytolytic activity of natural killer (NK) cells. In this review we discuss the role of MHC class I antigens in the recognition and elimination of transformed cells and in the generation of tumor immune escape routes when MHC class I losses occur in tumors. The different altered MHC class I phenotypes and their distribution in different human tumors are the main topic of this review. In addition, molecular defects that underlie MHC alterations in transformed cells are also described in detail. Future research directions in this field are also discussed, including the laboratory analysis of tumor MHC class I-negative variants and the possible restoration of MHC class I expression.
Collapse
Affiliation(s)
- Natalia Aptsiauri
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 2006; 66:9281-9. [PMID: 16982773 DOI: 10.1158/0008-5472.can-06-0488] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have investigated the role of antigen-processing machinery (APM) component defects in HLA class I antigen down-regulation in laryngeal squamous cell carcinoma (SCC) lesions and assessed the clinical significance of these defects. To this end, 63 formalin-fixed, paraffin-embedded tumor lesions were examined for APM component and HLA class I antigen expression by immunohistochemistry. Calnexin, calreticulin, and ERp57 were down-regulated in approximately 25% of the lesions tested, whereas LMP2, TAP1, tapasin, and HLA class I antigens were down-regulated in at least 70% of the lesions tested. LMP2 and tapasin expression was significantly correlated with HLA class I antigen expression suggesting APM component defects as a mechanism underlying HLA class I antigen down-regulation in laryngeal SCC lesions. The expression of most APM components and HLA class I antigens was correlated with the extent of CD8+ T cell infiltration into tumor lesions. Furthermore, LMP2 and HLA class I antigen down-regulation and low CD8+ T cell infiltration were significantly associated with reduced patients' survival. Multivariate analysis identified HLA class I antigen down-regulation as an independent unfavorable prognostic marker. This association is likely to reflect the reduction in the extent of CD8+ T cell infiltration in laryngeal SCC lesions.
Collapse
Affiliation(s)
- Takeshi Ogino
- Department of Otolaryngology-Head and Neck Surgery, Division of Surgical Pathology, Asahikawa Medical College Hospital, Asahikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Stühler K, Köper K, Pfeiffer K, Tagariello A, Souquet M, Schwarte-Waldhoff I, Hahn SA, Schmiegel W, Meyer HE. Differential proteome analysis of colon carcinoma cell line SW480 after reconstitution of the tumour suppressor Smad4. Anal Bioanal Chem 2006; 386:1603-12. [PMID: 17043799 DOI: 10.1007/s00216-006-0803-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 08/23/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
The tumour suppressor gene Smad4 is frequently inactivated in gastrointestinal carcinomas. Smad4 plays a pivotal role in transducing signals of the transforming growth factor-beta (TGF-beta) superfamily of proteins. Inactivation of Smad4 seems to occur late during tumour progression when tumours acquire invasive and metastatic properties. Identification of proteins directly or indirectly regulated by Smad4 would, therefore, ease the future design of new diagnostic and therapeutic strategies for gastrointestinal carcinoma. We have used human colon carcinoma cell line SW480 stably transfected with Smad4 as an in-vitro model system to identify Smad4-regulated proteins by applying two-dimensional gel electrophoresis (2DE) then MALDI-PMF/PFF-MS. We identified a total of 47 protein species with a Smad4-dependent expression. From the functions of the candidate proteins we obtained new insights into Smad4's participation in processes, for example apoptosis, differentiation, and proliferation.
Collapse
Affiliation(s)
- Kai Stühler
- Medizinisches Proteom-Center, Ruhr-University Bochum, ZKF E 1.43, Universitätsstrasse 150, 44801, Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lou Y, Vitalis TZ, Basha G, Cai B, Chen SS, Choi KB, Jeffries AP, Elliott WM, Atkins D, Seliger B, Jefferies WA. Restoration of the expression of transporters associated with antigen processing in lung carcinoma increases tumor-specific immune responses and survival. Cancer Res 2005; 65:7926-33. [PMID: 16140964 DOI: 10.1158/0008-5472.can-04-3977] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A wide variety of human carcinomas have low expression of tumor-associated antigen presentation in the context of MHC class I antigens due to defects in the antigen presentation pathway. This immune evasion mechanism renders many tumors unrecognizable by host immune surveillance mechanisms. The present study examines the expression of HLA, tapasin, transporter associated with antigen processing 1 (TAP1), and beta2 microglobulin in human small cell lung carcinoma and non-small cell lung carcinoma. Immunohistochemical staining showed severe impairment of the antigen presentation pathway in all patients. In order to recover tumor immunogenicity, a nonreplicating adenovirus expressing human TAP1 (AdhTAP1) was used to restore the expression of TAP1 in the antigen presentation pathway-deficient mouse lung carcinoma cell line, CMT.64. Infection of CMT.64 cells with AdhTAP1 increased MHC class I antigen surface expression, antigen presentation, and susceptibility to antigen-specific CTLs. Fluorescence-activated cell sorting and ELISPOT analysis showed that AdhTAP1 treatment significantly increased dendritic cell cross-presentation and cross-priming of tumor antigens. Furthermore, ex vivo and in vivo AdhTAP1 treatment significantly retarded tumor growth and increased survival of mice bearing CMT.64 tumors. Fluorescence-activated cell sorting analysis and immunohistochemical staining showed a significant increase in CD8+ and CD4+ T cells and CD11c+ dendritic cells infiltrating the tumors. The results show that TAP should be considered as a part of the immunotherapies for various cancers because it is likely to provide a general method for increasing immune responses against tumors regardless of the antigenic composition of the tumor or the MHC haplotypes of the host.
Collapse
Affiliation(s)
- Yuanmei Lou
- Michael Smith Laboratories and Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang YT, Geng YP, Zhou L, Lai BC, Si LS, Wang YL. Identification of proteins of human colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. World J Gastroenterol 2005; 11:4679-84. [PMID: 16094709 PMCID: PMC4615410 DOI: 10.3748/wjg.v11.i30.4679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To conduct the proteomic analysis of human colorectal carcinoma cell line, SW480 by using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption /ionization-time of flight mass spectrometry (MALDI-TOFMS).
METHODS: The total proteins of human colorectal carcinoma cell line, SW480 were separated with 2-DE by using immobilized pH gradient strips and visualized by staining with silver nitrate. The gel images were acquired by scanner and 2-DE analysis software, Image Master 2D Elite. Nineteen distinct protein spots were excised from gel randomly and digested in gel by TPCK-trypsin. Mass analysis of the tryptic digest peptides mixture was performed by using MALDI-TOF MS. Peptide mass fingerprints (PMFs) obtained by the MALDI-TOF analysis were used to search NCBI, SWISS-PROT and MSDB databases by using Mascot software.
RESULTS: PMF maps of all spots were obtained by MALDI-TOF MS and thirteen proteins were preliminarily identified.
CONCLUSION: The methods of analysis and identification of protein spots of tumor cells in 2-DE gel with silver staining by MALDI-TOF MS derived PMF have been established. Protein expression profile of SW480 has been obtained. It is demonstrated that a combination of proteomics and cell culture is a useful approach to comprehend the process of colon carcinogenesis.
Collapse
Affiliation(s)
- Ying-Tao Zhang
- The Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Cancer Research, Xi'an Jiaotong University, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
22
|
Meissner M, Reichert TE, Kunkel M, Gooding W, Whiteside TL, Ferrone S, Seliger B. Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 2005; 11:2552-60. [PMID: 15814633 DOI: 10.1158/1078-0432.ccr-04-2146] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human leukocyte antigen (HLA) class I antigen defects, which are frequently present in head and neck squamous cell carcinoma (HNSCC) cells may provide the tumor with an escape mechanism from immune surveillance. Scanty information is available about mechanisms underlying HLA class I antigen defects in both lesions and cell lines from HNSCC. In this study, we investigate the role of antigen processing machinery (APM) component abnormalities in the generation of deficient HLA class I surface expression of HNSCC cells. EXPERIMENTAL DESIGN Using immunohistochemistry, Western blot, and RT-PCR analyses we correlated the expression of the IFN-gamma inducible proteasome subunits and of the peptide transporter TAP with that of HLA class I antigens in biopsies and cell lines from primary, recurrent, and metastatic HNSCC. Furthermore, APM component and HLA class I antigen expression in surgically removed lesions were correlated with the course of the disease in order to assess the clinical significance of deficient expression of these molecules. RESULTS A high frequency of LMP2, LMP7, and TAP1 down-regulation or loss was found in tumor lesions and cell lines obtained from HNSCC cancer patients. These defects could be corrected by incubating cells with IFN-gamma. Furthermore, LMP2, LMP7, TAP1, TAP2, and HLA class I antigen expression rates in primary HNSCC lesions were found to predict overall survival. Lastly, the level of LMP7 expression was significantly associated with disease recurrence at 2 years. CONCLUSIONS Our results suggest that the analysis of APM component expression in HNSCC lesions can provide useful prognostic information in patients with HNSCC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/analysis
- ATP-Binding Cassette Transporters/genetics
- Adult
- Aged
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line
- Cell Line, Tumor
- Cysteine Endopeptidases/analysis
- Cysteine Endopeptidases/genetics
- Down-Regulation/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- HLA Antigens/analysis
- HLA Antigens/genetics
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Histocompatibility Antigens Class I/analysis
- Histocompatibility Antigens Class I/genetics
- Humans
- Immunohistochemistry
- Interferon-gamma/pharmacology
- Male
- Middle Aged
- Multienzyme Complexes/analysis
- Multienzyme Complexes/genetics
- Proteasome Endopeptidase Complex
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Analysis
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Markus Meissner
- Department of Internal Medicine, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Maleno I, Cabrera CM, Cabrera T, Paco L, López-Nevot MA, Collado A, Ferrón A, Garrido F. Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Immunogenetics 2004; 56:244-53. [PMID: 15258706 DOI: 10.1007/s00251-004-0692-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 06/01/2004] [Indexed: 02/06/2023]
Abstract
HLA class I loss or down-regulation is a widespread mechanism used by tumor cells to avoid tumor recognition by cytotoxic T lymphocytes, and thus favor tumor immune escape. Multiple mechanisms are responsible for these HLA class I alterations. In different epithelial tumors, loss of heterozygosity (LOH) at chromosome region 6p21.3, leading to HLA haplotype loss, occurs in 6-50% of all cases depending on the tumor entity. In this paper we report the frequency of LOH at 6p21 in 95 colorectal carcinomas (CRC) previously analyzed for altered HLA class I expression with immunohistological techniques. We used PCR microsatellite amplification of selected STR markers located on Chromosome 6 to identify LOH with DNA from microdissected tumor tissues and the surrounding stroma. Sequence-specific oligonucleotide analysis was performed in microdissected stroma and tumor cells for HLA typing, and to detect HLA haplotype loss. A high frequency (40%) of HLA haplotype loss was found in CRC. Eight tumors showed microsatellite instability. We sometimes observed two or more mechanisms responsible for HLA alteration within the same HLA-altered phenotype, such as LOH and HLA class I total loss. In 25 tumors (26%) no HLA class I alteration could be identified. These data are potentially relevant for CRC patients undergoing T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Isabel Maleno
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jasinska J, Wagner S, Radauer C, Sedivy R, Brodowicz T, Wiltschke C, Breiteneder H, Pehamberger H, Scheiner O, Wiedermann U, Zielinski CC. Inhibition of tumor cell growth by antibodies induced after vaccination with peptides derived from the extracellular domain of Her-2/neu. Int J Cancer 2004; 107:976-83. [PMID: 14601058 DOI: 10.1002/ijc.11485] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The anti Her-2/neu monoclonal antibody Trastuzumab has strong inhibiting effects on tumor growth in vitro and in vivo and is therefore used for immunotherapy in breast cancer patients. Due to necessity of frequent applications, however, cost intensiveness of Trastuzumab treatment and its limited duration of affectivity, an active immunization inducing a perhaps preventive and long-term immunity to Her-2/neu remains a desirable goal. We attempted to induce anti Her-2/neu antibodies by peptide vaccination and to test their efficacy in inhibiting tumor cell growth in vitro. By computer aided analyses, 7 putative B cell epitopes of Her-2/neu were defined and synthesized. These peptide epitopes were coupled to tetanus toxoid and used for immunization in BALB/c mice. Among these peptides, immunizations with 2 single peptides or a combination of 2 peptides induced anti-peptide antibody levels, primarily of the IgG1 isotype. These antibodies were also directed against the native Her-2/neu antigen, as shown in precipitation assays and ELISA with cell lysates of the Her-2/neu overexpressing breast cancer cell line SK-BR-3. Isolated IgG fractions from immune sera incubated with SK-BR-3 cells led to a moderate inhibition of the tumor cell growth in vitro, as well as to complement dependent cell lyses comparable to that achieved by incubation with Trastuzumab. Moreover, peptide immunization in rabbits generated anti-Her 2-neu IgG that, in contrast to mouse sera, were able to mediate a 31-46% lysis of SK-BR-3 cells in ADCC experiments. We conclude from our data that immunization with Her-2/neu peptides successfully induced humoral immune response with anti-tumor activity in an animal model.
Collapse
|
25
|
Cabrera T, Pedrajas G, Cozar JM, Garrido A, Vicente J, Tallada M, Garrido F. HLA class I expression in bladder carcinomas. TISSUE ANTIGENS 2003; 62:324-7. [PMID: 12974799 DOI: 10.1034/j.1399-0039.2003.00104.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
HLA class I molecules are frequently lost in a large variety of human carcinomas, possibly because of T-cell immune selection of major histocompatibility complex class I deficient tumor variants. We report that this phenomenon is also a frequent event in bladder carcinomas. Of a total of 72 bladder carcinomas, 72% of the tumors had at least one alteration in HLA class I expression. These altered HLA class I phenotypes were classified as total HLA class I loss (25%; phenotype I); HLA-A or/and HLA-B locus-specific loss (12%; phenotype III); and HLA class I allelic loss (35%; phenotype II or IV). Comparison of histopathological parameters with HLA class I expression showed a statistically significant relationship with the degree of differentiation and tumor recurrence.
Collapse
Affiliation(s)
- T Cabrera
- Department of Clinical Analysis, Virgen de las Nieves University Hospital, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
García-Lora A, Algarra I, Collado A, Garrido F. Tumour immunology, vaccination and escape strategies. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2003; 30:177-83. [PMID: 12786993 DOI: 10.1046/j.1365-2370.2003.00384.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our increasing knowledge of the mechanisms by which tumour cells escape immune effector cells is helping to establish new approaches to therapeutic vaccination against tumour development. One of the escape mechanisms used by tumour cells is the generation of multiple variants with different HLA phenotypes. These MHC class I phenotypic alterations play a key role in the tumour-host scenario, as they are crucial molecules for antigen presentation to T cells and modulation of natural killer (NK) cell activity. This review presents evidence indicating that tumours develop sophisticated MHC phenotypes that allow them to escape immune surveillance. We evaluate the importance of these alterations in terms of the potential development of therapeutic approaches to immune vaccination.
Collapse
Affiliation(s)
- A García-Lora
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avda. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | | | | | | |
Collapse
|
27
|
Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003; 195:346-55. [PMID: 12704644 DOI: 10.1002/jcp.10290] [Citation(s) in RCA: 368] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncogenic transformation in human and experimental animals is not necessarily followed by the appearance of a tumor mass. The immune system of the host can recognize tumor antigens by the presentation of small antigenic peptides to the receptor of cytotoxic T-lymphocytes (CTLs) and reject the nascent tumor. However, cancer cells can sometimes escape these specific T-cell immune responses in the course of somatic (genetic and phenotypic) clonal evolution. Among the tumor immune escape mechanisms described to date, the alterations in the expression of major histocompatibility complex (MHC) molecules play a crucial step in tumor development due to the role of MHC antigens in antigen presentation to T-lymphocytes and the regulation of natural killer cell (NK) cell function. In this work, we have (1) updated information on the mechanisms that allow CTLs to recognize tumor antigens after antigen processing by transformed cells, (2) described the altered MHC class I phenotypes that are commonly found in human tumors, (3) summarized the molecular mechanisms responsible for MHC class I alteration in human tumors, (4) provided evidence that these altered human leukocyte antigens (HLA) class I phenotypes are detectable as result of a T-cell immunoselection of HLA class I-deficient variants by an immunecompetent host, and (5) presented data indicating the MHC class I phenotype and the immunogenicity of experimental metastatic tumors change drastically when tumors develop in immunodeficient mice.
Collapse
Affiliation(s)
- Angel Garcia-Lora
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Spain
| | | | | |
Collapse
|
28
|
Marín R, Ruiz-Cabello F, Pedrinaci S, Méndez R, Jiménez P, Geraghty DE, Garrido F. Analysis of HLA-E expression in human tumors. Immunogenetics 2003; 54:767-75. [PMID: 12618909 DOI: 10.1007/s00251-002-0526-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2002] [Revised: 11/14/2002] [Indexed: 11/25/2022]
Abstract
Downregulation of MHC class Ia molecule expression is a widespread mechanism used by tumor cells to escape antitumor T-cell-mediated immune responses. However, it is not known why NK cells cannot lyse these MHC class-Ia-deficient tumor targets. Tumors must select additional routes of escape from NK cells. An attractive hypothesis is that the aberrant expression of nonclassical HLA class Ia molecules in tumors provides the required inhibitory signal to NK cells, rendering tumor cells resistant to NK lysis. To analyze the possible role of HLA-E molecules in providing tumor cells with an NK escape mechanism, we studied the cell surface expression of this HLA class Ib molecule in a variety of tumor cell lines with well-defined HLA class Ia alterations. Tests were done with the monoclonal antibody 3D12 recognizing cell surface HLA-E molecules. Our results indicate that HLA-E was mainly detected in leukemia-derived cell lines. In addition, HLA-E was detected in tumor cell lines of different origin. This expression was related with the availability of free beta(2)-microglobulin (beta(2)m) in the cytoplasm of tumor cells. Expression was detected in tumor cell lines showing an imbalance in heavy chain/beta(2)m expression, particularly in tumor cell lines with alterations in the expression of heavy-chain genes. Several lines of evidence favor these conclusions: (1) In the FM55 and NW145 melanoma tumor systems, the reduction in HLA class Ia expression paralleled the increased cell surface detection of HLA-E. (2) A cervical tumor (808) and a melanoma cell line (R22.2) expressing a single HLA-A1 allele also expressed HLA-E. (3) The addition of human beta(2)m to tumor cell lines that expressed the HLA-E(G) allele increased HLA-E cell surface expression. (4) There was no HLA-E cell surface expression in tumor cell lines with total loss of HLA class Ia expression, including cell lines with low transcription of HLA class I heavy chains or with beta(2)m mutations. Our findings suggest that the biological consequences of these cumulative genetic and molecular changes in tumor cells lead to the appearance of HLA-E in a limited number of tumor cell lines with peculiar phenotypic and genotypic characteristics, namely: HLA-class Ia downregulation, free beta(2)m and HLA-E(G) genotype. The aberrant HLA-E expression might be of particular biological relevance in those HLA tumor phenotypes that express a single HLA-A allele when NK inhibition is markedly reduced due to the downregulation of HLA-B and -C alleles.
Collapse
Affiliation(s)
- Rosario Marín
- Departmento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Avda. fuerzas Armadas no.2, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- F Garrido
- Departamento de Analisis Clinicos, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | |
Collapse
|
30
|
Brouwer RE, van der Heiden P, Schreuder GMT, Mulder A, Datema G, Anholts JDH, Willemze R, Claas FHJ, Falkenburg JHF. Loss or downregulation of HLA class I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum Immunol 2002; 63:200-10. [PMID: 11872238 DOI: 10.1016/s0198-8859(01)00381-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human leukocyte antigen (HLA) class I expression at the allelic level was analyzed in 397 acute myeloid leukemia (AML) and 186 acute lymphoid leukemia (ALL) using a complement-dependent cytotoxicity assay. Impaired recognition possibly due to HLA downregulation was observed in 2% of the patients with AML and ALL in complete remission, and in 8%-15% in the groups with blasts. In 15 instances of diminished cytotoxicity, leukemic cells and control PHA blasts from the same patients were further analyzed using flow cytometry. In 4/6 ALL and 4/9 AML patients HLA downregulation or complete loss (2 patients) of cell surface expression could be confirmed. No genomic abnormalities were observed. In addition, 12 AML and 13 ALL patients were tested during relapse using flow cytometry. In 1/12 AML patients and 1/13 ALL patients allelic downregulation of cell surface expression was found. In two patients tested, downregulation or loss of cell surface expression of HLA class I antigens corresponded with impaired T cell mediated lysis by HLA restricted cytotoxic T lymphocyte.Treatment of the cells with alpha- or gamma-interferon could restore HLA class I expression and T-cell recognition. In conclusion, downregulation of cell surface expression of HLA class I expression at the allelic level in AML and ALL is infrequent but functionally relevant. HLA downregulation was reversible and T-cell recognition could be restored by alpha- or gamma-interferon.
Collapse
Affiliation(s)
- Rolf E Brouwer
- Laboratory of Experimental Hematology, Department of Hematology, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pangault C, Le Friec G, Caulet-Maugendre S, Léna H, Amiot L, Guilloux V, Onno M, Fauchet R. Lung macrophages and dendritic cells express HLA-G molecules in pulmonary diseases. Hum Immunol 2002; 63:83-90. [PMID: 11821155 DOI: 10.1016/s0198-8859(01)00373-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HLA-G is selectively expressed in extravillous trophoblast of human placenta, which does not express classical HLA-A and -B molecules. Several studies report the role of HLA-G as a molecule involved in immune tolerance. By interacting with NK and T cells inhibitory receptors, HLA-G may downregulate their cytotoxicity functions. To appreciate the biologic and clinical relevance of HLA-G expression in lung diseases, HLA class I and HLA-G expression were analyzed in a panel of 36 ex vivo neoplastic tissues and 8 non-neoplastic lung tissues. Immunohistochemical analysis was performed using a pan-HLA class I antibody (W6/32) and three different specific anti-HLA-G antibodies (87G, MEMG/9 and 4H84). These findings demonstrated that HLA-G products were not expressed in pulmonary structural cells. However, HLA-G molecules were detected in activated macrophages and dendritic cells infiltrating lung carcinomas (33%) and nontumoral pulmonary diseases (25%). HLA-G expression was not correlated with classical HLA alterations. No statistical correlation was found between HLA-G expression and clinical or biologic parameters except high tumor size. The expression of HLA-G in myelo-monocytic cells infiltrating lung pathologic tissues could alter antigenic presentation and contribute to decrease immune response efficiency, subsequently favoring the progression of tumoral or inflammatory processes.
Collapse
Affiliation(s)
- Celine Pangault
- Laboratoire Universitaire d'Hématologie et de la Biologie des Cellules Sanguines, Faculté de Médecine, Université de Rennes I, Rennes Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F. Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2'-deoxycytidine treatment. Int J Cancer 2001; 94:243-51. [PMID: 11668505 DOI: 10.1002/ijc.1452] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell surface expression of HLA class I/peptide complexes on tumor cells is a key step in the generation of T-cell-based immune responses. Several genetic defects underlying the lack of HLA class I expression have been characterized. Here we describe another molecular mechanism that accounts for the complete absence of HLA class I molecule expression in a tumor line (MSR3-mel) derived from a melanoma patient. Hypermethylation of the MSR3-mel DNA, specifically of HLA-A and -B genes, was identified, which resulted in loss of HLA class I heavy chain transcription. Treatment of MSR3-mel cells with the demethylating agent 5'-aza-2'-deoxycytidine (DAC) allowed HLA-A and -B transcription, restoring cell surface expression of HLA class I antigens and tumor cell recognition by MAGE-specific cytotoxic T lymphocytes. The MSR3-mel line was obtained from a metastatic lesion of a nonresponding patient undergoing MAGE-3.A1 T-cell-based peptide immunotherapy. It is tempting to speculate that the hypermethylation-induced lack of HLA class I expression is the cause of the impaired response to vaccination. This study provides the first evidence that DNA hypermethylation is used by human neoplastic cells to switch off HLA class I genes, thus providing a new route of escape from immune recognition.
Collapse
Affiliation(s)
- A Serrano
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Yip YL, Smith G, Koch J, Dübel S, Ward RL. Identification of epitope regions recognized by tumor inhibitory and stimulatory anti-ErbB-2 monoclonal antibodies: implications for vaccine design. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5271-8. [PMID: 11290813 DOI: 10.4049/jimmunol.166.8.5271] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The self-oncoprotein ErbB-2 is overexpressed in a number of malignancies. The presence of endogenous anti-ErbB-2 Ab and T cell immune responses to this protein in cancer patients has made ErbB-2 an attractive target for active immunization. However, the finding that murine anti-ErbB-2 Abs can have stimulatory, inhibitory, or no effects on cancer cell growth suggests that an inappropriately induced immune response may have an adverse effect. To ensure the induction of a beneficial Ab response, it is important to identify the epitopes recognized by these Abs. In this study we have used phage-displayed ErbB-2 gene fragment libraries and synthetic peptides to epitope-map a panel of anti-ErbB-2 mAbs. The epitopes of three mAbs, N12, N28, and L87, were successfully located to C531-A586, T216-C235, and C220-C235 of ErbB-2, respectively. It was found that while N12 inhibited tumor cell proliferation, N28 stimulated the proliferation of a subset of breast cancer cell lines overexpressing ErbB-2. The peptide region recognized by N12, (C531-A586; EP531), was used as an immunogen to selectively induce an inhibitory immune response in mice. Mice immunized with the GST fusion peptide (GST-EP531) recognized the peptide region EP531 as well as native ErbB-2. More importantly, Igs purified from mouse sera were able to inhibit up to 85% of tumor cell proliferation. In conclusion, our study provides direct evidence of the function-epitope relationship of anti-ErbB-2 Abs and also emphasizes the value of inducing a potent tumor inhibitory polyclonal Ab response by rationally selecting regions of ErbB-2 used for immunization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neoplasm/metabolism
- Antibodies, Neoplasm/pharmacology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Binding, Competitive/immunology
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Female
- Gene Library
- Growth Inhibitors/metabolism
- Growth Inhibitors/pharmacology
- Growth Substances/metabolism
- Growth Substances/pharmacology
- Humans
- Immune Sera/biosynthesis
- Injections, Intraperitoneal
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Mapping
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y L Yip
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|