1
|
Joo JS, Lee D, Hong JY. Multi-Layered Mechanisms of Immunological Tolerance at the Maternal-Fetal Interface. Immune Netw 2024; 24:e30. [PMID: 39246621 PMCID: PMC11377946 DOI: 10.4110/in.2024.24.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
Pregnancy represents an immunological paradox where the maternal immune system must tolerate the semi-allogeneic fetus expressing paternally-derived Ags. Accumulating evidence over decades has revealed that successful pregnancy requires the active development of robust immune tolerance mechanisms. This review outlines the multi-layered processes that establish fetomaternal tolerance, including the physical barrier of the placenta, restricted chemokine-mediated leukocyte trafficking, lack of sufficient alloantigen presentation, the presence of immunosuppressive regulatory T cells and tolerogenic decidual natural killer cells, expression of immune checkpoint molecules, specific glycosylation patterns conferring immune evasion, and unique metabolic/hormonal modulations. Interestingly, many of the strategies that enable fetal tolerance parallel those employed by cancer cells to promote angiogenesis, invasion, and immune escape. As such, further elucidating the mechanistic underpinnings of fetal-maternal tolerance may reciprocally provide insights into developing novel cancer immunotherapies as well as understanding the pathogenesis of gestational complications linked to dysregulated tolerance processes.
Collapse
Affiliation(s)
- Jin Soo Joo
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Dongeun Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
2
|
Milyutina YP, Arutjunyan AV, Korenevsky AV, Selkov SA, Kogan IY. Neurotrophins: are they involved in immune tolerance in pregnancy? Am J Reprod Immunol 2023; 89:e13694. [PMID: 36792972 DOI: 10.1111/aji.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Alexander V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Andrey V Korenevsky
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Sergey A Selkov
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| |
Collapse
|
3
|
Nurzadeh M, Ghalandarpoor-Attar SM, Ghalandarpoor-Attar SN, Rabiei M. The Role of Interferon (IFN)-γ in Extravillous Trophoblast Cell (EVT) Invasion and Preeclampsia Progression. Reprod Sci 2022; 30:1462-1469. [PMID: 36289172 DOI: 10.1007/s43032-022-01110-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022]
Abstract
The involvement of the immune system in pregnancy is a controversial subject. The functions of T helper (Th) 1 and Th2 cells have been proposed, that Th1 cytokines promoting allograft rejection may impair pregnancy, whereas Th2-type cytokines suppressing Th1 responses improve allograft tolerance and hence embryonic survival. Maternal-fetal tolerance begins in the uterus; therefore, optimal adaptation to the fetus is the result of a complex interference. The invasion of extravillous trophoblast cells (EVTs) into the decidua and the inner third of the myometrium is essential for a healthy pregnancy. The mechanisms that influence trophoblast invasion are unknown; however, cytokines from uterine natural killer (uNK) cells, NKT cells, macrophages, and T cells appear to be involved. All these cells are major sources of interferon gamma (IFN-γ). Recent studies have shown that IFN-γ can inhibit EVT invasion via a mechanism dependent on an increase in EVT apoptosis and a decrease in matrix metalloproteinases (MMPs). Regarding controversies in this context, this study aimed to comprehensively review the role of IFN-γ and IFN-γ-producing cells in EVT invasion, successful pregnancy, and preeclampsia.
Collapse
Affiliation(s)
- Maryam Nurzadeh
- Fetomaternal Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maryam Rabiei
- Obstetrics and Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Meyer S, Handke D, Mueller A, Biehl K, Kreuz M, Bukur J, Koehl U, Lazaridou MF, Berneburg M, Steven A, Massa C, Seliger B. Distinct Molecular Mechanisms of Altered HLA Class II Expression in Malignant Melanoma. Cancers (Basel) 2021; 13:cancers13153907. [PMID: 34359808 PMCID: PMC8345549 DOI: 10.3390/cancers13153907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The human leukocyte antigen (HLA) class II molecules are constitutively expressed in some melanoma, but the underlying molecular mechanisms have not yet been characterized. METHODS The expression of HLA class II antigen processing machinery (APM) components was determined in melanoma samples by qPCR, Western blot, flow cytometry and immunohistochemistry. Immunohistochemical and TCGA datasets were used for correlation of HLA class II expression to tumor grading, T-cell infiltration and patients' survival. RESULTS The heterogeneous HLA class II expression in melanoma samples allowed us to characterize four distinct phenotypes. Phenotype I totally lacks constitutive HLA class II surface expression, which is inducible by interferon-gamma (IFN-γ); phenotype II expresses low basal surface HLA class II that is further upregulated by IFN-γ; phenotype III lacks constitutive and IFN-γ controlled HLA class II expression, but could be induced by epigenetic drugs; and in phenotype IV, lack of HLA class II expression is not recovered by any drug tested. High levels of HLA class II APM component expression were associated with an increased intra-tumoral CD4+ T-cell density and increased patients' survival. CONCLUSIONS The heterogeneous basal expression of HLA class II antigens and/or APM components in melanoma cells is caused by distinct molecular mechanisms and has clinical relevance.
Collapse
Affiliation(s)
- Stefanie Meyer
- Department of Dermatology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.M.); (M.B.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Mark Berneburg
- Department of Dermatology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.M.); (M.B.)
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|
5
|
Seielstad M, Page GP, Gaddis N, Lanteri M, Lee TH, Kakaiya R, Barcellos LF, Criswell LA, Triulzi D, Norris PJ, Busch MP. Genomewide association study of HLA alloimmunization in previously pregnant blood donors. Transfusion 2018; 58:402-412. [PMID: 29168253 PMCID: PMC5803399 DOI: 10.1111/trf.14402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/21/2017] [Accepted: 09/27/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Alloimmunization through blood transfusion, transplantation, or circulating fetal cells during pregnancy is a significant concern. Some exposed individuals make alloantibodies while others do not, implying variation in genetic risk factors. STUDY DESIGN AND METHODS We conducted a genomewide association study (GWAS) of 9,427,497 single-nucleotide polymorphisms (SNPs) to identify genetic variants for HLA alloimmunization in previously pregnant blood donors with (n = 752) and without (n = 753) HLA Class I or II alloantibodies. RESULTS A SNP in the neurexophilin 2 (NXPH2) gene surpassed genome-wide significance (p = 2.06 × 10-8 ), with multiple adjacent markers p < 10-6 , for women with anti-Class I alloantibodies only. Little is currently known about the function of NXPH2, although gene family members have been shown to impact immunity. SNPs in the E2F7 gene, a transcription factor related to cell cycle control and cellular proliferation, also approached genomewide significance (p = 2.5 × 10-7 ). CONCLUSION Further work to extend the GWAS approach and to characterize variants in NXPH2 and E2F7 in the context of alloantibody formation is warranted.
Collapse
Affiliation(s)
- Mark Seielstad
- Blood Systems Research Institute, San Francisco CA 94118
- Institute for Human Genetics, University of California San Francisco, San Francisco CA 94143
- Department of Laboratory Medicine, University of California San Francisco, San Francisco CA 94143
| | | | | | - Marion Lanteri
- Blood Systems Research Institute, San Francisco CA 94118
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco CA 94118
| | | | - Lisa F. Barcellos
- Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, CA 94720
| | - Lindsey A. Criswell
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA 94143
| | - Darrell Triulzi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Philip J. Norris
- Blood Systems Research Institute, San Francisco CA 94118
- Department of Laboratory Medicine, University of California San Francisco, San Francisco CA 94143
- Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, CA 94143
| | - Michael P. Busch
- Blood Systems Research Institute, San Francisco CA 94118
- Department of Laboratory Medicine, University of California San Francisco, San Francisco CA 94143
| |
Collapse
|
6
|
Florea ID, Karaoulani C. Epigenetic Changes of the Immune System with Role in Tumor Development. Methods Mol Biol 2018; 1856:203-218. [PMID: 30178253 DOI: 10.1007/978-1-4939-8751-1_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor development is closely related to chronic inflammation and to evasion of immune defense mechanisms by neoplastic cells. The mediators of the inflammatory process as well as proteins involved in immune response or immune response evasion can be subject to various epigenetic changes such as methylation, acetylation, or phosphorylation. Some of these, such as cytokine suppressors, are undergoing repression through epigenetic changes, and others such as cytokines or chemokines are undergoing activation through epigenetic changes, both modifications having as a result tumor progression. The activating changes can affect the receptor molecules involved in immune response and these promote inflammation and subsequently tumor development while the inactivating changes seem to be related to the tumor regression process. The proteins involved in antigen presentation, and, therefore in immune response escape, such as classical HLA proteins and related APM (antigen presentation machinery) with their epigenetic changes contribute to the tumor development process, either to tumor progression or regression, depending on the immune effector cells that are in play.
Collapse
|
7
|
Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology 2017; 6:e1171447. [PMID: 28344859 DOI: 10.1080/2162402x.2016.1171447] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023] Open
Abstract
The human leukocyte antigen (HLA) class II antigen-processing machinery (APM) presents to cognate CD4+ T-cells antigenic peptides mainly generated from exogeneous proteins in the endocytic compartment. These CD4+ T cells exert helper function, but may also act as effector cells, thereby recognizing HLA class II antigen-expressing tumor cells. Thus, HLA class II antigen expression by tumor cells influences the tumor antigen (TA)-specific immune responses and, depending on the cancer type, the clinical course of the disease. Many types of human cancers express HLA class II antigens, although with marked differences in their frequency. Some types of cancer lack HLA class II antigen expression, which could be due to structural defects or deregulation affecting different components of the complex HLA class II APM and/or from lack of cytokine(s) in the tumor microenvironment. In this review, we have summarized the information about HLA class II antigen distribution in normal tissues, the structural organization of the HLA class II APM, their expression and regulation in malignant cells, the defects, which have been identified in malignant cells, and their functional and clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther-University Halle-Wittenberg, Institute of Medical Immunology , Halle, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) , Heidelberg, Germany
| | - Soldano Ferrone
- Departments of Surgery and Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
8
|
Boyd NH, Morgan JE, Greer SF. Polycomb recruitment at the Class II transactivator gene. Mol Immunol 2015; 67:482-91. [PMID: 26283540 DOI: 10.1016/j.molimm.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022]
Abstract
The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.
Collapse
Affiliation(s)
- Nathaniel H Boyd
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Julie E Morgan
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Susanna F Greer
- Department of Biology, Georgia State University, Petit Science Center, 100 Piedmont Avenue, Suite 632, Atlanta, GA 30302-4010, United States.
| |
Collapse
|
9
|
Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Inhibits Major Histocompatibility Complex Class II Expression by Disrupting Enhanceosome Assembly through Binding with the Regulatory Factor X Complex. J Virol 2015; 89:5536-56. [PMID: 25740990 DOI: 10.1128/jvi.03713-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/26/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Major histocompatibility complex class II (MHC-II) molecules play a central role in adaptive antiviral immunity by presenting viral peptides to CD4(+) T cells. Due to their key role in adaptive immunity, many viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), have evolved multiple strategies to inhibit the MHC-II antigen presentation pathway. The expression of MHC-II, which is controlled mainly at the level of transcription, is strictly dependent upon the binding of the class II transactivator (CIITA) to the highly conserved promoters of all MHC-II genes. The recruitment of CIITA to MHC-II promoters requires its direct interactions with a preassembled MHC-II enhanceosome consisting of cyclic AMP response element-binding protein (CREB) and nuclear factor Y (NF-Y) complex and regulatory factor X (RFX) complex proteins. Here, we show that KSHV-encoded latency-associated nuclear antigen (LANA) disrupts the association of CIITA with the MHC-II enhanceosome by binding to the components of the RFX complex. Our data show that LANA is capable of binding to all three components of the RFX complex, RFX-associated protein (RFXAP), RFX5, and RFX-associated ankyrin-containing protein (RFXANK), in vivo but binds more strongly with the RFXAP component in in vitro binding assays. Levels of MHC-II proteins were significantly reduced in KSHV-infected as well as LANA-expressing B cells. Additionally, the expression of LANA in a luciferase promoter reporter assay showed reduced HLA-DRA promoter activity in a dose-dependent manner. Chromatin immunoprecipitation assays showed that LANA binds to the MHC-II promoter along with RFX proteins and that the overexpression of LANA disrupts the association of CIITA with the MHC-II promoter. These assays led to the conclusion that the interaction of LANA with RFX proteins interferes with the recruitment of CIITA to MHC-II promoters, resulting in an inhibition of MHC-II gene expression. Thus, the data presented here identify a novel mechanism used by KSHV to downregulate the expressions of MHC-II genes. IMPORTANCE Kaposi's sarcoma-associated herpesvirus is the causative agent of multiple human malignancies. It establishes a lifelong latent infection and persists in infected cells without being detected by the host's immune surveillance system. Only a limited number of viral proteins are expressed during latency, and these proteins play a significant role in suppressing both the innate and adaptive immunities of the host. Latency-associated nuclear antigen (LANA) is one of the major proteins expressed during latent infection. Here, we show that LANA blocks MHC-II gene expression to subvert the host immune system by disrupting the MHC-II enhanceosome through binding with RFX transcription factors. Therefore, this study identifies a novel mechanism utilized by KSHV LANA to deregulate MHC-II gene expression, which is critical for CD4(+) T cell responses in order to escape host immune surveillance.
Collapse
|
10
|
Ferrone S, Campoli M. A fresh look at an old story: revisiting HLA class II antigen expression by melanoma cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.6.805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Selective modulation of MHC class II chaperons by a novel IFN-γ-inducible class II transactivator variant in lung adenocarcinoma A549 cells. Biochem Biophys Res Commun 2013; 440:190-5. [PMID: 24055710 DOI: 10.1016/j.bbrc.2013.09.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 11/20/2022]
Abstract
Class II transactivator (CIITA) plays a critical role in controlling major histocompatibility complex (MHC) class II gene expression. In this study, two novel alternatively spliced variants of human interferon (IFN)-γ-inducible CIITA, one missing exon 7 (CIITAΔE7), the other with TAG inserted at exon 4/5 junction (CIITA-TAG), were identified and characterized. Both variants are naturally occurring since they are present in primary cells. Unlike CIITA-TAG, CIITAΔE7 is expressed more abundantly in lung adenocarcinoma A549 cells than in the non-transformed counterpart BEAS-2B cells following IFN-γ stimulation. Transfection experiments showed that CIITAΔE7 induced a markedly lower level of surface HLA-DR, -DP, -DQ expression than CIITA-TAG in A549 cells but not in BEAS-2B cells, although both variants elicited similar amounts of total DR, DP, and DQ proteins. This differential effect was correlated with, in A549 cells, decreased expression of Ii and HLA-DM genes, along with increased expression of HLA-DO genes. Ii and HLA-DM are chaperons assisting in HLA class II assembly, while HLA-DO functions to inhibit endosomal peptide loading and HLA class II membrane transport. These findings raise the possibility that CIITAΔE7 interacts with unknown cancer-associated factors to selectively modulate genes involved in the assembly and transport of HLA class II molecules.
Collapse
|
12
|
da Silva JS, Slowik R, Bicalho MDG. Considerations on regulatory sequences of the distal promoter region of the HLA-G gene. Hum Immunol 2012; 74:473-7. [PMID: 23228392 DOI: 10.1016/j.humimm.2012.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/03/2012] [Accepted: 11/28/2012] [Indexed: 01/09/2023]
Abstract
Gene expression in eukaryotic cells is accomplished via association of transcription factors, some of which directly bind to DNA regulatory sequences. HLA-G codes for an immunoregulatory protein with tissue-specific expression, its unique promoter regulatory region is responsible for this feature. The aim of the present study was to explore motif composition as well as identify haplotypes in the HLA-G 5' distal promoter region. The sample was composed by 176 euro-descendents individuals genotyped by Sequence Based Typing of HLA-G distal promoter, encompassing 16 SNPs. Haplotypes were inferred by the expectation maximization algorithm. Only haplotypes with frequency higher than 1% were aligned to check for similarities and differences and thirteen haplotypes remained. For a better understanding of the nucleotide diversity of the analyzed region our approach was to split the whole sequence into two regions. Two contrasting haplotype groups were found in both regions, allowing us to suggest the existence of different transcription factors capable of binding cis elements while the intra-group variations suggest the intensity modulation of binding with regulatory factors.
Collapse
Affiliation(s)
- José Samuel da Silva
- Laboratório de Imunogenética e Histocompatibilidade-LIGH, Departamento de Genética, Centro Politécnico, Universidade Federal do Paraná-UFPR, Av. Coronel Francisco H. dos Santos, Jardim das Américas. Curitiba, Paraná, CEP 81530990, Caixa Postal 19071, Brazil.
| | | | | |
Collapse
|
13
|
Epigenetic regulation of CIITA expression in human T-cells. Biochem Pharmacol 2011; 82:1430-7. [DOI: 10.1016/j.bcp.2011.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/18/2011] [Accepted: 05/26/2011] [Indexed: 11/18/2022]
|
14
|
van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2011; 2:48. [PMID: 22566838 PMCID: PMC3342053 DOI: 10.3389/fimmu.2011.00048] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022] Open
Abstract
Major histocompatibility complex (MHC)-I and MHC-II molecules play an essential role in the immune response to pathogens by virtue of their ability to present peptides to CD8+ and CD4+ T cells, respectively. Given this critical role, MHC-I and MHC-II genes are regulated in a tight fashion at the transcriptional level by a variety of transcription factors that interact with conserved cis-acting regulatory promoter elements. In addition to the activities of these regulatory factors, modification of chromatin also plays an essential role in the efficient transcription of these genes to meet with local requirement for an effective immune response. The focus of this review is on the transcription factors that interact with conserved cis-acting promoter elements and the epigenetic mechanisms that modulate induced and constitutive expression of these MHC genes.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center Leiden, Netherlands.
| |
Collapse
|
15
|
Katzman PJ, Murphy SP, Oble DA. Immunohistochemical analysis reveals an influx of regulatory T cells and focal trophoblastic STAT-1 phosphorylation in chronic villitis of unknown etiology. Pediatr Dev Pathol 2011; 14:284-93. [PMID: 21345084 DOI: 10.2350/10-09-0910-oa.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maternal T cells and fetal macrophages constitute the primary infiltrate of chronic villitis of unknown etiology (CVUE), but the role of CD25(+)/FOXP3(+) regulatory T (Treg) cells in CVUE has not been examined. Moreover, little is known about the expression of immune markers, such as the major histocompatibility complex (MHC) class II antigen, human leukocyte antigen-DR (HLA-DR), in trophoblasts in this disease. We, therefore, examined CVUE placentas for the presence of Treg cells and aberrant activation of HLA-DR in trophoblasts. Sequential formalin-fixed, paraffin-embedded tissue sections from 8 CVUE placentas and 10 control placentas were stained by immunohistochemistry with antibodies for CD3, CD4, CD8, CD20, CD25, FOXP3, CD56, CD68, HLA-DR, STAT-1, and phosphorylated STAT-1 [P-(Y701)-STAT-1]. T cells and histiocytes were confirmed as the inflammatory infiltrate in CVUE. In areas of CVUE, histiocytes strongly expressed HLA-DR and nuclear P-(Y701)-STAT-1, and the relative numbers of CD25(+)/FOXP3(+) Treg cells were increased, compared with control placentas. In 5 of 8 CVUE cases, there was patchy nuclear expression of P-(Y701)-STAT-1 in syncytiotrophoblast most extensively involved by villitis, but no other marker examined was detected in the trophoblast cell layer. We confirmed the influx of T cells and histiocytes in CVUE. Our results are the 1st, to our knowledge, to identify increased numbers of Treg cells in CVUE vs noninflamed placentas. However, we were unable to verify HLA-DR expression in trophoblasts of placentas with CVUE, suggesting that this does not contribute to the influx of T cells. Our observation that P-(Y701)-STAT-1 expression in a syncytiotrophoblast is restricted to regions of inflammation suggests that the JAK-STAT-1 pathway is aberrantly activated in these cells.
Collapse
Affiliation(s)
- Philip J Katzman
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
16
|
Serrano A, Castro-Vega I, Redondo M. Role of gene methylation in antitumor immune response: implication for tumor progression. Cancers (Basel) 2011; 3:1672-90. [PMID: 24212778 PMCID: PMC3757384 DOI: 10.3390/cancers3021672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 12/27/2022] Open
Abstract
Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.
Collapse
Affiliation(s)
- Alfonso Serrano
- Department of Immunology, Hospital Clinico Universitario, Campus Universitario Teatinos S/N, 29010 Malaga, Spain.
| | | | | |
Collapse
|
17
|
Epigenetic Control in Immune Function. EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE 2011; 711:36-49. [DOI: 10.1007/978-1-4419-8216-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Wang S, Yang N, Zhang L, Huang B, Tan H, Liang Y, Li Y, Yu X. Jak/STAT signaling is involved in the inflammatory infiltration of the kidneys in MRL/lpr mice. Lupus 2010; 19:1171-80. [PMID: 20501525 DOI: 10.1177/0961203310367660] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytokines are known to play an important role in the pathogenesis of lupus nephritis (LN) and the Jak/STAT (Janus kinase-signal transducer and activator of transcription factor) pathway is important in mediating signal transduction of cytokines. This study examined the pathogenic role of Jak/STAT signaling in LN. MRL/lpr mice were either treated with a selective Jak2 inhibitor tyrphostin AG490 or with vehicle alone from 12 weeks of age until being sacrificed at week 20. AG490 significantly inhibited the phosphorylation of Jak2 and STAT1 (p < 0.05). Compared with the vehicle-treated mice, AG490 treatment significantly reduced proteinuria, improved renal function and suppressed histological lesions of the kidneys and salivary glands (p < 0.05). AG490 treatment significantly inhibited the renal expression of monocyte chemotactic protein (MCP)-1, interferon (IFN)-gamma and class II MHC, which was accompanied by reduced renal infiltration of T cells and macrophages (p < 0.05). In addition, AG490 treatment resulted in a decrease in serum anti-double-stranded DNA (anti-dsDNA) antibody and attenuated the deposition of IgG and C3 in the kidneys (p < 0.05). This study demonstrated that Jak/STAT pathway is implicated in the progression of renal inflammation in MRL/lpr mice and targeting this pathway may provide a potential therapeutic approach for LN.
Collapse
Affiliation(s)
- S Wang
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Holling TM, Bergevoet MWT, Wierda RJ, van Eggermond MCJA, van den Elsen PJ. Genetic and epigenetic control of the major histocompatibility complex class Ib gene HLA-G in trophoblast cell lines. Ann N Y Acad Sci 2009; 1173:538-44. [PMID: 19758196 DOI: 10.1111/j.1749-6632.2009.04660.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcriptional regulation of the major histocompatibility complex class (MHC) Ib gene HLA-G differs from the classical MHC class I genes. The cis-acting regulatory elements typical for classical MHC class I promoters are divergent in the promoter of HLA-G, rendering this gene unresponsive to NF-kappaB, IRF-1, and class II transactivator (CIITA)-mediated activation pathways. However, as we have previously shown, transactivation of HLA-G is regulated by CREB-1. Because CREB-1 is ubiquitously expressed, this observation does not explain the tissue-restricted expression of HLA-G in extravillous cytotrophoblasts. Using HLA-G-expressing JEG-3 cells and HLA-G-deficient JAR trophoblast-derived choriocarcinoma cells as a model, we have investigated the contribution of DNA methylation and histone acetylation in the transcriptional activation of HLA-G. Despite similar levels of DNA methylation both in JEG3 and JAR cells, we found the levels of histone acetylation in HLA-G promoter chromatin to be significantly enhanced in JEG3 cells coinciding with HLA-G expression.
Collapse
Affiliation(s)
- Tjadine M Holling
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Choi JC, Holtz R, Murphy SP. Histone deacetylases inhibit IFN-gamma-inducible gene expression in mouse trophoblast cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:6307-15. [PMID: 19414784 DOI: 10.4049/jimmunol.0802454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophoblast cells are the first cells to differentiate from the developing mammalian embryo, and they subsequently form the blastocyst-derived component of the placenta. IFN-gamma plays critical roles in activating innate and adaptive immunity, as well as apoptosis. In mice, IFN-gamma is produced in the pregnant uterus, and is essential for formation of the decidual layer of the placenta and remodeling of the uterine vasculature. Responses of mouse trophoblast cells to IFN-gamma appear to be selective, for IFN-gamma activates MHC class I expression and enhances phagocytosis, but fails to activate either MHC class II expression or apoptosis in these cells. To investigate the molecular basis for the selective IFN-gamma responsiveness of mouse trophoblast cells, IFN-gamma-inducible gene expression was examined in the trophoblast cell lines SM9 and M-11, trophoblast stem cells, and trophoblast stem cell-derived giant cells. IFN-gamma-inducible expression of multiple genes, including IFN regulatory factor-1 (IRF-1), was significantly reduced in trophoblast cells compared with fibroblast cells. Decreased IRF-1 mRNA expression in trophoblast cells was due to a reduced rate of IRF-1 transcription relative to fibroblast cells. However, no impairment of STAT-1 tyrosine phosphorylation or DNA-binding capacity was observed in IFN-gamma-treated mouse trophoblast cells. Importantly, histone deacetylase (HDAC) inhibitors significantly enhanced IFN-gamma-inducible gene expression in trophoblast cells, but not fibroblasts. Our collective studies demonstrate that IFN-gamma-inducible gene expression is repressed in mouse trophoblast cells by HDACs. We propose that HDAC-mediated inhibition of IFN-gamma-inducible gene expression in mouse trophoblast cells may contribute to successful pregnancy by preventing activation of IFN-gamma responses that might otherwise facilitate the destruction of the placenta.
Collapse
|
21
|
Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod 2009; 80:848-59. [PMID: 19164174 PMCID: PMC2849832 DOI: 10.1095/biolreprod.108.073353] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/01/2008] [Accepted: 01/07/2009] [Indexed: 11/01/2022] Open
Abstract
Interferon gamma (IFNG) is a proinflammatory cytokine secreted in the uterus during early pregnancy. It is abundantly produced by uterine natural killer cells in maternal endometrium but also by trophoblasts in some species. In normal pregnancies of mice, IFNG plays critical roles that include initiation of endometrial vasculature remodeling, angiogenesis at implantation sites, and maintenance of the decidual (maternal) component of the placenta. In livestock and in humans, deviations in these processes are thought to contribute to serious gestational complications, such as fetal loss or preeclampsia. Interferon gamma has broader roles in activation of innate and adaptive immune responses to viruses and tumors, in part through upregulating transcription of genes involved in cell cycle regulation, apoptosis, and antigen processing/presentation. Despite this, rodent and human trophoblast cells show dampened responses to IFNG that reflect the resistance of these cells to IFNG-mediated activation of major histocompatibility complex (MHC) class II transplantation antigen expression. Lack of MHC class II antigens on trophoblasts is thought to facilitate survival of the semiallogeneic conceptus in the presence of maternal lymphocytes. This review describes the dynamic roles of IFNG in successful pregnancy and briefly summarizes data on IFNG in gestational pathologies.
Collapse
Affiliation(s)
- Shawn P. Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | - Chandrakant Tayade
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ali A. Ashkar
- Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - Kota Hatta
- Departments of Microbiology and Immunology and Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | - Jianhong Zhang
- Departments of Microbiology and Immunology and Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | - B. Anne Croy
- Departments of Microbiology and Immunology and Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
22
|
Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 2008; 27:5869-85. [PMID: 18836468 DOI: 10.1038/onc.2008.273] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in classical and nonclassical HLA class I as well as HLA class II antigens have been identified in malignant lesions. These changes, which are described in this review are believed to play a major role in the clinical course of the disease since both HLA class I and class II antigens are critical to the interaction between tumor cells and components of both innate and adaptive immune system. Abnormalities in HLA antigen expression in malignant cells, which range in frequency from 0-90%, are caused by distinct mechanisms. They include defects in beta(2)-microglobulin (beta(2)m) synthesis, loss of the gene(s) encoding HLA antigen heavy chain(s), mutations, which inhibit HLA antigen heavy chain transcription or translation, defects in the regulatory mechanisms, which control HLA antigen expression and/or abnormalities in one or more of the antigen processing, machinery (APM) components. More recently, epigenetic events associated with tumor development and progression have been found to underlie changes in HLA antigen, APM component, costimulatory molecule and tumor antigen (TA) expression in malignant cells. The types of epigenetic modifications that may occur in normal and malignant cells as well as their role in changes in HLA antigen expression by malignant cells have been reviewed. The epigenetic events associated with alterations in HLA antigen expression may be clinically relevant as, in some cases, they have been shown to impair the recognition of tumor cells by components of the adaptive immune system. The functional relevance and potential clinical significance of these epigenetic alterations have been addressed. Finally, unlike genetic alterations, epigenetic modifications can, in some cases, be reversed with pharmacologic agents that induce DNA hypomethylation or inhibit histone deacetylation. Therefore, strategies to overcome epigenetic modifications underlying changes in HLA antigen expression in malignant cells have been discussed.
Collapse
Affiliation(s)
- M Campoli
- Department of Dermatology, University of Colorado Health Science Center, Denver, CO, USA
| | | |
Collapse
|
23
|
Abstract
The molecular pathways involved in the cellular response to interferon (IFN)gamma have been the focus of much research effort due to their importance in host defense against infection and disease, as well as its potential as a therapeutic agent. The discovery of the JAK-STAT signaling pathway greatly enhanced our understanding of the mechanism of IFNgamma-mediated gene transcription. However, in recent years it has become apparent that other pathways, including MAP kinase, PI3-K, CaMKII and NF-kappaB, either co-operate with or act in parallel to JAK-STAT signaling to regulate the many facets of IFNgamma biology in a gene- and cell type-specific manner. The complex interactions between JAK/STAT and alternate pathways and the impact of these signaling networks on the biological responses to IFNgamma are beginning to be understood. This review summarizes and appraises current advances in our understanding of these complex interactions, their specificity and proposed biological outcomes.
Collapse
Affiliation(s)
- Daniel J Gough
- Department of Pathology, NYU Cancer Institute, New York University Langone School of Medicine, New York, 10016, USA
| | | | | | | |
Collapse
|
24
|
Meissner M, Whiteside T, van Kuik-Romein P, Valesky E, van den Elsen P, Kaufmann R, Seliger B. Loss of interferon-γ inducibility of the MHC class II antigen processing pathway in head and neck cancer: evidence for post-transcriptional as well as epigenetic regulation. Br J Dermatol 2008; 158:930-40. [DOI: 10.1111/j.1365-2133.2008.08465.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Ströbel P, Chuang WY, Chuvpilo S, Zettl A, Katzenberger T, Kalbacher H, Rieckmann P, Nix W, Schalke B, Gold R, Müller-Hermelink HK, Peterson P, Marx A. Common cellular and diverse genetic basis of thymoma-associated myasthenia gravis: role of MHC class II and AIRE genes and genetic polymorphisms. Ann N Y Acad Sci 2008; 1132:143-56. [PMID: 18567864 DOI: 10.1196/annals.1405.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Generation of autoreactive CD4(+) effector T cells and defective production of regulatory CD4(+) T cells inside thymomas contribute to the development of myasthenia gravis (MG) in >90% of MG(+) thymomas. The molecular basis of these abnormalities is unknown. We report here that a) expression levels of class II major histocompatibility complex (MHCII) genes are variably decreased in thymomas, most prominently in histological WHO types A and AB; b) epithelial cells of type A and AB thymomas exhibit signal transducer and activator of transcription (STAT-1)-related defects of interferon-gamma (IFN-gamma) signaling and human leukocyte antigen (HLA)-DR expression in vitro; c) the promoter III (pIII)- and pIV-driven splice variants of the MHCII transactivator (CIITA) play a key role in MHCII gene expression in thymus and thymomas; and d) the pIV CIITA promoter is heavily methylated in thymomas. Recently, we also found that expression of the autoimmune regulator (AIRE) gene is absent from approximately 95% of thymomas. Among all theses abnormalities, only better preserved expression levels of MHCII (P < 0.001) in thymomas were significantly associated with the presence of MG. Taking the association of a gain-of-function polymorphism of the CTLA-4 and PTPN22 gene with MG in thymomas into account, we conclude that these acquired cellular abnormalities of the thymoma microenvironment in concert with inherited genetic high-risk polymorphisms of immunoregulatory genes have an impact on intratumorous thymopoiesis and appear to tip the balance toward central tolerance failure and development of MG. The findings imply that IFN-gamma and STAT-1 signaling play a role in MHCII expression in the human thymus and in the pathogenesis of paraneoplastic MG.
Collapse
Affiliation(s)
- Philipp Ströbel
- Institute of Pathology, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68135 Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Holling TM, Bergevoet MWT, Wilson L, Van Eggermond MCJA, Schooten E, Steenbergen RDM, Snijders PJF, Jager MJ, Van den Elsen PJ. A role for EZH2 in silencing of IFN-gamma inducible MHC2TA transcription in uveal melanoma. THE JOURNAL OF IMMUNOLOGY 2007; 179:5317-25. [PMID: 17911618 DOI: 10.4049/jimmunol.179.8.5317] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the contribution of epigenetic mechanisms in MHC2TA transcriptional silencing in uveal melanoma. Although no correlation was observed between impaired CIITA transcript levels after IFN-gamma induction and DNA methylation of MHC2TA promoter IV (CIITA-PIV), an association was found with high levels of trimethylated histone H3-lysine 27 (3Me-K27-H3) in CIITA-PIV chromatin. The 3Me-K27-H3 modification correlated with a strong reduction in RNA polymerase II-recruitment to CIITA-PIV. Interestingly, we observed that none of these epigenetic modifications affected recruitment of activating transcription factors to this promoter. Subsequently, we demonstrated the presence of the histone methyltransferase EZH2 in CIITA-PIV chromatin, which is known to be a component of the Polycomb repressive complex 2 and able to triple methylate histone H3-lysine 27. RNA interference-mediated down-regulation of EZH2 expression resulted in an increase in CIITA transcript levels after IFN-gamma induction. Our data therefore reveal that EZH2 contributes to silencing of IFN-gamma-inducible transcription of MHC2TA in uveal melanoma cells.
Collapse
Affiliation(s)
- Tjadine M Holling
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Choi JC, Holtz R, Petroff MG, Alfaidy N, Murphy SP. Dampening of IFN-gamma-inducible gene expression in human choriocarcinoma cells is due to phosphatase-mediated inhibition of the JAK/STAT-1 pathway. THE JOURNAL OF IMMUNOLOGY 2007; 178:1598-607. [PMID: 17237409 DOI: 10.4049/jimmunol.178.3.1598] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophoblast cells (TBCs) form the blastocyst-derived component of the placenta and play essential roles in fetal maintenance. The proinflammatory cytokine IFN-gamma plays a central role in activating cellular immunity, controlling cell proliferation, and inducing apoptosis. IFN-gamma is secreted by uterine NK cells in the placenta during pregnancy and in mice is required for proper formation of the decidual layer and remodeling of the uterine vasculature. Despite the presence of IFN-gamma in the placenta, TBCs do not express either MHC class Ia or class II Ags, and are resistant to IFN-gamma-mediated apoptosis. In this study, we demonstrate that IFN-gamma-induced expression of multiple genes is significantly reduced in human trophoblast-derived choriocarcinoma cells relative to HeLa epithelial or fibroblast cells. These results prompted us to investigate the integrity of the JAK/STAT-1 pathway in these cells. Choriocarcinoma cells and HeLa cells express comparable levels of the IFN-gamma receptor. However, tyrosine phosphorylation of JAK-2 is compromised in IFN-gamma-treated choriocarcinoma cells. Moreover, phosphorylation of STAT-1 at tyrosine 701 is substantially reduced in both IFN-gamma-treated human choriocarcinoma and primary TBCs compared with HeLa cells or primary foreskin fibroblasts. A corresponding reduction of both IFN regulatory factor 1 mRNA and protein expression was observed in IFN-gamma-treated TBCs. Treatment of choriocarcinoma cells with the tyrosine phosphatase inhibitor pervanadate significantly enhanced IFN-gamma-inducible JAK and STAT-1 tyrosine phosphorylation and select IFN-gamma-inducible gene expression. We propose that phosphatase-mediated suppression of IFN-gamma signaling in TBCs contributes to fetal maintenance by inhibiting expression of genes that could be detrimental to successful pregnancy.
Collapse
Affiliation(s)
- Jason C Choi
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
28
|
Rodríguez T, Méndez R, Del Campo A, Aptsiauri N, Martín J, Orozco G, Pawelec G, Schadendorf D, Ruiz-Cabello F, Garrido F. Patterns of constitutive and IFN-gamma inducible expression of HLA class II molecules in human melanoma cell lines. Immunogenetics 2006; 59:123-33. [PMID: 17180681 DOI: 10.1007/s00251-006-0171-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
Major histocompatibility complex (MHC) class II proteins (HLA-DR, HLA-DP and HLA-DQ) play a fundamental role in the regulation of the immune response. The level of expression of human leukocyte antigen (HLA) class II antigens is regulated by interferon-gamma (IFN-gamma) and depends on the status of class II trans-activator protein (CIITA), a co-activator of the MHC class II gene promoter. In this study, we measured levels of constitutive and IFN-gamma-induced expression of MHC class II molecules, analysed the expression of CIITA and investigated the association between MHC class II transactivator polymorphism and expression of different MHC class II molecules in a large panel of melanoma cell lines obtained from the European Searchable Tumour Cell Line Database. Many cell lines showed no constitutive expression of HLA-DP, HLA-DQ and HLA-DR and no IFN-gamma-induced increase in HLA class II surface expression. However, in some cases, IFN-gamma treatment led to enhanced surface expression of HLA-DP and HLA-DR. HLA-DQ was less frequently expressed under basal conditions and was less frequently induced by IFN-gamma. In these melanoma cell lines, constitutive surface expression of HLA-DR and HLA-DP was higher than that of HLA-DQ. In addition, high constitutive level of cell surface expression of HLA-DR was correlated with lower inducibility of this expression by IFN-gamma. Finally, substitution A-->G in the 5' flanking region of CIITA promoter type III was associated with higher expression of constitutive HLA-DR (p<0.005). This study yielded a panel of melanoma cell lines with different patterns of constitutive and IFN-gamma-induced expression of HLA class II that can be used in future studies of the mechanisms of regulation of HLA class II expression.
Collapse
Affiliation(s)
- T Rodríguez
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Avda. Fuerzas Armadas 2, 18014, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
He Y, Zhao Y, Zhang S, Chen W, Lin S, Yang Q, Liu J, Yang Y, Jin Y, Liu M. Not polymorphism but methylation of class II transactivator gene promoter IV associated with persistent HBV infection. J Clin Virol 2006; 37:282-6. [PMID: 16996793 DOI: 10.1016/j.jcv.2006.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 08/15/2006] [Accepted: 08/17/2006] [Indexed: 01/01/2023]
Abstract
BACKGROUND Class II transactivator (CIITA) is the major rate-limiting regulator for expression of class II major histocompability complex (MHC-II). Human CIITA gene expression is controlled by four distinct promoters (pIto pIV). OBJECTIVE To evaluate the relationship among polymorphism and methylation status of CIITA gene promoters and persistent hepatitis B virus (HBV) infection. METHODS We recruited 21 patients with hepatocellular carcinoma (HCC), 45 liver cirrhosis (LC), 65 chronic hepatitis B (CHB), 26 acute hepatitis B (AHB) and 95 healthy blood donors. Polymorphism of CIITA gene promoters was assayed by PCR-SSCP-sequencing. Bioinformatics analysis was employed to predict the existence of CpG islands. Methylation-specific PCR (MSP) was used to detect the methylation status of CIITA gene pIV. RESULTS No sequence differences were observed at CIITA genes pI, III and IV among HCC, LC, CHB, AHB patients and healthy controls. No CpG islands were found in the pI, pII and pIII sequences, but there was a CpG island in pIV. The frequency of methylated POV was not significantly different within persistent HBV infection groups (patients with HCC, LC or CHB). Significance was found between the persistent infection group and acute HBV infection or healthy controls. CONCLUSIONS CIITA gene promoter sequences are conserved. PIV is highly methylated and associated with host susceptibility to HBV persistent infection.
Collapse
Affiliation(s)
- Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Holling TM, van Eggermond MCJA, Jager MJ, van den Elsen PJ. Epigenetic silencing of MHC2TA transcription in cancer. Biochem Pharmacol 2006; 72:1570-6. [PMID: 16879803 DOI: 10.1016/j.bcp.2006.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 01/23/2023]
Abstract
Lack of expression of major histocompatibility complex (MHC) molecules of both classes is frequently noted on tumour cells . It is thought that in this way tumour cells escape immunosurveillance. The genes encoding both classes of MHC molecules are localized on the distal part of chromosome 6 (6p21.3). The class II transactivator (CIITA), encoded by the MHC2TA gene, is essential for transcriptional activation of all MHC-II genes, while it has a helper function in the transcriptional regulation of MHC-I genes (with the exception of human leukocyte antigen (HLA)-G) and of the gene encoding beta2-microglobulin (beta2m) . Here we discuss our current knowledge on the expression characteristics of MHC2TA and argue for an important role of epigenetic factors and mechanisms in the transcriptional silencing of MHC2TA in cancer cells.
Collapse
Affiliation(s)
- Tjadine M Holling
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
31
|
Wright KL, Ting JPY. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol 2006; 27:405-12. [PMID: 16870508 DOI: 10.1016/j.it.2006.07.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/23/2006] [Accepted: 07/12/2006] [Indexed: 02/02/2023]
Abstract
This review describes recent advances in understanding how epigenetic events control MHC-class-II-family (MHC-II) gene expression. To address this issue, two phases of gene transcription have to be considered. First, the control of MHC-II by chromatin-modifying events such as histone acetylation, methylation, deacetylation, ubiquitination and the interplay between these different epigenetic events will be examined. The interactions of chromatin-modifying enzymes with class II transactivator (CIITA) and relevant DNA-binding proteins for activating and silencing MHC-II gene transcription will be reviewed. Second, the transcriptional control of the promoter of CIITA, the master regulator of MHC-II, by DNA methylation and chromatin modification will be discussed, and the novel role of noncoding RNA will be explored. Finally, the relevance of these findings to infection, transplantation and cancer will be reviewed.
Collapse
Affiliation(s)
- Kenneth L Wright
- H. Lee Moffitt Cancer Center and Research Institute, and the Department of Interdisciplinary Oncology, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
32
|
Radosevich M, Jager M, Ono SJ. Inhibition of MHC class II gene expression in uveal melanoma cells is due to methylation of the CIITA gene or an upstream activator. Exp Mol Pathol 2006; 82:68-76. [PMID: 16650406 DOI: 10.1016/j.yexmp.2006.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/09/2006] [Indexed: 11/18/2022]
Abstract
Most cells with an intact interferon-gamma receptor and signaling pathway are able to express MHC class II molecules when treated with cytokines such as interferon-gamma and tumor necrosis factor-a. Interestingly, primary uveal melanocytes and most ocular melanoma cells are resistant to interferon-gamma mediated induction of class II MHC genes. This unusual phenotype is hypothesized to be germane to the immune-privileged status to the eye. Via a series of experiments, we have probed the molecular basis of this class II MHC resistant phenotype. We have analyzed the methylation status of the gene encoding the class II transactivator (CIITA), and asked whether treatment of class II MHC resistant ocular melanoma cells with the demethylating agent 5'-azacytidine can restore interferon-gamma inducibility of these class II MHC genes in these cells. The data obtained suggest that the specific blockade in cytokine-induced class II MHC gene expression is due to a suppression of the gene encoding the class II transactivator (CIITA). Treatment with 5' azacytidine restores the ability of these cells to express class II MHC genes upon interferon-gamma treatment. Whilst this is reminiscent of what occurs in another immune-privileged tissue--the placental trophoblast--we show here that silencing of the CIITA gene in uveal melanocytes either involves methylation of distinct nucleotides from those detected in trophoblasts, or involves an upstream activator of CIITA gene expression.
Collapse
Affiliation(s)
- Michael Radosevich
- Department of Immunology, University College London, Institute of Ophthalmology and Child Health and Moorfields Eye Hospital, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | | |
Collapse
|
33
|
Reith W, LeibundGut-Landmann S, Waldburger JM. Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 2005; 5:793-806. [PMID: 16200082 DOI: 10.1038/nri1708] [Citation(s) in RCA: 353] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MHC class II molecules are pivotal for the adaptive immune system, because they guide the development and activation of CD4+ T helper cells. Fulfilling these functions requires that the genes encoding MHC class II molecules are transcribed according to a strict cell-type-specific and quantitatively modulated pattern. This complex gene-expression profile is controlled almost exclusively by a single master regulatory factor, which is known as the class II transactivator. As we discuss here, differential activation of the three independent promoters that drive expression of the gene encoding the class II transactivator ultimately determines the exquisitely regulated pattern of MHC class II gene expression.
Collapse
Affiliation(s)
- Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, Centre Médical Universitaire, 1 Rue Michel-Servet, CH-1211, Geneva, Switzerland.
| | | | | |
Collapse
|
34
|
Schooten E, Klous P, van den Elsen PJ, Holling TM. Lack of MHC-II expression in activated mouse T cells correlates with DNA methylation at the CIITA-PIII region. Immunogenetics 2005; 57:795-9. [PMID: 16235089 DOI: 10.1007/s00251-005-0051-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/08/2005] [Indexed: 11/27/2022]
Abstract
In contrast to activated human T cells, activated mouse T cells fail to express MHC class II molecules (MHC-II) at their cell surface. This is because mouse T cells hardly produce mRNA encoding the MHC-II molecules I-A and I-E, due to severely impaired expression levels upon T-cell activation of the mhc2ta gene, encoding the class II transactivator (CIITA). In humans, activated T cells express exclusively the CIITA promoter III (CIITA-PIII) isoform, which results in cell surface expression of all MHC-II isotypes (HLA-DR, -DP and -DQ). In this study, we demonstrate that methylation of CIITA-PIII contributes to the failure of mouse T cells to transcribe the mhc2ta and the resulting I-A/E genes, explaining the lack of I-A/E molecule expression at the cell surface following activation.
Collapse
Affiliation(s)
- Erik Schooten
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, Albinusdreef 2, 2333, ZA Leiden, The Netherlands
| | | | | | | |
Collapse
|
35
|
Chou SD, Khan ANH, Magner WJ, Tomasi TB. Histone acetylation regulates the cell type specific CIITA promoters, MHC class II expression and antigen presentation in tumor cells. Int Immunol 2005; 17:1483-94. [PMID: 16210330 DOI: 10.1093/intimm/dxh326] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The regulation of MHC class II expression by the class II transactivator (CIITA) is complex and differs in various cell types depending on the relative activity of three CIITA promoters. Here we show that, in plasma cell tumors, the deacetylase inhibitor trichostatin A (TSA) elicits PIII-CIITA but does not activate the IFN-gamma-inducible PIV-CIITA promoter. In trophoblast cells, all CIITA promoter types are constitutively silent and not induced by IFN-gamma or TSA treatment. TSA induction of PI-CIITA was restricted to macrophage and dendritic cell lines. In the Colon 26 tumor IFN-gamma induced endogenous PIV-CIITA but not PIII-CIITA while TSA activated class II in the apparent absence of CIITA. Reporter assays in Colon 26 showed that TSA induced PIII-CIITA but not PIV-CIITA. Transfection of a dominant negative CIITA plasmid in Colon 26 inhibited induction of class II by IFN-gamma but not TSA. Thus, the potential for both CIITA-dependent and -independent pathways of MHC induction exists within a single cell. Further evidence of CIITA-independent class II expression elicited by TSA was obtained using knockout mice with defects in CIITA, STAT-1alpha and IRF-1 expression. TSA treatment can also activate class II expression in mutant cell lines with deficiencies in signaling molecules, transcription factors and the BRG-1 cofactor that are required for IFN-gamma-induced CIITA expression. Importantly, after epigenetic activation by the deacetylase inhibitor, MHC class II is transported and displayed on the cell surface of a plasma cell tumor and it is converted to an efficient antigen presenting cell for protein and class II-peptide presentation.
Collapse
Affiliation(s)
- Shiuh-Dih Chou
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
36
|
Drozina G, Kohoutek J, Jabrane-Ferrat N, Peterlin BM. Expression of MHC II genes. Curr Top Microbiol Immunol 2005; 290:147-70. [PMID: 16480042 DOI: 10.1007/3-540-26363-2_7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innate and adaptive immunity are connected via antigen processing and presentation (APP), which results in the presentation of antigenic peptides to T cells in the complex with the major histocompatibility (MHC) determinants. MHC class II (MHC II) determinants present antigens to CD4+ T cells, which are the main regulators of the immune response. Their genes are transcribed from compact promoters that form first the MHC II enhanceosome, which contains DNA-bound activators and then the MHC II transcriptosome with the addition of the class II transactivator (CIITA). CIITA is the master regulator of MHC II transcription. It is expressed constitutively in dendritic cells (DC) and mature B cells and is inducible in most other cell types. Three isoforms of CIITA exist, depending on cell type and inducing signals. CIITA is regulated at the levels of transcription and post-translational modifications, which are still not very clear. Inappropriate immune responses are found in several diseases, including cancer and autoimmunity. Since CIITA regulates the expression of MHC II genes, it is involved directly in the regulation of the immune response. The knowledge of CIITA will facilitate the manipulation of the immune response and might contribute to the treatment of these diseases.
Collapse
Affiliation(s)
- G Drozina
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco 94143, USA.
| | | | | | | |
Collapse
|
37
|
Kuipers HF, Biesta PJ, Groothuis TA, Neefjes JJ, Mommaas AM, van den Elsen PJ. Statins Affect Cell-Surface Expression of Major Histocompatibility Complex Class II Molecules by Disrupting Cholesterol-Containing Microdomains. Hum Immunol 2005; 66:653-65. [PMID: 15993711 DOI: 10.1016/j.humimm.2005.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 04/07/2005] [Accepted: 04/11/2005] [Indexed: 11/18/2022]
Abstract
Statins, the main therapy for hypercholesterolemia, are currently considered as possible immunomodulatory agents. Statins inhibit the production of proinflammatory cytokines and reduce the expression of several immunoregulatory molecules, including major histocompatibility complex class II (MHC-II) molecules. In this study, we investigated the mechanism by which simvastatin reduces the membrane expression of MHC-II molecules on several human cell types. We demonstrate that the reduction of MHC-II membrane expression by simvastatin correlates with disruption of cholesterol-containing microdomains, which transport and concentrate MHC-II molecules to the cell surface. In addition, we demonstrate that statins reduce cell-surface expression of other immunoregulatory molecules, which include MHC-I, CD3, CD4, CD8, CD28, CD40, CD80, CD86, and CD54. Our observations indicate that the downregulation of MHC-II at the cell surface contributes to the immunomodulatory properties of statins and is achieved through disruption of cholesterol-containing microdomains, which are involved in their intracellular transport.
Collapse
Affiliation(s)
- Hedwich F Kuipers
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol 2004; 16:67-75. [PMID: 14734112 DOI: 10.1016/j.coi.2003.11.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
MHC class I and class II molecules play essential roles in the adaptive immune response by virtue of their ability to present peptides to T lymphocytes. Given their central role in adaptive immunity, the genes encoding these peptide-presenting molecules are regulated in a tight fashion to meet with local requirements for an adequate immune response. In contrast to MHC class I gene products, which are expressed on almost all nucleated cells, constitutive expression of MHC class II molecules is found only in specialized antigen-presenting cells of the immune system. Expression of both classes of MHC molecules can be induced by immune regulators and upon cell activation. A set of conserved cis-acting regulatory promoter elements mediate the transcription of MHC class I and beta2-microglobulin genes. Of these regulatory elements, the promoters of MHC class II and accessory genes also have the SXY module. The MHC class II transactivator (CIITA) is essential for the activation of MHC class II promoters, and it functions through protein-protein interactions with regulatory factors bound to the SXY module. Given the central role of CIITA in these regulatory processes, it is of interest to identify the DNA-binding factors and co-activators that assemble on CIITA promoters in a cell-type-specific fashion. Accordingly, recent studies include investigations into chromatin remodeling and epigenetic control mechanisms that modulate cell-type-specific transcriptional regulation of genes involved in antigen presentation.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Building 1, E3-Q, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Reply: CIITA methylation and decreased levels of HLA-DR in tumour progression. Br J Cancer 2004. [PMCID: PMC2364781 DOI: 10.1038/sj.bjc.6602047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
41
|
Murphy SP, Choi JC, Holtz R. Regulation of major histocompatibility complex class II gene expression in trophoblast cells. Reprod Biol Endocrinol 2004; 2:52. [PMID: 15236650 PMCID: PMC479700 DOI: 10.1186/1477-7827-2-52] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Accepted: 07/05/2004] [Indexed: 11/18/2022] Open
Abstract
Trophoblast cells are unique because they are one of the few mammalian cell types that do not express major histocompatibility complex (MHC) class II antigens, either constitutively or after exposure to IFN-gamma. The absence of MHC class II antigen expression on trophoblast cells has been postulated to be one of the essential mechanisms by which the semi-allogeneic fetus evades immune rejection reactions by the maternal immune system. Consistent with this hypothesis, trophoblast cells from the placentas of women suffering from chronic inflammation of unknown etiology and spontaneous recurrent miscarriages have been reported to aberrantly express MHC class II antigens. The lack of MHC class II antigen expression on trophoblast cells is due to silencing of expression of the class II transactivator (CIITA), a transacting factor that is essential for constitutive and IFN-gamma-inducible MHC class II gene transcription. Transfection of trophoblast cells with CIITA expression vectors activates both MHC class II and class Ia antigen expression, which confers on trophoblast cells both the ability to activate helper T cells, and sensitivity to lysis by cytotoxic T lymphocytes. Collectively, these studies strongly suggest that stringent silencing of CIITA (and therefore MHC class II) gene expression in trophoblast cells is critical for the prevention of immune rejection responses against the fetus by the maternal immune system. The focus of this review is to summarize studies examining the novel mechanisms by which CIITA is silenced in trophoblast cells. The elucidation of the silencing of CIITA in trophoblast cells may shed light on how the semi-allogeneic fetus evades immune rejection by the maternal immune system during pregnancy.
Collapse
Affiliation(s)
- Shawn P Murphy
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Jason C Choi
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Renae Holtz
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
42
|
Rousseau P, Masternak K, Krawczyk M, Reith W, Dausset J, Carosella ED, Moreau P. In vivo, RFX5 binds differently to the human leucocyte antigen-E, -F, and -G gene promoters and participates in HLA class I protein expression in a cell type-dependent manner. Immunology 2004; 111:53-65. [PMID: 14678199 PMCID: PMC1782388 DOI: 10.1111/j.1365-2567.2004.01783.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 09/16/2003] [Accepted: 10/16/2003] [Indexed: 11/29/2022] Open
Abstract
We analysed the regulation of human leucocyte antigen (HLA)-E, -F and -G genes, focusing on the SXY module, a promoter region that controls major histocompatibility complex (MHC) class II expression and participates in the expression of classical HLA class I molecules. It comprises the X1, X2 and Y boxes, bound by RFX, X2-BP/ATF/CREB and NFY factors, respectively. The complex recruits the master control factor CIITA. The SXY module is conserved in HLA-E and HLA-F gene promoters, whereas in the HLA-G promoter, the only conserved boxes are S and X1. Chromatin immunoprecipitation assays, performed on HLA-G positive and negative cell lines, demonstrated the in situ binding of RFX5 and CIITA to HLA-E and HLA-F, but not to HLA-G, promoters. In B cells from bare lymphocyte syndrome patients lacking RFX5 or CIITA, we observed lower steady-state levels of HLA-E and HLA-F transcripts but did not find any significant decrease in the cell-surface expression of HLA-E/classical HLA class I. In RFX5-deficient fibroblasts, the cell-surface expression of HLA molecules was decreased. RFX5 and CIITA are thus not involved in HLA-G expression and their importance for the surface expression of HLA-E/classical HLA class I molecules may vary depending on the cell type.
Collapse
Affiliation(s)
- Philippe Rousseau
- CEA, Service de Recherche en Hémato-Immunologie, DSV/DRM, Hôpital Saint-Louis, Institut Universitaire d'HématologieParis, France
| | - Krzysztof Masternak
- Université de Genève, Département de Génétique et Microbiologie, Centre Médical UniversitaireGenève 4, Switzerland
| | - Michal Krawczyk
- Université de Genève, Département de Génétique et Microbiologie, Centre Médical UniversitaireGenève 4, Switzerland
| | - Walter Reith
- Université de Genève, Département de Génétique et Microbiologie, Centre Médical UniversitaireGenève 4, Switzerland
| | | | - Edgardo D Carosella
- CEA, Service de Recherche en Hémato-Immunologie, DSV/DRM, Hôpital Saint-Louis, Institut Universitaire d'HématologieParis, France
| | - Philippe Moreau
- CEA, Service de Recherche en Hémato-Immunologie, DSV/DRM, Hôpital Saint-Louis, Institut Universitaire d'HématologieParis, France
| |
Collapse
|
43
|
Croce M, De Ambrosis A, Corrias MV, Pistoia V, Occhino M, Meazza R, Giron-Michel J, Azzarone B, Accolla RS, Ferrini S. Different levels of control prevent interferon-gamma-inducible HLA-class II expression in human neuroblastoma cells. Oncogene 2003; 22:7848-57. [PMID: 14586411 DOI: 10.1038/sj.onc.1207054] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The HLA class II expression is controlled by the transcriptional activator CIITA. The transcription of CIITA is controlled by different promoters, among which promoter-IV is inducible by IFN-gamma. We analysed the regulation of HLA class II molecules by IFN-gamma in a large series of human neuroblastoma cell lines. No induction of surface or intracellular HLA class II molecules and of specific mRNA was observed, in all neuroblastomas, with the exception of a nonprototypic cell line, ACN. In a large subset of neuroblastomas IFN-gamma induced expression of CIITA mRNA, derived from promoter-IV, which was not methylated. In contrast, in another subset of neuroblastomas, CIITA was not inducible by IFN-gamma and CIITA promoter-IV was either completely or partially methylated. Interestingly, the use of DNA demethylating agents restored CIITA gene transcriptional activation by IFN-gamma, but not HLA class II expression. The defect of HLA class II was not related to alterations in RFX or NF-Y transcription factors, as suggested by EMSA or RFX gene transfection experiments. In addition, the transfection of a functional CIITA cDNA failed to induce HLA class II expression in typical neuroblastoma cells. Confocal microscopy and Western blot analysis suggested a defective nuclear translocation and/or reduced protein synthesis in CIITA-transfected NB cells. Altogether, these data point to multiple mechanisms preventing HLA class II expression in the neuroblastoma, either involving CIITA promoter-IV silencing, or acting at the CIITA post-transcriptional level.
Collapse
Affiliation(s)
- Michela Croce
- Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
van den Elsen PJ, Holling TM, van der Stoep N, Boss JM. DNA methylation and expression of major histocompatibility complex class I and class II transactivator genes in human developmental tumor cells and in T cell malignancies. Clin Immunol 2003; 109:46-52. [PMID: 14585275 DOI: 10.1016/s1521-6616(03)00200-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the immune response by virtue of their ability to present peptides to T lymphocytes. Given their central role in adaptive immunity, the genes encoding these peptide-presenting molecules are regulated in a tight fashion to meet with local requirements for an adequate immune response. In contrast to MHC class I gene products, which are expressed on almost all nucleated cells, constitutive expression of MHC class II molecules is found in specialized antigen presenting cells of the immune system only. Transcription of both MHC class I and class II genes can be induced by immune regulators and upon cell activation. Transcription of MHC class I genes is mediated by a set of conserved cis acting regulatory elements in their promoters. Of these regulatory elements, MHC class II promoters share the SXY-module. Essential for activation of MHC class II promoters is the class II transactivator (CIITA), which acts through protein/protein interactions with regulatory factors bound to the SXY module. In this review, we discuss the role of DNA methylation in relation to altered expression of MHC class I and CIITA genes as observed in malignancies and in development.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Holling TM, Schooten E, Langerak AW, van den Elsen PJ. Regulation of MHC class II expression in human T-cell malignancies. Blood 2003; 103:1438-44. [PMID: 14563641 DOI: 10.1182/blood-2003-05-1491] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of major histocompatibility complex (MHC) class II molecules in human activated T cells is under normal circumstances regulated exclusively by the CIITA-PIII subtype of the class II transactivator (CIITA). In this study, we show that the absence of MHC class II expression in leukemic T cells was due to a lack of expression of CIITA, whereas in T-lymphoma cells, expression of CIITA correlated with expression of MHC class II. Interestingly, activation of a CIITA-promoter (P)III-reporter construct was not affected in leukemic T cells. This revealed that the absence of endogenous CIITA expression was not caused by a lack of transcription factors critical for CIITA-PIII activation but suggests the involvement of an epigenetic silencing mechanism. Subsequent analysis showed that the lack of human leukocyte antigen-DR (HLA-DR) expression correlated with hypermethylation of CIITA-PIII in leukemic T-cell lines and in primary T-cell acute lymphoblastic leukemia (T-ALL) and a T-cell prolymphocytic leukemia (T-PLL). Treatment of leukemic T-cell lines with a demethylation agent showed re-expression of CIITA-PIII and HLA-DRA. Furthermore, in vitro methylation of CIITA-PIII and subsequent assessment of CIITA-PIII activity in Jurkat leukemic T cells resulted in reduction of constitutive and CREB-1 (cyclic adenosine monophosphate [cAMP]-response element binding protein 1)-induced promoter activity. Together, these results argue for an important role of DNA hyper-methylation in the control of CIITA expression in leukemic T cells.
Collapse
Affiliation(s)
- Tjadine M Holling
- Division of Molecular Biology, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | |
Collapse
|
46
|
Fitzpatrick DR, Wilson CB. Methylation and demethylation in the regulation of genes, cells, and responses in the immune system. Clin Immunol 2003; 109:37-45. [PMID: 14585274 DOI: 10.1016/s1521-6616(03)00205-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation is a focus of epigenetic research in the immune system. This overview begins with a synopsis of the players and processes involved in DNA methylation, demethylation, methyl-CpG-recognition, histone modification, and chromatin remodeling. The role of these mechanisms in immune responses, with a focus on T lymphocytes, is then reviewed. There is evidence for epigenetic regulation of several key immune processes including thymocyte development, antigen presentation, differentiation, cytokine expression, effector function, and memory. DNA methylation contributes, along with other epigenetic mechanisms, to the establishment of transcriptional thresholds that vary between genes and T cell types. The immune system is a fertile field for studies of epigenetic regulation of cell fate and function.
Collapse
Affiliation(s)
- David R Fitzpatrick
- Immunological Systems Department, Amgen Inc, 51 University St, Seattle, WA 98101, USA.
| | | |
Collapse
|
47
|
Holtz R, Choi JC, Petroff MG, Piskurich JF, Murphy SP. Class II transactivator (CIITA) promoter methylation does not correlate with silencing of CIITA transcription in trophoblasts. Biol Reprod 2003; 69:915-24. [PMID: 12748124 DOI: 10.1095/biolreprod.103.017103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Trophoblast cells are unique because they do not express major histocompatibility complex (MHC) class II antigens, either constitutively or after exposure to interferon-gamma (IFN-gamma). The absence of MHC class II antigens on trophoblasts is thought to play a critical role in preventing rejection of the fetus by the maternal immune system. The inability of trophoblasts to express MHC class II genes is primarily due to lack of the class II transactivator (CIITA), a transacting factor that is required for constitutive and IFN-gamma-inducible MHC class II transcription. We, therefore, investigated the silencing of CIITA expression in trophoblasts. In transient transfection assays, transcription from the IFN-gamma-responsive CIITA type IV promoter was upregulated by IFN-gamma in trophoblasts, which suggests that CIITA is silenced by an epigenetic mechanism in these cells. Polymerase chain reaction analysis demonstrated that the CIITA type IV promoter is methylated in both the human choriocarcinoma cell lines JEG-3 and Jar and in 2fTGH fibrosarcoma cells, which are IFN-gamma inducible for CIITA. Conversely, methylation of the CIITA type IV promoter was not observed in human primary cytotrophoblasts isolated from term placentae or in mouse or rat trophoblast cell lines. Simultaneous treatment with IFN-gamma and the histone deacetylase inhibitor trichostatin A weakly activated CIITA transcription in mouse trophoblasts. Stable hybrids between human choriocarcinoma and fibrosarcoma cells and between mouse trophoblasts and fibroblasts expressed CIITA following treatment with IFN-gamma. These results suggest that silencing of CIITA transcription is recessive in trophoblasts and involves an epigenetic mechanism other than promoter methylation. The fact that CIITA is expressed in the stable hybrids implies that trophoblasts may be missing a factor that regulates chromatin structure at the CIITA promoter.
Collapse
Affiliation(s)
- Renae Holtz
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
48
|
Geirsson A, Paliwal I, Lynch RJ, Bothwell ALM, Hammond GL. Class II transactivator promoter activity is suppressed through regulation by a trophoblast noncoding RNA. Transplantation 2003; 76:387-94. [PMID: 12883198 DOI: 10.1097/01.tp.0000073612.04525.46] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Trophoblasts lack expression of all classic major histocompatibility complex (MHC) antigens. Determination of the mechanism involved could provide insight into selective gene suppression and allograft tolerance. Suppression of class II expression in trophoblasts is secondary to dominant negative trans-acting factors that suppress class II transactivator (CIITA) transcription. We recently described a trophoblast-derived noncoding RNA (TncRNA) that suppresses class II expression. We examined the effects of TncRNA on the CIITA promoter, CIITA, and MHC class II expression. METHODS HeLa clones stably transfected with TncRNA were analyzed for MHC class II and CIITA expression by fluorescence-activated cell sorting, Northern blots, and quantitative polymerase chain reaction. Activity and functional dissection of CIITA promoter IV (pIV) was assessed by transient co-transfection of promoter-reporter constructs. Methylation of pIV was assessed by Southern blots, fluorescence-activated cell sorting, and quantitative polymerase chain reaction. RESULTS TncRNA suppressed interferon-gamma-induced human leukocyte antigen-DR and CIITA expression in HeLa cells. The mechanism involves inhibition of CIITA pIV through a defined inhibitory domain on the promoter. The mechanism does not involve methylation of the promoter. CONCLUSIONS A novel method of CIITA suppression is described where a noncoding RNA selectively mediates the suppression of CIITA pIV possibly by complementary RNA-DNA binding to an inhibitory domain on the promoter. Selective suppression of MHC class II could have important implications in allograft tolerance and in developing class II-deficient cells or tissues for the purpose of transplantation or drug delivery systems.
Collapse
Affiliation(s)
- Arnar Geirsson
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
49
|
van den Elsen PJ, van der Stoep N. Class II transactivator (CIITA) deficiency in tumor cells: complicated mechanisms or not? THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:373-5; author reply 375-6. [PMID: 12819045 PMCID: PMC1868151 DOI: 10.1016/s0002-9440(10)63664-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Kanaseki T, Ikeda H, Takamura Y, Toyota M, Hirohashi Y, Tokino T, Himi T, Sato N. Histone deacetylation, but not hypermethylation, modifies class II transactivator and MHC class II gene expression in squamous cell carcinomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4980-5. [PMID: 12734341 DOI: 10.4049/jimmunol.170.10.4980] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we first categorized nine squamous cell carcinoma (SCC) cell lines into two groups in terms of the expression of HLA-DR, -DP, and -DQ molecules. Subsequently, the expression of class II transactivator (CIITA) was studied in these cell lines, because it is widely accepted that the expression of MHC class II molecules is regulated by different types of CIITA transcripts that are initiated by distinct promoters. The majority of the SCC cell lines (six of nine) expressed HLA-DR molecules and CIITA promoter IV (pIV) transcripts in the presence of IFN-gamma. In contrast, three of the nine SCC cell lines were completely negative for class II molecules and all types of CIITA, suggesting epigenetic changes in the promoter region in these cells. Previously, methylation of CIITA pIV was reported to silence CIITA gene expression. We extensively studied the methylation status of CIITA pIV using a panel of 22 SCC cell lines. Remarkably, none of the SCC cell lines demonstrated hypermethylation at the site. In contrast, treatment with a histone deacetylation inhibitor in combination with IFN-gamma clearly restored the expression of the CIITA type IV gene in the HLA-DR-negative SCC cell lines, and the acetylation status of histone H3 examined by chromatin immunoprecipitation analysis was closely associated with the gene expression. Moreover, stable transfection of the CIITA gene into an HLA-DR-negative cell line restored constitutive expression of MHC class II molecules. Therefore, histone deacetylation, but not hypermethylation, modifies CIITA DNA and class II gene expression in SCC.
Collapse
Affiliation(s)
- Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|