1
|
Ikegami Y, Ijima H. Decellularization of Nervous Tissues and Clinical Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:241-252. [PMID: 34582027 DOI: 10.1007/978-3-030-82735-9_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nervous system is an ensemble of organs that transmit and process external information and are responsible for the adaption to the external environment and homeostasis control of the internal environment. The nervous system of vertebrates is divided into the central nervous system (CNS) and peripheral nervous system (PNS) due to its structural features. The CNS, which includes the brain and the spinal cord, processes information from external stimuli and assembles orders suitable for these stimuli. The CNS then sends signals to control other organs/tissues. On the other hand, the PNS connects the CNS to other organs/tissues and functions as a signal pathway. Therefore, the decline and loss of various functions due to injuries of the nervous system cause an impaired quality of life (QOL) and eventually the termination of life activities. Here, we report mainly on decellularized neural tissue and its application as a substrate for the regeneration of the nervous system.
Collapse
Affiliation(s)
- Yasuhiro Ikegami
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
2
|
Li T, Javed R, Ao Q. Xenogeneic Decellularized Extracellular Matrix-based Biomaterials For Peripheral Nerve Repair and Regeneration. Curr Neuropharmacol 2021; 19:2152-2163. [PMID: 33176651 PMCID: PMC9185777 DOI: 10.2174/1570159x18666201111103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injury could lead to either impairment or a complete loss of function for affected patients, and a variety of nerve repair materials have been developed for surgical approaches to repair it. Although autologous or autologous tissue-derived biomaterials remain preferred treatment for peripheral nerve injury, the lack of donor sources has led biomedical researchers to explore more other biomaterials. As a reliable alternative, xenogeneic decellularized extracellular matrix (dECM)-based biomaterials have been widely employed for surgical nerve repair. The dECM derived from animal donors is an attractive and unlimited source for xenotransplantation. Meanwhile, as an increasingly popular technique, decellularization could retain a variety of bioactive components in native ECM, such as polysaccharides, proteins, and growth factors. The resulting dECM-based biomaterials preserve a tissue's native microenvironment, promote Schwann cells proliferation and differentiation, and provide cues for nerve regeneration. Although the potential of dECM-based biomaterials as a therapeutic agent is rising, there are many limitations of this material restricting its use. Herein, this review discusses the decellularization techniques that have been applied to create dECM-based biomaterials, the main components of nerve ECM, and the recent progress in the utilization of xenogeneic dECM-based biomaterials through applications as a hydrogel, wrap, and guidance conduit in nerve tissue engineering. In the end, the existing bottlenecks of xenogeneic dECM-based biomaterials and developing technologies that could be eliminated to be helpful for utilization in the future have been elaborated.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
- Institute of Regulatory Science for Med-ical Devices, Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:173-201. [PMID: 32602098 DOI: 10.1007/978-981-15-3258-0_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A body of evidence indicates that peripheral nerves have an extraordinary yet limited capacity to regenerate after an injury. Peripheral nerve injuries have confounded professionals in this field, from neuroscientists to neurologists, plastic surgeons, and the scientific community. Despite all the efforts, full functional recovery is still seldom. The inadequate results attained with the "gold standard" autograft procedure still encourage a dynamic and energetic research around the world for establishing good performing tissue-engineered alternative grafts. Resourcing to nerve guidance conduits, a variety of methods have been experimentally used to bridge peripheral nerve gaps of limited size, up to 30-40 mm in length, in humans. Herein, we aim to summarize the fundamentals related to peripheral nerve anatomy and overview the challenges and scientific evidences related to peripheral nerve injury and repair mechanisms. The most relevant reports dealing with the use of both synthetic and natural-based biomaterials used in tissue engineering strategies when treatment of nerve injuries is envisioned are also discussed in depth, along with the state-of-the-art approaches in this field.
Collapse
|
4
|
Ikegami Y, Ijima H. Development of heparin-conjugated nanofibers and a novel biological signal by immobilized growth factors for peripheral nerve regeneration. J Biosci Bioeng 2019; 129:354-362. [PMID: 31601468 DOI: 10.1016/j.jbiosc.2019.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/12/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022]
Abstract
Aligned fibers have been used as a scaffold of nerve guidance conduit owing to their guiding function of neural cells for peripheral nerve regeneration. However, the recovery performance of nerve guidance conduits using aligned fibrous scaffold is insufficient, and further improvements in scaffold function is required for promoting regeneration. In this study, we developed aligned heparin-conjugated fibers and supplied a biological signal to neural cells by the growth factors immobilized through heparin. Results indicated that neural model cells (PC12 cells) were cultured well on the scaffold without inhibiting cell adhesion by heparin conjugation and exhibited more vigorous cell proliferation than in a heparin-free condition. The cells extended their neurites along the fiber direction. Furthermore, PC12 cells on the heparin-conjugated fibrous scaffold pre-exposed to a nerve growth factor solution sprouted more neurites compared to those of heparin-free condition. These results verified that our scaffold exhibited high biocompatibility to neural cells and could maintain an effective local concentration of growth factors on the scaffold surface. Therefore, aligned heparin-conjugated fibers are promising scaffolds of nerve guidance conduits for promoting peripheral nerve regeneration by the combinatorial effect of topological and biological signals.
Collapse
Affiliation(s)
- Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
5
|
Mezzenga R, Mitsi M. The Molecular Dance of Fibronectin: Conformational Flexibility Leads to Functional Versatility. Biomacromolecules 2018; 20:55-72. [PMID: 30403862 DOI: 10.1021/acs.biomac.8b01258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibronectin, a large multimodular protein and one of the major fibrillar components of the extracellular matrix, has been the subject of study for many decades and plays critical roles in embryonic development and tissue homeostasis. Moreover, fibronectin has been implicated in the pathology of many diseases, including cancer, and abnormal depositions of fibronectin have been identified in a number of amyloid and nonamyloid lesions. The ability of fibronectin to carry all these diverse functionalities depends on interactions with a large number of molecules, including adhesive and signaling cell surface receptors, other components of the extracellular matrix, and growth factors and cytokines. The regulation and integration of such large number of interactions depends on the modular architecture of fibronectin, which allows a large number of conformations, exposing or destroying different binding sites. In this Review, we summarize the current knowledge regarding the conformational flexibility of fibronectin, with an emphasis on how it regulates the ability of fibronectin to interact with various signaling molecules and cell-surface receptors and to form supramolecular assemblies and fibrillar structures.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| | - Maria Mitsi
- Laboratory of Food and Soft Materials , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
6
|
Wang ZZ, Sakiyama-Elbert SE. Matrices, scaffolds & carriers for cell delivery in nerve regeneration. Exp Neurol 2018; 319:112837. [PMID: 30291854 DOI: 10.1016/j.expneurol.2018.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
Nerve injuries can be life-long debilitating traumas that severely impact patients' quality of life. While many acellular neural scaffolds have been developed to aid the process of nerve regeneration, complete functional recovery is still very difficult to achieve, especially for long-gap peripheral nerve injury and most cases of spinal cord injury. Cell-based therapies have shown many promising results for improving nerve regeneration. With recent advances in neural tissue engineering, the integration of biomaterial scaffolds and cell transplantation are emerging as a more promising approach to enhance nerve regeneration. This review provides an overview of important considerations for designing cell-carrier biomaterial scaffolds. It also discusses current biomaterials used for scaffolds that provide permissive and instructive microenvironments for improved cell transplantation.
Collapse
Affiliation(s)
- Ze Zhong Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biomedical Engineering, University of Austin at Texas, Austin, TX, USA
| | | |
Collapse
|
7
|
Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Strategic Design and Fabrication of Nerve Guidance Conduits for Peripheral Nerve Regeneration. Biotechnol J 2018; 13:e1700635. [PMID: 29396994 DOI: 10.1002/biot.201700635] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/25/2018] [Indexed: 12/23/2022]
Abstract
Nerve guidance conduits (NGCs) have been drawing considerable attention as an aid to promote regeneration of injured axons across damaged peripheral nerves. Ideally, NGCs should include physical and topographic axon guidance cues embedded as part of their composition. Over the past decades, much progress has been made in the development of NGCs that promote directional axonal regrowth so as to repair severed nerves. This paper briefly reviews the recent designs and fabrication techniques of NGCs for peripheral nerve regeneration. Studies associated with versatile design and preparation of NGCs fabricated with either conventional or rapid prototyping (RP) techniques have been examined and reviewed. The effect of topographic features of the filler material as well as porous structure of NGCs on axonal regeneration has also been examined from the previous studies. While such strategies as macroscale channels, lumen size, groove geometry, use of hydrogel/matrix, and unidirectional freeze-dried surface are seen to promote nerve regeneration, shortcomings such as axonal dispersion and wrong target reinnervation still remain unsolved. On this basis, future research directions are identified and discussed.
Collapse
Affiliation(s)
- Md Sarker
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - Adam D McInnes
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada
| | - David J Schreyer
- Department of Anatomy and Cell Biology College of Medicine University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering College of Engineering University of Saskatchewan, 57 campus drive, SK S7N 5A9, Saskatoon, SK, Canada.,Department of Mechanical Engineering College of Engineering University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
8
|
Newman KD, McLaughlin CR, Carlsson D, Li F, Liu Y, Griffith M. Bioactive Hydrogel-Filament Scaffolds for Nerve Repair and Regeneration. Int J Artif Organs 2018; 29:1082-91. [PMID: 17160966 DOI: 10.1177/039139880602901109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design of novel biomaterials is crucial for the advancement of tissue engineering in nerve regeneration. In this study we developed and evaluated novel biosynthetic scaffolds comprising collagen crosslinked with a terpolymer of poly(N-isopropylacrylamide) (PNiPAAm) as conduits for nerve growth. These collagen-terpolymer (collagen-TERP) scaffolds grafted with the laminin pentapeptide YIGSR were previously used as corneal substitutes in pigs and demonstrated enhanced nerve regeneration compared to allografts. The purpose of this project was to enhance neuronal growth on the collagen-TERP scaffolds through the incorporation of supporting fibers. Neuronal growth on these matrices was assessed in vitro using isolated dorsal root ganglia as a nerve source. Statistical significance was assessed using a one-way ANOVA. The incorporation of fibers into the collagen-TERP scaffolds produced a significant increase in neurite extension (p<0.05). The growth habit of the nerves varied with the type of fiber and included directional growth of the neurites along the surface of certain fiber types. Furthermore, the presence of fibers in the collagen-TERP scaffolds appeared to influence neurite morphology and function; neurites grown on fibers-incorporated collagen-TERP scaffolds expressed higher levels of Na channels compared to the scaffolds without fiber. Overall, our results suggest that incorporation of supporting fibers enhanced neurite outgrowth and that surface properties of the scaffold play an important role in promoting and guiding nerve regeneration. More importantly, this study demonstrates the potential value of tissue engineered collagen-TERP hybrid scaffolds as conduits in peripheral nerve repair.
Collapse
Affiliation(s)
- K D Newman
- University of Ottawa Eye Institute, Ottawa Hospital, General Campus, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Tamaki T. Bridging long gap peripheral nerve injury using skeletal muscle-derived multipotent stem cells. Neural Regen Res 2014; 9:1333-6. [PMID: 25221587 PMCID: PMC4160861 DOI: 10.4103/1673-5374.137582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 11/29/2022] Open
Abstract
Long gap peripheral nerve injuries usually reulting in life-changing problems for patients. Skeletal muscle derived-multipotent stem cells (Sk-MSCs) can differentiate into Schwann and perineurial/endoneurial cells, vascular relating pericytes, and endothelial and smooth muscle cells in the damaged peripheral nerve niche. Application of the Sk-MSCs in the bridging conduit for repairing long nerve gap injury resulted favorable axonal regeneration, which showing superior effects than gold standard therapy--healthy nerve autograft. This means that it does not need to sacrifice of healthy nerves or loss of related functions for repairing peripheral nerve injury.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology & Cell Biology Unit, Department of Regenerative Medicine, Division of Basic Clinical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
11
|
Johnson PJ, Wood MD, Moore AM, Mackinnon SE. Tissue engineered constructs for peripheral nerve surgery. Eur Surg 2013; 45. [PMID: 24385980 DOI: 10.1007/s10353-013-0205-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tissue engineering has been defined as "an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ". Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. METHODS A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. RESULTS Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. CONCLUSIONS The field of tissue engineering should consider its challenge to not only meet the autograft "gold standard" but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft.
Collapse
Affiliation(s)
- P J Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - M D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - A M Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - S E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| |
Collapse
|
12
|
Abstract
The theory of chemotaxis has been widely accepted, but its mechanisms are disputed. Chemotactic growth of peripheral nerves may be tissue, topographic and end-organ specific. Recent studies indicated that peripheral nerve regeneration lacks topographic specificity, but whether it has end-organ specificity is disputed. Chemotaxis in nerve regeneration is affected by the distance between stumps, volume, and neurotrophic support, as well as the structure of distal nerve stumps. It can be applied to achieve precise repair of nerves and complete recovery of end organ function. Small gap sleeve bridging technique, which is based on this theory shows promising effects but it is still challenging to find the perfect combination of nerve conduits, cells and neurotrophic factors to put it intoits best use. In this paper, we made a comprehensive review of mechanisms, effect factors and applications of chemotaxis.
Collapse
|
13
|
Gonzalez-Perez F, Udina E, Navarro X. Extracellular matrix components in peripheral nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:257-75. [PMID: 24083438 DOI: 10.1016/b978-0-12-410499-0.00010-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Injured axons of the peripheral nerve are able to regenerate and, eventually, reinnervate target organs. However, functional recovery is usually poor after severe nerve injuries. The switch of Schwann cells to a proliferative state, secretion of trophic factors, and the presence of extracellular matrix (ECM) molecules (such as collagen, laminin, or fibronectin) in the distal stump are key elements to create a permissive environment for axons to grow. In this review, we focus attention on the ECM components and their tropic role in axonal regeneration. These components can also be used as molecular cues to guide the axons through artificial nerve guides in attempts to better mimic the natural environment found in a degenerating nerve. Most used scaffolds tested are based on natural molecules that form the ECM, but use of synthetic polymers and functionalization of hydrogels are bringing new options. Progress in tissue engineering will eventually lead to the design of composite artificial nerve grafts that may replace the use of autologous nerve grafts to sustain regeneration over long gaps.
Collapse
Affiliation(s)
- Francisco Gonzalez-Perez
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | | | |
Collapse
|
14
|
di Summa PG, Kalbermatten DF, Raffoul W, Terenghi G, Kingham PJ. Extracellular matrix molecules enhance the neurotrophic effect of Schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions. Tissue Eng Part A 2012; 19:368-79. [PMID: 22897220 DOI: 10.1089/ten.tea.2012.0124] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since the first reports of induction of adipose-derived stem cells (ASC) into neuronal and glial cell phenotypes, expectations have increased regarding their use in tissue engineering applications for nerve repair. Cell adhesion to extracellular matrix (ECM) is a basic feature of survival, differentiation, and migration of Schwann cells (SC) during nerve regeneration, and fibronectin and laminin are two key molecules of this process. Interaction between ECM and SC-like differentiated ASC (dASC) could potentially improve the neurotrophic potential of the stem cells. We have investigated the effect of ECM molecules on SC-like dASC in terms of proliferation, adhesion, and cell viability. Fibronectin and laminin did not affect the proliferation of dASC when compared with cell adherent tissue culture plastic, but significantly improved viability and cell attachment when dASC were exposed to apoptotic conditions. To assess the influence of the ECM molecules on dASC neurotrophic activity, dASC were seeded onto ECM-coated culture inserts suspended above dorsal root ganglia (DRG) sensory neurons. Neurite outgrowth of DRG neurons was enhanced when dASC were seeded on fibronectin and laminin when compared with controls. When DRG neurons and dASC were in direct contact on the various surfaces there was significantly enhanced neurite outgrowth and coculture with laminin-conditioned dASC produced the longest neurites. Compared with primary SCs, dASC grown on laminin produced similar levels of neurite outgrowth in the culture insert experiments but neurite length was shorter in the direct contact groups. Anti β1 integrin blocking antibody could inhibit baseline and dASC evoked neurite elongation but had no effect on outgrowth mediated by laminin-conditioned dASC. ECM molecules had no effect on the levels of nerve growth factor and brain-derived neurotrophic factor secretion from dASC. The results of the study suggest that ECM molecules can significantly improve the potential of dASC for nerve regeneration.
Collapse
Affiliation(s)
- Pietro G di Summa
- Regenerative Biomedicine Group, Blond McIndoe Research Laboratories, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Zhou W, Blewitt M, Hobgood A, Willits RK. Comparison of neurite growth in three dimensional natural and synthetic hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:301-14. [PMID: 23565649 DOI: 10.1080/09205063.2012.690277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Extracellular matrix incorporated within a scaffold plays an important role in assisting cell behavior in neural tissue engineering. In this study, we investigated how the concentration of fibronectin (FN) affected neurite growth when incorporated within a synthetic polymer gel made of poly(ethylene glycol) (PEG) or a natural polymer gel of collagen I. Mechanical and chemical properties of the scaffold were varied by using a range of concentrations of gels and FN. Rheology was used to determine the mechanical stiffness of hydrogels and neurite length and viability were measured to evaluate cell response. In both types of gels, increasing the concentration of the base scaffold (PEG or collagen) increased the mechanical stiffness as denoted by G∗. Neurite lengths in PEG gels increased with increasing FN concentration and decreased with increasing G∗. In collagen gels, FN reduced neurite extension for the lowest concentrations of collagen (0.4-0.6 mg/mL) while FN increased neurite extension for mid and high collagen concentrations (1.0-2.0 mg/mL). The results from these two different scaffolds indicate that both stiffness and FN concentration impact the growth of the neurite and that the addition of small amounts of FN (100 μg/ml) permits PEG gels to perform on par with similar stiffness collagen gels.
Collapse
Affiliation(s)
- Wenda Zhou
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325-0302, USA
| | | | | | | |
Collapse
|
16
|
Nagao RJ, Lundy S, Khaing ZZ, Schmidt CE. Functional characterization of optimized acellular peripheral nerve graft in a rat sciatic nerve injury model. Neurol Res 2012; 33:600-8. [PMID: 21708069 DOI: 10.1179/1743132810y.0000000023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Acellular grafts are a viable option for use in nerve reconstruction surgeries. Recently, our lab created a novel optimized decellularization procedure that removes immunological material while leaving the majority of the extracellular matrix structure intact. The optimized acellular (OA) graft has been shown to elicit an immune response equal to or less than that elicited by the isograft, the analog of the autograft in the rat model. We investigated the performance of the OA graft to provide functional recovery in a long-term study. METHODS We performed a long-term functional regeneration evaluation study using the sciatic functional index to quantify recovery of Lewis rats at regular time intervals for up to 52 weeks after graft implantation following 1 cm sciatic nerve resection. OA grafts were compared against other decellularized methods (Sondell treatment and thermal decellularization), as well as the isograft and primary neurorrhaphy. RESULTS The OA graft supported comparable functional recovery to the isograft and superior regeneration to thermal and Sondell decellularization methods. Furthermore, the OA graft promoted early recovery to a greater degree compared to acellular grafts obtained using either the thermal or the Sondell methods. DISCUSSION Equivalent functional recovery to the isograft suggests that the OA nerve graft may be a future clinical alternative to the current autologous tissue graft.
Collapse
Affiliation(s)
- Ryan J Nagao
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
17
|
Bruder JM, Lee AP, Hoffman-Kim D. Biomimetic materials replicating Schwann cell topography enhance neuronal adhesion and neurite alignment in vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:967-82. [PMID: 17705993 DOI: 10.1163/156856207781494412] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that Schwann cells (SCs) promote and enhance axon guidance and nerve regeneration by providing multiple cues, including extracellular matrix, cell surface molecules, neurotrophic factors and cellular topography. Which of the elements of the complex environment associated with SCs provides the essential information for directed nerve growth is unclear, because, until now, it has been impossible to investigate their contributions individually. Our development of biomimetic materials that replicate the micro- and nanoscale topography of SCs has allowed us to investigate for the first time the role of cellular topography in directing nerve growth. Dorsal root ganglion (DRG) neurons were cultured on flat poly(dimethyl siloxane) (PDMS) and on PDMS replicas with protruding SC topography. Image analysis showed that more neurons adhered to the replicas than to the flat substrates, and that neurite growth on the replicas followed the underlying SC pattern. Neuronal alignment was dependent on cell density. Live SCs derived from the DRG also grew along the replica SC pattern. These results suggest that the combination of micro- and nanoscale topographical cues provided by SCs can influence nerve growth and point toward design parameters for future nerve guidance channels.
Collapse
Affiliation(s)
- Jan M Bruder
- Center for Biomedical Engineering and Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
18
|
Yannas IV, Zhang M, Spilker MH. Standardized criterion to analyze and directly compare various materials and models for peripheral nerve regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:943-66. [PMID: 17705992 DOI: 10.1163/156856207781494386] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progress in understanding conditions for optimal peripheral nerve regeneration has been stunted due to lack of standardization of experimental conditions and assays. In this paper we review the large database that has been generated using the Lundborg nerve chamber model and compare various theories for their ability to explain the experimental data. Data were normalized based on systematic use of the critical axon elongation, the gap length at which the probability of axon reconnection between the stumps is just 50%. Use of this criterion has led to a rank-ordering of devices or treatments and has led, in turn, to conclusions about the conditions that facilitate regeneration. Experimental configurations that have maximized facilitation of peripheral nerve regeneration are those in which the tube wall comprised degradable polymers, including collagen and certain synthetic biodegradable polymers, and was cell-permeable rather than protein-permeable. Tube fillings that showed very high regenerative activity were suspensions of Schwann cells, a solution either of acidic or basic fibroblast growth factor, insoluble ECM substrates rather than solutions or gels, polyamide filaments oriented along the tube axis and highly porous, insoluble analogs of the ECM with specific structure and controlled degradation rate. It is suggested that the data are best explained by postulating that the quality of regeneration depends on two critical processes. The first is compression of stumps and regenerating nerve by a thick myofibroblast layer that surrounds these tissues and blocks synthesis of a nerve of large diameter (pressure cuff theory). The second is synthesis of linear columns of Schwann cells that serve as tracks for axon elongation (basement membrane microtube theory). It is concluded that experimental configurations that show high regenerative activity suppress the first process while facilitating the second.
Collapse
Affiliation(s)
- Ioannis V Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
19
|
Bryan DJ, Litchfield CR, Manchio JV, Logvinenko T, Holway AH, Austin J, Summerhayes IC, Rieger-Christ KM. Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays. Proteome Sci 2012; 10:9. [PMID: 22325251 PMCID: PMC3295716 DOI: 10.1186/1477-5956-10-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/10/2012] [Indexed: 01/19/2023] Open
Abstract
Background Protein expression profiles throughout 28 days of peripheral nerve regeneration were characterized using an established rat sciatic nerve transection injury model. Reverse phase protein microarrays were used to identify the spatial and temporal expression profile of multiple proteins implicated in peripheral nerve regeneration including growth factors, extracellular matrix proteins, and proteins involved in adhesion and migration. This high-throughput approach enabled the simultaneous analysis of 3,360 samples on a nitrocellulose-coated slide. Results The extracellular matrix proteins collagen I and III, laminin gamma-1, fibronectin, nidogen and versican displayed an early increase in protein levels in the guide and proximal sections of the regenerating nerve with levels at or above the baseline expression of intact nerve by the end of the 28 day experimental course. The 28 day protein levels were also at or above baseline in the distal segment however an early increase was only noted for laminin, nidogen, and fibronectin. While the level of epidermal growth factor, ciliary neurotrophic factor and fibroblast growth factor-1 and -2 increased throughout the experimental course in the proximal and distal segments, nerve growth factor only increased in the distal segment and fibroblast growth factor-1 and -2 and nerve growth factor were the only proteins in that group to show an early increase in the guide contents. As expected, several proteins involved in cell adhesion and motility; namely focal adhesion kinase, N-cadherin and β-catenin increased earlier in the proximal and distal segments than in the guide contents reflecting the relatively acellular matrix of the early regenerate. Conclusions In this study we identified changes in expression of multiple proteins over time linked to regeneration of the rat sciatic nerve both demonstrating the utility of reverse phase protein arrays in nerve regeneration research and revealing a detailed, composite spatiotemporal expression profile of peripheral nerve regeneration.
Collapse
Affiliation(s)
- David J Bryan
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Department of Plastic and Reconstructive Surgery, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - C Robert Litchfield
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - Jeffrey V Manchio
- Tissue Engineering Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Department Surgery, Section of General Surgery, Saint Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Tanya Logvinenko
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
| | - Antonia H Holway
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.,Aushon BioSystems Inc., Billerica, Massachusetts, USA
| | - John Austin
- Aushon BioSystems Inc., Billerica, Massachusetts, USA
| | - Ian C Summerhayes
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - Kimberly M Rieger-Christ
- Ian C. Summerhayes Cell and Molecular Biology Laboratory, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| |
Collapse
|
20
|
Sedaghati T, Yang SY, Mosahebi A, Alavijeh MS, Seifalian AM. Nerve regeneration with aid of nanotechnology and cellular engineering. Biotechnol Appl Biochem 2012; 58:288-300. [PMID: 21995532 DOI: 10.1002/bab.51] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions.
Collapse
Affiliation(s)
- Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | | |
Collapse
|
21
|
Lee YS, Collins G, Arinzeh TL. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater 2011; 7:3877-86. [PMID: 21810489 DOI: 10.1016/j.actbio.2011.07.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 01/09/2023]
Abstract
Neural tissue engineering may be a promising option for neural repair treatment, for which a well-designed scaffold is essential. Smart materials that can stimulate neurite extension and outgrowth have been investigated as potential scaffolding materials. A piezoelectric polymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) was used to fabricate electrospun aligned and random scaffolds having nano- or micron-sized fiber dimensions. The advantage of using a piezoelectric polymer is its intrinsic electrical properties. The piezoelectric characteristics of PVDF-TrFE scaffolds were shown to be enhanced by annealing. Dorsal root ganglion (DRG) neurons attached to all fibrous scaffolds. Neurites extended radially on random scaffolds, whereas aligned scaffolds directed neurite outgrowth for all fiber dimensions. Neurite extension was greatest on aligned, annealed PVDF-TrFE having micron-sized fiber dimensions in comparison with annealed and as-spun random PVDF-TrFE scaffolds. DRG on micron-sized aligned, as-spun and annealed PVDF-TrFE also had the lowest aspect ratio amongst all scaffolds, including non-piezoelectric PVDF and collagen-coated substrates. Findings from this study demonstrate the potential use of a piezoelectric fibrous scaffold for neural repair applications.
Collapse
Affiliation(s)
- Yee-Shuan Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA
| | | | | |
Collapse
|
22
|
|
23
|
Branford OA, Brown RA, McGrouther DA, Grobbelaar AO, Mudera V. Shear-aggregated fibronectin with anti-adhesive properties. J Tissue Eng Regen Med 2010; 5:20-31. [DOI: 10.1002/term.284] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|
25
|
Abstract
Nerve repair after transection has variable and unpredictable outcomes. In addition to advancements in microvascular surgical techniques, nerve allografts and conduits are available options in peripheral nerve reconstruction. When tensionless nerve repair is not feasible, or in chronic injuries, autografts have been traditionally used. As substitute to autografts, decellularized allografts and conduits have become available. These conduits can reduce donor site morbidity, functional loss at the donor area in cases where autografts are used, and immune reaction from transplants or unprocessed allografts. The development of new biomaterials for use in conduits, as well as use of cytokines, growth factors, and other luminal fillers, may help in the treatment of acute and chronic nerve injuries. The indications and properties of nerve conduits and allografts are detailed in this article.
Collapse
Affiliation(s)
- Michael Rivlin
- Department of Orthopaedics, Thomas Jefferson University Hospital, 1015 Walnut Street, Curtis Building, Room 801, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
26
|
Amado S, Rodrigues JM, Luís AL, Armada-da-Silva PAS, Vieira M, Gartner A, Simões MJ, Veloso AP, Fornaro M, Raimondo S, Varejão ASP, Geuna S, Maurício AC. Effects of collagen membranes enriched with in vitro-differentiated N1E-115 cells on rat sciatic nerve regeneration after end-to-end repair. J Neuroeng Rehabil 2010; 7:7. [PMID: 20149260 PMCID: PMC2829579 DOI: 10.1186/1743-0003-7-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 02/11/2010] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat.
Collapse
Affiliation(s)
- Sandra Amado
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto (UP), Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao C, Fancy SPJ, Franklin RJM, ffrench-Constant C. Up-regulation of oligodendrocyte precursor cell alphaV integrin and its extracellular ligands during central nervous system remyelination. J Neurosci Res 2010; 87:3447-55. [PMID: 19739252 DOI: 10.1002/jnr.22231] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine the role of extracellular matrix molecules and their integrin ligands in CNS remyelination, we have examined in experimentally induced focal demyelinated lesions the expression of the two classes of integrins implicated in oligodendrocyte development and myelination: alpha6 laminin-binding integrins and alphaV integrins that bind a range of extracellular matrix proteins containing the -Arg-Gly-Asp- (RGD) recognition sequence. Only alphaV integrins were up-regulated during remyelination, being expressed on oligodendrocyte precursor cells during their recruitment into the lesion. Next, therefore, we examined the expression of extracellular matrix ligands for alphaV integrins and documented increased expression of tenascin-C, tenascin-R, fibronectin, and vitronectin. Taken together with our previous discovery of high levels of expression of another alphaV ligand, osteopontin, during remyelination in these lesions, our findings suggest that alphaV integrins make an important contribution to successful repair in the CNS.
Collapse
Affiliation(s)
- Chao Zhao
- MRC Centre for Stem Cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
28
|
Tissue Engineering. Plast Reconstr Surg 2010. [DOI: 10.1007/978-1-84882-513-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Jiang X, Lim SH, Mao HQ, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol 2009; 223:86-101. [PMID: 19769967 DOI: 10.1016/j.expneurol.2009.09.009] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/27/2022]
Abstract
Artificial nerve guide conduits have the advantage over autografts in terms of their availability and ease of fabrication. However, clinical outcomes associated with the use of artificial nerve conduits are often inferior to that of autografts, particularly over long lesion gaps. There have been significant advances in the designs of artificial nerve conduits over the years. In terms of materials selection and design, a wide variety of new synthetic polymers and biopolymers have been evaluated. The inclusion of nerve conduit lumen fillers has also been demonstrated as essential to enable nerve regeneration across large defect gaps. These lumen filler designs have involved the integration of physical cues for contact guidance and biochemical signals to control cellular function and differentiation. Novel conduit architectural designs using porous and fibrous substrates have also been developed. This review highlights the recent advances in synthetic nerve guide designs for peripheral nerve regeneration, and the in vivo applicability and future prospects of these nerve guide conduits.
Collapse
Affiliation(s)
- Xu Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Block N1.2-B2-20, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
30
|
Basics and Current Approaches to Tissue Engineering in Peripheral Nerve Reconstruction. ACTA ACUST UNITED AC 2009. [DOI: 10.1097/wnq.0b013e3181a361c6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Clements IP, Kim YT, English AW, Lu X, Chung A, Bellamkonda RV. Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 2009; 30:3834-46. [PMID: 19446873 DOI: 10.1016/j.biomaterials.2009.04.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/19/2009] [Indexed: 10/20/2022]
Abstract
It has been demonstrated that nerve guidance channels containing stacked thin-films of aligned poly(acrylonitrile-co-methylacrylate) fibers support peripheral nerve regeneration across critical sized nerve gaps, without the aid of exogenous cells or proteins. Here, we explore the ability of tubular channels minimally supplemented with aligned nanofiber-based thin-films to promote endogenous nerve repair. We describe a technique for fabricating guidance channels in which individual thin-films are fixed into place within the lumen of a polysulfone tube. Because each thin-film is <10 microm thick, this technique allows fine control over the positioning of aligned scaffolding substrate. We evaluated nerve regeneration through a 1-film guidance channel--containing a single continuous thin-film of aligned fibers--in comparison to a 3-film channel that provided two additional thin-film tracks. Thirty rats were implanted with one of the two channel types, and regeneration across a 14 mm tibial nerve gap was evaluated after 6 weeks and 13 weeks, using a range of morphological and functional measures. Both the 1-film and the 3-film channels supported regeneration across the nerve gap resulting in functional muscular reinnervation. Each channel type characteristically influenced the morphology of the regeneration cable. Interestingly, the 1-film channels supported enhanced regeneration compared to the 3-film channels in terms of regenerated axon profile counts and measures of nerve conduction velocity. These results suggest that minimal levels of appropriately positioned topographical cues significantly enhance guidance channel function by modulating endogenous repair mechanisms, resulting in effective bridging of critically sized peripheral nerve gaps.
Collapse
Affiliation(s)
- Isaac P Clements
- Neurological Biomaterials and Cancer Therapeutics, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Suite 3108, 313 Ferst Dr., Atlanta, GA 30332-0535, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kalbermatten DF, Erba P, Mahay D, Wiberg M, Pierer G, Terenghi G. Schwann cell strip for peripheral nerve repair. J Hand Surg Eur Vol 2008; 33:587-94. [PMID: 18977829 DOI: 10.1177/1753193408090755] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many strategies have been investigated to provide an ideal substitute to treat a nerve gap injury. Initially, silicone conduits were used and more recently conduits fabricated from natural materials such as poly-3-hydroxybutyrate (PHB) showed good results but still have their limitations. Surgically, a new concept optimising harvested autologous nerve graft has been introduced as the single fascicle method. It has been shown that a single fascicle repair of nerve grafting is successful. We investigated a new approach using a PHB strip seeded with Schwann cells to mimic a small nerve fascicle. Schwann cells were attached to the PHB strip using diluted fibrin glue and used to bridge a 10-mm sciatic nerve gap in rats. Comparison was made with a group using conventional PHB conduit tubes filled with Schwann cells and fibrin glue. After 2 weeks, the nerve samples were harvested and investigated for axonal and Schwann cell markers. PGP9.5 immunohistochemistry showed a superior nerve regeneration distance in the PHB strip group versus the PHB tube group (> 10 mm, crossed versus 3.17+/- 0.32 mm respectively, P<0.05) as well as superior Schwann cell intrusion (S100 staining) from proximal (> 10 mm, crossed versus 3.40+/- 0.36 mm, P<0.01) and distal (> 10 mm, crossed versus 2.91+/- 0.31 mm, P<0.001) ends. These findings suggest a significant advantage of a strip in rapidly connecting a nerve gap lesion and imply that single fascicle nerve grafting is advantageous for nerve repair in rats.
Collapse
Affiliation(s)
- D F Kalbermatten
- Department of Hand, Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
33
|
Vleggeert-Lankamp CLAM. The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. J Neurosurg 2007; 107:1168-89. [DOI: 10.3171/jns-07/12/1168] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
A number of evaluation methods that are currently used to compare peripheral nerve regeneration with alternative repair methods and to judge the outcome of a new paradigm were hypothesized to lack resolving power. This would too often lead to the conclusion that the outcome of a new paradigm could not be discerned from the outcome of the current gold standard, the autograft. As a consequence, the new paradigm would incorrectly be judged as successful.
Methods
An overview of the methods that were used to evaluate peripheral nerve regeneration after grafting of the rat sciatic nerve was prepared. All articles that were published between January 1975 and December 2004 and concerned grafting of the rat sciatic nerve (minimum graft length 5 mm) and in which the experimental method was compared with an untreated or another grafted nerve were included. The author scored the presence of statistically significant differences between paradigms.
Results
Evaluation of nerve fiber count, nerve fiber density, N-ratio, nerve histological success ratio, compound muscle action potential, muscle weight, and muscle tetanic force are methods that were demonstrated to have resolving power.
Conclusions
A number of evaluation methods are not suitable to demonstrate a significant difference between experimental paradigms in peripheral nerve regeneration. It is preferable to apply a combination of evaluation methods with resolving power to evaluate nerve regeneration properly.
Collapse
|
34
|
Bruns S, Stark Y, Wieland M, Stahl F, Kasper C, Scheper T. Fast and efficient screening system for new biomaterials in tissue engineering: a model for peripheral nerve regeneration. J Biomed Mater Res A 2007; 81:736-47. [PMID: 17226811 DOI: 10.1002/jbm.a.31120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of three-dimensional biodegradable matrices is one major issue in tissue engineering. Numerous materials, fabrication techniques, and modifications have been used and tested in different areas of tissue engineering recently. But nevertheless, technology is far from being optimized and optimal constructs with bioidentical and mechanical properties have not been described in the literature so far. Hence, there is great demand of new suitable biomaterials for tissue engineering applications. In this study, a fast and efficient screening system for initial testing of biomaterials for cell culture application was developed. The set up for the screening system and the decision criteria applied for the determination of suitability of new materials are presented. Hep-G2 and PC-12 cells were seeded onto different matrices and cultured over a period of 2 weeks. The viability of the cells was monitored via the MTT assay. Cell spreading was investigated by DAPI-staining of cell nuclei. Furthermore, the adhesion of the cells on the different matrices was examined by counting the number of attached cells. With these general assays a classification of materials is possible with regard to their suitability. Optimal cell models must be chosen for the defined applications and at least two cell lines are necessary for a differentiating interpretation.
Collapse
Affiliation(s)
- Stephanie Bruns
- Institute for Technical Chemistry, University of Hannover, Callinstr. 3, D-30167 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Caneva Soumetz F, Giacomini M, Phillips JB, Brown RA, Ruggiero C. A drug delivery system for the treatment of peripheral nervous system injuries. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:5047-9. [PMID: 17271451 DOI: 10.1109/iembs.2004.1404395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent results in biomedical engineering and materials science and technology have brought about the development of novel bioactive materials by which the repair of peripheral nervous system injuries can be improved. The formation of scarring tissue, which represents a physical barrier to axon elongation, and the not oriented outgrowth of neurites are the two major obstacles for a complete recovery of physiological nerve function. This study mainly focuses on the analysis of biocompatible constructs for the controlled release of anti-scarring antibodies by means of fluorescence spectroscopy techniques.
Collapse
|
36
|
Abstract
The peripheral nervous system has the intrinsic capacity to regenerate but the reinnervation of muscles is often suboptimal and results in limited recovery of function. Injuries to nerves that innervate complex organs such as the larynx are particularly difficult to treat. The many functions of the larynx have evolved through the intricate neural regulation of highly specialized laryngeal muscles. In this review, we examine the responses of nerves and muscles to injury, focusing on changes in the expression of neurotrophic factors, and highlight differences between the skeletal limb and laryngeal muscle systems. We also describe how artificial nerve conduits have become a useful tool for delivery of neurotrophic factors as therapeutic agents to promote peripheral nerve repair and might eventually be useful in the treatment of laryngeal nerve injury.
Collapse
Affiliation(s)
- Paul J Kingham
- Blond McIndoe Research Laboratories, University of Manchester, Manchester, UK.
| | | |
Collapse
|
37
|
Pastorino L, Caneva Soumetz F, Ruggiero C. Nanofunctionalisation for the treatment of peripheral nervous system injuries. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:5854-7. [PMID: 17281591 DOI: 10.1109/iembs.2005.1615821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A construct based on the electrostatic layer-by-layer self assembly technique has been fabricated, to be used as a tailored device to encourage nerve regeneration. A multilayered nanocoating composed by three precursor bilayers of cationic and anionic polyelectrolytes followed by bilayers of poly-D-lysine (PDL) and antibody specific to Transforming Growth Factor beta1 (anti-TGF-beta1) has been deposited on HYAFF 11. Initially the assembly process has been monitored by quartz crystal microbalance (QCM) in order to select the optimal working conditions for nanocoating deposition. Structural studies of the resulting multilayers confirmed stepwise deposition of anti-TGF-beta1 with an average layer thickness of 2.6 nm and an average layer mass of 117 ng. Atomic Force Microscopy has been used to characterize multilayer uniformity. Finally, the immunological activity of the multilayered structure has been assessed. The results show that anti-TGF-beta1 can be included in its active form in a predetermined multilayered structure onto HYAFF11 with quantitative control of layer thickness and weight, providing a high potential tool in tissue engineering.
Collapse
Affiliation(s)
- L Pastorino
- D.I.S.T, University of Genova, Via Opera Pia 13, 16145 Genova, Italy
| | | | | |
Collapse
|
38
|
Brown RA, Phillips JB. Cell responses to biomimetic protein scaffolds used in tissue repair and engineering. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:75-150. [PMID: 17631187 DOI: 10.1016/s0074-7696(07)62002-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Basic science research in tissue engineering and regenerative medicine aims to investigate and understand the deposition, growth, and remodeling of tissues by drawing together approaches from a range of disciplines. This review discusses approaches that use biomimetic proteins and cellular therapies, both in the development of clinical products and of model platforms for scientific investigation. Current clinical approaches to repairing skin, bone, nerve, heart valves, blood vessels, ligaments, and tendons are described and their limitations identified. Opportunities and key questions for achieving clinical goals are discussed through commonly used examples of biomimetic scaffolds: collagen, fibrin, fibronectin, and silk. The key questions addressed by three-dimensional culture models, biomimetic materials, surface chemistry, topography, and their interaction with cells in terms of durotaxis, mechano-regulation, and complex spatial cueing are reviewed to give context to future strategies for biomimetic technology.
Collapse
Affiliation(s)
- Robert A Brown
- Tissue Regeneration & Engineering Center, Institute of Orthopedics, University College London, Stanmore Campus, London, HA7 4LP, United Kingdom
| | | |
Collapse
|
39
|
Thompson DM, Buettner HM. Neurite Outgrowth is Directed by Schwann Cell Alignment in the Absence of Other Guidance Cues. Ann Biomed Eng 2006. [DOI: 10.1007/s10439-005-9053-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
|
41
|
Thompson DM, Buettner HM. Neurite Outgrowth Is Directed by Schwann Cell Alignment in the Absence of Other Guidance Cues. Ann Biomed Eng 2006; 34:161-8. [PMID: 16453203 DOI: 10.1007/s10439-005-9013-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 07/28/2005] [Indexed: 11/26/2022]
Abstract
Schwann cells enhance axonal regeneration following nerve injury in vivo and provide a favorable substrate for neurite outgrowth in vitro. However, much remains unknown about the nature of interactions that occur between Schwann cells and growing neurites. In this paper, we describe direct evidence of the ability of Schwann cell alignment alone to direct neurite outgrowth. Previously, we reported that laminin micro-patterns can be used to align Schwann cells and thus create oriented Schwann cell monolayers. In the current study, dissociated rat spinal neurons were seeded onto oriented Schwann cell monolayers, whose alignment provided the only directional cue for growing neurites, and neurite alignment with the underlying Schwann cells was analyzed. The orientation of neurite outgrowth mimicked that of the Schwann cells. Associations observed between neurites and Schwann cells suggest that Schwann cells may guide neurite outgrowth through both topographical and molecular mechanisms. This work demonstrates that Schwann cell alignment can direct neurite outgrowth in the absence of other directional cues, and provides a new method for examining neuronal-Schwann cell interactions in vitro.
Collapse
Affiliation(s)
- Deanna M Thompson
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
42
|
Song HK, Toste B, Ahmann K, Hoffman-Kim D, Palmore GTR. Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: A new platform for characterizing neurite extension in complex environments. Biomaterials 2006; 27:473-84. [PMID: 16112728 DOI: 10.1016/j.biomaterials.2005.06.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 11/29/2022]
Abstract
This paper describes a method for preparing substrates with micropatterns of positive guidance cues for the purpose of stimulating the growth of neurons. This method uses an oxidizing potential, applied to a micropattern of indium tin oxide in the presence of pyrrole and polyglutamic acid, to electrodeposit a matrix consisting of polypyrrole doped with polyglutamic acid. The resulting matrix subsequently can be modified with positive guidance cues via standard amide coupling reactions. Cells adhered to the micropatterned substrates can be stimulated electrically by the underlying electrodeposited matrix while they are in contact with positive guidance cues. This method can be extended to include both positive and negative guidance cues in a variety of combinations. To demonstrate the suitability of this method in the context of nerve guidance, dorsal root ganglia were grown in the presence of a micropatterned substrate whose surface was modified with molecules such as polylysine, laminin, or both. Cell adhesion and neurite extension were found to occur almost exclusively in areas where positive guidance cues were attached. This method is easy to execute and is of general utility for fundamental studies on the behavior of neurons in the presence of complex combinations of guidance cues as well as advanced bioelectronic devices such as neuronal networks.
Collapse
Affiliation(s)
- H-K Song
- Division of Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
43
|
Bagdatoglu OT, Polat G, Bagdatoglu C, Atik U. Roles of nitric oxide, malondialdehyde, and fibronectin in an experimental peripheral nerve ischemia-reperfusion model. Microsurgery 2006; 26:207-11. [PMID: 16485293 DOI: 10.1002/micr.20220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although there are many studies of the neuropathology of the ischemic degeneration of peripheral nerves, the pathogenesis is not well-understood. The roles of several biomolecules on this process were previously reported. An adhesion molecule, fibronectin, which is applied locally (as a conduit material), is very effective in nerve recovery. This study was carried out to evaluate the roles of fibronectin, lipid peroxidation, and nitric oxide (NO) in an experimental model of peripheral nerves. Ischemia and reperfusion injury of sciatic nerves was rendered by clamping the femoral artery and vein. Rats were divided into nine groups. Ischemia and reperfusion were not applied to group 1. In group 2, only ischemia was performed, but reperfusion was not accomplished. For groups 3-9, 1, 2, and 24 h and 1, 2, 3, and 4 weeks of reperfusion were applied following 3 h of ischemia. Then NO, malondialdehyde (MDA), and fibronectin levels were observed in serum samples of rats. Colorimetric and nephelometric assays were used for determination of the levels of these parameters. In this study, all biochemical parameters were found to be increased in the ischemia groups when compared with the control group 1 (P < 0.05). A significant difference was observed between study groups with respect to MDA, NO, and fibronectin levels (P < 0.05). Also, some correlations were established between biochemical parameters in the same group, depending on the varying reperfusion time (r > 0.50). Ischemia causes some important changes in biochemical parameters, and depending on the reperfusion time, nerve injury continues for a while. In our study, we observed that serum levels of MDA decreased in the periods when NO and fibronectin simultaneously increased. Such increases may contribute to neural recovery, and there may be interactions among them.
Collapse
|
44
|
Ahmed MR, Vairamuthu S, Shafiuzama M, Basha SH, Jayakumar R. Microwave irradiated collagen tubes as a better matrix for peripheral nerve regeneration. Brain Res 2005; 1046:55-67. [PMID: 15927550 DOI: 10.1016/j.brainres.2005.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 03/02/2005] [Accepted: 03/15/2005] [Indexed: 01/02/2023]
Abstract
Collagen is one of the best materials used for nerve guide preparation due to its biocompatibility and desirable tensile strength. In this work, we have compared regeneration and functional reinnervation after sciatic nerve resection with bioresorbable crosslinked collagen guides in 10 mm gap. The crosslinking was carried out either with glutaraldehyde (GTA) or microwave irradiation (MWI). The multilayered collagen membrane used for nerve guides are prepared by lamellar evaporation technique. Functional evaluations of the regenerated nerves were performed by measuring the sciatic functional index (SFI), nerve conduction velocity (NCV), and electromyography (EMG). Transmission electron microscopic studies showed growth of axonal cable with fewer myelinated axons, Schwann cells and more unmyelinated axons present in the case of group treated with uncrosslinked collagen tubes after 1 month of implantation. However, we have observed more myelinated axons in the case of autograft, GTA, and MWI crosslinked collagen tube implants across the gap of 1 cm after the same period of implantation. Smaller myelinated fiber diameter was observed in the case of GTA crosslinked collagen tube group when compared with the autograft and MWI collagen tube groups. There were more myelinated axons during the 3rd and 6th months postoperatively using these conduits as substantiated by light microscopic studies of the regenerated nerve. The conduction velocity and recovery index improved significantly after 5 months reaching the normal values in the autograft and MWI crosslinked collagen groups compared to GTA and uncrosslinked collagen tubes.
Collapse
Affiliation(s)
- Mohamed Rafiuddin Ahmed
- Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | | | | |
Collapse
|
45
|
Suuronen EJ, Sheardown H, Newman KD, McLaughlin CR, Griffith M. Building In Vitro Models of Organs. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:137-73. [PMID: 16157180 DOI: 10.1016/s0074-7696(05)44004-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tissue-engineering techniques are being used to build in vitro models of organs as substitutes for human donor organs for transplantation as well as in vitro toxicology testing (as alternatives to use of animals). Tissue engineering involves the fabrication of scaffolds from materials that are biologically compatible to serve as cellular supports and microhabitats in order to reconstitute a desired tissue or organ. Three organ systems that are currently the foci of tissue engineering efforts for both transplantation and in vitro toxicology testing purposes are discussed. These are models of the cornea, nerves (peripheral nerves specifically), and cardiovascular components. In each of these organ systems, a variety of techniques and materials are being used to achieve the same end results. In general, models that are designed with consideration of the developmental and cellular biology of the target tissues or organs have tended to result in morphologically and physiologically accurate models. Many of the models, with further development and refinement, have the potential to be useful as functional substitute tissues and organs for transplantation or for in vitro toxicology testing.
Collapse
Affiliation(s)
- Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
46
|
Ahmed MR, Venkateshwarlu U, Jayakumar R. Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials 2004; 25:2585-94. [PMID: 14751744 DOI: 10.1016/j.biomaterials.2003.09.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Successful nerve regeneration process was achieved with improved mechanical strength by crosslinking tubular nerve guides made up of collagen. The multilayered collagen sheets were prepared from laminar evaporation of collagen solution. Scanning electron micrograph of the collagen tubes crosslinked with glutaraldehyde (GTA), microwave irradiation showed porous, fibrillar structures of collagen filaments in these matrices. The mechanical property of the crosslinked collagen tubes was carried out by tensile strength measurements. Fourier transform infrared spectra of the collagen films show that the native triple helicity was unaltered during multilayered preparation. It was observed that the structural integrity is unaltered during the multilayer preparation. Microscopic analysis indicates that the tubule surface acts as a surface of adherence and proliferation for the sprouting axons from the cut proximal nerve stumps. Solute diffusion studies on these tubes indicate that they are highly porous to wide range of molecular sizes during regeneration. Among the two types of crosslinking, the microwave irradiated collagen conduits results in ample myelinated axons compared with GTA group, where we observed more unmyelinated axons.
Collapse
Affiliation(s)
- M Rafiuddin Ahmed
- Bio-organic and Neurochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | | |
Collapse
|
47
|
Abstract
Nerve regeneration is a complex biological phenomenon. In the peripheral nervous system, nerves can regenerate on their own if injuries are small. Larger injuries must be surgically treated, typically with nerve grafts harvested from elsewhere in the body. Spinal cord injury is more complicated, as there are factors in the body that inhibit repair. Unfortunately, a solution to completely repair spinal cord injury has not been found. Thus, bioengineering strategies for the peripheral nervous system are focused on alternatives to the nerve graft, whereas efforts for spinal cord injury are focused on creating a permissive environment for regeneration. Fortunately, recent advances in neuroscience, cell culture, genetic techniques, and biomaterials provide optimism for new treatments for nerve injuries. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the current approaches that are being explored to aid peripheral nerve regeneration and spinal cord repair.
Collapse
Affiliation(s)
- Christine E Schmidt
- Department of Biomedical Engineering The University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
48
|
Abstract
BACKGROUND Acellular nerve has been used in experimental models as a peripheral nerve substitute. Our objective was to determine the difference in tensile strength between fresh and chemically treated acellularized peripheral nerve. MATERIALS AND METHODS F344 rat sciatic nerves were either fresh or acellularized and tested either whole (Part A) or transected and repaired (Part B). For all constructs, the mean ultimate stress, mean ultimate strain, Young's modulus, and total mechanical work to fracture were calculated. The average ultimate strains for Groups A-1 and A-2 were 0.480 +/- 0.117 and 0.810 +/- 0.114, respectively. The Young's moduli in Groups A-1 and A-2 were 576 +/- 160 and 580 +/- 150 kPa, respectively. In Groups A-1 and A-2, the normalized work to failure was 0.35 +/- 0.14 and 1.11 +/- 0.38 N. The specimens in Group B-1 withstood an average ultimate stress of 780 +/- 280 kPa. The specimens in Group B-2 withstood an average ultimate stress of 405 +/- 20 kPa. RESULTS The average ultimate strains for Groups B-1 and B-2 were 0.319 +/- 0.087 and 0.266 +/- 0.019, respectively. The Young's moduli in Groups B-1 and B-2 were 4,030 +/- 1360 and 2,290 +/- 280 kPa, respectively. The normalized work to failure in Groups B-1 and B-2 was calculated as 0.22 +/- 0.04 and 0.11 +/- 0.02 N. CONCLUSIONS Although adequately robust for reconstructive procedures, the acellular peripheral nerve had decreased tensile strength compared with fresh nerve either when tested whole or when transected and repaired.
Collapse
Affiliation(s)
- Gregory H Borschel
- University of Michigan Section of Plastic Surgery, Ann Arbor, Michigan 48109-2125, USA
| | | | | | | |
Collapse
|
49
|
Ahmed Z, Underwood S, Brown RA. Nerve guide material made from fibronectin: assessment of in vitro properties. TISSUE ENGINEERING 2003; 9:219-31. [PMID: 12740085 DOI: 10.1089/107632703764664693] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously used orientated mats of fibronectin as conduits to repair short gaps in peripheral nerves. Here we describe the in vitro properties of a new material in the form of large cables produced from a fibronectin-enriched solution with potential as a conduit for longer nerve defects. Large cables of fibronectin were made up to 14 cm long x 1.5 cm in diameter. When freeze dried, scanning electron microscopy revealed a predominant fiber orientation. Dried cables hydrated rapidly to 1.6 and 4.8 times their original length and diameter, respectively. Once hydrated these cables had pores that ranged from 10 to 100 microm through which Schwann cells and fibroblasts were able to grow in vitro and align with the axis of the fibrils by contact guidance. Furthermore, the porosity of the cable was enhanced by the natural dissolution of protein over a 3-week duration in culture with cells, such that 50- to 200-microm pores were observed. This study suggests that large fibronectin cables are a suitable alternative to the original fibronectin mats to guide components of the peripheral nerves and so to act as conduits with potential use in guiding regeneration across long nerve defects.
Collapse
Affiliation(s)
- Z Ahmed
- Tissue Repair and Engineering Centre, University College London, Institute of Orthopaedics, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | | | | |
Collapse
|
50
|
|