1
|
Xu K, Zou H, Yang A, Yao Q, Li Q, Zhang J, Hu X. Effects of antimony on antioxidant system, damage indexes of blood-brain barrier and ultrastructure of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110013. [PMID: 39173811 DOI: 10.1016/j.cbpc.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Antimony (Sb) and its compounds can be harmful to people and are known to cause cancer, so they are a key pollutant to control. This study investigated the influence of antimony on non-enzymatic antioxidants and the blood-brain barrier (BBB) in zebrafish(Danio rerio), a model organism that shares a high degree of genetic similarity with humans. Zebrafish were exposed to different doses of antimony in water for 7, 18, and 30 days. The results indicated that antimony accumulated most in the liver, followed by the gills, flesh, and brain, with the accumulation increasing as the exposure duration extends. Additionally, under identical antimony concentrations, the buildup in the four tissues was positively correlated with the duration of exposure. After 18 days of exposure, the total antioxidant capacity (T-AOC) and endogenous non-enzymatic antioxidants vitamin C (VC) and vitamin E (VE) decreased as a result of antimony ingestion in zebrafish, although cysteine secretion was increased in the liver, gills, and brain. The structural integrity of the BBB was compromised by the elevation of ApoE4 and MMP-9 levels as a result of antimony exposure, which led to the breakdown of the basal lamina, tight junctions, and nerve fibers in the brain. At this injured region, 5-HT and MBP were also able to easily enter and leave the BBB, albeit at variable rates. Additionally, when the antimony exposure level reached 16.58 mg·L-1, antimony penetrated the BBB and bound to erythrocytes, causing their lysis.
Collapse
Affiliation(s)
- Kun Xu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Haitao Zou
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China; Guizhou Guida Yuanheng Environmental Protection Technology Co., LTD., Guiyang 550025, PR China.
| | - Qin Yao
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, PR China
| |
Collapse
|
2
|
Li J, Tian Z, Li J, Askari K, Han A, Ma J, Liu R. Physcion and chitosan-Oligosaccharide (COS) synergistically improve the yield by enhancing photosynthetic efficiency and resilience in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107993. [PMID: 37678090 DOI: 10.1016/j.plaphy.2023.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
As progressively increasing food safety concerns, diversified plant diseases and abiotic stresses, environmental-friendly bio-pesticides and bio-stimulants combinations may are likely to serve as a vital means of safeguarding green and sustainable food production. Accordingly, in this study, pot and field trials were performed to examine the application potential of the combination of physcion and chitosan-Oligosaccharide (COS) in wheat production. Wheat seeds were coated with physcion and COS and the effects exerted by them on morphology, physiology and yield of the wheat were investigated. As indicated by the results, the combination of physcion and COS not only did not inhibit the growth of wheat seedlings, but also synergistically increased root vigor and photosynthetic pigment content. Simultaneously, the lignin content in the roots and leaves was increased significantly. Moreover, the result confirmed that the combination of both substances reduced the MDA content, which was correlated with the up-regulation of the transcript expression level of antioxidant enzyme genes and the resulting increased enzyme activity. Furthermore, this combination synergistically increased the net photosynthetic rate (Pn) of the flag leaves and ultimately contributed to the increase in yield. Notably, the above-mentioned desirable cooperative effect was not limited by cultivars and cultivation methods. The conclusion of this study suggested that the combination of physcion and COS synergistically improved the photosynthetic rate and resilience in wheat, such that high wheat yields can be more significantly maintained, and future food security can be more effectively ensured.
Collapse
Affiliation(s)
- Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Tian
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jingkun Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Komelle Askari
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Junwei Ma
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
3
|
Alharbi BM, Abdulmajeed AM, Jabbour AA, Hashim AM. Eco-Physiological Responses of Avicennia marina (Forssk.) Vierh. to Trace Metals Pollution via Intensifying Antioxidant and Secondary Metabolite Contents. Metabolites 2023; 13:808. [PMID: 37512515 PMCID: PMC10386060 DOI: 10.3390/metabo13070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Mangrove is one of the most precious ecosystems with the greatest losses due to climate change, human activities, and pollution. The objective of this study is to assess the accumulation and distribution of some trace metals (Cu, Cd, Ni, Pb, and Zn) in sediments and Avicennia marina roots and leaves and to discuss the antioxidant potential of A. marina under metallic pollution stress. Sediments, leaf, and root samples of A. marina were collected from five sites along the Red Sea Coast of Egypt. Several ecological pollution indices, including the geo accumulation index (Igeo), contamination factor (CF), pollution load index (PLI), bioconcentration factor (BCF), and translocation factor (TF), were used to assess the pollution load. Cu, Cd, Ni, Pb, and Zn average concentrations in sediments were 167.4, 0.75, 110.65, 39.79, and 220 μg g-1, respectively, and the average values of these metals in A. marina roots were 44.9, 0.5, 87.96, 39.02, and 54.68 μg g-1, respectively, while in leaves their concentration were 50.46, 0.5572, 88.24, 40.08, and 56.08 μg g-1, respectively. The values of the Igeo, CF, and PLI index indicated that location 1 and 5 are moderate-to-heavily contaminated sites. On the other hand, leaves and roots of A. marina grown in polluted locations 1 and 5 showed high accumulation of malondialdehyde (MDA), low chlorophyll a and chlorophyll b contents concomitant with a decrease in total soluble sugars. High total antioxidant capacity was associated with a significant increase in activity levels of antioxidant enzymes (Catalase, Polyphenol oxidase, Polyphenol peroxidase, and Ascorbic acid oxidase), accumulation of secondary metabolites (total phenols, flavonoids, and tannins), and proline and carotenoids content increase. Overall, the present study suggests that the mangrove habitat of the Egyptian Red Sea coast is under the stress of anthropogenic activities, which necessitates a conservation plan to avoid further contamination and protect the unique biota of this distinctive habitat.
Collapse
Affiliation(s)
- Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Awatif M Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 41912, Saudi Arabia
| | - Alae A Jabbour
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed M Hashim
- Department of Botany, Faculty of Science, Ain Shams University, Cairo 11865, Egypt
| |
Collapse
|
4
|
Liu R, Li J, Zhang L, Feng T, Zhang Z, Zhang B. Fungicide Difenoconazole Induced Biochemical and Developmental Toxicity in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112304. [PMID: 34834667 PMCID: PMC8621447 DOI: 10.3390/plants10112304] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
Difenoconazole is one of the most commonly used fungicides to prevent and treat plant diseases caused by certain fungi. Due to increasing usage, more difenoconazole has been released into the environment and caused environment pollution. However, the potential impact of difenoconazole on plant growth and development and its involved mechanism are unclear. In this study, we discovered that difenoconazole exposure significantly inhibited plant growth, evidenced by the decrease in root dry weight, total root length, and surface area by 20-70%, 43-73%, and 26-66%, respectively, under different regimes of treatment concentrations and periods. Difenoconazole exposure also significantly inhibited shoot growth and development by decreasing 33-61% of the shoot dry weight and 50-65% of the leaf area. Difenoconazole exposure induced plant leaf cells to generate more ROS (O2•- and H2O2) and MDA, which resulted in a decreased chlorophyll content and then inhibited leaf photosynthesis. Difenoconazole exposure also induced the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POD), and ascorbate peroxidase (APX) in the roots and leaves of the wheat seedlings. SOD and APX activities were higher and more stable in the roots than those in the leaves. Based on our study, plant roots exhibited a more pronounced superoxide radical scavenging ability than plant leaves. In summary, difenoconazole exposure caused oxidative stress, reduced chlorophyll biosynthesis and functions, and then inhibited wheat plant growth and development.
Collapse
Affiliation(s)
- Runqiang Liu
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.L.); (L.Z.)
| | - Jingchong Li
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.L.); (L.Z.)
| | - Lei Zhang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.L.); (L.Z.)
| | - Ta Feng
- Shanxi Mei Bang Pharmaceutical Group Co., Ltd., Weinan 714000, China;
| | - Zhiyong Zhang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Collaborative Innovation Center of Modern Biological Breeding, School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China; (R.L.); (J.L.); (L.Z.)
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
5
|
Hashim AM, Alharbi BM, Abdulmajeed AM, Elkelish A, Hozzein WN, Hassan HM. Oxidative Stress Responses of Some Endemic Plants to High Altitudes by Intensifying Antioxidants and Secondary Metabolites Content. PLANTS 2020; 9:plants9070869. [PMID: 32659963 PMCID: PMC7412441 DOI: 10.3390/plants9070869] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/12/2023]
Abstract
Most endemic plant species have limited altitudinal ranges. At higher altitudes, they are subjected to various environmental stresses. However, these plants use unique defense mechanisms at high altitudes as a convenient survival strategy. The changes in antioxidant defense system and accumulation of different secondary metabolites (SMs) were investigated as depending on altitude in five endemic endangered species (Nepeta septemcrenata, Origanum syriacum subsp. Sinaicum, Phlomis aurea, Rosa arabica, and Silene schimperiana) naturally growing in Saint Katherine protectorate (SKP). Leaves were collected from different sites between 1600 and 2200 m above sea level to assess the biochemical and physiological variations in response to high altitudes. At higher altitudes, the soil pH and micronutrient soil content decreased, which can be attributed to lower mineralization processes at lower pH. Total phenols, ascorbic acid, proline, flavonoids, and tannins increased in response to different altitudes. SMs progressively increased in the studied species, associated with a significant decrease in the levels of antioxidant enzyme activity. R. arabica, as the most threatened plant, showed the maximum response compared with other species. There was an increase in photosynthetic pigments, which was attained via the increase in chlorophyll a, chlorophyll b, and carotenoid contents. There was a significant increase in total soluble sugars and total soluble protein content in response to different altitudes. SDS-PAGE of leaf proteins showed alteration in the protein profile between different species and the same species grown at a different altitude. These five species can adapt to high-altitude habitats by various physiological mechanisms, which can provide a theoretical basis for the future conservation of these endangered endemic species in SKP.
Collapse
Affiliation(s)
- Ahmed M. Hashim
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11865, Egypt; (A.M.H.)
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, Tabuk University, Tabuk 71421, Saudi Arabia;
| | | | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Wael N. Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
- Correspondence: ; Tel.: +20-1024824643
| | - Heba M. Hassan
- Botany Department, Faculty of Science, Ain Shams University, Cairo 11865, Egypt; (A.M.H.)
| |
Collapse
|
6
|
Yizhu L, Imtiaz M, Ditta A, Rizwan MS, Ashraf M, Mehmood S, Aziz O, Mubeen F, Ali M, Elahi NN, Ijaz R, Lele S, Shuang C, Tu S. Response of growth, antioxidant enzymes and root exudates production towards As stress in Pteris vittata and in Astragalus sinicus colonized by arbuscular mycorrhizal fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2340-2352. [PMID: 31776909 DOI: 10.1007/s11356-019-06785-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The modern agricultural practices have led to improve the contaminated soils with a variety of heavy metals that have become a major environmental concern. The use of arbuscular mycorrihizal fungi (AMF) is considered a potential tool for the sustainable agriculture especially in contaminated sites. Moreover, recently, the use of AMF has become a fascinating and multidisciplinary subject for the scientists dealing with plant protection. The present study was carried out to evaluate the interaction among arsenic (As) species, AMF, and two plant species: Pteris vittata and Astragalus sinicus, differing in their metal tolerance. Results about A. sinicus revealed that the biomass was affected as As (III and V) accumulated in the roots of A. sinicus, and in rachis and pinnae of P. vittata. The inoculation of AMF markedly increased the biomass yield of the both plants when exposed to As species. The exposure to the As species resulted variation and non-significant results about antioxidant enzymes and non-enzymes when grown in As stress with and without AMF. The inoculation of AMF under As species improved the organic acids concentrations in both plant species. Overall, the concentration of oxalate acid was more than formic and malic acids; however, AMF inoculation improved more organic acids in A. sinicus. P. vittata exhibited more activities of antioxidant enzymes and non-enzymes under As stress with and without AMF than A. sinicus, and hence had a more efficient defense mechanism.
Collapse
Affiliation(s)
- Liu Yizhu
- Institute of Agriculture Resources and Regional Planning, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (U), 18000, Pakistan
| | - Muhammad Shahid Rizwan
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Ashraf
- Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Omar Aziz
- University of Agriculture Faisalabad, Faisalabad, Sub-Campus Depalpur, Okara, Pakistan
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Nosheen Noor Elahi
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Raina Ijaz
- Department of Horticulture, The University of Poonch Rawalakot, Rawalakot, Azad Kashmir, Pakistan
| | - Sha Lele
- Suzhou Leju Holdings Limited, Suzhou, Jiangsu, China
| | - Cao Shuang
- Wuhan Environmental Protection Sciences Research Institute, Wuhan, China
| | - Shuxin Tu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Liang C, Zhang B. Effect of exogenous calcium on growth, nutrients uptake and plasma membrane H +-ATPase and Ca 2+-ATPase activities in soybean (Glycine max) seedlings under simulated acid rain stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:261-269. [PMID: 30205327 DOI: 10.1016/j.ecoenv.2018.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 05/28/2023]
Abstract
Calcium (Ca) is one of essential elements for plant growth and development, and also plays a role in regulating plant cell physiology and cellular response to the environment. Here, we studied whether calcium played a role in enhancing tolerance of plants to acid rain stress by hydroponics and simulating acid rain stress. Our results show that acid rain (pH 4.5/pH 3.0) caused decreases in dry weight biomass, chlorophyll content and uptake of nutrients elements (NO3-, P, K, Mg, Zn and Mo) and an increase in membrane permeability of root. However, all parameters in soybean treated with exogenous calcium (5 mM) and acid rain at pH 4.5 were closed to the control levels. In addition, exogenous calcium (5 mM) alleviated the inhibition induced by pH 3.0 acid rain on the activity of plasma membranes H+-ATPase and the expression of GmPHA1 at transcriptional level, being benefiting to maintaining uptake of nutrients (NO3-, P, K, Mg, and Zn), and then lower the decrease in dry weight biomass and chlorophyll content. After a 5-day recovery (without acid rain stress), all parameters in soybean treated with acid rain at pH 3.0 and exogenous calcium were still worse than those of the control, but obviously better than those treated with acid rain at pH 3.0. Higher activity of plasma membrane H+-ATPase in soybean treated with acid rain at pH 3.0 and exogenous calcium was good to uptake of nutrients and promoted the recovery of soybean growth, compared with soybean treated with acid rain at pH 3.0. In conclusion, exogenous calcium could alleviate the inhibition caused by acid rain on soybean growth by increasing the activity of plasma membrane H+-ATPase for providing driving force to nutrient absorption, and its regulating effect was limited by intensity of acid rain. Furthermore, the application of exogenous calcium can be one of ways to alleviate the damage caused by acid rain to plants.
Collapse
Affiliation(s)
- Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi 214122, China.
| | - Bingjie Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Liu H, Ren X, Zhu J, Wu X, Liang C. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress. PLANTA 2018; 248:647-659. [PMID: 29855701 DOI: 10.1007/s00425-018-2922-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H+-ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H+-ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.
Collapse
Affiliation(s)
- Hongyue Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqian Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiuzheng Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xi Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Liu X, Zhao W, Meng M, Fu Z, Xu L, Zha Y, Yue J, Zhang S, Zhang J. Comparative effects of simulated acid rain of different ratios of SO 42- to NO 3- on fine root in subtropical plantation of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:336-346. [PMID: 29132001 DOI: 10.1016/j.scitotenv.2017.11.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
The influence of acid rain on forest trees includes direct effects on foliage as well as indirect soil-mediated effects that cause a reduction in fine-root growth. In addition, the concentration of NO3- in acid rain increases with the rapidly growing of nitrogen deposition. In this study, we investigated the impact of simulated acid rain with different SO42-/NO3- (S/N) ratios, which were 5:1 (S), 1:1 (SN) and 1:5 (N), on fine-root growth from March 2015 to February 2016. Results showed that fine roots were more sensitive to the effects of acid rain than soils in the short-term. Both soil pH and fine root biomass (FRB) significantly decreased as acid rain pH decreased, and also decreased with the percentage of NO3- increased in acid rain. Acid rain pH significantly influenced soil total carbon and available potassium in summer. Higher acidity level (pH=2.5), especially of the N treatments, had the strongest inhibitory impact on soil microbial activity after summer. The structural equation modelling results showed that acid rain S/N ratio and pH had stronger direct effects on FRB than indirect effects via changed soil and fine root properties. Fine-root element contents and antioxidant enzymes activities were significantly affected by acid rain S/N ratio and pH during most seasons. Fine-root Al ion content, Ca/Al, Mg/Al ratios and catalase activity were used as better indicators than soil parameters for evaluating the effects of different acid rain S/N ratios and pH on forests. Our results suggest that the ratio of SO42- to NO3- in acid rain is an important factor which could affect fine-root growth in subtropical forests of China.
Collapse
Affiliation(s)
- Xin Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Wenrui Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Miaojing Meng
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Zhiyuan Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Linhao Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Yan Zha
- Jiangsu Province Key Laboratory of Ecological Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianmin Yue
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Shuifeng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China; Nanjing Forest Police College, Nanjing, Jiangsu 210023, China
| | - Jinchi Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
10
|
Ding Y, Wang Y, Zheng X, Cheng W, Shi R, Feng R. Effects of foliar dressing of selenite and silicate alone or combined with different soil ameliorants on the accumulation of As and Cd and antioxidant system in Brassica campestris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:207-215. [PMID: 28411516 DOI: 10.1016/j.ecoenv.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/25/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the possibility of using a combined technology to synchronously reduce As and Cd accumulation in the edible parts of Brassica campestris. The results showed that a foliar application of selenite (Se) and silicon (Si) combined with soil ameliorants (including Ca-Mg-P fertilizer, sodium silicate and red mud) showed limited effects on the growth of B. campestris. The As concentration in the leaves of B. campestris in all treatments was below the Chinese safety standard. When sodium silicate and Ca-Mg-P fertilizer were added to the soil, the additional foliar application of Se and Si could in some cases help further reduce the concentrations of As and Cd in the leaves of B. campestris. However, when red mud was applied to the soil, the foliar application of Se and Si enhanced the Cd concentration in the leaves of B. campestris. In most cases, high levels of soil ameliorants plus foliar application of Se and Si significantly enhanced the As concentrations in both the soil solution and the roots of B. campestris but reduced the soil solution Cd concentration and the leaf As concentration. Most of the treatments reduced the thiobarbituric acid reactive substances (TBARS) concentration in the leaves of B. campestris, and the foliar application of Se and Si helped the soil ameliorants alleviate the oxidative stress resulting from As and Cd exposure. In this study, several treatments significantly increased the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). However, the enzymes peroxidase (POD) and catalase (CAT) were not induced by most treatments. In summary, the combined treatment of 1gkg-1 Ca-Mg-P fertilizer plus foliar spraying 2mmolL-1 sodium selenite was most effective in reducing the Cd concentration and a rather strong ability to reduce the As concentration and trigger the activities of SOD and APX in the leaves of B. campestris.
Collapse
Affiliation(s)
- Yongzhen Ding
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Yongjiu Wang
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Xiangqun Zheng
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Weimin Cheng
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Rongguang Shi
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China
| | - Renwei Feng
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, Tianjin 300191, China.
| |
Collapse
|
11
|
Ju S, Yin N, Wang L, Zhang C, Wang Y. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress. PLoS One 2017; 12:e0173378. [PMID: 28291806 PMCID: PMC5349468 DOI: 10.1371/journal.pone.0173378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/20/2017] [Indexed: 12/01/2022] Open
Abstract
Silicon (Si) has an important function in reducing the damage of environmental stress on plants. Acid rain is a serious abiotic stress factor, and Si can alleviate the stress induced by acid rain on plants. Based on these assumptions, we investigated the effects of silicon on the growth, root phenotype, mineral element contents, hydrogen peroxide (H2O2) and antioxidative enzymes of rice (Oryza sativa L.) seedling roots under simulated acid rain (SAR) stress. The results showed that the combined or single effects of Si and/or SAR on rice roots depend on the concentration of Si and the pH of the SAR. The combined or single effects of a low or moderate concentration of Si (1.0 or 2.0 mM) and light SAR (pH 4.0) enhanced the growth of rice roots, and the combined effects were stronger than those of the single treatment. A high concentration of Si (4.0 mM) or severe SAR (pH 2.0) exerted deleterious effects. The incorporation of Si (1.0, 2.0 or 4.0 mM) into SAR with pH 3.0 or 2.0 promoted the rice root growth, decreased the H2O2 content, increased the Si concentration and the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) activities, maintained the balance of mineral element (K, Ca, Mg, Fe, Zn, and Cu) concentrations in the roots of rice seedlings compared with SAR alone. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with a low or high concentration of Si (1.0 or 4.0 mM). The observed effects were due to disruptions in the absorption and utilization of mineral nutrients and impacts on the activity of antioxidant enzymes in roots, and this conclusion suggests that the degree of rice root damage caused by acid rain might be attributed to not only acid rain but also the level of Si in the soil.
Collapse
Affiliation(s)
- Shuming Ju
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu, China
- Xuzhou Institute of Technology, Xuzhou, Jiangsu, China
| | - Ningning Yin
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu, China
| | - Liping Wang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu, China
| | - Cuiying Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, Jiangsu, China
- Xuzhou Institute of Technology, Xuzhou, Jiangsu, China
| | - Yukun Wang
- Xuzhou Institute of Technology, Xuzhou, Jiangsu, China
| |
Collapse
|
12
|
Collin-Hansen C, Andersen RA, Steinnes E. Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christian Collin-Hansen
- Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Rolf A. Andersen
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Eiliv Steinnes
- Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
13
|
Song U, Kim HE. Assessing the phytotoxicity of cetrimonium bromide in plants using eco-physiological parameters. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41610-016-0016-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Manninen S, Zverev V, Bergman I, Kozlov MV. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:616-624. [PMID: 26254064 DOI: 10.1016/j.scitotenv.2015.07.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities.
Collapse
Affiliation(s)
- Sirkku Manninen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65 (Viikinkaari 2a), FI-00014 Helsinki, Finland.
| | - Vitali Zverev
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Igor Bergman
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, ul. Vos'mogo Marta 202, Yekaterinburg 620144, Russia
| | - Mikhail V Kozlov
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
15
|
Zhang X, Du Y, Wang L, Zhou Q, Huang X, Sun Z. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots. PLoS One 2015; 10:e0134546. [PMID: 26230263 PMCID: PMC4521724 DOI: 10.1371/journal.pone.0134546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/12/2015] [Indexed: 12/23/2022] Open
Abstract
Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants.
Collapse
Affiliation(s)
- Xuanbo Zhang
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuping Du
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zhaoguo Sun
- State Key Laboratory of Food Science and Technology, Jiangsu Coorperative Innovation Center of Water Treatment Technology and Materials, Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
An experimental study on the synergistic effects between Azolla and Anabaena in removal of uranium from solutions by Azolla–anabaena symbiotic system. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4161-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Ramlall C, Varghese B, Ramdhani S, Pammenter NW, Bhatt A, Berjak P. Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank. PHYSIOLOGIA PLANTARUM 2015; 153:149-160. [PMID: 24835442 DOI: 10.1111/ppl.12230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 04/10/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Increased air pollution in a number of developing African countries, together with the reports of vegetation damage typically associated with acid precipitation in commercial forests in South Africa, has raised concerns over the potential impacts of acid rain on natural vegetation in these countries. Recalcitrant (i.e. desiccation sensitive) seeds of many indigenous African species, e.g. must germinate shortly after shedding and hence, may not be able to avoid exposure to acid rain in polluted areas. This study investigated the effects of simulated acid rain (rainwater with pH adjusted to pH 3.0 and 4.5 with 70:30, H2 SO4 :HNO3 ) on germination, seedling growth and oxidative metabolism in a recalcitrant-seeded African tree species Trichilia dregeana Sond., growing in its natural seed bank. The results suggest that acid rain did not compromise T. dregeana seed germination and seedling establishment significantly, relative to the control (non-acidified rainwater). However, pH 3.0 treated seedlings exhibited signs of stress typically associated with acid rain: leaf tip necrosis, abnormal bilobed leaf tips, leaf necrotic spots and chlorosis, reduced leaf chlorophyll concentration, increased stomatal density and indications of oxidative stress. This may explain why total and root biomass of pH 3.0 treated seedlings were significantly lower than the control. Acid rain also induced changes in the species composition and relative abundance of the different life forms emerging from T. dregeana's natural seed bank and in this way could indirectly impact on T. dregeana seedling establishment success.
Collapse
Affiliation(s)
- Chandika Ramlall
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | | | | | | | | | | |
Collapse
|
18
|
Song U, Mun S, Waldman B, Lee EJ. Effects of three fire-suppressant foams on the germination and physiological responses of plants. ENVIRONMENTAL MANAGEMENT 2014; 54:865-874. [PMID: 24943813 DOI: 10.1007/s00267-014-0303-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.
Collapse
Affiliation(s)
- Uhram Song
- Department of Biology and Research Institute for Basic Sciences, Jeju National University, Jeju, 690-756, Korea,
| | | | | | | |
Collapse
|
19
|
Liang C, Wang W. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8182-91. [PMID: 23653318 DOI: 10.1007/s11356-013-1776-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.
Collapse
Affiliation(s)
- Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China,
| | | |
Collapse
|
20
|
Sun Z, Wang L, Zhou Q, Huang X. Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings. CHEMOSPHERE 2013; 93:344-52. [PMID: 23726884 DOI: 10.1016/j.chemosphere.2013.04.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/18/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Rare earth pollution and acid rain pollution are both important environmental issues worldwide. In regions which simultaneously occur, the combined pollution of rare earth and acid rain becomes a new environmental issue, and the relevant research is rarely reported. Accordingly, we investigated the combined effects and mechanisms of lanthanum ion (La(3+)) and acid rain on the root phenotype of soybean seedlings. The combined pollution of low-concentration La(3+) and acid rain exerted deleterious effects on the phenotype and growth of roots, which were aggravated by the combined pollution of high-concentration La(3+) and acid rain. The deleterious effects of the combined pollution were stronger than those of single La(3+) or acid rain pollution. These stronger deleterious effects on the root phenotype and growth of roots were due to the increased disturbance of absorption and utilization of mineral nutrients in roots.
Collapse
Affiliation(s)
- Zhaoguo Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | | | | |
Collapse
|
21
|
Ma T, Christie P, Teng Y, Luo Y. Rape (Brassica chinensis L.) seed germination, seedling growth, and physiology in soil polluted with di-n-butyl phthalate and bis(2-ethylhexyl) phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:5289-5298. [PMID: 23389857 DOI: 10.1007/s11356-013-1520-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/23/2013] [Indexed: 06/01/2023]
Abstract
Phthalic acid esters (PAEs) pollution in agricultural soils caused by widely employed plastic products is becoming more and more widespread in China. PAEs polluted soil can lead to phytotoxicity in higher plants and potential health risks to human being. We evaluated the individual toxicity of di-n-butyl phthalate (DnBP) and bis(2-ethylhexyl) phthalate (DEHP), two representative PAEs, to sown rape (Brassica chinensis L.) seeds within 72 h (as germination stage) and seedlings after germination for 14 days by monitoring responses and trends of different biological parameters. No significant effects of six concentrations of PAE ranging from 0 (not treated/NT) to 500 mg kg(-1) on germination rate in soil were observed. However, root length, shoot length, and biomass (fresh weight) were inhibited by both pollutants (except root length and biomass under DEHP). Stimulatory effects of both target pollutants on malondialdehyde (MDA) content, superoxide dismutase (SODase) activity, ascorbate peroxidase (APXase) content, and polyphenoloxidase (PPOase) activity in shoots and roots (SODase activity in shoots excluded) were in the same trend with the promotion of proline (Pro) but differed with acetylcholinesterase activity (except in shoots under DnBP) for analyzed samples treated for 72 h and 14 days. Responses of representative storage compounds free amino acids (FAA) and total soluble sugar (TSS) under both PAEs were raised. Sensitivity of APXase and Pro in roots demonstrates their possibility in estimation of PAE phytotoxicity and the higher toxicity of DnBP, which has also been approved by the morphological photos of seedlings at day 14. Higher sensitivity of the roots was also observed. The recommended soil allowable concentration is 5 mg DnBP kg(-1) soil for the development of rape. We still need to know the phytotoxicity of DEHP at whole seedling stage for both the growing and development; on the other hand, soil criteria for PAE compounds are urgently required in China.
Collapse
Affiliation(s)
- Tingting Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | | | | |
Collapse
|
22
|
Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2013; 15:513-521. [PMID: 23819293 DOI: 10.1080/15226514.2012.702807] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effects of 60-d cadmium (Cd) exposure on enzymatic and non-enzymatic antioxidative system of Oryza sativa L. seedlings at tillering stage were studied using soil culture experiment. Research findings showed that chlorophyll content of Oryza sativa L. declined with the increase in soil metal concentration. Cd pollution induced the antioxidant stress by inducing O2(-1) and H2O2, which increased in plants; at the same time, MDA as the final product of peroxidation of membrane lipids, accumulated in plant. The antioxidant enzyme system was initiated under the Cd exposure, i.e. almost all the activities of superoxide dismutase (SOD), peroxidase, catalase, glutathione peroxidase, and ascorbate peroxidase were elevated both in leaves and roots. The non-protein thiols including phytochelatins and glutathione to scavenge toxic free radicals caused by Cd stress was also studied. The contents of phytochelatins and glutathione were about 3.12-6.65-fold and 3.27-10.73-fold in leaves, against control; and the corresponding values were about 3.53-9.37-fold and 1.41-5.11-fold in roots, accordingly.
Collapse
Affiliation(s)
- Fangming Yu
- College of Resource and Environment, Guangxi Normal University, Guilin, China
| | | | | | | | | | | |
Collapse
|
23
|
Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. CHEMOSPHERE 2012; 89:743-50. [PMID: 22858258 DOI: 10.1016/j.chemosphere.2012.07.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 05/15/2023]
Abstract
The aim of this work was to evaluate effects of endophytic bacterium inoculation on plant growth and assess the possible mechanism of endophyte in heavy metal phytoremediation. Seeds of Solanum nigrum L. were inoculated with endophyte Serratia nematodiphila LRE07 and were subjected to Cd in the growing medium. Cd produced a significant inhibition on plant growth and a reduction in the content of photosynthetic pigments. The inoculation of endophytic bacterium alleviated the Cd-induced changes, resulting in more biomass production and higher photosynthetic pigments content of leaves compared with non-symbiotic ones. The beneficial effect was more obvious at relatively low Cd concentration (10 μM). Based on the alteration of nutrient uptake and activated oxygen metabolism in infected plants, the possible mechanisms of endophytic bacterium in Cd phytotoxicity reduction can be concluded as uptake enhancement of essential mineral nutrition and improvement in the antioxidative enzymes activities in infected plant.
Collapse
Affiliation(s)
- Yong Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The effects of simulated acid rain and heavy metal pollution on the mountain birch–autumnal moth interaction. CHEMOECOLOGY 2012. [DOI: 10.1007/s00049-012-0114-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Sun SQ, He M, Wang GX, Cao T. Heavy metal-induced physiological alterations and oxidative stress in the moss Brachythecium piligerum chad. ENVIRONMENTAL TOXICOLOGY 2011; 26:453-458. [PMID: 20196150 DOI: 10.1002/tox.20571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/05/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Antioxidative enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX)), as well as lipid peroxidation and proline were studied in moss Brachythecium piligerum Card. collected from different sites in Shanghai, China, to validate the physiological parameters as biomarkers of atmospheric heavy metal pollution. Results demonstrated that the responses of POD and CAT activities, as well as MDA and proline contents were in accordance with the heavy metal contents in mosses. That is, POD activity, MDA, and proline content were activated and CAT activity was inhibited in heavier polluted sites, indicating that POD and CAT activities, and MDA and proline contents could be used as biomarkers for biomonitoring atmospheric heavy metal pollution.
Collapse
Affiliation(s)
- Shou-Qin Sun
- Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu 610041, China.
| | | | | | | |
Collapse
|
26
|
Yan S, Zhou Q. Toxic effects of Hydrilla verticillata exposed to toluene, ethylbenzene and xylene and safety assessment for protecting aquatic macrophytes. CHEMOSPHERE 2011; 85:1088-1094. [PMID: 21840036 DOI: 10.1016/j.chemosphere.2011.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/28/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
Little information is available about the toxicity of toluene, ethylbenzene and xylene acting on macrophytes, and their toxicity data are rarely used in regulation and criteria decisions. The results extended the knowledge on toxic effects of toluene, ethylbenzene and xylene on aquatic plants. The responses of Hydrilla verticillata to these pollutants were investigated. Chlorophyll levels, lipid peroxidation, and antioxidant enzymes (superoxide dismutase and guaiacol peroxidase) showed diverse responses at different concentrations of toluene, ethylbenzene and xylene. The linear regression analyses were performed respectively, suggesting the concentrations of toluene, ethylbenzene and xylene expected to protect aquatic macrophytes were 7.30 mg L⁻¹, 1.15 mg L⁻¹ and 2.36 mg L⁻¹, respectively. This study emphasized that aquatic plants are also sensitive to organic pollutants as fishes and zooplanktons, indicating that macrophytes could be helpful in predicting the toxicity of these pollutants and should be considered in regulation and criteria decisions for aquatic environment protection.
Collapse
Affiliation(s)
- Sha Yan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | | |
Collapse
|
27
|
Sarma H. Metal Hyperaccumulation in Plants: A Review Focusing on Phytoremediation Technology. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jest.2011.118.138] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Sun SQ, He M, Cao T, Yusuyin Y, Han W, Li JL. Antioxidative responses related to H(2)O(2) depletion in Hypnum plumaeforme under the combined stress induced by Pb and Ni. ENVIRONMENTAL MONITORING AND ASSESSMENT 2010; 163:303-12. [PMID: 19283499 DOI: 10.1007/s10661-009-0835-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 02/05/2009] [Indexed: 05/09/2023]
Abstract
The short-term responses of H(2)O(2)-depletion-related parameters in moss Hypnum plumaeforme to the combined stress induced by Pb and Ni were investigated. The results showed that the Pb and Ni stress induced dose-dependent accumulation of hydrogen peroxide (H(2)O(2)). The increase of peroxidase (POD) activity and decrease of ascorbate peroxidase (APX) activity were observed under the combined heavy metal application. The antioxidants, ascorbate (AsA) and proline content, increased significantly when the metals were applied together. The study indicated that the cell damage caused by Pb stress was higher than that caused by Ni stress, Pb and Ni had synergistic effect in inducing the oxidative stress in moss H. plumaeforme, especially under the combination of high concentration of Ni (0.1 and 1.0 mM) and Pb. Content of proline, H(2)O(2) and the activity of POD, all showed a dose-dependent increase under Pb and Ni stress, suggesting their practical value as biomarkers in moss biomonitoring, especially in the case of light pollution caused by heavy metals without the changes in the appearance of mosses.
Collapse
Affiliation(s)
- Shou-Qin Sun
- Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu, 610041, China
| | | | | | | | | | | |
Collapse
|
29
|
Sun BY, Kan SH, Zhang YZ, Wu J, Deng SH, Liu CS, Yang G. Retracted: Long-term copper toxicity in apple trees (Malus pumila Mill) and bioaccumulation in fruits. ENVIRONMENTAL TOXICOLOGY 2010:n/a-n/a. [PMID: 20082444 DOI: 10.1002/tox.20565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The following article from Environmental Toxicology, 'Long-term Copper Toxicity in Apple Trees (Malus pumila Mill) and Bioaccumulation in Fruits' by Bai-Ye Sun, Shi- Hong Kan, Yan-Zong Zhang, Jun Wu, Shi-Huai Deng, Chun-Sheng Liu and Gang Yang, published online on January 15, 2010 in Wiley InterScience (www.interscience.wiley.com; DOI: 10.1002/tox.20565), has been retracted by agreement between the authors, the journal Editor in Chief, Dr. Paul Tchounwou, and Wiley Periodicals, Inc. The retraction has been agreed at the request of the authors due to overlap with 'Copper Toxicity and Bioaccumulation in Chinese Cabbage (Brassica pekinensis Rupr.)' by Zhi-Ting Xiong and Hai Wang, published in Environmental Toxicology, Volume 20, pages 188-194, 2005.
Collapse
Affiliation(s)
- Bai-Ye Sun
- Provincial Key Laboratory of Agro-Environmental Engineering, Sichuan Agricultural University, Sichuan, Ya'an 625014, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ruuhola T, Rantala LM, Neuvonen S, Yang S, Rantala MJ. Effects of long-term simulated acid rain on a plant–herbivore interaction. Basic Appl Ecol 2009. [DOI: 10.1016/j.baae.2009.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Liu Z, He X, Chen W, Yuan F, Yan K, Tao D. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator--Lonicera japonica Thunb. JOURNAL OF HAZARDOUS MATERIALS 2009; 169:170-5. [PMID: 19380199 DOI: 10.1016/j.jhazmat.2009.03.090] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 05/15/2023]
Abstract
Phytoremediation using hyperaccumulators is a promising technique of removing soil pollutants. In the study, growth responses, cadmium (Cd) accumulation capability and physiological mechanisms of Lonicera japonica Thunb. under Cd stress were investigated. Exposed to 5 and 10 mg L(-1) Cd, the plants did not show any visual symptoms, furthermore, the height, dry biomass of leaves, roots and total and the chlorophyll (CHL) content were obtained different grade increase. When the concentration of Cd was up to 50 mg L(-1), the height, dry biomass of leaves and roots had not significant differences compared with the control. The indexes of tolerance (IT) were all above 0.8. The maintenance of high superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, suggesting strong internal detoxification mechanisms inside plant cells. After 21 days exposure to 25 mg L(-1) Cd, stem and shoot Cd concentrations reached 344.49+/-0.71 and 286.12+/-9.38 microg g(-1) DW, respectively and the plant had higher bioaccumulation coefficient (BC) and translocation factor (TF). According to these results, it was shown L. japonica had strong tolerance and accumulation capability to Cd, therefore it is a potential Cd-hyperaccumulator.
Collapse
Affiliation(s)
- Zhouli Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenhe District, Shenyang 110016, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Kuki KN, Oliva MA, Pereira EG, Costa AC, Cambraia J. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 403:207-214. [PMID: 18571219 DOI: 10.1016/j.scitotenv.2008.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.
Collapse
Affiliation(s)
- Kacilda Naomi Kuki
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Brazil.
| | | | | | | | | |
Collapse
|
33
|
Ghassemzad F, Yousefzade H, Arbab-Zava M. Removing Arsenic and Antimony by Phragmites australis: Rhizofiltration Technology. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/jas.2008.1668.1675] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Israr M, Sahi S, Datta R, Sarkar D. Bioaccumulation and physiological effects of mercury in Sesbania drummondii. CHEMOSPHERE 2006; 65:591-8. [PMID: 16564071 DOI: 10.1016/j.chemosphere.2006.02.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 02/07/2006] [Accepted: 02/13/2006] [Indexed: 05/07/2023]
Abstract
The accumulation of mercury and its effect on growth, photosynthesis and antioxidative responses were studied in Sesbania drummondii seedlings. Mercury concentration in shoots as well as in the roots increased with increasing Hg concentrations in the growth solution. The accumulation of Hg was more in roots than shoots. At 100 mg l-1 Hg concentration, shoots accumulated 998 mg Hg kg -1 dry weight (dw) while roots accumulated 41,403 mg Hg kg-1 dw. Seedlings growth was not significantly affected at lower concentrations of Hg. A concentration of 100 mg l-1 Hg inhibited growth by 36.8%, with respect to control. Photosynthetic activity was assessed by measuring chlorophyll a fluorescence by determination of Fv/Fm and Fv/Fo values. Photosynthetic integrity was not affected up to 50 mg l-1 Hg concentration, however, concentrations higher than 50 mg l-1 affected photosynthetic integrity. Sesbania responded to Hg induced oxidative stress by modulating non-enzymatic antioxidants [glutathione (GSH) and non-protein thiols (NPSH)] and enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR). Glutathione content and GSH/GSSG ratio increased up to a concentration of 50 mg l-1 while slight down at 100 mg l-1 Hg. The content of NPSH significantly increased with increasing Hg concentrations in the growth medium. The activities of antioxidative enzymes, SOD, APX and GR followed the same trends as antioxidants first increased up to a concentration of 50 mg l-1 Hg and then slight decreased. The results of present study suggest that Sesbania plants were able to accumulate and tolerate Hg induced stress using an effective antioxidative defense mechanisms.
Collapse
Affiliation(s)
- Mohd Israr
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | | | | | | |
Collapse
|
35
|
Israr M, Sahi SV, Jain J. Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:121-7. [PMID: 16247566 DOI: 10.1007/s00244-005-5029-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Accepted: 07/18/2005] [Indexed: 05/05/2023]
Abstract
The effect of cadmium (Cd) on growth, accumulation, and antioxidative response was studied in Sesbania drummondii callus, cultivated on different concentrations of Cd (0-250 microM) for four weeks. Callus growth was comparable to that of the control for concentrations up to 50 microM Cd; however, concentrations higher than 50 microM affected growth. A concentration of 100 microM Cd inhibited growth by 16%, with respect to control. Cd concentration in callus increased with increasing Cd concentrations in the growth medium. Callus accumulated 530 mg Cd kg(-1) of their dry weight at 100 microM Cd concentration. Sesbania callus responded to Cd-induced oxidative stress by modulating antioxidants (glutathione and other non-protein thiols) level and antioxidative enzymes: superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). The content of the glutathione (GSH) and GSH/GSSG ratio first increased up to a concentration of 50 microM Cd and then decreased. The content of other non-protein thiols significantly increased with increasing Cd concentrations in the growth medium. The activities of antioxidative enzymes, SOD, APX, and GR, followed the same trends as antioxidants first increasing up to a concentration of 50 microM Cd and then decreasing. These results suggest that antioxidative defense mechanisms play a significant role in Cd detoxification and accumulation in Sesbania drummondii.
Collapse
Affiliation(s)
- M Israr
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky 42101, USA
| | | | | |
Collapse
|
36
|
Gratão PL, Polle A, Lea PJ, Azevedo RA. Making the life of heavy metal-stressed plants a little easier. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:481-494. [PMID: 32689149 DOI: 10.1071/fp05016] [Citation(s) in RCA: 457] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 04/28/2005] [Indexed: 05/04/2023]
Abstract
The contamination of soils and water with metals has created a major environmental problem, leading to considerable losses in plant productivity and hazardous health effects. Exposure to toxic metals can intensify the production of reactive oxygen species (ROS), which are continuously produced in both unstressed and stressed plants cells. Some of the ROS species are highly toxic and must be detoxified by cellular stress responses, if the plant is to survive and grow. The aim of this review is to assess the mode of action and role of antioxidants in protecting plants from stress caused by the presence of heavy metals in the environment.
Collapse
Affiliation(s)
- Priscila L Gratão
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba CEP 13418-900, SP, Brazil
| | - Andrea Polle
- Forstbotanisches Institut, Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Peter J Lea
- Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ, United Kingdom
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba CEP 13418-900, SP, Brazil
| |
Collapse
|
37
|
Xiong ZT, Wang H. Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). ENVIRONMENTAL TOXICOLOGY 2005; 20:188-194. [PMID: 15793819 DOI: 10.1002/tox.20094] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Copper is among the major heavy metal contaminants in the environment with various anthropogenic and natural sources. Human health risk from heavy metal bioaccumulation in vegetables has been a subject of growing concern in recent years. To investigate Cu phytotoxic effects and bioaccumulation in the popular vegetable Chinese cabbage (Brassica pekinensis Rupr) as well as the implications for human health due to Cu in the vegetable supply, seed germination and pot culture experiments with this vegetable were carried out. Six levels (0, 0.008, 0.031, 0.125, 0.5, and 2.0 mM/L) and 3 levels (0, 0.2, and 1.0 mM/kg) of Cu treatments were performed for the seed germination and pot culture experiments, respectively. The LC(50) of Cu for seed germination of Chinese cabbage was 0.348 mM/L. In the pot culture experiments, Cu treatments significantly increased electrolyte leakage and peroxidase activity of shoot tissues, demonstrating Cu phytotoxicity to the plants. On the other hand, Cu treatments significantly stimulated, instead of reduced, chlorophyll content. Cu treatments did not show a significant effect on shoot biomass. Compared to the control, Cu treatments significantly elevated the Cu content of the shoots-9.9, 42.5, and 119.0 mg/kg (DW) of Cu were detected in the 0, 0.2, and 1.0 mM/kg treatments, respectively. These results showed that although the plants accumulated an elevated copper content and suffered damage to some extent under Cu treatment, they looked healthy. It was suggested that Chinese cabbage with an elevated Cu content and without showing visible symptoms of damage possibly could cause a risk to human health from the transfer of the metal in food.
Collapse
Affiliation(s)
- Zhi-Ting Xiong
- Department of Environmental Sciences, Wuhan University, Wuhan, Hubei 430079, People's Republic of China.
| | | |
Collapse
|
38
|
Cao X, Ma LQ, Tu C. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2004; 128:317-325. [PMID: 14720474 DOI: 10.1016/j.envpol.2003.09.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 09/22/2003] [Indexed: 05/24/2023]
Abstract
This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg(-1) (Na2HAsO4) for 12 weeks in a greenhouse. Soil As concentrations at < or =20 mg kg(-1) enhanced plant growth, with 12-71% biomass increase compared to the control. Such beneficial effects were not observed at >20 mg As kg(-1). Plant As concentrations increased with soil As concentrations, with more As being accumulated in the fronds (aboveground biomass) than in the roots and with maximum frond As concentration being 4675 mg kg(-1). Arsenic uptake by Chinese brake enhanced uptake of nutrient elements K, P, Fe, Mn, and Zn except Ca and Mg, whose concentrations mostly decreased. The contents of non-enzymatic antioxidants (glutathione, acid-soluble thiol) followed similar trends as plant As concentrations, increasing with soil As concentrations, with greater contents in the fronds than in the roots especially when exposed to high As concentrations (>50 mg kg(-1)). The activities of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase) in Chinese brake followed the same trends as plant biomass, increasing with soil As up to 20 mg kg(-1) and then decreased. The results indicated though both enzymatic and non-enzymatic antioxidants played significant roles in As detoxification and hyperaccumulation in Chinese brake, the former is more important at low As exposure (< or =20 mg kg(-1)), whereas the latter is more critical at high As exposure (50-200 mg kg(-1)).
Collapse
Affiliation(s)
- Xinde Cao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
39
|
MacFarlane GR. Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems. MARINE POLLUTION BULLETIN 2002; 44:244-256. [PMID: 11954742 DOI: 10.1016/s0025-326x(01)00255-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sediment loadings and leaf accumulation of the heavy metals copper (Cu), lead (Pb) and zinc (Zn) with accompanying changes in leaf chlorophylls' (a + b), carotenoids and the antioxidant enzyme peroxidase were examined in the grey mangrove Avicennia marina (Forsk.) Vierh, in order to determine the applicability of these parameters as biomarkers of heavy metal stress under field conditions. Copper was found to show limited accumulation to leaf tissue, following a linear relationship at lower sediment concentrations, with saturation at higher sediment Cu concentrations. Copper accumulation relationships to leaf tissue were maintained temporally, and increases in sediment Cu, salinity, and decreases in sediment pH and Zn contributed to the accumulation of Cu to leaf tissue. Lead showed a significant relationship between sediment and leaf Pb levels, but accumulation was minimal. Accumulation relationships for Pb were not maintained temporally, and high sediment Pb, low pH and organic content increased bioavailability and accumulation of Pb. Zinc was the most mobile of all metals and was accumulated to the greatest quantities in leaf tissue in a dose-dependant relationship. Some temporal variation in Zn accumulation occurred, and higher sediment pH, organic content Zn and Pb promoted leaf Zn accumulation. Leaf Cu and Zn showed the strongest relationship with peroxidase activity and to a lesser degree Pb. Zinc was the only accumulated metal to show relationship maintenance with peroxidase activity over time. It was found that peroxidase activity best reflects the total phytotoxic effect from the combined metal stress of all three accumulated leaf metals. The only significant photopigment relationship evidenced was that of leaf Zn with the chlorophyll a/b ratio, but was not maintained temporally. Peroxidase activity may be an appropriate biomarker for Zn or total metal accumulation in leaf tissue, and the chlorophyll a/b ratio a suitable biomarker of Zn accumulation though requires temporal monitoring under field conditions.
Collapse
Affiliation(s)
- G R MacFarlane
- School of Biological and Chemical Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
40
|
Monni S, Uhlig C, Junttila O, Hansen E, Hynynen J. Chemical composition and ecophysiological responses of Empetrum nigrum to aboveground element application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2001; 112:417-426. [PMID: 11291448 DOI: 10.1016/s0269-7491(00)00139-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Empetrum nigrum L. (crowberry) is one of the plants surviving near the Cu-Ni smelters in Finland and Russia. According to field observations, the fine roots of E. nigrum are situated below 40 cm depth and the root biomass is reduced in the polluted sites. This could cause a reduced root uptake of macronutrients and trace elements in the field and, therefore, the possible element uptake by aboveground parts of E. nigrum was studied in a greenhouse. Six different treatment solutions containing various heavy metal and macronutrient concentrations were applied to the stems and leaves of E. nigrum and the chemical composition and ecophysiological parameters were measured. Heavy metal concentrations in the leaves and stem bark, and Cu concentrations in the stems, increased with increasing metal concentrations in the spraying solutions. The bark and leaves had higher heavy metal concentrations than the stems of comparable age classes. The macronutrient and Mn concentrations in E. nigrum did not change significantly with increasing element concentrations in the spraying solution. Neither the stem water potential nor the leaf chlorophyll concentrations showed any clear response to element applications. Therefore, the element uptake by aboveground parts of E. nigrum was not confirmed by this study. However, there was a tendency to a decrease in CO2 exchange rate and increase in foliar abscisic acid content in plants treated with the highest element concentrations.
Collapse
Affiliation(s)
- S Monni
- Vantaa Research Centre, Finnish Forest Research Institute, Box 18, FIN-01301 Vantaa, Finland.
| | | | | | | | | |
Collapse
|
41
|
Monni S, Salemaa M, Millar N. The tolerance of Empetrum nigrum to copper and nickel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2000; 109:221-9. [PMID: 15092893 DOI: 10.1016/s0269-7491(99)00264-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/1999] [Accepted: 09/14/1999] [Indexed: 05/07/2023]
Abstract
The Cu and Ni tolerance of 3- to 5-year-old cuttings of crowberry (Empetrum nigrum) were tested in controlled conditions. Six levels of Cu (0.1-100 mg l(-1)), five levels of Ni (0-100 mg l(-1)) and nine levels of Cu+Ni were applied. The elongation of the shoots, new shoot and root dry weights indicated an adverse effect of increasing Cu and Ni concentrations. At low Cu levels the addition of Ni decreased the dry weights more than at high Cu levels. The results show that E. nigrum accumulated high concentrations of Cu and Ni mainly in old stem tissue, which contained a maximum of over 3000 mg kg(-1) Cu and 1000 mg kg(-1) Ni. The concentrations of Cu and Ni in E. nigrum were higher than those measured in plants growing in areas near to Cu-Ni smelters, but the accumulation pattern was similar. The survival of the cuttings was not affected suggesting that E. nigrum possesses an internal heavy metal tolerance.
Collapse
Affiliation(s)
- S Monni
- Vantaa Research Centre, Finnish Forest Research Institute, PO Box 18, FIN-01301 Vantaa, Finland.
| | | | | |
Collapse
|
42
|
Cho U, Park J. Mercury-induced oxidative stress in tomato seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 156:1-9. [PMID: 10908800 DOI: 10.1016/s0168-9452(00)00227-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mercury content and distribution as well as its effects on growth and oxidative stress were investigated in 30-day-old tomato seedlings (Lycopersicon esculentum Mill.). The content of Hg increased with external Hg concentrations, and was considerably higher in roots than in shoots. Among the leaves, the mature leaves accumulated more. Excess Hg suppressed biomass production of both roots and shoots and reduced chlorophyll content in leaves. Further, substantial increases of H(2)O(2) content, malondialdehyde formation, and antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) were observed in Hg-stressed plants in comparison with controls. The results suggest that the phytotoxic effects of Hg in tomato seedlings may be achieved by an enhanced production of active oxygen species (AOS) and subsequent lipid peroxidation.
Collapse
Affiliation(s)
- U Cho
- Department of Biology, College of Natural Science, Changwon National University, Kyungsangnamdo 641-773, Changwon, South Korea
| | | |
Collapse
|