1
|
Marcon C, Nora L, Deolindo GL, Signor MH, Brunetto ALR, Benedeti PDB, Cucco DDC, Lobo LE, Wagner R, Klein B, Bajay MM, Bissacotti BF, Silveira MV, Paula EM, Santos VL, da Silva JB, da Silva AS. Inclusion of yeast and saccharides based-product to replace monensin in the diet of confined steers: performance, rumen environment, metabolism, animal health, and meat quality. Trop Anim Health Prod 2025; 57:120. [PMID: 40088304 DOI: 10.1007/s11250-025-04353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
The present study aimed to evaluate a blend of yeast and saccharides based-product fed via diet to feedlot cattle on performance, health, meat quality, and rumen metabolism when compared to monensin. Twenty-four non-castrated crossbred male steers (Charolais x Nellore) were divided into control (n = 12), receiving the basal diet with monensin (215 mg/animal/day) and treatment (n = 12) receiving the basal diet with the blend of yeast and saccharides based-product (17.2 g/animal/day). Animals were weighed on days 1, 20, and 113, and on days 20, 70, and 113, blood and rumen fluid were collected, which was also used to determine the genera of bacteria present in the rumen and to quantify protozoa. Total feces were collected to determine apparent total tract digestibility from days 108 to 112 of the experiment. There was no treatment effect for weight gain, feed intake, or feed efficiency. There was a gain in the loin eye area in the control group (P = 0.05) and greater subcutaneous fat thickness in the loin and rump cap control group (P = 0.01). In the ruminal fluid, there was higher protozoa count in the treatment group on day 113 (P = 0.03) and a higher proportion of propionic acid in the treatment group on day 70 (P = 0.03). Total short-chain fatty acids were lower in steers in the treatment group. There was no treatment effect on the ruminal microbiota. There were lower counts of lymphocytes and granulocytes in the blood of steer in the treatment group (P < 0,05). A significant increase in the concentrations of immunoglobin A (IgA) and others heavy-chain immunoglobulins (IgM, IgG, IgM and IgE) were observed in the treatment group. There was an effect of treatment on glutathione S-transferase (GST) activity on days 70 and 113 (P = 0.02). Likewise, high GST activity in the liver was identified in the treatment group (P = 0.01). For fatty acid profile in meat, oleic acid presented higher proportion in the treatment group (P = 0.04), in contrast to docis-5,8,11,14,17-eicosapentaenoic acid, which was lower in the same group (P = 0.05). It is concluded that the blend of yeast and saccharides based-product played a role similar to monensin's in productive performance, demonstrating a potential to substitute monensin. Furthermore, the inclusion of yeast and saccharides in the diet stimulated the humoral immune response and antioxidant action without affecting meat quality.
Collapse
Affiliation(s)
- Charles Marcon
- Postgraduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Luisa Nora
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology, Universidade Do Estado de Santa Catarina (UDESC), Lages, SC, Brazil
| | - Guilherme L Deolindo
- Multicenter Postgraduate Program in Biochemistry and Molecular Biology, Universidade Do Estado de Santa Catarina (UDESC), Lages, SC, Brazil
| | - Mateus H Signor
- Postgraduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Andrei L R Brunetto
- Postgraduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | | | | | - Luiz E Lobo
- Department of Food Sciences, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Roger Wagner
- Department of Food Sciences, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bruna Klein
- Department of Animal Science, UDESC, Chapecó, Brazil
| | - Miklos M Bajay
- Higher Education Center of the Southern Region, UDESC, Laguna, Brazil
| | | | | | - Eduardo M Paula
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo, 14160-970, Brazil
| | - Verônica Lisboa Santos
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo, 14160-970, Brazil
| | - Juliana Bueno da Silva
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo, 14160-970, Brazil
| | | |
Collapse
|
2
|
Antiviral Activity against Respiratory Syncytial Virus of Polysaccharide from Jerusalem Artichoke (Helianthus tuberosus L.). BIOMED RESEARCH INTERNATIONAL 2022; 2022:1809879. [PMID: 36193325 PMCID: PMC9526606 DOI: 10.1155/2022/1809879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Jerusalem artichoke (Helianthus tuberosus L.) polysaccharide (JAP) is a chain polysaccharide composed of D-fructose connected by β (1-2) glycosidic bonds, which is a kind of inulin. This study evaluated the anti-respiratory syncytial virus (RSV) activity of JAP in vivo and in vitro. To investigate its antiviral activity, an MTT assay, q-PCR, enzyme-linked immunosorbent assay (ELISA), and lung histological observation were performed. The results showed that JAP showed anti-RSV activity in vitro with a half maximal inhibitory concentration (IC50) of approximately 29.15 μg/mL. In vivo results suggested that JAP could effectively inhibit RSV proliferation in the lungs and improve lung tissue lesions in RSV-infected mice. Additionally, JAP could also reduce the expression of TLR3 and TLR4 in the lungs, increase serum anti-inflammatory factors IL-4 levels, and reduce pro-inflammatory factors TNF-α and TNF-β levels, which may be related to its anti-RSV activity. This study provides a new approach to anti-RSV therapy and enriches the potential applications of JAP.
Collapse
|
3
|
Li Y, Chen Y, Sun-Waterhouse D. The potential of dandelion in the fight against gastrointestinal diseases: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115272. [PMID: 35405251 DOI: 10.1016/j.jep.2022.115272] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dandelion (Taraxacum officinale Weber ex F. H. Wigg.), as a garden weed grown globally, has long been consumed as a therapeutic herb. Its folkloric uses include treatments of digestive disorders (dyspepsia, anorexia, stomach disorders, gastritis and enteritis) and associate complex ailments involving uterine, liver and lung disorders. AIM OF THE STUDY The present study aims to critically assess the current state of research and summarize the potential roles of dandelion and its constituents in gastrointestinal (GI) -protective actions. A focus is placed on the reported bioactive components, pharmacological activities and modes of action (including molecular mechanisms and interactions among bioactive substances) of dandelion products/preparations and derived active constituents related to GI protection. MATERIALS AND METHODS The available information published prior to August 2021 was reviewed via SciFinder, Web of Science, Google Scholar, PubMed, Elsevier, Wiley On-line Library, and The Plant List. The search was based on the ethnomedical remedies, pharmacological activities, bioactive compounds of dandelion for GI protection, as well as the interactions of the components in dandelion with the gut microbiota or biological regulators, and with other ingested bioactive compounds. The key search words were "Taraxacum" and "dandelion". RESULTS T. coreanum Nakai, T. mongolicum and T. officinale are the most commonly used species for folkloric uses, with the whole plant, leaves and root of dandelion being used more frequently. GI-protective substances of dandelion include taraxasterol, taraxerol, caffeic acid, chicoric acid, chlorogenic acid, luteolin and its glucosides, polysaccharides, inulin, and β-sitosterol. Dandelion products and derived constituents exhibit pharmacological effects against GI disorders, mainly including dyspepsia, gastroesophageal reflux disease, gastritis, small intestinal ulcer, ulcerative colitis, liver diseases, gallstones, acute pancreatitis, and GI malignancy. The underlying molecular mechanisms may include immuno-inflammatory mechanisms, apoptosis mechanism, autophagy mechanism, and cholinergic mechanism, although interactions of dandelion's constituents with GI health-related biological entities (e.g., GI microbiota and associated biological modulators) or other ingested bioactive compounds shouldn't be ignored. CONCLUSION The review reveals some in vivo and in vitro studies on the potential of dandelion derived products as complementary and alternative medicines/therapeutics against GI disorders. The whole herb may alleviate some symptoms related GI immuno-inflammatory basing on the abundant anti-inflammatory and anti-oxide active substances. Dandelion root could be a nontoxic and effective anticancer alternative, owing to its abundant terpenoids and polysaccharides. However, research related to GI protective dandelion-derived products remains limited. Besides the need of identifying bioactive compounds/complexes in various dandelion species, more clinical studies are also required on the metabolism, bioavailability and safety of these substances to support their applications in food, medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Yanni Li
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China
| | - Yilun Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong Province, China.
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| |
Collapse
|
4
|
Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, Rayas-Duarte P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022; 27:3400. [PMID: 35684338 PMCID: PMC9181911 DOI: 10.3390/molecules27113400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
The demand of foods with high antioxidant capacity have increased and research on these foods continues to grow. This review is focused on chlorogenic acids (CGAs) from green coffee, which is the most abundant source. The main CGA in coffee is 5-O-caffeoylquinic acid (5-CQA). Coffee extracts are currently the most widely used source to enhance the antioxidant activity of foods. Due to the solubility of CGAs, their extraction is mainly performed with organic solvents. CGAs have been associated with health benefits, such as antioxidant, antiviral, antibacterial, anticancer, and anti-inflammatory activity, and others that reduce the risk of cardiovascular diseases, type 2 diabetes, and Alzheimer's disease. However, the biological activities depend on the stability of CGAs, which are sensitive to pH, temperature, and light. The anti-inflammatory activity of 5-CQA is attributed to reducing the proinflammatory activity of cytokines. 5-CQA can negatively affect colon microbiota. An increase in anthocyanins and antioxidant activity was observed when CGAs extracts were added to different food matrices such as dairy products, coffee drinks, chocolate, and bakery products. The fortification of foods with coffee CGAs has the potential to improve the functionality of foods.
Collapse
Affiliation(s)
- Alexis Rojas-González
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| | - Claudia Yuritzi Figueroa-Hernández
- CONACYT-Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo 2779, Veracruz 91897, Mexico;
| | - Oscar González-Rios
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Mirna Leonor Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Rosa María González-Amaro
- CONACYT-Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, Mexico;
| | - Zorba Josué Hernández-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz 91897, Mexico; (A.R.-G.); (O.G.-R.); (M.L.S.-Q.); (Z.J.H.-E.)
| | - Patricia Rayas-Duarte
- Robert M. Kerr Food & Agricultural Products Center, Oklahoma State University, 123 FAPC, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Bui TI, Gill AL, Mooney RA, Gill SR. Modulation of Gut Microbiota Metabolism in Obesity-Related Type 2 Diabetes Reduces Osteomyelitis Severity. Microbiol Spectr 2022; 10:e0017022. [PMID: 35315698 PMCID: PMC9045376 DOI: 10.1128/spectrum.00170-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing osteomyelitis through hematogenous seeding or contamination of implants and open wounds following orthopedic surgeries. The severity of S. aureus-mediated osteomyelitis is enhanced in obesity-related type 2 diabetes (obesity/T2D) due to chronic inflammation impairing both adaptive and innate immunity. Obesity-induced inflammation is linked to gut dysbiosis, with modification of the gut microbiota by high-fiber diets leading to a reduction in the symptoms and complications of obesity/T2D. However, our understanding of the mechanisms by which modifications of the gut microbiota alter host infection responses is limited. To address this gap, we monitored tibial S. aureus infections in obese/T2D mice treated with the inulin-like fructan fiber oligofructose. Treatment with oligofructose significantly decreased S. aureus colonization and lowered proinflammatory signaling postinfection in obese/T2D mice, as observed by decreased circulating inflammatory cytokines (tumor necrosis factor-α [TNF-α]) and chemokines (interferon-γ-induced protein 10 kDa [IP-10], keratinocyte-derived chemokine [KC], monokine induced by interferon-γ [MIG], monocyte chemoattractant protein-1 [MCP-1], and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]), indicating partial reduction in inflammation. Oligofructose markedly shifted diversity in the gut microbiota of obese/T2D mice, with notable increases in the anti-inflammatory bacterium Bifidobacterium pseudolongum. Analysis of the cecum and plasma metabolome suggested that polyamine production was increased, specifically spermine and spermidine. Oral administration of these polyamines to obese/T2D mice resulted in reduced infection severity similar to oligofructose supplementation, suggesting that polyamines can mediate the beneficial effects of fiber on osteomyelitis severity. These results demonstrate the contribution of gut microbiota metabolites to the control of bacterial infections distal to the gut and polyamines as an adjunct therapeutic for osteomyelitis in obesity/T2D. IMPORTANCE Individuals with obesity-related type 2 diabetes (obesity/T2D) are at a five times increased risk for invasive Staphylococcus aureus osteomyelitis (bone infection) following orthopedic surgeries. With increasing antibiotic resistance and limited discoveries of novel antibiotics, it is imperative that we explore other avenues for therapeutics. In this study, we demonstrated that the dietary fiber oligofructose markedly reduced osteomyelitis severity and hyperinflammation following acute prosthetic joint infections in obese/T2D mice. Reduced infection severity was associated with changes in gut microbiota composition and metabolism, as indicated by increased production of natural polyamines in the gut and circulating plasma. This work identifies a novel role for the gut microbiome in mediating control of bacterial infections and polyamines as beneficial metabolites involved in improving the obesity/T2D host response to osteomyelitis. Understanding the impact of polyamines on host immunity and mechanisms behind decreasing susceptibility to severe implant-associated osteomyelitis is crucial to improving treatment strategies for this patient population.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Robert A. Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
6
|
Zou YF, Zhang YY, Zhu ZK, Fu YP, Paulsen BS, Huang C, Feng B, Li LX, Chen XF, Jia RY, Song X, He CL, Yin LZ, Ye G, Lv C, Yin ZQ. Characterization of inulin-type fructans from two species of Radix Codonopsis and their oxidative defense activation and prebiotic activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2491-2499. [PMID: 33063324 DOI: 10.1002/jsfa.10875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Codonopsis pilosula and C. tangshen are both plants widely used in traditional Chinese medicine. Polysaccharides, which are their primary active components, are thought to be important in their extensive use. In this study, two neutral polysaccharide fractions of C. pilosula (CPPN) and C. tangshen (CTPN) were obtained by fractionation on a DEAE-Sepharose column and characterized. RESULTS It was confirmed that the neutral polymers CPPN and CTPN were β-(2,1)-linked inulin-type fructans with non-reducing terminal glucose, and degree of polymerization (DP) of 19.6 and 25.2, respectively. The antioxidant and prebiotic activities in vitro were assayed based on IPEC-J2 cell lines and five strains of Lactobacillus. Results indicated that the effects of CPPN and CTPN were increased antioxidant defense in intestinal epithelial cells through enhanced cell viability, improved expression of total antioxidant capacity, glutathione peroxidase, superoxide dismutase and catalase, and reduced levels of malondialdehyde and lactic dehydrogenase. The prebiotic activity of CPPN and CTPN was demonstrated by the promoting effect on Lactobacillus proliferation in vitro. The different biological activities obtained between the two fractions are probably due to the different DP and thus molecular weights of CPPN and CTPN. CONCLUSION The inulin fractions from C. pilosula and C. tangshen were natural sources of potential intestinal antioxidants as well as prebiotics, which will be valuable in further studies and new applications of inulin-containing health products. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Yan-Yun Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Zhong-Kai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Berit S Paulsen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, Area of Pharmacognosy, University of Oslo, Oslo, Norway
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Chang-Liang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Li-Zi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| |
Collapse
|
7
|
Abstract
Several studies have shown that probiotics and synbiotics ameliorate dyslipidemia. However, the molecular mechanisms mediating their effects remain to be determined. Therefore, we aimed to compare the effects of a probiotic, a prebiotic, and a synbiotic in dyslipidemic Sprague–Dawley rats, and explore the mechanisms involved using a proteomic approach. The rats were allocated to five groups: a control group that was fed normal chow, and four high-fat diet-fed groups, three of which were administered a probiotic (Lactobacillus acidophilus), a prebiotic (inulin), or a combination of the two (a synbiotic) for 30 days. We showed that the administration of inulin, and especially L. acidophilus, improved the lipid profile and reduced the serum concentrations of inflammatory markers in high-fat diet-fed rats. Proteomic analysis showed changes in lipid elongation, glycerolipid metabolism, activation of antioxidants, and a reduction in the activation of the mitogen-activated protein kinase signaling pathway in the livers of rats administered L. acidophilus, which likely mediate its beneficial effects on inflammation and dyslipidemia by reduced the levels of 18.56% CRP, 35.71% TNF-α 25.6% LDL-C and 28.57% LDL-C/HDL-C ratio when compared to HF group. L. acidophilus and inulin may represent effective natural means of maintaining inflammation and dyslipidemia.
Collapse
|
8
|
Wang Y, Zhao Y, Xue F, Nan X, Wang H, Hua D, Liu J, Yang L, Jiang L, Xiong B. Nutritional value, bioactivity, and application potential of Jerusalem artichoke ( Helianthus tuberosus L.) as a neotype feed resource. ACTA ACUST UNITED AC 2020; 6:429-437. [PMID: 33364459 PMCID: PMC7750793 DOI: 10.1016/j.aninu.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022]
Abstract
The large-scale development of herbivorous animal husbandry in China has increased the demand for forage products. However, due to scarce land resources and poor soil quality, forage is in short supply. In particular, high-quality forage in China heavily relies on imports. The contradiction between supply and demand for forage grass products is increasingly notable. Therefore, the development of indigenous new forage resources with a strong ecological adaptability and a high nutritional value is a key to solving this problem. Jerusalem artichoke (JA, Helianthus tuberosus L.), a perennial herb of the genus Helianthus, has advantageous growth traits such as resistance to salinity, barrenness, drought, cold, and disease. The contents of crude protein, crude fiber, and calcium in the optimal harvest period of forage-type JA straw are comparable to those of alfalfa hay at the full bloom stage and the straw of ryegrass and corn at the mature stage. Inulin in JA tubers is a functional ingredient that has prebiotic effects in the gastrointestinal tract of monogastric animals and young ruminants. In addition, some bioactive substances (e.g. flavonoids, phenolic acids, sesquiterpenes, polysaccharides, and amino acids) in JA leaves and flowers have antibacterial, anti-inflammatory, and antioxidant functions as well as toxicities to cancer cells. These functional ingredients may provide effective alternatives to antibiotics used in livestock production. In this review, we summarized the potentials of JA as a feed ingredient from the aspects of nutritional value and fermenting characteristics of the straw, the functions of physiological regulation and disease prevention of inulin in the tubers, and bioactive substances in the leaves and flowers.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuguang Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Engineering Research Center of Feed Development, Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, 102206, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
9
|
Pujari R, Banerjee G. Impact of prebiotics on immune response: from the bench to the clinic. Immunol Cell Biol 2020; 99:255-273. [PMID: 32996638 DOI: 10.1111/imcb.12409] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Several preclinical and clinical studies have shown the immunomodulatory role exerted by prebiotics in regulating the immune response. In this review, we describe the mechanistic and clinical studies that decipher the cell signaling pathways implicated in the process. Prebiotic fibers are conventionally known to serve as substrate for probiotic commensal bacteria that release of short-chain fatty acids in the intestinal tract along with several other metabolites. Subsequently, they then act on the local as well as the systemic immune cells and the gut-associated epithelial cells, primarily through G-protein-coupled receptor-mediated pathways. However, other pathways including histone deacetylase inhibition and inflammasome pathway have also been implicated in regulating the immunomodulatory effect. The prebiotics can also induce a microbiota-independent effect by directly acting on the gut-associated epithelial and innate immune cells through the Toll-like receptors. The cumulative effect results in the maintenance of the epithelial barrier integrity and modulation of innate immunity through secretion of pro- and anti-inflammatory cytokines, switches in macrophage polarization and function, neutrophil recruitment and migration, dendritic cell and regulatory T-cell differentiation. Extending these in vitro and ex vivo observations, some prebiotics have been well investigated, with successful human and animal trials demonstrating the association between gut microbes and immunity biomarkers leading to improvement in health endpoints across populations. This review discusses scientific insights into the association between prebiotics, innate immunity and gut microbiome from in vitro to human oral intervention.
Collapse
Affiliation(s)
- Radha Pujari
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| | - Gautam Banerjee
- Innovation Centre, Tata Chemicals Ltd, Pune, Maharashtra, India
| |
Collapse
|
10
|
Wan X, Guo H, Liang Y, Zhou C, Liu Z, Li K, Niu F, Zhai X, Wang L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr Polym 2020; 246:116589. [PMID: 32747248 DOI: 10.1016/j.carbpol.2020.116589] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Inulin (IN), a fructan-type plant polysaccharide, is widely found in nature. The major plant sources of IN include chicory, Jerusalem artichoke, dahlia etc. Studies have found that IN possessed a wide array of biological activities, e.g. as a prebiotic to improve the intestinal microbe environment, regulating blood sugar, regulating blood lipids, antioxidant, anticancer, immune regulation and so on. Currently, IN is widely used in the food and pharmaceutical industries. IN can be used as thickener, fat replacer, sweetener and water retaining agent in the food industry. IN also can be applied in the pharmaceutics as stabilizer, drug carrier, and auxiliary therapeutic agent for certain diseases such as constipation and diabetes. This paper reviews the physiological functions of IN and its applications in the field of pharmaceutics, analyzes its present research status and future research direction. This review will serve as a one-in-all resource for the researchers who are interested to work on IN.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiyu Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zihao Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunwei Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengju Niu
- Shandong Institute of Traditional Chinese Medicine, Ji'nan, China
| | - Xin Zhai
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
11
|
Guo Y, Bian X, Liu J, Zhu M, Li L, Yao T, Tang C, Ravichandran V, Liao P, Papadimitriou K, Yin J. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods 2020; 9:E1045. [PMID: 32756378 PMCID: PMC7466307 DOI: 10.3390/foods9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Trillions of bacteria reside in the human gut and they metabolize dietary substances to obtain nutrients and energy while producing metabolites. Therefore, different dietary components could affect human health in various ways through microbial metabolism. Many such metabolites have been shown to affect human physiological activities, including short-chain fatty acids metabolized from carbohydrates; indole, kynurenic acid and para-cresol, metabolized from amino acids; conjugated linoleic acid and linoleic acid, metabolized from lipids. Here, we review the features of these metabolites and summarize the possible molecular mechanisms of their metabolisms by gut microbiota. We discuss the potential roles of these metabolites in health and diseases, and the interactions between host metabolism and the gut microbiota. We also show some of the major dietary patterns around the world and hope this review can provide insights into our eating habits and improve consumers' health conditions.
Collapse
Affiliation(s)
- Yao Guo
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Xiaohan Bian
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Jiali Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Ming Zhu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Lin Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Tingyu Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Congjia Tang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China;
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Konstantinos Papadimitriou
- Department of Food Science and Technology, School of Agriculture and Food, University of Peloponnese, 22131 Antikalamos, Greece;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| |
Collapse
|
12
|
The Effect of Inulin on Lifespan, Related Gene Expression and Gut Microbiota in InRp5545/TM3 Mutant Drosophila melanogaster: A Preliminary Study. Nutrients 2019; 11:nu11030636. [PMID: 30875994 PMCID: PMC6470987 DOI: 10.3390/nu11030636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Inulin is considered an efficient prebiotic and is beneficial for metabolic diseases via promoting intestinal probiotic enrichment and the metabolites of short-chain fatty acids (SCFAs). However, the effect of inulin on patients with InR deficiencies has seldom been reported. In this study, the lifespan, related gene expression, and gut microbiota of InRp5545/TM3 (insulin receptor mutant) Drosophila melanogaster under inulin treatment were investigated. The results showed that the lifespan was extended in only males and not in females. Furthermore, distinctly different patterns of gene expression were found between males and females, especially in the insulin/insulin-like growth factor (IGF)-like signalling (IIS) and target of rapamycin (TOR) pathways. Additionally, as a link between inulin and lifespan responses, the gut microbiota was distinctly separated by gender in both the standard diet group and the inulin treatment group, and the relationship between lifespan and the gut microbiota community was stronger in male flies than in females. This study provides preliminary evidence for the gender-dependent lifespan responses to inulin in insulin signalling-deficient Drosophila. However, controls such as wild-type and TM3 flies, and more InR mutant strains with different genetic backgrounds need to be further investigated to elucidate the mechanisms underlying the phenomenon.
Collapse
|
13
|
Abstract
Chlorogenic acids (CGA) are the main antioxidant compounds in the Western diet, due to their high concentrations in coffee associated with the high consumption of the beverage. Until about 10 years ago, like many other phenolic compounds, CGA were thought to be poorly absorbed in the human digestive system. Along the years, large amounts of information on the absorption and metabolism of these compounds have been unveiled, and today, it is known that, on average, about one third of the consumed CGA from coffee is absorbed in the human gastrointestinal tract, although large inter-individual variation exists. Considering results from in vitro animal and human studies, it is possible to conclude that the antioxidant and anti-inflammatory effects of coffee CGA are responsible for, at least to a certain extent, the association between coffee consumption and lower incidence of various degenerative and non-degenerative diseases, in addition to higher longevity.
Collapse
|
14
|
Samolińska W, Kowalczuk-Vasilev E, Grela ER. Comparative effect of different dietary inulin sources and probiotics on growth performance and blood characteristics in growing–finishing pigs. Arch Anim Nutr 2018; 72:379-395. [DOI: 10.1080/1745039x.2018.1505147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wioletta Samolińska
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Science, Lublin, Poland
| | - Edyta Kowalczuk-Vasilev
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Science, Lublin, Poland
| | - Eugeniusz R. Grela
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Science, Lublin, Poland
| |
Collapse
|
15
|
Fouré M, Dugardin C, Foligné B, Hance P, Cadalen T, Delcourt A, Taminiau B, Daube G, Ravallec R, Cudennec B, Hilbert JL, Lucau-Danila A. Chicory Roots for Prebiotics and Appetite Regulation: A Pilot Study in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6439-6449. [PMID: 29873488 DOI: 10.1021/acs.jafc.8b01055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The objectives of this work are to address the prebiotic effects of chicory ( Cichorium intybus) together with its possible role in appetite control. We compared nine chicory genotypes in order to determine if variations in the content of metabolites in the roasted roots would lead to modifications in release of satiety hormones and in composition of gut microbiota. To this aim, a 5-week dietary-intervention study was achieved using mice fed with distinct chicory-based preparations. A 16S rRNA gene-based metagenetic analysis of fecal microbiota was performed. In vitro gastrointestinal digestions were performed in order to study the effect of chicory intestinal digests on gut hormone regulation in enteroendocrine cells. Firmicutes/Bacteroidetes ratio and gut bacterial groups, such as Alloprevotella, Blautia, Alistipes, and Oscillibacter, were found to be modulated by chicory. On the other hand, CCK and GLP-1 satiety hormones were demonstrated to be significantly increased by chicory in vitro.
Collapse
Affiliation(s)
- Marion Fouré
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| | - Camille Dugardin
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| | - Benoît Foligné
- INSERM, CHRU , Université Lille, LIRIC-UMR 995 , F-59000 Lille , France
| | - Philippe Hance
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| | - Thierry Cadalen
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| | - Abigael Delcourt
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| | - Bernard Taminiau
- Faculty of Veterinary Medicine, FARAH , University of Liège , B-4000 Liège , Belgium
| | - Georges Daube
- Faculty of Veterinary Medicine, FARAH , University of Liège , B-4000 Liège , Belgium
| | - Rozenn Ravallec
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| | - Benoit Cudennec
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| | - Jean-Louis Hilbert
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| | - Anca Lucau-Danila
- EA 7394, ICV-Institut Charles Viollette , Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale , F-59000 Lille , France
| |
Collapse
|
16
|
M. AM, A. SO, H. AMAH. Performance, immunology and biochemical parameters of Moringa oleifera and/or Cichorium intybus addition to broiler chicken ration. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/jvmah2017.0611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Inulin: Properties, health benefits and food applications. Carbohydr Polym 2016; 147:444-454. [PMID: 27178951 DOI: 10.1016/j.carbpol.2016.04.020] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Inulin is a water soluble storage polysaccharide and belongs to a group of non-digestible carbohydrates called fructans. Inulin has attained the GRAS status in USA and is extensively available in about 36,000 species of plants, amongst, chicory roots are considered as the richest source of inulin. Commonly, inulin is used as a prebiotic, fat replacer, sugar replacer, texture modifier and for the development of functional foods in order to improve health due to its beneficial role in gastric health. This review provides a deep insight about its production, physicochemical properties, role in combating various kinds of metabolic and diet related diseases and utilization as a functional ingredient in novel product development.
Collapse
|
18
|
Salehimanesh A, Mohammadi M, Roostaei-Ali Mehr M. Effect of dietary probiotic, prebiotic and synbiotic supplementation on performance, immune responses, intestinal morphology and bacterial populations in broilers. J Anim Physiol Anim Nutr (Berl) 2016; 100:694-700. [DOI: 10.1111/jpn.12431] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Affiliation(s)
- A. Salehimanesh
- Department of Animal Science; Faculty of Agricultural Sciences; University of Guilan; Rasht Iran
| | - M. Mohammadi
- Department of Animal Science; Faculty of Agricultural Sciences; University of Guilan; Rasht Iran
| | - M. Roostaei-Ali Mehr
- Department of Animal Science; Faculty of Agricultural Sciences; University of Guilan; Rasht Iran
| |
Collapse
|
19
|
Madej J, Stefaniak T, Bednarczyk M. Effect of in ovo-delivered prebiotics and synbiotics on lymphoid-organs’ morphology in chickens. Poult Sci 2015; 94:1209-19. [DOI: 10.3382/ps/pev076] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/20/2022] Open
|
20
|
Implication of fructans in health: immunomodulatory and antioxidant mechanisms. ScientificWorldJournal 2015; 2015:289267. [PMID: 25961072 PMCID: PMC4417592 DOI: 10.1155/2015/289267] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/29/2015] [Accepted: 03/06/2015] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as “ROS scavengers” that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease.
Collapse
|
21
|
Galactooligosaccharides reduce infection caused by Listeria monocytogenes and modulate IgG and IgA levels in mice. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2014.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Jimenez ME, Rossi A, Sammán N. Health properties of oca (Oxalis tuberosa) and yacon (Smallanthus sonchifolius). Food Funct 2015; 6:3266-74. [DOI: 10.1039/c5fo00174a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Andean roots and tubers are underexploited crops; many contain compounds beneficial to health, so a greater knowledge of their properties is important for encouraging their consumption.
Collapse
Affiliation(s)
- María Eugenia Jimenez
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT
- and Instituto de Química Biológica “Dr. Bernabé Bloj”
- Facultad de Bioquímica
- T4000ILI – San Miguel de Tucumán
| | - Analia Rossi
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT
- and Instituto de Química Biológica “Dr. Bernabé Bloj”
- Facultad de Bioquímica
- T4000ILI – San Miguel de Tucumán
| | - Norma Sammán
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT
- and Instituto de Química Biológica “Dr. Bernabé Bloj”
- Facultad de Bioquímica
- T4000ILI – San Miguel de Tucumán
| |
Collapse
|
23
|
Franco-Robles E, López MG. Implication of fructans in health: immunomodulatory and antioxidant mechanisms. ScientificWorldJournal 2015. [PMID: 25961072 DOI: 10.1155/2015/289367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as "ROS scavengers" that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease.
Collapse
Affiliation(s)
- Elena Franco-Robles
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, GTO, Mexico
| | - Mercedes G López
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, GTO, Mexico
| |
Collapse
|
24
|
Miyaguchi Y, Tomatsuri T, Toyoda A, Inoue E, Ogawa Y. Effect of Yacon Tuber ( Smallanthus sonchifolius)-derived Fructooligosaccharides on the Intestinal Flora and Immune System of OVA-sensitized BALB/c Mice. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yuji Miyaguchi
- College of Agriculture, Ibaraki University
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM)
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | | | - Atsushi Toyoda
- College of Agriculture, Ibaraki University
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM)
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Eiichi Inoue
- College of Agriculture, Ibaraki University
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM)
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Yasuki Ogawa
- College of Agriculture, Ibaraki University
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
25
|
Zhang X, Ding Y, Qu M, Lu D. Beneficial effects of ruminal oligosaccharide administration on immunologic system function in sheep. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas-2014-068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zhang, X., Ding, Y., Qu, M. and Lu, D. 2014. Beneficial effects of ruminal oligosaccharide administration on immunologic system function in sheep. Can. J. Anim. Sci. 94: 679–684. Oligosaccharides (Os) are considered prebiotics with potential beneficial immunomodulating effects, although little is known about their effects in ruminants. Therefore, the objective of this study was to investigate the effects of Os administration on sheep immunologic system function. Sheep were randomly allotted into three different treatment groups (three sheep each): (1) control, infused with equal volume of vehicle distilled water; (2) medium level, infused with 5.4 g Os d−1 (0.6% of basal diet); (3) higher level group, infused with 10.8 g Os d−1 (1.2% of basal diet). The study comprised three experimental stages, each with a 14-d adaptation period and a 21-d experimental period; Os were administered during each experimental period via cannulae placed in the rumen, duodenum or ileum, respectively. At 7, 14 and 21 d of infusion, the proportion of circulating CD4+ and CD8+ T-lymphocytes was assessed via flow cytometry, and serum IgA/IgG concentrations were analyzed using an ELISA test. The Os infusion increased (P<0.05) the proportion of CD4+ T-lymphocytes hence raising the CD4+ /CD8+ ratio, as well the serum concentrations of IgA and IgG. Interestingly, ruminal infusion yielded the best results, while ileal administration resulted in negative measurements. These findings may be useful to elucidate the cellular and molecular mechanisms responsible for enhanced immune functions in sheep receiving dietary supplementation with indigestible oligosaccharides.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yu Ding
- Laboratory Animal Center, Jilin University, Changchun 130062, China
| | - Mingren Qu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045
| | - Dexun Lu
- Insitute of Animal Nutrition, Inner Mongolian Academy of Agriculture and Animal Husbandry, Huhhot 010031, China
| |
Collapse
|
26
|
Dai Z, Su D, Zhang Y, Sun Y, Hu B, Ye H, Jabbar S, Zeng X. Immunomodulatory activity in vitro and in vivo of verbascose from mung beans (Phaseolus aureus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10727-10735. [PMID: 25317918 DOI: 10.1021/jf503510h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study, the immunostimulatory activity of verbascose from mung beans (Phaseolus aureus) was evaluated by using in vitro cell models and in vivo animal models. The results of in vitro experiments showed that verbascose could enhance the ability of devouring neutral red of peritoneal macrophages and promote the release of nitric oxide and immune reactive molecules such as interleukin (IL)-6, IL-1β, interferon (IFN)-α, and IFN-γ. Treatment with verbascose at a dose of 200 μg/mL exhibited the best effects. For assay in vivo, administration of verbascose at a medium dose of 90 mg/kg body weight could significantly increase the index of spleen, activity of lysozyme in spleen and serum, hemolysin level in serum, and swelling rate of earlap in the delayed type of hypersensitivity (DTH) of immunosuppressed mice. All of the results suggested that verbascose had potent immunostimulatory activity and could be explored as a potential natural immunomodulatory agent in functional foods.
Collapse
Affiliation(s)
- Zhuqing Dai
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vogt L, Meyer D, Pullens G, Faas M, Smelt M, Venema K, Ramasamy U, Schols HA, De Vos P. Immunological Properties of Inulin-Type Fructans. Crit Rev Food Sci Nutr 2014; 55:414-36. [DOI: 10.1080/10408398.2012.656772] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Vaz-Tostes MDG, Viana ML, Grancieri M, Luz TCDS, Paula HD, Pedrosa RG, Costa NMB. Yacon effects in immune response and nutritional status of iron and zinc in preschool children. Nutrition 2013; 30:666-72. [PMID: 24631386 DOI: 10.1016/j.nut.2013.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of yacon flour on iron and zinc nutritional status and immune response biomarkers in preschool children. METHODS Preschool children ages 2 to 5 y were selected from two nurseries and were placed into a control group (n = 58) or a yacon group (n = 59). The yacon group received yacon flour in preparations for 18 wk at a quantity to provide 0.14 g of fructooligosaccharides/kg of body weight daily. Anthropometric parameters were measured before and after the intervention and dietary intake was measured during the intervention. To assess iron and zinc status, erythrograms, serum iron, ferritin, and plasma, and erythrocyte zinc were evaluated. Systemic immune response was assessed by the biomarkers interleukin IL-4, IL-10, IL-6, and tumor necrosis factor-alfa (TNF-α). Intestinal immune response was analyzed by secretory IgA (sIgA) levels before and after the intervention. Statistical significance was evaluated using the paired t test (α = 5%). RESULTS Before and after the study, the children presented a high prevalence of overweight and an inadequate dietary intake of zinc and fiber. The yacon group presented with lower hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration at the end of the study (P < 0.05). Erythrocyte zinc was reduced in both groups at the end of the study (P < 0.05). Yacon intake increased the serum levels of IL-4 and fecal sIgA (P < 0.05). The control group had lower serum TNF-α after the study period (P < 0.05). CONCLUSION Yacon improved intestinal immune response but demonstrated no effect on the nutritional status of iron and zinc in preschool children.
Collapse
Affiliation(s)
- Maria das Graças Vaz-Tostes
- Department of Pharmacy and Nutrition, Center for Agrarian Sciences, Federal University of Espirito Santo, Alto Universitario, Alegre, ES, Brazil; Department of Nutrition, Federal University of Viçosa, PH Holfs, Viçosa, MG, Brazil.
| | - Mirelle Lomar Viana
- Department of Pharmacy and Nutrition, Center for Agrarian Sciences, Federal University of Espirito Santo, Alto Universitario, Alegre, ES, Brazil
| | - Mariana Grancieri
- Department of Pharmacy and Nutrition, Center for Agrarian Sciences, Federal University of Espirito Santo, Alto Universitario, Alegre, ES, Brazil
| | - Tereza Cecília dos Santos Luz
- Department of Pharmacy and Nutrition, Center for Agrarian Sciences, Federal University of Espirito Santo, Alto Universitario, Alegre, ES, Brazil
| | - Heberth de Paula
- Department of Pharmacy and Nutrition, Center for Agrarian Sciences, Federal University of Espirito Santo, Alto Universitario, Alegre, ES, Brazil
| | - Rogério Graça Pedrosa
- Department of Pharmacy and Nutrition, Center for Agrarian Sciences, Federal University of Espirito Santo, Alto Universitario, Alegre, ES, Brazil
| | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Agrarian Sciences, Federal University of Espirito Santo, Alto Universitario, Alegre, ES, Brazil; Department of Nutrition, Federal University of Viçosa, PH Holfs, Viçosa, MG, Brazil
| |
Collapse
|
29
|
Vulevic J, Juric A, Tzortzis G, Gibson GR. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 2013; 143:324-31. [PMID: 23303873 DOI: 10.3945/jn.112.166132] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Metabolic syndrome is a set of disorders that increases the risk of developing cardiovascular disease. The gut microbiota is altered toward a less beneficial composition in overweight adults and this change can be accompanied by inflammation. Prebiotics such as galactooligosaccharides can positively modify the gut microbiota and immune system; some may also reduce blood lipids. We assessed the effect of a galactooligosaccharide mixture [Bi2muno (B-GOS)] on markers of metabolic syndrome, gut microbiota, and immune function in 45 overweight adults with ≥3 risk factors associated with metabolic syndrome in a double-blind, randomized, placebo (maltodextrin)-controlled, crossover study (with a 4-wk wash-out period between interventions). Whole blood, saliva, feces, and anthropometric measurements were taken at the beginning, wk 6, and end of each 12-wk intervention period. Predominant groups of fecal bacteria were quantified and full blood count, markers of inflammation and lipid metabolism, insulin, and glucose were measured. B-GOS increased the number of fecal bifidobacteria at the expense of less desirable groups of bacteria. Increases in fecal secretory IgA and decreases in fecal calprotectin, plasma C-reactive protein, insulin, total cholesterol (TC), TG, and the TC:HDL cholesterol ratio were also observed. Administration of B-GOS to overweight adults resulted in positive effects on the composition of the gut microbiota, the immune response, and insulin, TC, and TG concentrations. B-GOS may be a useful candidate for the enhancement of gastrointestinal health, immune function, and the reduction of metabolic syndrome risk factors in overweight adults.
Collapse
Affiliation(s)
- Jelena Vulevic
- Department of Food and Nutritional Sciences, Food Microbial Sciences, and
| | | | | | | |
Collapse
|
30
|
Kovacs-Nolan J, Kanatani H, Nakamura A, Ibuki M, Mine Y. β-1,4-mannobiose stimulates innate immune responses and induces TLR4-dependent activation of mouse macrophages but reduces severity of inflammation during endotoxemia in mice. J Nutr 2013; 143:384-91. [PMID: 23343679 DOI: 10.3945/jn.112.167866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
β-1,4-Mannobiose (MNB) has been shown to exert prebiotic activity and modulate mucosal gene expression. In this study, the immune-modulating effect of MNB in healthy and endotoxemic mice and its role in Toll-like receptor (TLR) 2/4-mediated macrophage activation were investigated. Mice were supplemented daily with MNB (0, 5, 10, or 25 mg/kg) for 14 d. To examine the effect of MNB during endotoxemia, mice were supplemented with or without MNB (25 mg/kg) for 14 d, followed by challenge with intraperitoneal LPS or saline. MNB induced expression of both T helper (Th) 1- and Th2-type cytokines in the ileum (P < 0.05) and increased fecal IgA production and splenic NK cell activity (P < 0.05) in healthy mice. In endotoxemic mice, MNB reduced the expression of Tnfa, Il-6, iNos (P < 0.05), and Il-10 (P < 0.05), and reduced LPS-induced weight loss but increased Ifng, Il-12p40, Il-5, and Ifna expression (P < 0.05) and NK cell activity relative to positive control (LPS) mice. Treatment of RAW 264.7 macrophages with MNB induced TNF-α and IL-6 secretion (P < 0.05), and this effect was abrogated by inhibiting TLR4, but not TLR2, signaling. Pretreatment of RAW 264.7 cells with MNB induced tolerance to TLR2 and TLR4 agonists, reducing TNF-α production (P < 0.05) upon secondary stimulation with LPS or lipoteichoic acid. These results indicate that MNB can modulate intestinal and systemic immune responses in healthy and endotoxemic mice and prevent LPS-induced immune suppression, as well as directly stimulating innate immune mechanisms in vitro as a TLR4 agonist.
Collapse
|
31
|
Delgado GTC, Thomé R, Gabriel DL, Tamashiro WMSC, Pastore GM. Yacon (Smallanthus sonchifolius)-derived fructooligosaccharides improves the immune parameters in the mouse. Nutr Res 2012. [PMID: 23176799 DOI: 10.1016/j.nutres.2012.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Owing to its high contents of fructooligosaccharides (FOSs), the yacon (Smallanthus sonchifolius) root is used in traditional Andean medicine as a substitute for cane sugar in diabetes and for obesity prevention. This study was designed to test the hypothesis that regular consumption of yacon works to improve the immune system. BALB/c mice were fed with the AIN-93 diet supplemented with 5% commercial FOS or either 3% or 5% yacon FOS for 30 consecutive days. Animals in the control group were fed with nonsupplemented ration. Food intake; weight gain; serum levels of IgA, IgM, and IgG; levels of fecal IgA, production of nitric oxide by peritoneal macrophages, frequencies of T and B lymphocytes in the spleen and peripheral blood, T-cell proliferation, and cytokine production were evaluated in all groups. No significant differences were observed in food intake and weight gain when the experimental and control groups were compared. Also, serum levels of IgA, IgM, and IgG; nitric oxide production in peritoneal macrophages; frequencies of T and B lymphocytes in the spleen and peripheral blood; T-cell proliferation; and production of interleukin (IL)-4, interferon-γ, IL-10, and tumor necrosis factor α did not differ in the different groups. The intake of FOS, however, led to a significant reduction of the proinflammatory cytokine IL-1β in macrophage cultures and elevation of the levels of fecal IgA. Together, these results indicate that the daily consumption of yacon does not exert negative effects on the immune system, helps to preserve an anti-inflammatory state in phagocytic cells, and improves mucosal immunity, possibly preventing the risks associated with autoimmune and metabolic diseases.
Collapse
Affiliation(s)
- Grethel T Choque Delgado
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
32
|
Toward R, Montandon S, Walton G, Gibson GR. Effect of prebiotics on the human gut microbiota of elderly persons. Gut Microbes 2012; 3:57-60. [PMID: 22555548 DOI: 10.4161/gmic.19411] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The colonic microbiota undergoes certain age related changes that may affect health. For example, above the age of 55-65 y, populations of bifidobacteria are known to decrease markedly. Bifidobacteria are known inhibitors of pathogenic microbes and a decrease in their activities may increase susceptibility to infections. There is therefore interest in trying to reverse their decline in aged persons. As the gut microbiota responds to dietary intervention, both probiotics and prebiotics have been tested in this regard. Probiotics are live microbes in the diet, whereas prebiotics are fermentable ingredients that specifically target components of the indigenous microbiota seen to be beneficial. We have published a recent paper demonstrating that prebiotic galactooligosaccharides can exert power effects upon bifidobacteria in the gut flora of elderly persons (both in vivo and in vitro). This addendum summarizes research that led up to this study and discusses the possible impact of prebiotics in impacting upon the gut health of aged persons.
Collapse
Affiliation(s)
- Ruth Toward
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, UK
| | | | | | | |
Collapse
|
33
|
Suppressive effect of modified arabinoxylan from rice bran (MGN-3) on D-galactosamine-induced IL-18 expression and hepatitis in rats. Biosci Biotechnol Biochem 2012; 76:942-6. [PMID: 22738964 DOI: 10.1271/bbb.110968] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated in this study the effect of modified arabinoxylan from rice bran (MGN-3) and its fractions on D-galactosamine (D-GalN)-induced IL-18 expression and hepatitis in rats. Male Wistar rats were pretreated with MGN-3 or fractions of the MGN-3 hydrolysate, or with saline 1 h before administering D-GalN (400 mg/kg B.W.). The serum transaminase activities, IL-18 mRNA expression level in the liver and IL-18 concentration in the serum were determined 24 h after injecting D-GalN. Both the oral and intraperitoneal administration of MGN-3 (20 mg/kg B.W.) alleviated D-GalN-induced hepatic injury under these experimental conditions. The low-molecular-weight fraction (LMW) of MGN-3 showed the strongest protective effect on D-GalN-induced liver injury, its main sugar component being glucose. Moreover, the D-GalN-induced IL-18 expression was significantly reduced by treating with MGN-3 and LMW. The results suggest that MGN-3 and LMW could provide significant protection against D-GalN liver injury, and that IL-18 might be involved in their protective influence.
Collapse
|
34
|
|
35
|
Schwarz A, Gauly M, Abel H, Daş G, Humburg J, Weiss ATA, Breves G, Rautenschlein S. Pathobiology ofHeterakis gallinarummono-infection and co-infection withHistomonas meleagridisin layer chickens. Avian Pathol 2011; 40:277-87. [DOI: 10.1080/03079457.2011.561280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 2011; 51:178-94. [PMID: 21328111 DOI: 10.1080/10408390903044768] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arabinoxylans (AX) from cereals are cell wall components that constitute an important part of the dietary fiber intake in humans. Enzymatic hydrolysis of AX yields arabinoxylan-oligosaccharides (AXOS), consisting of arabinoxylooligosaccharides and xylooligosaccharides (XOS). This reaction takes place in the production of AXOS and of cereal-derived food products such as bread and beer, as well as in the colon upon ingestion of AX. This review mainly focuses on the available evidence that AXOS and XOS exert prebiotic effects in the colon of humans and animals through selective stimulation of beneficial intestinal microbiota. In addition, in vitro experiments and in vivo intervention studies on animals or humans are discussed that have investigated potential health-related effects resulting from the dietary intake of AX, AXOS, or XOS.
Collapse
Affiliation(s)
- Willem F Broekaert
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Yang X, Zhao Y, He N, Croft KD. Isolation, characterization, and immunological effects of alpha-galacto-oligosaccharides from a new source, the herb Lycopus lucidus Turcz. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8253-8258. [PMID: 20583842 DOI: 10.1021/jf101217f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study was designed to isolate and characterize a mixture of alpha-galacto-oligosaccharides (GOS) from a new source, the roots of Lycopus lucidus Turcz. (RL), a traditional dietary treatment. In this study, the chemical components and immunological function of RL-GOS were investigated. HPLC analysis showed that the purified RL-GOS was a typical raffinose family oligosaccharide (RFO) with a high stachyose content of 51.8% (w/w), followed by 26.5% raffinose and 10.1% verbascose. Further functional evaluation showed that RL-GOS could elicit a significant increase (p < 0.05 vs control) in humoral immunity, as measured by plaque-forming cell (PFC) generation and serum hemolysin level in response to sheep red blood cells (SRBC) at all three tested doses of RL-GOS (0.75, 1.5, and 3.0 g/kg of BW) in mice. In addition, the cellular immune activity of RL-GOS was also demonstrated by enhancing in vivo delayed-type hypersensitivity (DTH) reaction to SRBC and spleenocyte proliferation response to concanavalin A (p < 0.05, compared with control group). Nevertheless, there were no significant differences in weight gain, lymphoid organ indices, and phagocytosis capacity following RL-GOS treatment. This study provides evidence for the discovery of a new GOS source (20% w/w GOS in fresh roots of L. lucidus Turcz.) and its potential application as an immune stimulant in functional foods.
Collapse
Affiliation(s)
- Xingbin Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | |
Collapse
|
38
|
|
39
|
van der Aa LB, Heymans HSA, van Aalderen WMC, Sprikkelman AB. Probiotics and prebiotics in atopic dermatitis: review of the theoretical background and clinical evidence. Pediatr Allergy Immunol 2010; 21:e355-67. [PMID: 19573143 DOI: 10.1111/j.1399-3038.2009.00915.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The prevalence of atopic dermatitis (AD) has risen over the past decades, especially in western societies. According to the revised hygiene hypothesis this increase is caused by a changed intestinal colonization pattern during infancy, which has an impact on the immune system. Manipulating the intestinal microflora with pro-, pre- or synbiotics is an innovative way to prevent or treat AD. This review provides an overview of the theoretical basis for using probiotics and prebiotics in AD and presents the current evidence from randomized controlled trials (RCTs) regarding prevention and treatment of AD and food allergy in children with pro-, pre- and synbiotics. Seven RCTs on prevention and 12 RCTs on treatment were found by searching the Pubmed, Embase and Cochrane databases. Results of these trials are conflicting. In conclusion, at this moment there is not enough evidence to support the use of pro-, pre- or synbiotics for prevention or treatment of AD in children in clinical practice.
Collapse
Affiliation(s)
- Leontien B van der Aa
- Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Van Loo J. The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutr Res Rev 2009; 17:89-98. [PMID: 19079918 DOI: 10.1079/nrr200377] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The concept of prebiotic food ingredients is an important recent development in nutrition. The concept has attracted a great deal of attention, and many food ingredients (mainly dietary carbohydrates) have been claimed to be 'prebiotic'. It is emphasised that in order to be called prebiotic, a compound should be: (1) non-digestible; (2) fermentable; (3) fermentable in a selective way. These properties should be demonstrated in human volunteers in at least two independent dietary intervention trials. On the basis of published and unpublished results, it is shown in the present paper that the way in which a prebiotic influences intestinal fermentation is the key to its physiological properties. This statement is illustrated mainly by considering an established group of prebiotics, the beta(2-1) fructans. These linear molecules show a strong discontinuity in physicochemical properties as the chains become longer. The beta(2-1) fructans with a chain length of up to ten monomer units are very soluble and are particularly 'bifidogenic'. Longer chains (ten to sixty-five monomer units) are poorly soluble in water, they have less pronounced bifidogenic properties, and they are fermented more slowly. It was observed that a combination of short-chain and long-chain fructans (Synergy 1) is physiologically (for example, increasing mineral absorption, suppressing carcinogenesis, modulating lipid metabolism, etc) more active than the individual fractions. A possible mechanism is described in the present review. From an in-depth overview of the literature it is confirmed that for prebiotic action, the 'selectivity principle' for intestinal fermentation is determinative for the type and for the efficiency of physiological activity. It is confirmed that prebiotics act through their influence on intestinal fermentation.
Collapse
Affiliation(s)
- Jan Van Loo
- ORAFTI, Aandorenstraat 1, B3300 Tienen, Belgium.
| |
Collapse
|
41
|
Abstract
Functional foods (specific nutrient and/or food components) should beneficially affect one or more target functions in the body. The use of functional foods as a form of preventive medicine has been the subject of much research over the last two decades. It is well known that nutrition plays a vital role in chronic diseases, but it is only recently that data relating to the effects of specific nutrients or foods on the immune system have become available. This chapter aims to summarize the effects of some functional foods (e.g., prebiotics and micronutrients) on the immune system. It should be noted, however, that studies into the role of functional foods with regard to the human immune system are still in their infancy and a great deal of controversy surrounds the health claims attributed to some functional foods. Consequently, thorough studies are required in human and animal systems if we are to move towards developing a functional diet that provides maximal health benefits.
Collapse
|
42
|
Long-chain inulin increases dendritic cells in the Peyer's patches and increasesex vivocytokine secretion in the spleen and mesenteric lymph nodes of growing female rats, independent of zinc status. Br J Nutr 2008; 101:1653-63. [DOI: 10.1017/s000711450812342x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prebiotics may increase Zn absorption, a mineral known to play a central role in the immune system. Zn-deficient states are characterised by suppressed immune function, while prebiotics may improve both gut and cell-mediated immunity. Our objective was to determine if inulin alters the number and proportion of immune cells in the spleen, mesenteric lymph nodes (MLN) and Peyer's patches (PP),ex vivocytokine secretion, intestinal permeability and Zn status in healthy as well as Zn-deficient rats. Weanling female rats were fed diets supplemented with 5 % cellulose (CEL) or 5 % inulin (PRE) for 4 weeks. The rats received the CEL or PRE dietad libitum(ZN) or in restricted amounts (DR), or deficient in Zn (ZD) for another 4 weeks. The PRE-fed rats had a higher number and proportion of dendritic cells in PP, and greaterex vivosecretion of IL-2, IL-10 and interferon-γ from spleen and MLN cells compared with CEL-fed rats. PRE reduced the number and proportion of T cell receptor (TCR)-αβ+CD8+cells in spleen and CD45RA+cells in MLN compared with CEL. ZD rats had lower serum IgG2a and T cell numbers in MLN compared with ZN and DR rats. TCRγδ+cell numbers in PP were higher in ZD-PRE rats compared with ZD-CEL rats. Femur Zn concentrations of DR-PRE rats were higher than those of DR-CEL rats. Intestinal permeability was unchanged. The higher proportion and number of dendritic cells in the PP of inulin-fed rats indicates a need for further research on how prebiotics and their metabolites affect immune function possibly through intestinal dendritic cells.
Collapse
|
43
|
Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr 2008; 88:1438-46. [PMID: 18996881 DOI: 10.3945/ajcn.2008.26242] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Aging is associated with reduced numbers of beneficial colonic bifidobacteria and impaired immunity. Galactooligosaccharides (GOSs) stimulate the growth of bifidobacteria in younger adults, but little is known about their effects in the elderly and their immunomodulatory capacity. OBJECTIVE We assessed the effect of a prebiotic GOS mixture (B-GOS) on immune function and fecal microflora composition in healthy elderly subjects. DESIGN In a double-blind, placebo-controlled, crossover study, 44 elderly subjects were randomly assigned to receive either a placebo or the B-GOS treatment (5.5 g/d). Subjects consumed the treatments for 10 wk, and then went through a 4-wk washout period, before switching to the other treatment for the final 10 wk. Blood and fecal samples were collected at the beginning, middle (5 wk), and end of the test period. Predominant bacterial groups were quantified, and phagocytosis, natural killer (NK) cell activity, cytokine production, plasma cholesterol, and HDL cholesterol were measured. RESULTS B-GOS significantly increased the numbers of beneficial bacteria, especially bifidobacteria, at the expense of less beneficial groups compared with the baseline and placebo. Significant increases in phagocytosis, NK cell activity, and the production of antiinflammatory cytokine interleukin-10 (IL-10) and significant reduction in the production of proinflammatory cytokines (IL-6, IL-1beta, and tumor necrosis factor-alpha) were also observed. B-GOS exerted no effects on total cholesterol or HDL-cholesterol production, however. CONCLUSIONS B-GOS administration to healthy elderly persons resulted in positive effects on both the microflora composition and the immune response. Therefore, B-GOS may be a useful dietary candidate for the enhancement of gastrointestinal health and immune function in elderly persons.
Collapse
Affiliation(s)
- Jelena Vulevic
- Department of Food Biosciences, The University of Reading, Reading, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Beta2-1 fructans are carbohydrate molecules with prebiotic properties. Through resistance to digestion in the upper gastrointestinal tract, they reach the colon intact, where they selectively stimulate the growth and/or activity of beneficial members of the gut microbiota. Through this modification of the intestinal microbiota, and by additional mechanisms, beta2-1 fructans may have beneficial effects upon immune function, ability to combat infection, and inflammatory processes and conditions. In this paper, we have collated, summarised and evaluated studies investigating these areas. Twenty-one studies in laboratory animals suggest that some aspects of innate and adaptive immunity of the gut and the systemic immune systems are modified by beta2-1 fructans. In man, two studies in children and nine studies in adults indicate that the adaptive immune system may be modified by beta2-1 fructans. Thirteen studies in animal models of intestinal infections conclude a beneficial effect of beta2-1 fructans. Ten trials involving infants and children have mostly reported benefits on infectious outcomes; in fifteen adult trials, little effect was generally seen, although in specific situations, certain beta2-1 fructans may be beneficial. Ten studies in animal models show benefit of beta2-1 fructans with regard to intestinal inflammation. Human studies report some benefits regarding inflammatory bowel disease (four positive studies) and atopic dermatitis (one positive study), but findings in irritable bowel syndrome are inconsistent. Therefore, overall the results indicate that beta2-1 fructans are able to modulate some aspects of immune function, to improve the host's ability to respond successfully to certain intestinal infections, and to modify some inflammatory conditions.
Collapse
|
45
|
Martínez-Villaluenga C, Frias J, Vidal-Valverde C. Alpha-Galactosides: Antinutritional Factors or Functional Ingredients? Crit Rev Food Sci Nutr 2008; 48:301-16. [DOI: 10.1080/10408390701326243] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Seifert S, Watzl B. Inulin and oligofructose: review of experimental data on immune modulation. J Nutr 2007; 137:2563S-2567S. [PMID: 17951503 DOI: 10.1093/jn/137.11.2563s] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Diet modulates immune functions in different ways and affects host resistance to infections. In addition to the essential nutrients in food, nonessential food constituents such as nondigestible carbohydrates also affect the immune system. First results from human intervention studies suggest that the intake of inulin (IN) and oligofructose (OF) has beneficial effects on the gut-associated lymphoid tissue. At the level of the systemic immune system, however, only minor effects have been observed in healthy adult human subjects. In contrast, data from studies with infants suggest that supplementation with a prebiotic mixture positively affects postnatal immune development and increases fecal secretory IgA. Animal studies confirm the observations from human trials and give more insight into the immune tissue- specific effects of IN/OF. A clear outcome of the animal studies is that the intestinal immune system and especially the immune cells associated with the Peyer's patches are responsive to a dietary supplement of IN/OF and/or their metabolites. The mechanisms of IN/OF include indirect effects such as a shift in the composition of the intestinal flora and the enhanced production of immunoregulatory SCFA and perhaps other bacterial metabolites. Few data suggest direct effects of IN/OF via carbohydrate receptors on intestinal epithelial cells and immune cells. In conclusion, prebiotic IN/OF clearly modulate immunological processes at the level of the gut-associated lymphoid tissue, which may be associated with significant health benefits in infants and patients with intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Stephanie Seifert
- Institute of Nutritional Physiology, Federal Research Centre for Nutrition and Food, 76131 Karlsruhe, Germany
| | | |
Collapse
|
47
|
Castellini C, Cardinali R, Rebollar P, Dal Bosco A, Jimeno V, Cossu M. Feeding fresh chicory (Chicoria intybus) to young rabbits: Performance, development of gastro-intestinal tract and immune functions of appendix and Peyer's patch. Anim Feed Sci Technol 2007. [DOI: 10.1016/j.anifeedsci.2006.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Seidel C, Boehm V, Vogelsang H, Wagner A, Persin C, Glei M, Pool-Zobel BL, Jahreis G. Influence of prebiotics and antioxidants in bread on the immune system, antioxidative status and antioxidative capacity in male smokers and non-smokers. Br J Nutr 2007; 97:349-56. [PMID: 17298705 DOI: 10.1017/s0007114507328626] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interest in functional foods is increasing. The aim of the present study was to investigate breads supplemented with functional components. One was bread supplemented with inulin, linseed and soya fibre (prebiotic bread). The other was a prebiotic antioxidant bread (pre-aox-bread), which additionally contained green tea powder, herbs and tomato paste. The effects of these two breads on immunological and antioxidative parameters were compared with control bread (placebo). Twenty smokers and eighteen non-smokers were enrolled in the randomised parallel study, which consisted of a control period and an intervention period, each lasting for 5 weeks. Daily intake of bread and nutrients did not differ between the intervention and the control period. Most of the twenty-three investigated immunological parameters measured in peripheral blood were unaffected. However, the percentage of CD19 increased after intervention with prebiotic bread, whereas intercellular adhesion molecule-1 (ICAM-1) and CD3+NK+ (P < 0·05) decreased in both intervention arms. The ferric reducing ability of plasma (FRAP) was increased after consumption of the pre-aox-bread for non-smokers (1256 v. 1147 μmol/l; P = 0·019) and remained unchanged for smokers consuming the pre-aox-bread. All analysed carotenoids (P ≤ 0·001) in plasma were increased after the consumption of pre-aox-bread. The concentrations of uric acid and α-tocopherol rose after intervention with both breads. ICAM-1 as a marker of stress decreased after consuming the prebiotic bread. In conclusion, increased plasma concentrations of carotenoids and the responses observed with the FRAP assay after intervention with the pre-aox-bread indicate a unique response in terms of antioxidative potentials for this type of functional food.
Collapse
Affiliation(s)
- Christiane Seidel
- Friedrich Schiller University, Institute of Nutrition, Dornburger Strasse 24-29, D-07743 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Swennen K, Courtin CM, Delcour JA. Non-digestible Oligosaccharides with Prebiotic Properties. Crit Rev Food Sci Nutr 2007; 46:459-71. [PMID: 16864139 DOI: 10.1080/10408390500215746] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The search for functional foods or functional food ingredients, i.e. foods or food ingredients that can enhance health, is beyond any doubt one of the leading trends in today's food industry. In this context, probiotics, i.e. living microbial food supplements, and prebiotics, i.e. non-digestible food ingredients, receive much attention. Both popular concepts target the gastrointestinal microbiota. While in the Western world, intake of probiotics has been recommended for long, prebiotics in general, and non-digestible oligosaccharides in particular, have only recently received attention. This review deals with production and characterization of non-digestible oligosaccharides and focuses on their role in promoting health and treating diseases. Attention is paid to the effects of non-digestible oligosaccharides on constipation, mineral absorption, lipid metabolism, cancer prevention, hepatic encephalopathy, glycemia/insulinemia, and immunomodulation.
Collapse
Affiliation(s)
- Katrien Swennen
- Laboratory of Food Chemistry, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.
| | | | | |
Collapse
|
50
|
Petkevicius S, Thomsen LE, Bach Knudsen KE, Murrell KD, Roepstorff A, Boes J. The effect of inulin on new and on patent infections of Trichuris suis in growing pigs. Parasitology 2006; 134:121-7. [PMID: 17032472 DOI: 10.1017/s0031182006000977] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/05/2022]
Abstract
The objective of this experiment was to investigate the potential influence of inulin on the establishment of new and patent infections of Trichuris suis in growing pigs. Two experimental diets were formulated based on barley flour with either added insoluble fibre from oat husk (Diet 1) or a pure inulin (16%) supplementation (Diet 2). Twenty-eight 10-week-old pigs were divided randomly into 4 groups (Groups 1-4) each of 7 pigs. After 3 weeks adaptation to the experimental diets all pigs were infected with a single dose of 2000 infective T. suis eggs. Group 1 was fed Diet 1 until 7 weeks post-infection (p.i.) and Group 3 until 9 weeks p.i., Group 2 was fed Diet 2 until 7 weeks p.i., Group 4 was fed Diet 1 until week 7 p.i. and was switched-over from Diet 1 to Diet 2 until week 9 p.i. Seven weeks p.i. pigs in Groups 1 and 2 were slaughtered, and pigs in Groups 3 and 4 were slaughtered at 9 weeks p.i. Trichuris suis worm burdens were determined for all pigs. Inulin-fed pigs (Group 2) exhibited an 87% reduction in EPG, compared to the pigs on standard diet (Group 1) (P < 0.0001). The number of worms recovered at week 7 p.i. from pigs on the inulin diet (Group 2) was significantly reduced by 71%, compared to the pigs on standard diet (Group 1) (P < 0.01). At week 9, worm recovery in pigs on the inulin diet switch protocol (Group 4) was reduced by 47% compared to the control pigs in Group 3 (P < 0.01). Further, the inulin-fed pigs exhibited a significant reduction in female worm fecundity and worm large intestine location was more distal compared to those from pigs on standard diet. These results demonstrate that inclusion of the highly degradable fructose polymer inulin in the diet leads to significant reductions in T. suis establishment, egg excretion, and female worm fecundity and can be used as a treatment for patent infections.
Collapse
Affiliation(s)
- S Petkevicius
- Department of Infectious Diseases, Lithuanian Veterinary Academy, Tilzes 18, LT-47181 Kaunas, Lithuania.
| | | | | | | | | | | |
Collapse
|