1
|
Heydarzadeh S, Moshtaghie AA, Daneshpour M, Hedayati M. Regulation of iodine-glucose flip-flop in SW1736 anaplastic thyroid cancer cell line. J Endocrinol Invest 2024; 47:2809-2821. [PMID: 38698299 DOI: 10.1007/s40618-024-02377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
AIMS AND BACKGROUND The alternative manner of iodide and glucose uptake found in different types of thyroid cancer, referred to flip-flop. ATC cells indicate low iodide uptake and high glucose uptake, which lack the morphology and genetic characteristics of well-differentiated tumors and become increasingly invasive. Importance placed on the discovery of innovative multi-targeted medicines to suppress the dysregulated signaling in cancer. In this research, we aimed to clarify molecular mechanism of Rutin as a phytomedicine on anaplastic thyroid cancer cell line based on iodide and glucose uptake. MATERIAL METHODS The MTT test was employed to test cell viability. Iodide uptake assay was performed using a spectrophotometric assay to determine iodide uptake in SW1736 cells based on Sandell-Kolthoff reaction. For glucose uptake detection, ''GOD-PAP'' enzymatic colorimetric assay was applied to measure the direct glucose levels inside of the cells. Determination of NIS, GLUT1 and 3 mRNA expression in SW1736 cells was performed by qRT-PCR. Determination of NIS, GLUT1 and 3 protein levels in SW1736 cells was performed by western blotting. RESULTS According to our results, Rutin inhibited the viability of SW1736 cells in a time- and dose-dependent manner. Quantitative Real-time RT-PCR analysis exposed that NIS mRNA levels were increased in Rutin treated group compared to the control group. Accordingly, western blot showed high expression of NIS protein and low expression of GLUT 1 and 3 in Rutin treated SW1736 cell line. Rutin increased iodide uptake and decreased glucose uptake in thyroid cancer cell line SW1736 compared to control group. CONCLUSION Multiple mechanisms point to Rutin's role as a major stimulator of iodide uptake and inhibitor of glucose uptake, including effects at the mRNA and protein levels for both NIS and GLUTs, respectively. Here in, we described the flip-flop phenomenon as a possible therapeutic target for ATC. Moreover, Rutin is first documented here as a NIS expression inducer capable of restoring cell differentiation in SW1736 cell line. It also be concluded that GLUTs as metabolic targets can be blocked specifically by Rutin for thyroid cancer prevention and treatment.
Collapse
Affiliation(s)
- S Heydarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No.23, Yemen St, Aarabi Street, 193954763, Tehran, Iran
- Department of Biochemistry, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - A A Moshtaghie
- Department of Biochemistry, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - M Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No.23, Yemen St, Aarabi Street, 193954763, Tehran, Iran
| | - M Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No.23, Yemen St, Aarabi Street, 193954763, Tehran, Iran.
| |
Collapse
|
2
|
Giuliani C, Di Dalmazi G, Bucci I, Napolitano G. Quercetin and Thyroid. Antioxidants (Basel) 2024; 13:1202. [PMID: 39456456 PMCID: PMC11505551 DOI: 10.3390/antiox13101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Quercetin is the most abundant flavonoid present in fruits and vegetables. For its antiproliferative, antiviral, anti-inflammatory and antioxidants activities, it is an active ingredient of several herbal remedies and is available as a nutraceutical. Experimental studies performed in vitro have demonstrated that quercetin inhibits growth and function in normal thyroid cells and may act as a thyroid disruptor. These effects have also been confirmed in vivo using rodent models. Some studies have reported the ability of quercetin to interfere with the metabolism of thyroid hormones, since it inhibits the 5'-deiodinase type 1 (D1) activity in the thyroid, as well as in the liver. Besides the effects on normal thyroid cells, several experiments performed in vitro have shown a potential therapeutic role of quercetin in thyroid cancer. Indeed, quercetin inhibits the growth, the adhesion and the migration of thyroid cancer cells, and it also has redifferentiation properties in some thyroid cancer cell lines. In conclusion, these data suggest that, although its effects can be of benefit in hyperthyroidism and thyroid cancer, caution is required in the use of high doses of quercetin due to its anti-thyroid properties. Further in vivo studies are certainly needed to confirm these hypotheses.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Unit of Endocrinology, Department of Medicine and Sciences of Aging and Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, 66100 Chieti, Italy; (G.D.D.); (I.B.); (G.N.)
| | | | | | | |
Collapse
|
3
|
Parihar A, Malviya S, Khan R, Kaushik A, Mostafavi E. COVID-19 associated thyroid dysfunction and other comorbidities and its management using phytochemical-based therapeutics: a natural way. Biosci Rep 2023; 43:BSR20230293. [PMID: 37212057 PMCID: PMC10372472 DOI: 10.1042/bsr20230293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023] Open
Abstract
The present severe acute respiratory syndrome-2 (SARS-CoV-2) mediated Coronavirus pandemic (COVID-19) and post-COVID-19 complications affect human life drastically. Patients who have been cured of COVID-19 infection are now experiencing post-COVID-19 associated comorbidities, which have increased mortality rates. The SARS-CoV-2 infection distresses the lungs, kidneys, gastrointestinal tract, and various endocrine glands, including the thyroid. The emergence of variants which includes Omicron (B.1.1.529) and its lineages threaten the world severely. Among different therapeutic approaches, phytochemical-based therapeutics are not only cost-effective but also have lesser side effects. Recently a plethora of studies have shown the therapeutic efficacy of various phytochemicals for the treatment of COVID-19. Besides this, various phytochemicals have been found efficacious in treating several inflammatory diseases, including thyroid-related anomalies. The method of the phytochemical formulation is quick and facile and the raw materials for such herbal preparations are approved worldwide for human use against certain disease conditions. Owing to the advantages of phytochemicals, this review primarily discusses the COVID-19-related thyroid dysfunction and the role of key phytochemicals to deal with thyroid anomaly and post-COVID-19 complications. Further, this review shed light on the mechanism via which COVID-19 and its related complication affect organ function of the body, along with the mechanistic insight into the way by which phytochemicals could help to cure post-COVID-19 complications in thyroid patients. Considering the advantages offered by phytochemicals as a safer and cost-effective medication they can be potentially used to combat COVID-19-associated comorbidities.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, MP, India
| | - Shivani Malviya
- Department of Biochemistry and Genetics, Barkatullah University, Habib Ganj, Bhopal, Madhya Pradesh 462026, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, U.S.A
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, U.S.A
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, U.S.A
| |
Collapse
|
4
|
The Utilization of Physiologically Active Molecular Components of Grape Seeds and Grape Marc. Int J Mol Sci 2022; 23:ijms231911165. [PMID: 36232467 PMCID: PMC9570270 DOI: 10.3390/ijms231911165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Nutritional interventions may highly contribute to the maintenance or restoration of human health. Grapes (Vitis vinifera) are one of the oldest known beneficial nutritional components of the human diet. Their high polyphenol content has been proven to enhance human health beyond doubt in statistics-based public health studies, especially in the prevention of cardiovascular disease and cancer. The current review concentrates on presenting and classifying polyphenol bioactive molecules (resveratrol, quercetin, catechin/epicatechin, etc.) available in high quantities in Vitis vinifera grapes or their byproducts. The molecular pathways and cellular signaling cascades involved in the effects of these polyphenol molecules are also presented in this review, which summarizes currently available in vitro and in vivo experimental literature data on their biological activities mostly in easily accessible tabular form. New molecules for different therapeutic purposes can also be synthesized based on existing polyphenol compound classes available in high quantities in grape, wine, and grape marc. Therefore an overview of these molecular structures is provided. Novel possibilities as dendrimer nanobioconjugates are reviewed, too. Currently available in vitro and in vivo experimental literature data on polyphenol biological activities are presented in easily accessible tabular form. The scope of the review details the antidiabetic, anticarcinogenic, antiviral, vasoprotective, and neuroprotective roles of grape-origin flavonoids. The novelty of the study lies in the description of the processing of agricultural by-products (grape seeds and skins) of industrial relevance, and the detailed description of the molecular mechanisms of action. In addition, the review of the clinical therapeutic applications of polyphenols is unique as no summary study has yet been done.
Collapse
|
5
|
Dahiya V, Vasudeva N, Sharma S, Kumar A. Role of Dietary Supplements in Thyroid Diseases. Endocr Metab Immune Disord Drug Targets 2022; 22:985-996. [PMID: 35440339 DOI: 10.2174/1871530322666220419125131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thyroid hormones play a vital role in regulating our body's metabolism. Two important thyroid hormones released from the thyroid gland are- tri-iodothyronine (T3) and tetra-iodothyronine (T4). Thyroid stimulating hormone and thyroid regulating hormone control the T3 and T4 levels in our body. Increased TSH levels indicate hypothyroidism and decreased TSH levels indicate hyperthyroidism. Iodine is a crucial nutrient for the synthesis of thyroid hormones and is mostly obtained from our diet. Other essential nutrients for the thyroid hormones formation include selenium, iron, vitamin D, vitamin B12, etc. Dietary changes in these nutrients can result in alterations in thyroid function and structure. Although, normally the hormonal diseases cannot be cured but we can improve their signs and symptoms using suitable dietary supplements. OBJECTIVE To thoroughly analyze the various benefits and risks associated with the use of dietary supplements for the prevention and treatment of various thyroid disorders, like hypothyroidism, as seen in hashimoto's thyroiditis; hyperthyroidism, as seen in grave's disease, sick euthyroidism and subclinical hypothyroidism. METHODS Literature was searched using the search terms; "dietary supplements+ thyroid diseases" on pub med, google scholar, scopus, cochrane library and other search engines and data was collected from 1967- November 2021 including research inputs from the authors. The literature was thoroughly read and deep knowledge was acquired on this topic, which was then sequentially organized and summarized using suitable tables and figures. CONCLUSION After analyzing the various studies on this topic we arrived at the conclusion that although, there are various claimed and observed health benefits of dietary supplements in prevention and treatment of various thyroid disorders; but still several studies have shown that, there are many risks associated too with the use of dietary supplements, and people using these products should be aware of these risks in order to use them very judiciously for the improvement of their thyroid status.
Collapse
Affiliation(s)
- Vinesh Dahiya
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Neeru Vasudeva
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Sunil Sharma
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Ashok Kumar
- Internal Medicine, Kansas University Medical Center, Kansas, USA
| |
Collapse
|
6
|
Candellone A, Saettone V, Badino P, Girolami F, Radice E, Bergero D, Odore R, Meineri G. Management of Feline Hyperthyroidism and the Need to Prevent Oxidative Stress: What Can We Learn from Human Research? Antioxidants (Basel) 2021; 10:antiox10091496. [PMID: 34573128 PMCID: PMC8469997 DOI: 10.3390/antiox10091496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Feline hyperthyroidism is a clinical syndrome related to an excessive production of thyroid hormones, and it is considered as a spontaneous animal model for human thyrotoxicosis. Many shared features between the feline and the human disease have been identified so far, including pathogenesis, clinical signs, and treatment options. Although methimazole is considered the first-choice drug in both species, several side effects have been described. Furthermore, methimazole could interfere with the oxidative status, already perturbated by the disease. It has been reported in humans that dietary management, mainly through antioxidant supplementation, could mitigate this oxidative burden. The purpose of the review is to describe current therapeutic options in the course of feline hyperthyroidism and to summarize the state of the art relationship between dietary antioxidants administration and the reduction of methimazole side-effects in humans to support the use of this approach also in cats.
Collapse
Affiliation(s)
- Alessia Candellone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (V.S.); (P.B.); (F.G.); (D.B.); (R.O.); (G.M.)
- Correspondence:
| | - Vittorio Saettone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (V.S.); (P.B.); (F.G.); (D.B.); (R.O.); (G.M.)
| | - Paola Badino
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (V.S.); (P.B.); (F.G.); (D.B.); (R.O.); (G.M.)
| | - Flavia Girolami
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (V.S.); (P.B.); (F.G.); (D.B.); (R.O.); (G.M.)
| | - Elisabetta Radice
- Department of Surgical Sciences, Medical School, University of Turin, Corso Dogliotti, 14, 10126 Torino, Italy;
| | - Domenico Bergero
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (V.S.); (P.B.); (F.G.); (D.B.); (R.O.); (G.M.)
| | - Rosangela Odore
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (V.S.); (P.B.); (F.G.); (D.B.); (R.O.); (G.M.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini, 2, 10095 Grugliasco, Italy; (V.S.); (P.B.); (F.G.); (D.B.); (R.O.); (G.M.)
| |
Collapse
|
7
|
Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol 2021; 152:112158. [PMID: 33789121 DOI: 10.1016/j.fct.2021.112158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti-inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constituents have been known for some time. Indeed, epidemiological observations have shown the causal association between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies present in the literature, focusing on the compounds that are more abundant in foods or that are available as dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in very large amounts or when their ingestion is associated with other conditions that impair thyroid function.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy; Department of Medicine and Aging Science, Translational Medicine PhD Program, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|
8
|
Mayasich SA, Korte JJ, Denny JS, Hartig PC, Olker JH, DeGoey P, O'Flanagan J, Degitz SJ, Hornung MW. Xenopus laevis and human type 3 iodothyronine deiodinase enzyme cross-species sensitivity to inhibition by ToxCast chemicals. Toxicol In Vitro 2021; 73:105141. [PMID: 33713820 DOI: 10.1016/j.tiv.2021.105141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
Deiodinase enzymes are critical for tissue-specific and temporal control of activation or inactivation of thyroid hormones during vertebrate development, including amphibian metamorphosis. We previously screened ToxCast chemicals for inhibitory activity toward human recombinant Type 3 iodothyronine deiodinase enzyme (hDIO3) and subsequently produced Xenopus laevis recombinant dio3 enzyme (Xldio3) with the goals to identify specific chemical inhibitors of Xldio3, to evaluate cross-species sensitivity and explore whether the human assay results are predictive of the amphibian. We identified a subset of 356 chemicals screened against hDIO3 to test against Xldio3, initially at a single concentration (200 μM), and further tested 79 in concentration-response mode. Most chemicals had IC50 values lower for hDIO3 than for Xldio3 and many had steep Hill slopes (a potential indication of non-specific inhibition). However, eight of the most potent chemicals are likely specific inhibitors, with IC50 values of 14 μM or less, Hill slopes near -1 and curves not significantly different between species likely due to conservation of catalytically active amino acids. Controlling for assay conditions, human in vitro screening results can be predictive of activity in the amphibian assay. This study lays the groundwork for future studies using recombinant non-mammalian proteins to test cross-species sensitivity to chemicals. DISCLAIMER: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Collapse
Affiliation(s)
- Sally A Mayasich
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Joseph J Korte
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Jeffrey S Denny
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Phillip C Hartig
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jennifer H Olker
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Philip DeGoey
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Joseph O'Flanagan
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA; Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Sigmund J Degitz
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA
| | - Michael W Hornung
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Ecology, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, USA.
| |
Collapse
|
9
|
Sunhre L, Kar A, Panda S. Evaluation of antithyroid potential of Luffa acutangula peel extract and its chemical constituents as identified by HR-LC/MS. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2819-2827. [PMID: 32624590 PMCID: PMC7316940 DOI: 10.1007/s13197-020-04313-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/24/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Although some reports are there indicating the medicinal values of fruit peels, on vegetable peels investigations are meager. The present study is an attempt to explore the hitherto unknown potential of Luffa acutangula peel extract in T4-induced hyperthyroid female mice. Animals were made hyperthyroid by administering pre-standardized dose of l-thyroxin (l-T4 at 0.5 mg/kg/day) for 12 consecutive days and then the effects of the test peel extract at 25 and 50 mg/kg for 15 days were studied on the changes in serum thyroid hormones, glucose, different lipids; hepatic lipid peroxidation (LPO); enzymatic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and in reduced glutathione. The main chemical constituents of the extract were identified by high resolution liquid chromatography mass spectrometry. Administration of the test peel extract to the hyperthyroid mice at both the test doses decreased the levels of serum thyroid hormones, glucose and tissue LPO suggesting its antithyroid, antihyperglycemic and antiperoxidative potential. These positive effects were also supported by an improved lipid profile as well as liver histology. LC-MS analyses revealed the presence of kaempferol-3-O-rutinoside, kameferol-O-neohesporoside, quercetin, cinnamic acid ethyl ester, caffeic acid derivatives such as 4-O-caffeyol quinic acid, 3-sinapoylquinic acid and 4,5-dihydroxyprenyl caffeate, orientin and sinapic acid. It is presumed that the antithyroid and anti-hyperglycemic actions of the test plant extract could be the result of antioxidative properties of these phytochemicals.
Collapse
Affiliation(s)
- Lata Sunhre
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Anand Kar
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Sunanda Panda
- School of Pharmacy, Devi Ahilya University, Indore, India
| |
Collapse
|
10
|
Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020; 80:237-255. [PMID: 32470379 PMCID: PMC7688484 DOI: 10.1016/j.semcancer.2020.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Shashi Anand
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
11
|
Zohreh B, Masoumeh V, Fakhraddin N, Omrani GHR. Apigenin-mediated Alterations in Viability and Senescence of SW480 Colorectal Cancer Cells Persist in The Presence of L-thyroxine. Anticancer Agents Med Chem 2020; 19:1535-1542. [PMID: 31272364 DOI: 10.2174/1871520619666190704102708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Deregulation of Thyroid Hormones (THs) system in Colorectal Cancer (CRC) suggests that these hormones may play roles in CRC pathogenesis. Flavonoids are polyphenolic compounds, which possess potent antitumor activities and interfere, albeit some of them, with all aspects of THs physiology. Whether the antitumor actions of flavonoids are affected by THs is unknown. Therefore, we investigated the effects of apigenin (Api), a well-known flavone, on some tumorigenic properties of SW480 CRC cells in the presence and absence of L-thyroxine (T4). METHODS Cell viability was assessed by MTT assay. Flow cytometry and DNA electrophoresis were used to evaluate cell death. Cell senescence was examined by in situ detection of β-galactosidase activity. Protein expression was assessed by antibody array technique. RESULTS While T4 had minimal effects, Api reduced cell growth and senescence by induction of apoptosis. Expression of anti-apoptotic and pro-apoptotic proteins were differentially affected by Api and T4. Survivin, HSP60 and HTRA were the most expressed proteins by the cells. Almost all Api-induced effects persisted in the presence of T4. CONCLUSION These data suggest that Api may inhibit CRC cell growth and progression through induction of apoptosis rather than cell necrosis or senescence. In addition, they suggest that T4 has minimal effects on CRC cell growth, and is not able to antagonize the anti-growth effects of Api. Regardless of the treatments, cells expressed high levels of survivin, HSP60 and HTRA, indicating that these proteins may play central roles in SW480 CRC cell immortality.
Collapse
Affiliation(s)
- Bagheri Zohreh
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Varedi Masoumeh
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholam H R Omrani
- Endocrine and Metabolism Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Paunkov A, Chartoumpekis DV, Ziros PG, Chondrogianni N, Kensler TW, Sykiotis GP. Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway. Curr Pharm Des 2020; 25:1828-1846. [PMID: 31267862 DOI: 10.2174/1381612825666190701165821] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Natural compounds with potential antioxidant properties have been used in the form of food supplements or extracts with the intent to prevent or treat various diseases. Many of these compounds can activate the cytoprotective Nrf2 pathway. Besides, some of them are known to impact the thyroid gland, often with potential side-effects, but in other instances, with potential utility in the treatment of thyroid disorders. OBJECTIVE In view of recent data regarding the multiple roles of Nrf2 in the thyroid, this review summarizes the current bibliography on natural compounds that can have an effect on thyroid gland physiology and pathophysiology, and it discusses the potential implication of the Nrf2 system in the respective mechanisms. METHODS & RESULTS Literature searches for articles from 1950 to 2018 were performed in PubMed and Google Scholar using relevant keywords about phytochemicals, Nrf2 and thyroid. Natural substances were categorized into phenolic compounds, sulfur-containing compounds, quinones, terpenoids, or under the general category of plant extracts. For individual compounds in each category, respective data were summarized, as derived from in vitro (cell lines), preclinical (animal models) and clinical studies. The main emerging themes were as follows: phenolic compounds often showed potential to affect the production of thyroid hormones; sulfur-containing compounds impacted the pathogenesis of goiter and the proliferation of thyroid cancer cells; while quinones and terpenoids modified Nrf2 signaling in thyroid cell lines. CONCLUSION Natural compounds that modify the activity of the Nrf2 pathway should be evaluated carefully, not only for their potential to be used as therapeutic agents for thyroid disorders, but also for their thyroidal safety when used for the prevention and treatment of non-thyroidal diseases.
Collapse
Affiliation(s)
- Ana Paunkov
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Dionysios V Chartoumpekis
- Department of Internal Medicine, Endocrinology Unit, Patras University Medical School, Patras, Greece
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Evaluation of Antioxidant Supplementation on Redox Unbalance in Hyperthyroid Cats Treated with Methimazole: A Blinded Randomized Controlled Trial. Antioxidants (Basel) 2019; 9:antiox9010015. [PMID: 31877998 PMCID: PMC7022672 DOI: 10.3390/antiox9010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Methimazole (MMI) is often the selected medical treatment for feline hyperthyroidism. However, the onset of MMI-related side effects (MMI-SE) is likely caused by oxidative stress. This study evaluated the dietary supplementation of selected antioxidants in hyperthyroid cats receiving MMI, to reduce MMI-SE. Thirty hyperthyroid client-owned cats were randomly allocated in group M (MMI + placebo) or group M+A (MMI + antioxidants). At different time-points from the enrolment (ET) to the end of the trial (FT), the following information was recorded: clinical findings, complete blood count, serum biochemical parameters, urinalysis, total plasma thyroxine concentrations, determinable reactive oxygen metabolites (dROMs), OXY-adsorbent test values, and oxidative stress index (OSi) values, and MMI-SE. dROMs and OSi values significantly increased from ET to FT in group M and were significantly higher in group M than in group M+A at FT. Likewise, OXY-absorbent test values were significantly higher in group M+A than in group M at FT. Moreover, the occurrence rate of MMI-SE in group M+A was lower than in group M. In conclusion, our results show that the dietary supplementation of antioxidants in hyperthyroid cats receiving MMI exerts a protective effect against oxidative stress, likely contributing to the reduction of MMI-SE.
Collapse
|
14
|
Therapeutic Effect of Scutellaria baicalensis on L-Thyroxine-Induced Hyperthyroidism Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3239649. [PMID: 31636683 PMCID: PMC6766260 DOI: 10.1155/2019/3239649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 11/25/2022]
Abstract
Background This study was performed to evaluate the anti-hyperthyroidal effects and action mechanism of Scutellaria baicalensis Georgi (SB), a medicinal herb, on levothyroxine (LT4)-induced hyperthyroidal rats. Methods Male Wistar rats were divided into five groups, namely, euthyroidal normal group (Normal), hyperthyroidism control group (Control), hyperthyroidism plus PTU-treated group (PTU) as a positive control, hyperthyroidism plus 400 mg/kg SB-treated group (SB400), and hyperthyroidism plus 800 mg/kg SB-treated group (SB800). The rats in groups other than Normal were injected with LT4 for 2 weeks to induce hyperthyroidism and then were administrated each treatment for 2 weeks. Clinical symptoms and biomarkers related to hyperthyroidism were examined, and the gene expressions related to the regulation of thyroid hormone were determined. Results Compared with the Control group, pulse rate, serum T3, T4, triglyceride, thyroid follicle size, and the deiodinase 1 (Dio1) gene expression were significantly reduced in the SB and PTU groups. Serum TSH and the thyroxine-binding globulin (Tbg) gene expression were significantly increased in the SB and PTU groups. Conclusions These results suggest that SB might suppress T3, T4, and adrenergic activity by modulating Dio1 and Tbg expression, and therefore, SB could be an alternative therapy for hyperthyroidism.
Collapse
|
15
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
16
|
Xia SF, Qiu YY, Chen LM, Jiang YY, Huang W, Xie ZX, Tang X, Sun J. Myricetin alleviated hepatic steatosis by acting on microRNA-146b/thyroid hormone receptor b pathway in high-fat diet fed C57BL/6J mice. Food Funct 2019; 10:1465-1477. [PMID: 30776032 DOI: 10.1039/c8fo01452c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic microRNAs (miRs) regulate local thyroid hormone (TH) action and TH-related lipid metabolism. We previously found that myricetin effectively ameliorated hepatic steatosis by targeting PPAR signaling pathway, in which the differentially expressed genes were TH-responsive. The present study was designed to explore the mechanism by which myricetin regulated miR-dependent TH action and lipid metabolism on high-fat diet (HFD)-induced hepatic steatosis. C57BL/6J mice were fed a HFD with or without 100 mg kg-1 myricetin by oral gavage for 16 weeks (n = 8 for each group). The results showed that myricetin improved HFD-induced hepatic steatosis, increased serum TH levels and hepatic type 1 deiodinase (DIO1) activities, and elevated energy expenditure in relation to the HFD mice. Meanwhile, myricetin inhibited miR-205 and miR-146b up-regulation induced by HFD, and also up-regulated their targets, Dio1 and thyroid hormone receptor b (TRb) expression, at both the transcriptional and translational levels, accompanied by the regulation of TH responsive lipid metabolism genes. Overexpression or knockdown of miR-205 failed to affect Dio1 mRNA and protein levels in primary mouse hepatocytes. Myricetin directly decreased miR-146b expression in miR-146b mimic-treated hepatocytes to elevate TRb levels. However, the beneficial effects of myricetin on hepatic TH action and lipid metabolism were abolished by TRb siRNA in free fatty acid (FFA)-treated hepatocytes. Our results indicated that myricetin attenuated hepatic steatosis via the miR-146b/TRb pathway and should be considered for the management of NAFLD conditions.
Collapse
Affiliation(s)
- Shu-Fang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vancamp P, Houbrechts AM, Darras VM. Insights from zebrafish deficiency models to understand the impact of local thyroid hormone regulator action on early development. Gen Comp Endocrinol 2019; 279:45-52. [PMID: 30244055 DOI: 10.1016/j.ygcen.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Thyroid hormones (THs) stimulate and coordinate a wide range of processes to ensure normal development, mainly by binding of the most active TH 3,5,3'-triiodothyronine (T3) to nuclear receptors resulting in changes in gene transcription. Local TH action is monitored at three distinct levels by different types of regulators: transmembrane transporters (TH influx and efflux), deiodinases (TH activation and inactivation) and nuclear receptors (TH signalling). Since TH regulators are strongly conserved among vertebrate species, the externally and rapidly developing zebrafish (Danio rerio) has become one of the favourite models to study their role in TH-dependent development. Most regulators are expressed in zebrafish from early stages in development in a dynamic and tissue-specific pattern. Transient or permanent disruption of a given regulator severely perturbs development of multiple organs. These zebrafish deficiency models help to explain why, next to overall hypo-/hyperthyroidism, inactivating mutations in the genes encoding TH regulators such as MCT8 and THRA/B have irreversible adverse effects on human development. Zebrafish are also increasingly used as a high-throughput model to assess the toxicity of various xenobiotics and their impact on development. While adverse effects on TH metabolism and gene expression have been shown, information on direct interaction with TH regulators is scarce, albeit essential to fully understand their mechanism of action. For the future, the combination of novel gene silencing tools, fluorescent reporter lines and (single-cell) transcriptomics holds promise for new zebrafish models to further elucidate the role of each TH regulator in vertebrate development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Anne M Houbrechts
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
18
|
Olker JH, Korte JJ, Denny JS, Hartig PC, Cardon MC, Knutsen CN, Kent PM, Christensen JP, Degitz SJ, Hornung MW. Screening the ToxCast Phase 1, Phase 2, and e1k Chemical Libraries for Inhibitors of Iodothyronine Deiodinases. Toxicol Sci 2019; 168:430-442. [PMID: 30561685 PMCID: PMC6520049 DOI: 10.1093/toxsci/kfy302] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Deiodinase enzymes play an essential role in converting thyroid hormones between active and inactive forms by deiodinating the pro-hormone thyroxine (T4) to the active hormone triiodothyronine (T3) and modifying T4 and T3 to inactive forms. Chemical inhibition of deiodinase activity has been identified as an important endpoint to include in screening chemicals for thyroid hormone disruption. To address the lack of data regarding chemicals that inhibit the deiodinase enzymes, we developed robust in vitro assays that utilized human deiodinase types 1, 2, and 3 and screened over 1800 unique chemicals from the U.S. EPA's ToxCast phase 1_v2, phase 2, and e1k libraries. Initial testing at a single concentration identified 411 putative deiodinase inhibitors that produced inhibition of 20% or greater in at least 1 of the 3 deiodinase assays, including chemicals that have not previously been shown to inhibit deiodinases. Of these, 228 chemicals produced enzyme inhibition of 50% or greater; these chemicals were further tested in concentration-response to determine relative potency. Comparisons across these deiodinase assays identified 81 chemicals that produced selective inhibition, with 50% inhibition or greater of only 1 of the deiodinases. This set of 3 deiodinase inhibition assays provides a significant contribution toward expanding the limited number of in vitro assays used to identify chemicals with the potential to interfere with thyroid hormone homeostasis. In addition, these results set the groundwork for development and evaluation of structure-activity relationships for deiodinase inhibition, and inform targeted selection of chemicals for further testing to identify adverse outcomes of deiodinase inhibition.
Collapse
Affiliation(s)
- Jennifer H. Olker
- U.S. Environmental Protection Agency, Duluth, Minnesota, 55804
- Office of Research and Development, Duluth, Minnesota, 55804
- National Health and Environmental Effects Research Laboratory, Duluth, Minnesota, 55804
- Mid-Continent Ecology Division, Duluth, Minnesota, 55804
| | - Joseph J. Korte
- U.S. Environmental Protection Agency, Duluth, Minnesota, 55804
- Office of Research and Development, Duluth, Minnesota, 55804
- National Health and Environmental Effects Research Laboratory, Duluth, Minnesota, 55804
- Mid-Continent Ecology Division, Duluth, Minnesota, 55804
| | - Jeffrey S. Denny
- U.S. Environmental Protection Agency, Duluth, Minnesota, 55804
- Office of Research and Development, Duluth, Minnesota, 55804
- National Health and Environmental Effects Research Laboratory, Duluth, Minnesota, 55804
- Mid-Continent Ecology Division, Duluth, Minnesota, 55804
| | - Phillip C. Hartig
- U.S. Environmental Protection Agency, Duluth, Minnesota, 55804
- Office of Research and Development, Duluth, Minnesota, 55804
- National Health and Environmental Effects Research Laboratory, Duluth, Minnesota, 55804
- Toxicity Assessment Division, Research Triangle Park, North Carolina 27709
| | - Mary C. Cardon
- U.S. Environmental Protection Agency, Duluth, Minnesota, 55804
- Office of Research and Development, Duluth, Minnesota, 55804
- National Health and Environmental Effects Research Laboratory, Duluth, Minnesota, 55804
- Toxicity Assessment Division, Research Triangle Park, North Carolina 27709
| | - Carsten N. Knutsen
- Student Services Contractor to the U.S. EPA, NHEERL, Mid-Continent Ecology Division, Duluth, Minnesota, 55804
| | - Paige M. Kent
- ORAU Student Services Contractor to the U.S. EPA, NHEERL, Mid-Continent Ecology Division, Duluth, Minnesota, 55804
| | - Jessica P. Christensen
- ORAU Student Services Contractor to the U.S. EPA, NHEERL, Mid-Continent Ecology Division, Duluth, Minnesota, 55804
| | - Sigmund J. Degitz
- U.S. Environmental Protection Agency, Duluth, Minnesota, 55804
- Office of Research and Development, Duluth, Minnesota, 55804
- National Health and Environmental Effects Research Laboratory, Duluth, Minnesota, 55804
- Mid-Continent Ecology Division, Duluth, Minnesota, 55804
| | - Michae1 W. Hornung
- U.S. Environmental Protection Agency, Duluth, Minnesota, 55804
- Office of Research and Development, Duluth, Minnesota, 55804
- National Health and Environmental Effects Research Laboratory, Duluth, Minnesota, 55804
- Mid-Continent Ecology Division, Duluth, Minnesota, 55804
| |
Collapse
|
19
|
Rasouli H, Hosseini-Ghazvini SMB, Khodarahmi R. Therapeutic Potentials of the Most Studied Flavonoids: Highlighting Antibacterial and Antidiabetic Functionalities. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00003-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Abdolhosseinipoor F, Sadeghi Dinani M, Hosseini-Sharifabad A. The effects of Urtica dioica hydroalcoholic extract on the propylthiouracil induced hypothyroidism in rat. JOURNAL OF HERBMED PHARMACOLOGY 2018. [DOI: 10.15171/jhp.2018.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
21
|
Stinckens E, Vergauwen L, Ankley GT, Blust R, Darras VM, Villeneuve DL, Witters H, Volz DC, Knapen D. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:1-12. [PMID: 29702435 PMCID: PMC6002951 DOI: 10.1016/j.aquatox.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 05/20/2023]
Abstract
The adverse outcome pathway (AOP) framework can be used to help support the development of alternative testing strategies aimed at predicting adverse outcomes caused by triggering specific toxicity pathways. In this paper, we present a case-study demonstrating the selection of alternative in chemico assays targeting the molecular initiating events of established AOPs, and evaluate use of the resulting data to predict higher level biological endpoints. Based on two AOPs linking inhibition of the deiodinase (DIO) enzymes to impaired posterior swim bladder inflation in fish, we used in chemico enzyme inhibition assays to measure the molecular initiating events for an array of 51 chemicals. Zebrafish embryos were then exposed to 14 compounds with different measured inhibition potentials. Effects on posterior swim bladder inflation, predicted based on the information captured by the AOPs, were evaluated. By linking the two datasets and setting thresholds, we were able to demonstrate that the in chemico dataset can be used to predict biological effects on posterior chamber inflation, with only two outliers out of the 14 tested compounds. Our results show how information organized using the AOP framework can be employed to develop or select alternative assays, and successfully forecast downstream key events along the AOP. In general, such in chemico assays could serve as a first-tier high-throughput system to screen and prioritize chemicals for subsequent acute and chronic fish testing, potentially reducing the need for long-term and costly toxicity tests requiring large numbers of animals.
Collapse
Affiliation(s)
- Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gerald T Ankley
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Hilda Witters
- Applied Bio & Molecular Systems (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - David C Volz
- Department of Environmental Sciences, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
22
|
Hornung MW, Korte JJ, Olker JH, Denny JS, Knutsen C, Hartig PC, Cardon MC, Degitz SJ. Screening the ToxCast Phase 1 Chemical Library for Inhibition of Deiodinase Type 1 Activity. Toxicol Sci 2018; 162:570-581. [PMID: 29228274 PMCID: PMC6639810 DOI: 10.1093/toxsci/kfx279] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormone (TH) homeostasis is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism, and elimination, to maintain proper TH signaling. Deiodinase enzymes catalyze iodide release from THs to interconvert THs between active and inactive forms, and are integral to hormone metabolism. The activity of deiodinases has been identified as an important endpoint to include in the context of screening chemicals for TH disruption. To begin to address the potential for chemicals to inhibit these enzymes an adenovirus expression system was used to produce human deiodinase type 1 (DIO1) enzyme, established robust assay parameters for nonradioactive determination of iodide release by the Sandell-Kolthoff method, and employed a 96-well plate format for screening chemical libraries. An initial set of 18 chemicals was used to establish the assay, along with the known DIO1 inhibitor 6-propylthiouracil as a positive control. An additional 292 unique chemicals from the EPA's ToxCast phase 1_v2 chemical library were screened. Chemicals were initially screened at a single high concentration of 200 µM to identify potential DIO1 inhibitors. There were 50 chemicals, or 17% of the TCp1_v2 chemicals tested, that produced >20% inhibition of DIO1 activity. Eighteen of these inhibited DIO1 activity >50% and were further tested in concentration-response mode to determine IC50s. This work presents an initial effort toward identifying chemicals with potential for affecting THs via inhibition of deiodinases and sets the foundation for further testing of large chemical libraries against DIO1 and the other deiodinase enzymes involved in TH function.
Collapse
Affiliation(s)
- Michael W. Hornung
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804, USA
| | - Joseph J. Korte
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804, USA
| | - Jennifer H. Olker
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804, USA
| | - Jeffrey S. Denny
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804, USA
| | - Carsten Knutsen
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804, USA
| | - Phillip C. Hartig
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Research Triangle Park, 27709, USA
| | - Mary C. Cardon
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Research Triangle Park, 27709, USA
| | - Sigmund J. Degitz
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN, 55804, USA
| |
Collapse
|
23
|
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, Lampen A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol Nutr Food Res 2017; 62. [PMID: 29127724 DOI: 10.1002/mnfr.201700447] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Indexed: 12/13/2022]
Abstract
The flavonoid quercetin is frequently found in low amounts as a secondary plant metabolite in fruits and vegetables. Isolated quercetin is also marketed as a dietary supplement, mostly as the free quercetin aglycone, and frequently in daily doses of up to 1000 mg d-1 exceeding usual dietary intake levels. The present review is dedicated to safety aspects of isolated quercetin used as single compound in dietary supplements. Among the numerous published human intervention studies, adverse effects following supplemental quercetin intake have been rarely reported and any such effects were mild in nature. Published adequate scientific data for safety assessment in regard to the long-term use (>12 weeks) of high supplemental quercetin doses (≥1000 mg) are currently not available. Based on animal studies involving oral quercetin application some possible critical safety aspects could be identified such as the potential of quercetin to enhance nephrotoxic effects in the predamaged kidney or to promote tumor development especially in estrogen-dependent cancer. Furthermore, animal and human studies with single time or short-term supplemental quercetin application revealed interactions between quercetin and certain drugs leading to altered drug bioavailability. Based on these results, some potential risk groups are discussed in the present review.
Collapse
Affiliation(s)
- Susanne Andres
- Department of Food Safety, Former employee of the German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sophie Pevny
- Department of Food Safety, Former employee of the German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Rainer Ziegenhagen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Nadiya Bakhiya
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
24
|
Mondal S, Mugesh G. Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action. Mol Cell Endocrinol 2017; 458:91-104. [PMID: 28408161 DOI: 10.1016/j.mce.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (THs) play key roles in modulating the overall metabolism of the body, protein synthesis, fat metabolism, neuronal and bone growth, and cardiovascular as well as renal functions. In this review, we discuss on the thyroid hormone synthesis and activation, thyroid hormone receptors (TRs) and mechanism of action, applications of thyroid hormone analogues, particularly the compounds that are selective ligands for TRβ receptors, or enzyme inhibitors for the treatment of thyroidal disorders with a specific focus on thyroid peroxidase and iodothyronine deiodinases. We also discuss on the development of small-molecule deiodinase mimetics and their mechanism of deiodination, as these compounds have the potential to regulate the thyroid hormone levels.
Collapse
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
25
|
Schweizer U, Towell H, Vit A, Rodriguez-Ruiz A, Steegborn C. Structural aspects of thyroid hormone binding to proteins and competitive interactions with natural and synthetic compounds. Mol Cell Endocrinol 2017; 458:57-67. [PMID: 28131741 DOI: 10.1016/j.mce.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormones and their metabolites constitute a vast class of related iodothyronine compounds that contribute to the regulation of metabolic activity and cell differentiation. They are in turn transported, transformed and recognized as signaling molecules through binding to a variety of proteins from a wide range of evolutionary unrelated protein families, which renders these proteins and their iodothyronine binding sites an example for extensive convergent evolution. In this review, we will briefly summarize what is known about iodothyronine binding sites in proteins, the modes of protein/iodothyronine interaction, and the ligand conformations. We will then discuss physiological and synthetic compounds, including popular drugs and food components, that can interfere with iodothyronine binding and recognition by these proteins. The discussion also includes compounds persisting in the environment and acting as endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Holly Towell
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Allegra Vit
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Alfonso Rodriguez-Ruiz
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | |
Collapse
|
26
|
Gonçalves CFL, de Freitas ML, Ferreira ACF. Flavonoids, Thyroid Iodide Uptake and Thyroid Cancer-A Review. Int J Mol Sci 2017; 18:E1247. [PMID: 28604619 PMCID: PMC5486070 DOI: 10.3390/ijms18061247] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system and the incidence has been increasing in recent years. In a great part of the differentiated carcinomas, thyrocytes are capable of uptaking iodide. In these cases, the main therapeutic approach includes thyroidectomy followed by ablative therapy with radioiodine. However, in part of the patients, the capacity to concentrate iodide is lost due to down-regulation of the sodium-iodide symporter (NIS), the protein responsible for transporting iodide into the thyrocytes. Thus, therapy with radioiodide becomes ineffective, limiting therapeutic options and reducing the life expectancy of the patient. Excessive ingestion of some flavonoids has been associated with thyroid dysfunction and goiter. Nevertheless, studies have shown that some flavonoids can be beneficial for thyroid cancer, by reducing cell proliferation and increasing cell death, besides increasing NIS mRNA levels and iodide uptake. Recent data show that the flavonoids apingenin and rutin are capable of increasing NIS function and expression in vivo. Herein we review literature data regarding the effect of flavonoids on thyroid cancer, besides the effect of these compounds on the expression and function of the sodium-iodide symporter. We will also discuss the possibility of using flavonoids as adjuvants for therapy of thyroid cancer.
Collapse
Affiliation(s)
- Carlos F L Gonçalves
- Carlos Frederico Lima Gonçalves, Laboratory of Endocrine Physiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Mariana L de Freitas
- Mariana Lopes de Freitas, Laboratory of Endocrine Physiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Andrea C F Ferreira
- Andrea Claudia Freitas Ferreira, Laboratory of Endocrine Physiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
- NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, 25245-390 Rio de Janeiro, Brazil.
| |
Collapse
|
27
|
Mondal S, Raja K, Schweizer U, Mugesh G. Chemie und Biologie der Schilddrüsenhormon-Biosynthese und -Wirkung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| | - Karuppusamy Raja
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| | - Ulrich Schweizer
- Rheinische Friedrich-Wilhelms-Universität Bonn; Institut für Biochemie und Molekularbiologie; Nussallee 11 53115 Bonn Deutschland
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| |
Collapse
|
28
|
Mondal S, Raja K, Schweizer U, Mugesh G. Chemistry and Biology in the Biosynthesis and Action of Thyroid Hormones. Angew Chem Int Ed Engl 2016; 55:7606-30. [DOI: 10.1002/anie.201601116] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| | - Karuppusamy Raja
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| | - Ulrich Schweizer
- Rheinische Friedrich-Wilhelms-Universität Bonn; Institut für Biochemie und Molekularbiologie; Nussallee 11 53115 Bonn Germany
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| |
Collapse
|
29
|
Ghosh P, Singha Roy A, Chaudhury S, Jana SK, Chaudhury K, Dasgupta S. Preparation of albumin based nanoparticles for delivery of fisetin and evaluation of its cytotoxic activity. Int J Biol Macromol 2016; 86:408-17. [PMID: 26820351 DOI: 10.1016/j.ijbiomac.2016.01.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/02/2023]
Abstract
Fisetin is a well known flavonoid that shows several properties such as antioxidant, antiviral and anticancer activities. Its use in the pharmaceutical field is limited due to its poor aqueous solubility which results in poor bioavailability and poor permeability. The aim of our present study is to prepare fisetin loaded human serum albumin nanoparticles to improve its bioavailability. The nanoparticles were prepared by a desolvation method and characterized by spectroscopic and microscopic techniques. The particles were smooth and spherical in nature with an average size of 220 ± 8 nm. The encapsulation efficiency was found to be 84%. The in vitro release profile showed a biphasic pattern and the release rate increases with increase in ionic strength of solution. We have also confirmed the antioxidant activity of the prepared nanoparticles by a DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Further its anticancer activity was evaluated using MCF-7 breast cancer cell lines. Our findings suggest that fisetin loaded HSA nanoparticles could be used to transfer fisetin to target areas under specific conditions and thus may find use as a delivery vehicle for the flavonoid.
Collapse
Affiliation(s)
- Pooja Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atanu Singha Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Saikat Kumar Jana
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
30
|
Schweizer U, Steegborn C. New insights into the structure and mechanism of iodothyronine deiodinases. J Mol Endocrinol 2015; 55:R37-52. [PMID: 26390881 DOI: 10.1530/jme-15-0156] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 12/30/2022]
Abstract
Iodothyronine deiodinases are a family of enzymes that remove specific iodine atoms from one of the two aromatic rings in thyroid hormones (THs). They thereby fine-tune local TH concentrations and cellular TH signaling. Deiodinases catalyze a remarkable biochemical reaction, i.e., the reductive elimination of a halogenide from an aromatic ring. In metazoans, deiodinases depend on the rare amino acid selenocysteine. The recent solution of the first experimental structure of a deiodinase catalytic domain allowed for a reappraisal of the many mechanistic and mutagenesis data that had been accumulated over more than 30 years. Hence, the structure generates new impetus for research directed at understanding catalytic mechanism, substrate specificity, and regulation of deiodinases. This review will focus on structural and mechanistic aspects of iodothyronine deiodinases and briefly compare these enzymes with dehalogenases, which catalyze related reactions. A general mechanism for the selenium-dependent deiodinase reaction will be described, which integrates the mouse deiodinase 3 crystal structure and biochemical studies. We will summarize further, sometimes isoform-specific molecular features of deiodinase catalysis and regulation, and we will then discuss available compounds for modulating deiodinase activity for therapeutic purposes.
Collapse
Affiliation(s)
| | - Clemens Steegborn
- Institut für Biochemie und MolekularbiologieRheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115 Bonn, GermanyLehrstuhl BiochemieUniversität Bayreuth, Universitätsstrasse 30, 95445 Bayreuth, Germany
| |
Collapse
|
31
|
Sowa M, Ślepokura K, Matczak-Jon E. Improving solubility of fisetin by cocrystallization. CrystEngComm 2014. [DOI: 10.1039/c4ce01713g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Giuliani C, Bucci I, Di Santo S, Rossi C, Grassadonia A, Piantelli M, Monaco F, Napolitano G. The flavonoid quercetin inhibits thyroid-restricted genes expression and thyroid function. Food Chem Toxicol 2014; 66:23-9. [DOI: 10.1016/j.fct.2014.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 01/10/2023]
|
33
|
Lima Gonçalves CF, de Souza dos Santos MC, Ginabreda MG, Soares Fortunato R, Pires de Carvalho D, Freitas Ferreira AC. Flavonoid rutin increases thyroid iodide uptake in rats. PLoS One 2013; 8:e73908. [PMID: 24023911 PMCID: PMC3762709 DOI: 10.1371/journal.pone.0073908] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.
Collapse
Affiliation(s)
- Carlos Frederico Lima Gonçalves
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maria Carolina de Souza dos Santos
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maria Gloria Ginabreda
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo Soares Fortunato
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Denise Pires de Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea Claudia Freitas Ferreira
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
34
|
Springer C, Dere E, Hall SJ, McDonnell EV, Roberts SC, Butt CM, Stapleton HM, Watkins DJ, McClean MD, Webster TF, Schlezinger JJ, Boekelheide K. Rodent thyroid, liver, and fetal testis toxicity of the monoester metabolite of bis-(2-ethylhexyl) tetrabromophthalate (tbph), a novel brominated flame retardant present in indoor dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1711-9. [PMID: 23014847 PMCID: PMC3548273 DOI: 10.1289/ehp.1204932] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/26/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Bis-(2-ethylhexyl) tetrabromophthalate (TBPH) is widely used as a replacement for polybrominated diphenyl ethers (PBDEs) in commercial flame retardant mixtures such as Firemaster 550. It is also used in a commercial mixture called DP 45. Mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) is a potentially toxic metabolite. OBJECTIVES We used in vitro and rodent in vivo models to evaluate human exposure and the potential metabolism and toxicity of TBPH. METHODS Dust collected from homes, offices, and cars was measured for TBPH by gas chromatography followed by mass spectrometry. Pregnant rats were gavaged with TBMEHP (200 or 500 mg/kg) or corn oil on gestational days 18 and 19, and dams and fetuses were evaluated histologically for toxicity. We also assessed TBMEHP for deiodinase inhibition using rat liver microsomes and for peroxisome proliferator-activated receptor (PPAR) α and γ activation using murine FAO cells and NIH 3T3 L1 cells. RESULTS TBPH concentrations in dust from office buildings (median, 410 ng/g) were higher than in main living areas in homes (median, 150 ng/g). TBPH was metabolized by purified porcine esterases to TBMEHP. Two days of TBMEHP exposure in the rat produced maternal hypothyroidism with markedly decreased serum T3 (3,3´,5-triiodo-l-thyronine), maternal hepatotoxicity, and increased multinucleated germ cells (MNGs) in fetal testes without antiandrogenic effects. In vitro, TBMEHP inhibited deiodinase activity, induced adipocyte differentiation in NIH 3T3 L1 cells, and activated PPARα- and PPARγ-mediated gene transcription in NIH 3T3 L1 cells and FAO cells, respectively. CONCLUSIONS TBPH a) is present in dust from indoor environments (implying human exposure) and b) can be metabolized by porcine esterases to TBMEHP, which c) elicited maternal thyrotoxic and hepatotoxic effects and d) induced MNGs in the fetal testes in a rat model. In mouse NIH 3T3 L1 preadipocyte cells, TBMEHP inhibited rat hepatic microsome deiodinase activity and was an agonist for PPARs in murine FAO and NIH 3T3 L1 cells.
Collapse
Affiliation(s)
- Cecilia Springer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Catechin induced modulation in the activities of thyroid hormone synthesizing enzymes leading to hypothyroidism. Mol Cell Biochem 2012; 374:37-48. [DOI: 10.1007/s11010-012-1503-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
|
36
|
Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev 2012; 11:329-45. [PMID: 22336470 DOI: 10.1016/j.arr.2012.01.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/23/2011] [Accepted: 01/31/2012] [Indexed: 12/21/2022]
Abstract
Within the last years, a rapidly growing number of polyphenolic compounds with neuroprotective effects have been described. Many efforts have been made to explore the mechanisms behind the neuroprotective action of polyphenols. However, many pathways and mechanisms considered for mediating these effects are rather general than specific. Moreover, despite the beneficial effects of polyphenols in experimental treatment of neurodegeneration, little has been achieved in bringing them into routine clinical applications. In this review, we have summarized the protective effects of polyphenols against neurodegeneration, and we have also discussed some of the barricades in translating these biochemical compounds, into relevant therapeutics for neurodegenerative diseases.
Collapse
|
37
|
Marini H, Polito F, Adamo EB, Bitto A, Squadrito F, Benvenga S. Update on genistein and thyroid: an overall message of safety. Front Endocrinol (Lausanne) 2012; 3:94. [PMID: 23060856 PMCID: PMC3459182 DOI: 10.3389/fendo.2012.00094] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022] Open
Abstract
Genistein aglycone, one of the soy isoflavones, has been reported to be beneficial in the treatment of menopausal vasomotor symptoms, osteoporosis, and cardiovascular diseases, as well as in a variety of cancers. However, issues of potential harm on thyroid function resulting from soy isoflavones consumption have been raised. Much of the evidence for the goitrogenic effects of isoflavones is derived from experimental in vitro and in vivo studies. Goitrogenic effects were also noted in infants fed non-iodine-fortified, soy-based formula, a problem that was easily solved with iodine fortification. Recent studies suggest that genistein shows a good profile of safety on the thyroid although definitive conclusions have not reached. The aim of this brief review is to summarize and better clarify the effects of genistein on human thyroid health.
Collapse
Affiliation(s)
- Herbert Marini
- Section of Physiology and Human Nutrition, Department of Biochemical, Physiological and Nutritional Sciences, University of Messina,Messina, Italy
- Herbert Marini, Francesca Polito, and Elena B. Adamo have contributed equally to this work
| | - Francesca Polito
- Section of Physiology and Human Nutrition, Department of Biochemical, Physiological and Nutritional Sciences, University of Messina,Messina, Italy
- Herbert Marini, Francesca Polito, and Elena B. Adamo have contributed equally to this work
| | - Elena B. Adamo
- Section of Physiology and Human Nutrition, Department of Biochemical, Physiological and Nutritional Sciences, University of Messina,Messina, Italy
- Herbert Marini, Francesca Polito, and Elena B. Adamo have contributed equally to this work
| | - Alessandra Bitto
- Section of Pharmacology, Department of Clinical and Experimental Medicine and Pharmacology, University of Messina,Messina, Italy
| | - Francesco Squadrito
- Section of Pharmacology, Department of Clinical and Experimental Medicine and Pharmacology, University of Messina,Messina, Italy
| | - Salvatore Benvenga
- Section of Endocrinology, Department of Clinical and Experimental Medicine and Pharmacology, University of Messina,Messina, Italy
- Master on Childhood, Adolescent and Women’s Endocrine Health, University of Messina,Messina, Italy
- Interdepartmental Program of Molecular and Clinical Endocrinology, and Women’s Endocrine Health, University Hospital of Messina,Messina, Italy
- *Correspondence: Salvatore Benvenga, Department of Clinical and Experimental Medicine and Pharmacology, Section of Endocrinology, Azienda Ospedaliera Universitaria Policlinico “G. Martino”, Pad. H 4th Floor, Via C. Valeria, Gazzi, 98125 Messina, Italy. e-mail:
| |
Collapse
|
38
|
Quiner TE, Nakken HL, Mason BA, Lephart ED, Hancock CR, Christensen MJ. Soy content of basal diets determines the effects of supplemental selenium in male mice. J Nutr 2011; 141:2159-65. [PMID: 22031663 PMCID: PMC3223873 DOI: 10.3945/jn.111.146498] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 07/20/2011] [Accepted: 09/28/2011] [Indexed: 12/11/2022] Open
Abstract
The effects of supplemental Se in rodent models may depend upon composition of the basal diet to which it is added. Wild-type male littermates of Transgenic Adenocarcinoma of Mouse Prostate mice were fed until 18 wk of age 1 of 2 Se-adequate stock diets high in soy (HS) or low in phytoestrogens (LP) or the same diets supplemented with 3.0 mg Se/kg diet as seleno-methylselenocysteine. Body and abdominal fat pad weights were lower (P < 0.01) in mice fed the HS diet. Supplemental Se reduced fat pad weights in mice receiving the LP diet but increased body and fat pad weights in mice consuming the HS formulation (P-interaction < 0.005). Serum free triiodothyronine concentrations were unaffected by supplemental Se in mice fed the LP diet but were decreased by Se supplementation of mice given the HS feed (P-interaction < 0.02). Free thyroxine concentrations were higher in mice consuming the HS diet regardless of Se intake (P < 0.001). Hepatic mRNA for iodothyronine deiodinase I was lower (P < 0.001) in mice fed the HS diet. Supplementation of Se increased this mRNA (P < 0.001) in both diet groups. Results from this study show a significant interaction between the composition of basal diets and the effects of supplemental Se with respect to body composition. These findings have important implications for future studies in rodent models of the effects of supplemental Se on heart disease, cancer, diabetes, and other conditions related to body weight and composition.
Collapse
Affiliation(s)
| | | | | | - Edwin D. Lephart
- Department of Physiology and Developmental Biology, and The Neuroscience Center, and
| | | | - Merrill J. Christensen
- Department of Nutrition, Dietetics, and Food Science
- Cancer Research Center, Brigham Young University, Provo, UT
| |
Collapse
|
39
|
de Souza Dos Santos MC, Gonçalves CFL, Vaisman M, Ferreira ACF, de Carvalho DP. Impact of flavonoids on thyroid function. Food Chem Toxicol 2011; 49:2495-502. [PMID: 21745527 DOI: 10.1016/j.fct.2011.06.074] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 01/03/2023]
Abstract
Flavonoids are polyphenolic compounds of natural occurrence produced by plants that are largely consumed both for therapeutic purposes and as food. Experimental data have shown that many flavonoids could inhibit thyroperoxidase activity, decreasing thyroid hormones levels thus increasing TSH and causing goiter. In humans, infants fed with soy formula have been shown to develop goiter. However, in post-menopausal women soy intake did not affect thyroid function. In thyroid tumor cell line, flavonoids were shown to inhibit cell growth, but they can also decrease radioiodine uptake, that could reduce the efficacy of radioiodine therapy. Flavonoids could also affect the availability of thyroid hormones to target tissues, by inhibiting deiodinase activity or displacing T4 from transthyretin. Thus, flavonoids have been shown to interfere with many aspects of the thyroid hormones synthesis and availability in in vivo and in vitro models. In the present article, we review and synthesize the literature on the effects of flavonoids on thyroid and discuss the possible relevance of these effects for humans.
Collapse
Affiliation(s)
- Maria Carolina de Souza Dos Santos
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
40
|
Butt CM, Wang D, Stapleton HM. Halogenated phenolic contaminants inhibit the in vitro activity of the thyroid-regulating deiodinases in human liver. Toxicol Sci 2011; 124:339-47. [PMID: 21565810 DOI: 10.1093/toxsci/kfr117] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Halogenated contaminants, particularly brominated flame retardants, disrupt circulating levels of thyroid hormones (THs), potentially affecting growth and development. Disruption may be mediated by impacts on deiodinase (DI) activity, which regulate the levels of active hormones available to bind to nuclear receptors. The goal of this study was to develop a mass spectrometry-based method for measuring the activity of DIs in human liver microsomes and to examine the effect of halogenated phenolic contaminants on DI activity. Thyroxine (T4) and reverse triiodothyronine (rT3) deiodination kinetics were measured by incubating pooled human liver microsomes with T4 or rT3 and monitoring the production of T3, rT3, 3,3'-diiodothyronine, and 3-monoiodothyronine by liquid chromatography tandem mass spectrometry. Using this method, we examined the effects of several halogenated contaminants, including 2,2',4,4',5-pentabromodiphenyl ether (BDE 99), several hydroxylated polybrominated diphenyl ethers (OH-BDEs), tribromophenol, tetrabromobisphenol A, and triclosan, on DI activity. The Michaelis constants (K(M)) of rT3 and T4 deiodination were determined to be 3.2 ± 0.7 and 17.3 ± 2.3μM. The V(max) was 160 ± 5.8 and 2.8 ± 0.10 pmol/min.mg protein, respectively. All studied contaminants inhibited DI activity in a dose-response manner, with the exception of BDE 99 and two OH-BDEs. 5'-Hydroxy 2,2',4,4',5-pentabromodiphenyl ether was found to be the most potent inhibitor of DI activity, and phenolic structures containing iodine were generally more potent inhibitors of DI activity relative to brominated, chlorinated, and fluorinated analogues. This study suggests that some halogenated phenolics, including current use compounds such as plastic monomers, flame retardants, and their metabolites, may disrupt TH homeostasis through the inhibition of DI activity in vivo.
Collapse
Affiliation(s)
- Craig M Butt
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
41
|
Abstract
There is increasing interest in the potential health benefits of dietary flavonoids. Fruits and vegetables, tea, and cocoa are rich natural sources of flavonoids. Epidemiological studies have indicated that consumption of these foods is likely to be associated with a reduced risk of cardiovascular disease, but the etiology of this benefit is not yet clearly defined. Furthermore, in some acute interventions, a positive effect of tea and cocoa on vascular function has been reported. An alternative source of flavonoids is dietary supplements, which have become increasingly popular in the recent past. In this context, it needs to be critically evaluated whether vascular health-promoting and other positive properties of flavonoid-rich diets can be replaced by purified flavonoids as dietary supplements. Plant sources of flavonoids contain a complex mixture of secondary plant metabolites and not only flavonoids per se. This complex mixture of secondary plant metabolites cannot be simply exchanged by single purified compounds as dietary supplements. If flavonoids are given as dietary supplements, toxicity issues as well as nutrient drug interactions need to be taken into account. Purified flavonoids given in high doses as dietary supplements may affect trace element, folate, and vitamin C status. Furthermore, they may exhibit antithyroid and goitrogenic activities. In this review article, the available literature on the safety issues surrounding high dose supplemental flavonoid consumption has been summarized.
Collapse
Affiliation(s)
- Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, 24089 Kiel, Germany,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Pan H, Sun Y, Zhang L. The effects of amitrole on thyroglobulin and iodide uptake in FRTL-5 cells. Toxicol Ind Health 2010; 27:187-92. [PMID: 20937625 DOI: 10.1177/0748233710386405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyroid is a frequent target for endocrine effects of pesticides. Thyroglobulin (TG) and iodide uptake are crucial to thyroid hormone synthesis and may be targets of thyroid-disrupting chemicals. In our study, thyroid follicular FRTL-5 cells were treated with amitrole, an inhibitor of the thyroid peroxidase (TPO), and the effects on TG and total iodide uptake were observed. The results showed that 1-100 mg/L amitrole had no marked effects on FRTL-5 cell proliferation and DNA synthesis. However, it significantly increased the transcription of tg gene and inhibited the total iodide uptake. And 10-100 mg/L amitrole significantly decreased TG in the culture medium. The data suggests amitrole may disrupt the expression and secretion of TG and iodide uptake.
Collapse
Affiliation(s)
- Hongmei Pan
- Institute for Health Sciences, Kunming Medical College, Kunming, China
| | | | | |
Collapse
|
43
|
Chandra AK, De N, Choudhury SR. Effect of different doses of un-fractionated green and black tea extracts on thyroid physiology. Hum Exp Toxicol 2010; 30:884-96. [PMID: 20801949 DOI: 10.1177/0960327110382563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tea is a rich source of polyphenolic flavonoids including catechins, which are thought to contribute to the health benefits of it. Flavonoids have been reported to have antithyroid and goitrogenic effect. The purpose of this study was to evaluate whether high doses of green and black tea have a harmful effect on thyroid physiology. Un-fractionated green and black tea extracts were administered orally to male rats for 30 days at doses of 1.25 g%, 2.5 g% and 5.0 g%. The results showed that green tea extract at 2.5 g% and 5.0 g% doses and black tea extract only at 5.0 g% dose have the potential to alter the thyroid gland physiology and architecture, that is, enlargement of thyroid gland as well as hypertrophy and/or hyperplasia of the thyroid follicles and inhibition of the activity of thyroid peroxidase and 5(')-deiodinase I with elevated thyroidal Na+, K+-ATPase activity along with significant decrease in serum T3 and T4, and a parallel increase in serum thyroid stimulating hormone (TSH). This study concludes that goitrogenic/antithyroidal potential of un-fractionated green tea extract is much more than black tea extract because of the differences in catechin contents in the tea extracts.
Collapse
Affiliation(s)
- Amar K Chandra
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| | | | | |
Collapse
|
44
|
Chandra AK, De N. Goitrogenic/antithyroidal potential of green tea extract in relation to catechin in rats. Food Chem Toxicol 2010; 48:2304-11. [PMID: 20561943 DOI: 10.1016/j.fct.2010.05.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/01/2010] [Accepted: 05/21/2010] [Indexed: 11/29/2022]
Abstract
Catechins are flavonoids found in abundance in green tea, have elicited high interest due to their beneficial effects on health. Though flavonoids have been reported to have an antithyroid effect and also to be goitrogenic there have been no reports about the effect of green tea on rat thyroid. The present study was designed to examine whether high doses of green tea has any harmful effect on thyroid physiology. For this purpose green tea extract was administered orally to male albino rats for 30 days at doses of 1.25 g%, 2.5 g% and 5.0 g%, respectively. Similarly, pure catechin was administered at doses of 25, 50 and 100mg/kg body weight which is equivalent to above doses of green tea extract. Lower body weight gain associated with marked hypertrophy and/or hyperplasia of the follicles was noted in the high dose of green tea and catechin treated groups. Decreased activity of thyroid peroxidase and 5'-deiodinase I and substantially elevated thyroidal Na,K+ATPase activity have been observed. Moreover, serum T3 and T4 levels were found to reduce followed by significant elevation of serum TSH. Taken together, these results suggest that catechin present in green tea extract might behave as antithyroid agent and possibly the consumption of green tea at high dose could alter thyroid function adversely.
Collapse
Affiliation(s)
- Amar K Chandra
- Endocrinology and Reproductive Physiology Laboratory, Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| | | |
Collapse
|
45
|
Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:686-92. [PMID: 20089479 PMCID: PMC2866686 DOI: 10.1289/ehp.0901584] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/07/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA, also known as C8) and perfluorooctane sulfonate (PFOS) are stable compounds with many industrial and consumer uses. Their persistence in the environment plus toxicity in animal models has raised concern over low-level chronic exposure effects on human health. OBJECTIVES We estimated associations between serum PFOA and PFOS concentrations and thyroid disease prevalence in representative samples of the U.S. general population. METHODS Analyses of PFOA/PFOS versus disease status in the National Health and Nutrition Examination Survey (NHANES) for 1999-2000, 2003-2004, and 2005-2006 included 3,974 adults with measured concentrations for perfluorinated chemicals. Regression models were adjusted for age, sex, race/ethnicity, education, smoking status, body mass index, and alcohol intake. RESULTS The NHANES-weighted prevalence of reporting any thyroid disease was 16.18% (n = 292) in women and 3.06% (n = 69) in men; prevalence of current thyroid disease with related medication was 9.89% (n = 163) in women and 1.88% (n = 46) in men. In fully adjusted logistic models, women with PFOA >or= 5.7 ng/mL [fourth (highest) population quartile] were more likely to report current treated thyroid disease [odds ratio (OR) = 2.24; 95% confidence interval (CI), 1.38-3.65; p = 0.002] compared with PFOA <or= 4.0 ng/mL (quartiles 1 and 2); we found a near significant similar trend in men (OR = 2.12; 95% CI, 0.93-4.82; p = 0.073). For PFOS, in men we found a similar association for those with PFOS >or= 36.8 ng/mL (quartile 4) versus <or= 25.5 ng/mL (quartiles 1 and 2: OR for treated disease = 2.68; 95% CI, 1.03-6.98; p = 0.043); in women this association was not significant. CONCLUSIONS Higher concentrations of serum PFOA and PFOS are associated with current thyroid disease in the U.S. general adult population. More work is needed to establish the mechanisms involved and to exclude confounding and pharmacokinetic explanations.
Collapse
Affiliation(s)
| | - Neil Rice
- Epidemiology and Public Health Group and
| | - Michael H. Depledge
- Environment and Human Health Group, Peninsula Medical School, Exeter, United Kingdom
| | - William E. Henley
- School of Mathematics and Statistics, University of Plymouth, Plymouth, United Kingdom
| | - Tamara S. Galloway
- School of Biosciences, University of Exeter, Exeter, United Kingdom
- Address correspondence to T. Galloway, Department of Ecotoxicology, School of Biosciences, Prince of Wales Rd., Exeter EX4 4PS, UK. Telephone: 44-0-1392-263436. Fax: 44-0-1392-263700. E-mail:
| |
Collapse
|
46
|
Cerundolo R, Michel KE, Reisner IR, Phillips L, Goldschmidt M, Court MH, Shrestha B, Hao Q, Refsal K, Oliver JW, Biourge V, Shofer FS. Effects of dietary soy isoflavones on health, steroidogenesis, and thyroid gland function in dogs. Am J Vet Res 2009; 70:353-60. [PMID: 19254147 PMCID: PMC2698128 DOI: 10.2460/ajvr.70.3.353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effect of a soy-based diet on general health and adrenocortical and thyroid gland function in dogs. Animals-20 healthy privately owned adult dogs. PROCEDURES In a randomized controlled clinical trial, dogs were fed a soy-based diet with high (HID; n = 10) or low (LID; 10) isoflavones content. General health of dogs, clinicopathologic variables, and serum concentrations of adrenal gland and thyroid gland hormones were assessed before treatment was initiated and up to 1 year later. Differences between groups with respect to changes in the values of variables after treatment were assessed by means of a Student t test (2 time points) and repeated-measures ANOVA (3 time points). RESULTS No differences were detected between the 2 groups with respect to body condition and results of hematologic, serum biochemical, and urine analyses. Most serum concentrations of hormones did not change significantly after treatment, nor were they affected by diet. However, the mean change in serum concentration of total thyroxine was higher in the HID group (15.7 pmol/L) than that in the LID group (-1.9 pmol/L). The mean change in estradiol concentration after ACTH stimulation at 1 year after diets began was also higher in the HID group (19.0 pg/mL) than that in the LID group (-5.6 pg/mL). CONCLUSIONS AND CLINICAL RELEVANCE Phytoestrogens may influence endocrine function in dogs. Feeding soy to dogs on a long-term basis may influence results of studies in which endocrine function is evaluated, although larger studies are needed to confirm this supposition.
Collapse
Affiliation(s)
- Rosario Cerundolo
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Kathy E. Michel
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ilana R. Reisner
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Lucy Phillips
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Michael Goldschmidt
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Michael H. Court
- Dept. of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA USA
| | - Binu Shrestha
- Dept. of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA USA
| | - Qin Hao
- Dept. of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA USA
| | - Kent Refsal
- Diagnostic Center for Population and Animal Health, Michigan State University, Lansing, MI, USA
| | - Jack W. Oliver
- Clinical Endocrinology Service, Department of Comparative Medicine, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee, USA
| | | | - Frances S. Shofer
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Shia CS, Tsai SY, Kuo SC, Hou YC, Chao PDL. Metabolism and pharmacokinetics of 3,3',4',7-tetrahydroxyflavone (fisetin), 5-hydroxyflavone, and 7-hydroxyflavone and antihemolysis effects of fisetin and its serum metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:83-89. [PMID: 19090755 DOI: 10.1021/jf802378q] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
3,3',4',7-Tetrahydroxyflavone (fisetin) has shown various beneficial bioactivities. This study investigated the metabolism and pharmacokinetics of fisetin, 5-hydroxyflavone (5-OH-flavone), and 7-hydroxyflavone (7-OH-flavone) in male Sprague-Dawley rats. Blood was withdrawn via cardiopuncture and assayed by HPLC before and after hydrolysis with sulfatase and beta-glucuronidase. The results indicated that after intravenous administration of fisetin (10 mg/kg of bw), fisetin declined rapidly and fisetin sulfates/glucuronides emerged instantaneously. When fisetin (50 mg/kg of bw) was given orally, fisetin parent form was transiently present in serum only during the absorption phase, whereas fisetin sulfates/glucuronides predominated. The serum metabolites of fisetin showed less potent inhibition on 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)-induced hemolysis than fisetin. Following oral administrations of 40 mg/kg of bw of 5-OH-flavone and 7-OH-flavone, the glucuronide of 5-OH-flavone and the sulfate/glucuronide of 7-OH-flavone were found in serum, whereas no traces of parent forms were detected. In conclusion, fisetin and 7-OH-flavone were rapidly and extensively biotransformed into their sulfate/glucuronide, whereas 5-OH-flavone was exclusively metabolized to glucuronide.
Collapse
Affiliation(s)
- Chi-Sheng Shia
- Institute of Pharmaceutical Chemistry and School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
48
|
Lee BC, Kang SI, Ahn YM, Doo HK, Ahn SY. An alternative therapy for graves' disease: clinical effects and mechanisms of an herbal remedy. Biol Pharm Bull 2008; 31:583-7. [PMID: 18379045 DOI: 10.1248/bpb.31.583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Graves' disease, the most common cause of hyperthyroidism, is an autoimmune disorder. Antithyroid drugs have been selected as the first-line treatment of Graves' disease in Korea, Japan, and European countries. However, antithyroid drugs such as methimazole (MMI) and prophylthiouracil (PTU) have limitations in clinical applications because of their side effects. In this study, we performed a clinical trial and in vitro study to investigate the clinical effects and action mechanism of Ahnjeonbaekho-tang (AJBHT), an herbal remedy for Graves' disease. In a clinical study of Graves' disease patients who had side effects from antithyroid drugs, we found that treatment by AJBHT resulted in a reduction of serum triiodothyronine (T3) and free thyroxine (FT4) levels and an increase in thyroid stimulating hormone (TSH) levels (T3: p<0.0001, FT4: p=0.0012, TSH: p=0.0370, respectively). In vitro, AJBHT significantly inhibits FRTL-5 cell proliferation, DNA synthesis, cyclic AMP production, T4 synthesis, and the expression of thyroglobulin (Tg) mRNA in comparison with the control. These results suggest that AJBHT might suppress T(4) synthesis by modulating adenosine 3',5'-cyclic monophosphate (cAMP) and Tg expression, and therefore, AJBHT could be an alternative therapy for Graves' disease patients who have side effects from antithyroid drugs.
Collapse
Affiliation(s)
- Byung-Cheol Lee
- Department of Internal Medicine, College of Oriental Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-Ku, Seoul 130-701, Korea
| | | | | | | | | |
Collapse
|
49
|
Giuliani C, Noguchi Y, Harii N, Napolitano G, Tatone D, Bucci I, Piantelli M, Monaco F, Kohn LD. The flavonoid quercetin regulates growth and gene expression in rat FRTL-5 thyroid cells. Endocrinology 2008; 149:84-92. [PMID: 17962351 DOI: 10.1210/en.2007-0618] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Quercetin is the most consumed flavonoid present in fruits and vegetables. There has been increased interest in the possible health benefits of quercetin and other flavonoids. Because it is reported that these compounds have some antithyroid properties, we were interested whether, and by what mechanism, quercetin might regulate thyroid cell growth and function. In this report we show that quercetin inhibits thyroid cell growth in association with inhibition of insulin-modulated phosphatidylinositol 3-kinase-Akt kinase activity. Furthermore, quercetin decreases TSH-modulated RNA levels of the thyroid-restricted gene sodium/iodide symporter (NIS). We associated down-regulation of NIS RNA levels with inhibition of iodide uptake at comparable quercetin concentrations and could show that the inhibitory effect of quercetin on NIS RNA levels and iodide uptake is reproduced by inhibitors of the phospholipase-A(2)/lipoxygenase pathway. The specific inhibitor of protein kinase A, H89, only partially inhibited TSH-increased NIS expression and did not reproduce the quercetin effect. The quercetin studies thus reveal that the phospholipase-A(2)/lipoxygenase pathway appears to play an important role in TSH regulation of NIS gene expression, whereas quercetin inhibition of growth appears to involve an effect on insulin/IGF-I-Akt signaling. The data raise the possibility that quercetin may be a novel disruptor of thyroid function, which has potential effects on, or use in, the therapy of thyroid diseases.
Collapse
Affiliation(s)
- Cesidio Giuliani
- Department of Medicine and Aging, University G. D'Annunzio, 66013 Chieti, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schmutzler C, Gotthardt I, Hofmann PJ, Radovic B, Kovacs G, Stemmler L, Nobis I, Bacinski A, Mentrup B, Ambrugger P, Grüters A, Malendowicz LK, Christoffel J, Jarry H, Seidlovà-Wuttke D, Wuttke W, Köhrle J. Endocrine disruptors and the thyroid gland--a combined in vitro and in vivo analysis of potential new biomarkers. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115 Suppl 1:77-83. [PMID: 18174954 PMCID: PMC2174406 DOI: 10.1289/ehp.9369] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 10/23/2006] [Indexed: 05/17/2023]
Abstract
BACKGROUND There is growing evidence that, in addition to the reproductive system, the hypothalamic-pituitary-thyroid axis is a target of endocrine-disrupting compounds (EDCs). However, this is not reflected adequately in current screening and assessment procedures for endocrine activity that to date determine only general parameters of thyroid function. OBJECTIVE AND METHODS We used several in vitro and ex vivo assays in an attempt to identify suitable biomarkers for antithyroid action testing a selected panel of putative EDCs. RESULTS In vitro we detected stimulation or inhibition of iodide uptake into FRTL-5 rat thyroid cells, inhibition of thyroid hormone binding to transthyretin, agonistic or antagonistic effects in a thyroid hormone receptor-dependent reporter assay, and inhibition of thyroid peroxidase using a novel assay system based on human recombinant thyroperoxidase that might be suitable for routine screening for potential EDCs. In rats, chronic application of several EDCs led to changes in thyroid morphology, alterations of thyrotropin and thyroid hormone serum levels as well as alterations in peripheral thyroid hormone-regulated end points such as malic enzyme and type I 5'-deiodinase activity. CONCLUSIONS As the effects of EDCs do not reflect classic mechanisms of hormone-dependent regulation and feedback, we believe multitarget and multimodal actions of EDCs affect the hypothalamic-pituitary-thyroid axis. These complex effects require a diverse approach for screening, evaluation, and risk assessment of potential antithyroid compounds. This approach involves novel in vitro or cell-based screening assays in order to assess thyroid hormone synthesis, transport, metabolism, and action as well as in vivo assays to measure thyroid hormone-regulated tissue-specific and developmental end points in animals.
Collapse
Affiliation(s)
- Cornelia Schmutzler
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|