1
|
Zhang C, Liu H, Sun L, Wang Y, Chen X, Du J, Sjöling Å, Yao J, Wu S. An overview of host-derived molecules that interact with gut microbiota. IMETA 2023; 2:e88. [PMID: 38868433 PMCID: PMC10989792 DOI: 10.1002/imt2.88] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
The gut microbiota comprises bacteria, archaea, fungi, protists, and viruses that live together and interact with each other and with host cells. A stable gut microbiota is vital for regulating host metabolism and maintaining body health, while a disturbed microbiota may induce different kinds of disease. In addition, diet is also considered to be the main factor that influences the gut microbiota. The host could shape the gut microbiota through other factors. Here, we reviewed the mechanisms that mediate host regulation on gut microbiota, involved in gut-derived molecules, including gut-derived immune system molecules (secretory immunoglobulin A, antimicrobial peptides, cytokines, cluster of differentiation 4+ effector T cell, and innate lymphoid cells), sources related to gut-derived mucosal molecules (carbon sources, nitrogen sources, oxygen sources, and electron respiratory acceptors), gut-derived exosomal noncoding RNA (ncRNAs) (microRNAs, circular RNA, and long ncRNA), and molecules derived from organs other than the gut (estrogen, androgen, neurohormones, bile acid, and lactic acid). This study provides a systemic overview for understanding the interplay between gut microbiota and host, a comprehensive source for potential ways to manipulate gut microbiota, and a solid foundation for future personalized treatment that utilizes gut microbiota.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huifeng Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Lei Sun
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Yue Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xiaodong Chen
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Juan Du
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Åsa Sjöling
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Junhu Yao
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Shengru Wu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
2
|
Lin PC, Lin ZP, Chen PY, Hsieh MT, Lin HC. New metal-free one-pot synthesis of α-2-deoxy-Ulosides by microwave-assisted double Michael Addition of β-enamino ketones. Carbohydr Res 2023; 523:108712. [PMID: 36423508 DOI: 10.1016/j.carres.2022.108712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
New metal-free one-pot synthesis of α-2-deoxy-ulosides in moderate to good yields by microwave-assisted double Michael addition of various O-nucleophiles to β-enamino ketones in the presence of 12 N HCl. These glycosyl additions occurred with high α-stereoselectivity and were complete in 10-25 min in 51-93% yield. In addition, high α-stereoselectivity was also observed when S-nucleophiles were examined.
Collapse
Affiliation(s)
- Pin-Chun Lin
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Zi-Ping Lin
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Po-Yen Chen
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan
| | - Min-Tsang Hsieh
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan; Chinese Medicinal Research and Development Center, China Medical University Hospital, No. 2, Yude Rd., Taichung, 40447, Taiwan
| | - Hui-Chang Lin
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan; Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, 40402, Taiwan.
| |
Collapse
|
3
|
Anaerobic Growth of Listeria monocytogenes on Rhamnose Is Stimulated by Vitamin B 12 and Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization. mSphere 2021; 6:e0043421. [PMID: 34287006 PMCID: PMC8386454 DOI: 10.1128/msphere.00434-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes can form proteinaceous organelles called bacterial microcompartments (BMCs) that optimize the utilization of substrates, such as 1,2-propanediol, and confer an anaerobic growth advantage. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol, next to acetate and lactate. Rhamnose-derived 1,2-propanediol was found to link with BMCs in some human pathogens such as Salmonella enterica, but the involvement of BMCs in rhamnose metabolism and potential physiological effects on L. monocytogenes are still unknown. In this study, we first test the effect of rhamnose uptake and utilization on anaerobic growth of L. monocytogenes EGDe without or with added vitamin B12, followed by metabolic analysis. We show that vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via 1,2-propanediol degradation into 1-propanol and propionate. Transmission electron microscopy of pdu-induced cells shows that BMCs are formed, and additional proteomics experiments confirm expression of pdu BMC shell proteins and enzymes. Finally, we discuss the physiological effects and energy efficiency of L. monocytogenespdu BMC-driven anaerobic rhamnose metabolism and the impact on competitive fitness in environments such as the human intestine. IMPORTANCEListeria monocytogenes is a foodborne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to its survival strategy and pathogenicity. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol. In our previous study, the utilization of 1,2-propanediol (pdu) in L. monocytogenes was proved to be metabolized in bacterial microcompartments (BMCs), which are self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we show that the vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via BMC-dependent 1,2-propanediol utilization. Combined with metabolic and proteomics analysis, our discussion on the physiological effects and energy efficiency of BMC-driven rhamnose metabolism shed new light to understand the impact on L. monocytogenes competitive fitness in ecosystems such as the human intestine.
Collapse
|
4
|
Metabolic glycan labelling for cancer-targeted therapy. Nat Chem 2020; 12:1102-1114. [PMID: 33219365 DOI: 10.1038/s41557-020-00587-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
Abstract
Metabolic glycoengineering with unnatural sugars provides a powerful tool to label cell membranes with chemical tags for subsequent targeted conjugation of molecular cargos via efficient chemistries. This technology has been widely explored for cancer labelling and targeting. However, as this metabolic labelling process can occur in both cancerous and normal cells, cancer-selective labelling needs to be achieved to develop cancer-targeted therapies. Unnatural sugars can be either rationally designed to enable preferential labelling of cancer cells, or specifically delivered to cancerous tissues. In this Review Article, we will discuss the progress to date in design and delivery of unnatural sugars for metabolic labelling of tumour cells and subsequent development of tumour-targeted therapy. Metabolic cell labelling for cancer immunotherapy will also be discussed. Finally, we will provide a perspective on future directions of metabolic labelling of cancer and immune cells for the development of potent, clinically translatable cancer therapies.
Collapse
|
5
|
Han X, Sun R, Sandalova T, Achour A. Structural and functional studies of Spr1654: an essential aminotransferase in teichoic acid biosynthesis in Streptococcus pneumoniae. Open Biol 2019; 8:rsob.170248. [PMID: 29669826 PMCID: PMC5936713 DOI: 10.1098/rsob.170248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/23/2018] [Indexed: 11/28/2022] Open
Abstract
Spr1654 from Streptococcus pneumoniae plays a key role in the production of unusual sugars, presumably functioning as a pyridoxal-5′-phosphate (PLP)-dependent aminotransferase. Spr1654 was predicted to catalyse the transferring of amino group to form the amino sugar 2-acetamido-4-amino-2, 4, 6-trideoxygalactose moiety (AATGal), representing a crucial step in biosynthesis of teichoic acids in S. pneumoniae. We have determined the crystal structures of the apo-, PLP- and PMP-bound forms of Spr1654. Spr1654 forms a homodimer, in which each monomer contains one active site. Using spectrophotometry and based on absorbance profiles of PLP- and PMP-formed enzymes, our results indicate that l-glutamate is most likely the preferred amino donor. Structural superposition of the crystal structures of Spr1654 on previously determined structures of other sugar aminotransferases in complex with glutamate and/or UDP-activated sugar allowed us to identify key Spr1654 residues for ligand binding and catalysis. The crystal structures of Spr1654 and in complex with PLP and PMP can direct the future rational design of novel therapeutic compounds against S. pneumoniae.
Collapse
Affiliation(s)
- Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, 17176 Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, 17176 Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, 17176 Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, Solna, 17176 Stockholm, Sweden .,Division of Infectious Diseases, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| |
Collapse
|
6
|
Gupta N, Jangid AK, Singh M, Pooja D, Kulhari H. Designing Two-Dimensional Nanosheets for Improving Drug Delivery to Fucose-Receptor-Overexpressing Cancer Cells. ChemMedChem 2018; 13:2644-2652. [PMID: 30371024 DOI: 10.1002/cmdc.201800575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery has shown promise in improving the therapeutic efficacy of anticancer drugs. Gemcitabine hydrochloride (GEM) is a broad-range chemotherapeutic agent for the treatment of various cancers. However, systemic use of free GEM is restricted because of its poor physicochemical properties and nonspecific drug delivery, resulting in dose-dependent adverse effects. In this study, a fucose-conjugated graphene oxide (GO)-based smart targeted nanocarrier system was designed to provide high loading, sustained release, and targeted high concentrations of GEM to cancer cells. Fucose-conjugated GO nanosheets (FGONS) and GEM-loaded fucose-conjugated GO nanosheets (GEM-FGONS) were prepared and characterized by various techniques. About 36.2 % of GEM was loaded to the FGONS, which showed a pH-dependent release over a period of 48 h. A colloidal suspension of GEM-FGONS was found to be physiochemically stable for up to 96 h. In cytotoxicity studies, GEM-FGONS demonstrated time- and dose-dependent high toxicities on fucose-receptor-overexpressing MDA-MB-231 human breast cancer cells and A549 human lung cancer cells. Moreover, targeted formulations were more efficacious than non-targeted or free GEM. Overall, bioconjugation of fucose helps in the stabilizing and targeting of graphene oxide nanosheets.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Mandeep Singh
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Deep Pooja
- Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| |
Collapse
|
7
|
Zhou Y, Fukuda T, Hang Q, Hou S, Isaji T, Kameyama A, Gu J. Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation. Sci Rep 2017; 7:11563. [PMID: 28912543 PMCID: PMC5599613 DOI: 10.1038/s41598-017-11911-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022] Open
Abstract
Core fucosylation is one of the most important glycosylation events in the progression of liver cancer. For this study, we used an easily handled L-fucose analog, 2-fluoro-L-fucose (2FF), which interferes with the normal synthesis of GDP-fucose, and verified its potential roles in regulating core fucosylation and cell behavior in the HepG2 liver cancer cell line. Results obtained from lectin blot and flow cytometry analysis clearly showed that 2FF treatment dramatically inhibited core fucosylation, which was also confirmed via mass spectrometry analysis. Cell proliferation and integrin-mediated cell migration were significantly suppressed in cells treated with 2FF. We further analyzed cell colony formation in soft agar and tumor xenograft efficacy, and found that both were greatly suppressed in the 2FF-treated cells, compared with the control cells. Moreover, the treatment with 2FF decreased the core fucosylation levels of membrane glycoproteins such as EGF receptor and integrin β1, which in turn suppressed downstream signals that included phospho-EGFR, -AKT, -ERK, and -FAK. These results clearly described the roles of 2FF and the importance of core fucosylation in liver cancer progression, suggesting 2FF shows promise for use in the treatment of hepatoma.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Akihiko Kameyama
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
8
|
Functional expression of a human GDP-L-fucose transporter in Escherichia coli. Biotechnol Lett 2016; 39:219-226. [PMID: 27738779 DOI: 10.1007/s10529-016-2233-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/05/2016] [Indexed: 01/16/2023]
Abstract
OBJECTIVES To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes. RESULTS The heterologous expression of the recombinant and codon-adapted human GDP-L-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli. The in vitro transport was investigated using inverted membrane vesicles. SLC35C1 is an antiporter specific for GDP-L-fucose and depending on the concomitant reverse transport of GMP. The recombinant transporter FucT1 exhibited an activity for the transport of 3H-GDP-L-fucose with a Vmax of 8 pmol/min mg with a Km of 4 µM. The functional expression of SLC35C1 in GDP-L-fucose overproducing E. coli led to the export of GDP-L-fucose to the culture supernatant. CONCLUSIONS The export of GDP-L-fucose by E. coli provides the opportunity for the engineering of a periplasmatic fucosylation reaction in recombinant bacterial cells.
Collapse
|
9
|
Osuga T, Takimoto R, Ono M, Hirakawa M, Yoshida M, Okagawa Y, Uemura N, Arihara Y, Sato Y, Tamura F, Sato T, Iyama S, Miyanishi K, Takada K, Hayashi T, Kobune M, Kato J. Relationship Between Increased Fucosylation and Metastatic Potential in Colorectal Cancer. J Natl Cancer Inst 2016; 108:djw210. [DOI: 10.1093/jnci/djw210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/10/2016] [Indexed: 11/13/2022] Open
|
10
|
Khan A, Bharti P, Saraf I, Mittal N, Tewari R, Singh IP. Two new Aromatic Glycosides from a Soil Bacterium Burkholderia gladioli OR1. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new aromatic glycosides, named as gladioside I (1) and II (2) were isolated from the culture broth of a soil bacterium, Burkholderia gladioli OR1. Both 1 and 2 contained one unit each of rhamnose and 3- O-methyl xylose and differed from each other in the aglycone part. Compound 1 contained an aromatic aldehyde and compound 2 contained a styrylcarbamate unit as the aglycone part. The structures of 1 and 2 were elucidated by detailed spectral analysis and chemical degradation.
Collapse
Affiliation(s)
- Afsana Khan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar 160062, Punjab, India
| | - Pratibha Bharti
- Centre for Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Isha Saraf
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar 160062, Punjab, India
| | - Neha Mittal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar 160062, Punjab, India
| | - Rupinder Tewari
- Centre for Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar 160062, Punjab, India
| |
Collapse
|
11
|
Osuga T, Takimoto R, Ono M, Hirakawa M, Yoshida M, Okagawa Y, Uemura N, Arihara Y, Sato Y, Tamura F, Sato T, Iyama S, Miyanishi K, Takada K, Hayashi T, Kobune M, Kato J. Relationship Between Increased Fucosylation and Metastatic Potential in Colorectal Cancer. J Natl Cancer Inst 2016; 108:djw038. [PMID: 27075853 DOI: 10.1093/jnci/djw038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/10/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Fucose is utilized for the modification of different molecules involved in blood group determination, immunological reactions, and signal transduction pathways. We have recently reported that enhanced activity of the fucosyltransferase 3 and/or 6 promoted TGF-ß-mediated epithelial mesenchymal transition and was associated with increased metastatic potential of colorectal cancer (CRC), suggesting that fucose is required by CRC cells. With this in mind, we examined requirement of L-fucose in CRC cells and developed fucose-bound nanoparticles as vehicles for delivery of anticancer drugs specific to CRC. METHODS In this study, we first examined the expression of fucosylated proteins in 50 cases of CRC by immunochistochemical staining with biotinylated Aleuria aurantia lectin (AAL). Then we carried out an L-fucose uptake assay using three CRC cell lines. Finally, we developed fucose-bound nanoparticles as vehicles for the delivery of an anticancer drug, SN38, and examined tumor growth inhibition in mouse xenograft model (n = 6 mice per group). All statistical tests were two-sided. RESULTS We found a statistically significant relationship between vascular invasion, clinical stage, and intensity score of AAL staining (P≤ .02). L-fucose uptake assay revealed that L-fucose incorporation, as well as fucosylated protein release, was high in cells rich in fucosylated proteins. L-fucose-bound liposomes effectively delivered Cy5.5 into CRC cells. The excess of L-fucose decreased the efficiency of Cy5.5 uptake through L-fucose-bound liposomes, suggesting an L-fucose receptor dependency. Intravenously injected, L-fucose-bound liposomes carrying SN38 were successfully delivered to CRC cells, mediating efficient tumor growth inhibition (relative tumor growth ratio: no treatment group [NT], 8.29 ± 3.09; SN38-treated group [SN38], 3.53 ± 1.47; liposome-carrying, SN38-treated group [F0], 3.1 ± 1.39; L-fucose-bound, liposome-carrying, SN38-treated group [F50], 0.94 ± 0.89; F50 vs NT,P= .003; F50 vs SN38,P= .02, F50 vs F0,P= .04), as well as prolonging survival of mouse xenograft models (log-rank test,P< .001). CONCLUSIONS Thus, fucose-bound liposomes carrying anticancer drugs provide a new strategy for the treatment of CRC patients.
Collapse
Affiliation(s)
- Takahiro Osuga
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Rishu Takimoto
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Michihiro Ono
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Masahiro Hirakawa
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Makoto Yoshida
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Yutaka Okagawa
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Uemura
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Yohei Arihara
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Yasushi Sato
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Fumito Tamura
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Tsutomu Sato
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Iyama
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Koji Miyanishi
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Tsuyoshi Hayashi
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Masayoshi Kobune
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| | - Junji Kato
- Affiliations of authors: Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan; Division of Clinical Oncology; Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
12
|
Ishio A, Sasamura T, Ayukawa T, Kuroda J, Ishikawa HO, Aoyama N, Matsumoto K, Gushiken T, Okajima T, Yamakawa T, Matsuno K. O-fucose monosaccharide of Drosophila Notch has a temperature-sensitive function and cooperates with O-glucose glycan in Notch transport and Notch signaling activation. J Biol Chem 2014; 290:505-19. [PMID: 25378397 DOI: 10.1074/jbc.m114.616847] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1(R245A knock-in)), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1(R245A knock-in) and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions.
Collapse
Affiliation(s)
- Akira Ishio
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500, the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Takeshi Sasamura
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Tomonori Ayukawa
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500
| | - Junpei Kuroda
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Hiroyuki O Ishikawa
- Genome and Drug Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, the Graduate School of Science,Chiba University, 1-33 Yayoi, Inage, Chiba, and
| | - Naoki Aoyama
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500
| | - Kenjiroo Matsumoto
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Takuma Gushiken
- From the Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-1500, the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Tetsuya Okajima
- the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Tomoko Yamakawa
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Kenji Matsuno
- the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043,
| |
Collapse
|
13
|
Biosynthetic Mechanism forL-Gulose in Main Polar Lipids ofThermoplasma acidophilumand Possible Resemblance to Plant Ascorbic Acid Biosynthesis. Biosci Biotechnol Biochem 2014; 77:2087-93. [DOI: 10.1271/bbb.130442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
|
15
|
Han NS, Kim TJ, Park YC, Kim J, Seo JH. Biotechnological production of human milk oligosaccharides. Biotechnol Adv 2012; 30:1268-78. [DOI: 10.1016/j.biotechadv.2011.11.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/24/2011] [Accepted: 11/08/2011] [Indexed: 01/13/2023]
|
16
|
Rescue of Notch signaling in cells incapable of GDP-L-fucose synthesis by gap junction transfer of GDP-L-fucose in Drosophila. Proc Natl Acad Sci U S A 2012; 109:15318-23. [PMID: 22949680 DOI: 10.1073/pnas.1202369109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch (N) is a transmembrane receptor that mediates cell-cell interactions to determine many cell-fate decisions. N contains EGF-like repeats, many of which have an O-fucose glycan modification that regulates N-ligand binding. This modification requires GDP-L-fucose as a donor of fucose. The GDP-L-fucose biosynthetic pathways are well understood, including the de novo pathway, which depends on GDP-mannose 4,6 dehydratase (Gmd) and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase/4-reductase (Gmer). However, the potential for intercellularly supplied GDP-L-fucose and the molecular basis of such transportation have not been explored in depth. To address these points, we studied the genetic effects of mutating Gmd and Gmer on fucose modifications in Drosophila. We found that these mutants functioned cell-nonautonomously, and that GDP-L-fucose was supplied intercellularly through gap junctions composed of Innexin-2. GDP-L-fucose was not supplied through body fluids from different isolated organs, indicating that the intercellular distribution of GDP-L-fucose is restricted within a given organ. Moreover, the gap junction-mediated supply of GDP-L-fucose was sufficient to support the fucosylation of N-glycans and the O-fucosylation of the N EGF-like repeats. Our results indicate that intercellular delivery is a metabolic pathway for nucleotide sugars in live animals under certain circumstances.
Collapse
|
17
|
Yoshida M, Takimoto R, Murase K, Sato Y, Hirakawa M, Tamura F, Sato T, Iyama S, Osuga T, Miyanishi K, Takada K, Hayashi T, Kobune M, Kato J. Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach. PLoS One 2012; 7:e39545. [PMID: 22808043 PMCID: PMC3394772 DOI: 10.1371/journal.pone.0039545] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/22/2012] [Indexed: 01/05/2023] Open
Abstract
Owing to its aggressiveness and the lack of effective therapies, pancreatic ductal adenocarcinoma has a dismal prognosis. New strategies to improve treatment and survival are therefore urgently required. Numerous fucosylated antigens in sera serve as tumor markers for cancer detection and evaluation of treatment efficacy. Increased expression of fucosyltransferases has also been reported for pancreatic cancer. These enzymes accelerate malignant transformation through fucosylation of sialylated precursors, suggesting a crucial requirement for fucose by pancreatic cancer cells. With this in mind, we developed fucose-bound nanoparticles as vehicles for delivery of anticancer drugs specifically to cancer cells. L-fucose-bound liposomes containing Cy5.5 or Cisplatin were effectively delivered into CA19-9 expressing pancreatic cancer cells. Excess L-fucose decreased the efficiency of Cy5.5 introduction by L-fucose-bound liposomes, suggesting L-fucose-receptor-mediated delivery. Intravenously injected L-fucose-bound liposomes carrying Cisplatin were successfully delivered to pancreatic cancer cells, mediating efficient tumor growth inhibition as well as prolonging survival in mouse xenograft models. This modality represents a new strategy for pancreatic cancer cell-targeting therapy.
Collapse
Affiliation(s)
- Makoto Yoshida
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Rishu Takimoto
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Kazuyuki Murase
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sato
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Hirakawa
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Fumito Tamura
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Tsutomu Sato
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Satoshi Iyama
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Osuga
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Miyanishi
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Hayashi
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayoshi Kobune
- Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Junji Kato
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
- * E-mail:
| |
Collapse
|
18
|
Vranakis I, De Bock PJ, Papadioti A, Samoilis G, Tselentis Y, Gevaert K, Tsiotis G, Psaroulaki A. Unraveling Persistent Host Cell Infection with Coxiella burnetii by Quantitative Proteomics. J Proteome Res 2011; 10:4241-51. [DOI: 10.1021/pr200422f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Iosif Vranakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | - Pieter-Jan De Bock
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Anastasia Papadioti
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Georgios Samoilis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Yannis Tselentis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Georgios Tsiotis
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | - Anna Psaroulaki
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| |
Collapse
|
19
|
Liu TW, Ito H, Chiba Y, Kubota T, Sato T, Narimatsu H. Functional expression of L-fucokinase/guanosine 5'-diphosphate-L-fucose pyrophosphorylase from Bacteroides fragilis in Saccharomyces cerevisiae for the production of nucleotide sugars from exogenous monosaccharides. Glycobiology 2011; 21:1228-36. [PMID: 21515909 DOI: 10.1093/glycob/cwr057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The biosynthesis of glycoconjugates requires the relevant glycosyltransferases and nucleotide sugars that can act as donors. Given the biological importance of posttranslational glycosylation, a facile, robust and cost-effective strategy for the synthesis of nucleotide sugars is highly desirable. In this study, we demonstrate the synthesis of nucleotide sugars from corresponding monosaccharides in a highly efficient manner via metabolic engineering, using an enzymatic approach. This method exploits l-fucokinase/guanosine 5'-diphosphate (GDP)-l-fucose (L-Fuc) pyrophosphorylase (FKP), a bifunctional enzyme isolated from Bacteroides fragilis 9343, which converts l-Fuc into GDP-L-Fuc via an L-Fuc-1-phosphate intermediate. Because L-Fuc and d-arabinose (D-Ara) are structurally similar, it is assumed that the biosynthesis of GDP-D-Ara in a recombinant Saccharomyces cerevisiae strain harboring the FKP gene can occur through a mechanism akin to that of GDP-L-Fuc via the salvage pathway. Thus, we reasoned that by exogenously supplying different monosaccharides structurally related to L-Fuc, it should be possible to produce the corresponding nucleotide sugars with this recombinant yeast strain, regardless of internal acquisition of nucleotide sugars through expression of additive enzymes in the de novo pathway.
Collapse
Affiliation(s)
- Ta-Wei Liu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2 OSL, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Lahnsteiner F, Mansour N, Caberlotto S. Composition and metabolism of carbohydrates and lipids in Sparus aurata semen and its relation to viability expressed as sperm motility when activated. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:39-45. [PMID: 20441800 DOI: 10.1016/j.cbpb.2010.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/23/2010] [Accepted: 04/29/2010] [Indexed: 11/30/2022]
Abstract
The present study investigated aspects of lipid and carbohydrate metabolism in Sparus aurata semen and tested the effect of lipids, carbohydrates and related metabolites on sperm viability using in vitro incubation experiments. Sparus aurata semen contained enzyme systems to metabolize sugars and lipids. Also key enzymes of the tricarboxylic acid cycle and enzymes involved in ATP metabolism were detected. When spermatozoa were incubated in sperm motility inhibiting saline solution for 48 h phospholipid levels decreased constantly and triglycerides levels during the first 24 h of incubation indicating that spermatozoa utilize lipids as energy resources. After 24 h triglycerides levels started to re-increase indicating a change in sperm metabolism, in particular the onset of triglycerides synthesis by the fatty acid synthase complex. In the incubation period from 0 to 24 h glucose levels were constant, and decreased thereafter. Glycogen levels did not change at all. Semen contained also considerable amounts of sialic acid, glucuronic acid and hexosamines, components of mucopolysaccharides. To find out whether lipids, carbohydrates, and related metabolites had a positive effect on sperm functionality semen was incubated together with the described compounds in sperm motility inhibiting saline solution and motility when activated was determined. In the control 37.2+/-10.1% of the spermatozoa were locally motile and 38.3+/-13.3% motile after 24 h, 36.4+/-5.2% were locally motile and 9.6+/-4.5% were motile after 48 h. The swimming velocity was 89.0+/-13.1 microm/s after 24 h and 61.3+/-12.6% after 48 h. Different types of lipids (arachidic acid, linoleic acid, and glycerol trimyristate) and metabolites acting as fuel for the tricarboxylic acid cycle (hydroxybutyrate, ketoglutarate, and pyruvate) had a positive effect on the sperm viability. Tested carbohydrates (fucose, galactose, glucosamine, glucose, glucoheptose, glycogen, and sialic acid) had no effect. Also lactate and fructose-6-phosphate had no effect on sperm viability while glucose-6-phosphate, oxalacetate, and phosphoglycerate had negative effects.
Collapse
Affiliation(s)
- Franz Lahnsteiner
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria.
| | | | | |
Collapse
|
21
|
Aires J, Anglade P, Baraige F, Zagorec M, Champomier-Vergès MC, Butel MJ. Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705. BMC Microbiol 2010; 10:29. [PMID: 20113481 PMCID: PMC2824696 DOI: 10.1186/1471-2180-10-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/29/2010] [Indexed: 11/16/2022] Open
Abstract
Background Bifidobacteria are natural inhabitants of the human gastrointestinal tract. In full-term newborns, these bacteria are acquired from the mother during delivery and rapidly become the predominant organisms in the intestinal microbiota. Bifidobacteria contribute to the establishment of healthy intestinal ecology and can confer health benefits to their host. Consequently, there is growing interest in bifidobacteria, and various strains are currently used as probiotic components in functional food products. However, the probiotic effects have been reported to be strain-specific. There is thus a need to better understand the determinants of the observed benefits provided by these probiotics. Our objective was to compare three human B. longum isolates with the sequenced model strain B. longum NCC2705 at the chromosome and proteome levels. Results Pulsed field electrophoresis genotyping revealed genetic heterogeneity with low intraspecies strain relatedness among the four strains tested. Using two-dimensional gel electrophoresis, we analyzed qualitative differences in the cytosolic protein patterns. There were 45 spots that were present in some strains and absent in others. Spots were excised from the gels and subjected to peptide mass fingerprint analysis for identification. The 45 spots represented 37 proteins, most of which were involved in carbohydrate metabolism and cell wall or cell membrane synthesis. Notably, the protein patterns were correlated with differences in cell membrane properties like surface hydrophobicity and cell agglutination. Conclusion These results showed that proteomic analysis can be valuable for investigating differences in bifidobacterial species and may provide a better understanding of the diversity of bifidobacteria and their potential use as probiotics.
Collapse
Affiliation(s)
- Julio Aires
- Université Paris Descartes, EA 4065, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France.
| | | | | | | | | | | |
Collapse
|
22
|
Liang ZX. Complexity and simplicity in the biosynthesis of enediyne natural products. Nat Prod Rep 2010; 27:499-528. [DOI: 10.1039/b908165h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Pearson MS, Floquet N, Bello C, Vogel P, Plantier-Royon R, Szymoniak J, Bertus P, Behr JB. The spirocyclopropyl moiety as a methyl surrogate in the structure of l-fucosidase and l-rhamnosidase inhibitors. Bioorg Med Chem 2009; 17:8020-6. [DOI: 10.1016/j.bmc.2009.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/28/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
|
24
|
Crystal structures and enzyme mechanisms of a dual fucose mutarotase/ribose pyranase. J Mol Biol 2009; 391:178-91. [PMID: 19524593 DOI: 10.1016/j.jmb.2009.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/03/2009] [Accepted: 06/08/2009] [Indexed: 11/24/2022]
Abstract
Escherichia coli FucU (Fucose Unknown) is a dual fucose mutarotase and ribose pyranase, which shares 44% sequence identity with its human counterpart. Herein, we report the structures of E. coli FucU and mouse FucU bound to L-fucose and delineate the catalytic mechanisms underlying the interconversion between stereoisomers of fucose and ribose. E. coli FucU forms a decameric toroid with each active site formed by two adjacent subunits. While one subunit provides most of the fucose-interacting residues including a catalytic tyrosine residue, the other subunit provides a catalytic His-Asp dyad. This active-site feature is critical not only for the mutarotase activity toward L-fucose but also for the pyranase activity toward D-ribose. Structural and biochemical analyses pointed that mouse FucU assembles into four different oligomeric forms, among which the smallest homodimeric form is most abundant and would be the predominant species under physiological conditions. This homodimer has two fucose-binding sites that are devoid of the His-Asp dyad and catalytically inactive, indicating that the mutarotase and the pyranase activities appear dispensable in vertebrates. The defective assembly of the mouse FucU homodimer into the decameric form is due to an insertion of two residues at the N-terminal extreme, which is a common aspect of all the known vertebrate FucU proteins. Therefore, vertebrate FucU appears to serve for as yet unknown function through the quaternary structural alteration.
Collapse
|
25
|
King JD, Harmer NJ, Preston A, Palmer CM, Rejzek M, Field RA, Blundell TL, Maskell DJ. Predicting protein function from structure--the roles of short-chain dehydrogenase/reductase enzymes in Bordetella O-antigen biosynthesis. J Mol Biol 2007; 374:749-63. [PMID: 17950751 PMCID: PMC2279256 DOI: 10.1016/j.jmb.2007.09.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 11/16/2022]
Abstract
The pathogenic bacteria Bordetella parapertussis and Bordetella bronchiseptica express a lipopolysaccharide O antigen containing a polymer of 2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. The O-antigen cluster contains three neighbouring genes that encode proteins belonging to the short-chain dehydrogenase/reductase (SDR) family, wbmF, wbmG and wbmH, and we aimed to elucidate their individual functions. Mutation and complementation implicate each gene in O-antigen expression but, as their putative sugar nucleotide substrates are not currently available, biochemical characterisation of WbmF, WbmG and WbmH is impractical at the present time. SDR family members catalyse a wide range of chemical reactions including oxidation, reduction and epimerisation. Because they typically share low sequence conservation, however, catalytic function cannot be predicted from sequence analysis alone. In this context, structural characterisation of the native proteins, co-crystals and small-molecule soaks enables differentiation of the functions of WbmF, WbmG and WbmH. These proteins exhibit typical SDR architecture and coordinate NAD. In the substrate-binding domain, all three enzymes bind uridyl nucleotides. WbmG contains a typical SDR catalytic TYK triad, which is required for oxidoreductase function, but the active site is devoid of additional acid-base functionality. Similarly, WbmH possesses a TYK triad, but an otherwise feature-poor active site. Consequently, 3,5-epimerase function can probably be ruled out for these enzymes. The WbmF active site contains conserved 3,5-epimerase features, namely, a positionally conserved cysteine (Cys133) and basic side chain (His90 or Asn213), but lacks the serine/threonine component of the SDR triad and therefore may not act as an oxidoreductase. The data suggest a pathway for synthesis of the O-antigen precursor UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid and illustrate the usefulness of structural data in predicting protein function.
Collapse
Key Words
- dtdp, deoxythymidine diphosphate
- l-galnac3naca, 2,3-diacetamido-2,3-dideoxy-l-galacturonic acid
- gme, gdp-mannose 3,5-epimerase
- gmer, gdp-4-keto-6-deoxymannose 3,5-epimerase/reductase
- lps, lipopolysaccharide
- pdb, protein data bank
- blast, basic local alignment search tool
- sdr, short-chain dehydrogenase/reductase
- udp-d-mannac3naca, udp-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid
- udp-l-galnac3naca, udp-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid
- ump, uridine monophosphate
- mcs, multiple cloning site
- short-chain dehydrogenase/reductase
- x-ray crystallography
- bordetella
- lipopolysaccharide
- o-antigen biosynthesis
Collapse
Affiliation(s)
- Jerry D King
- Department of Veterinary Medicine, Madingley Road, University of Cambridge, Cambridge CB3 0ES, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fruscione F, Sturla L, Duncan G, Van Etten JL, Valbuzzi P, De Flora A, Di Zanni E, Tonetti M. Differential role of NADP+ and NADPH in the activity and structure of GDP-D-mannose 4,6-dehydratase from two chlorella viruses. J Biol Chem 2007; 283:184-193. [PMID: 17974560 DOI: 10.1074/jbc.m706614200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GDP-D-mannose 4,6-dehydratase (GMD) is a key enzyme involved in the synthesis of 6-deoxyhexoses in prokaryotes and eukaryotes. Paramecium bursaria chlorella virus-1 (PBCV-1) encodes a functional GMD, which is unique among characterized GMDs because it also has a strong stereospecific NADPH-dependent reductase activity leading to GDP-D-rhamnose formation (Tonetti, M., Zanardi, D., Gurnon, J., Fruscione, F., Armirotti, A., Damonte, G., Sturla, L., De Flora, A., and Van Etten, J.L. (2003) J. Biol. Chem. 278, 21559-21565). In the present study we characterized a recombinant GMD encoded by another chlorella virus, Acanthocystis turfacea chlorella virus 1 (ATCV-1), demonstrating that it has the expected dehydratase activity. However, it also displayed significant differences when compared with PBCV-1 GMD. In particular, ATCV-1 GMD lacks the reductase activity present in the PBCV-1 enzyme. Using recombinant PBCV-1 and ATCV-1 GMDs, we determined that the enzymatically active proteins contain tightly bound NADPH and that NADPH is essential for maintaining the oligomerization status as well as for the stabilization and function of both enzymes. Phylogenetic analysis indicates that PBCV-1 GMD is the most evolutionary diverged of the GMDs. We conclude that this high degree of divergence was the result of the selection pressures that led to the acquisition of new reductase activity to synthesize GDP-D-rhamnose while maintaining the dehydratase activity in order to continue to synthesize GDP-L-fucose.
Collapse
Affiliation(s)
- Floriana Fruscione
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Garry Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Paola Valbuzzi
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Antonio De Flora
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Eleonora Di Zanni
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Michela Tonetti
- Department of Experimental Medicine, University of Genova and Center of Excellence for Biomedical Research, Viale Benedetto XV, 1, 16132, Genova, Italy.
| |
Collapse
|
27
|
Harmer NJ, King JD, Palmer CM, Preston A, Maskell DJ, Blundell TL. Cloning, expression, purification and preliminary crystallographic analysis of the short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:711-5. [PMID: 17671375 PMCID: PMC2335155 DOI: 10.1107/s174430910703477x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/17/2007] [Indexed: 11/10/2022]
Abstract
The short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica were cloned into Escherichia coli expression vectors, overexpressed and purified to homogeneity. Crystals of all three wild-type enzymes were obtained using vapour-diffusion crystallization with high-molecular-weight PEGs as a primary precipitant at alkaline pH. Some of the crystallization conditions permitted the soaking of crystals with cofactors and nucleotides or nucleotide sugars, which are possible substrate compounds, and further conditions provided co-complexes of two of the proteins with these compounds. The crystals diffracted to resolutions of between 1.50 and 2.40 A at synchrotron X-ray sources. The synchrotron data obtained were sufficient to determine eight structures of the three enzymes in complex with a variety of cofactors and substrate molecules.
Collapse
Affiliation(s)
- Nicholas J Harmer
- Department of Biochemistry, 80 Tennis Court Road, Cambridge CB2 1GA, England.
| | | | | | | | | | | |
Collapse
|
28
|
Niittymäki J, Mattila P, Renkonen R. Differential gene expression of GDP-L-fucose-synthesizing enzymes, GDP-fucose transporter and fucosyltransferase VII. APMIS 2006; 114:539-48. [PMID: 16907860 DOI: 10.1111/j.1600-0463.2006.apm_461.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
L-fucose is a fundamental monosaccharide component of many mammalian glycoproteins and glycolipids. Fucosylation requires GDP-L-fucose as a donor of fucose and a specific fucosyltransferase (Fuc-T) to catalyze the transfer of L-fucose to various lactosamine acceptor molecules. The biosynthesis of GDP-L-fucose consists of two pathways. The constitutively active de novo pathway involves conversion of cellular GDP-D-mannose to GDP-L-fucose by GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (FX). In the alternative biosynthetic pathway, in the salvage metabolism, L-fucokinase (Fuk) synthesizes L-fucose-1-phosphate from free fucose. L-fucose-1-phosphate is further catalyzed to GDP-L-fucose by GDP-L-fucose pyrophosphorylase (Fpgt). GDP-L-fucose, synthesized in the cytosol, is translocated to the Golgi for fucosylation by a specific GDP-fucose transporter (FUCT1). Glycans that contain alpha(1,3)-fucosylated modifications, e.g. sialyl Lewis X-type glycans, have an important role in inflammation and in tumorigenesis. We studied the mRNA expression levels of GDP-L-fucose-synthesizing enzymes, GDP-fucose transporter and fucosyltransferase VII by quantitative real-time PCR in mouse endothelial cells, macrophages and lymphoid tumor cells. Moreover, the expression of the same transcripts was detected in acute inflammation using rat kidney allograft as model system. Our results indicate the simultaneous upregulation of the GDP-L-fucose synthesizing enzymes of the de novo pathway, GDP-fucose transporter and fucosyltransferase VII in inflammation and in tumorigenesis.
Collapse
Affiliation(s)
- Jaana Niittymäki
- Rational Drug Design program, Department of Bacteriology and Immunology, Haartman Institute and Biomedicum, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
29
|
Sawa M, Hsu TL, Itoh T, Sugiyama M, Hanson SR, Vogt PK, Wong CH. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Natl Acad Sci U S A 2006; 103:12371-6. [PMID: 16895981 PMCID: PMC1567886 DOI: 10.1073/pnas.0605418103] [Citation(s) in RCA: 331] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glycomics is emerging as a new field for the biology of complex glycoproteins and glycoconjugates. The lack of versatile glycan-labeling methods has presented a major obstacle to visualizing at the cellular level and studying glycoconjugates. To address this issue, we developed a fluorescent labeling technique based on the Cu(I)-catalyzed [3 + 2] cycloaddition, or click chemistry, which allows rapid, versatile, and specific covalent labeling of cellular glycans bearing azide groups. The method entails generating a fluorescent probe from a nonfluorescent precursor, 4-ethynyl-N-ethyl-1,8-naphthalimide, by clicking the fluorescent trigger, the alkyne at the 4 position, with an azido-modified sugar. Using this click-activated fluorescent probe, we demonstrate incorporation of an azido-containing fucose analog into glycoproteins via the fucose salvage pathway. Distinct fluorescent signals were observed by flow cytometry when cells treated with 6-azidofucose were labeled with the click-activated fluorogenic probe or biotinylated alkyne. The intracellular localization of fucosylated glycoconjugates was visualized by using fluorescence microscopy. This technique will allow dynamic imaging of cellular fucosylation and facilitate studies of fucosylated glycoproteins and glycolipids.
Collapse
Affiliation(s)
- Masaaki Sawa
- *Department of Chemistry and The Skaggs Institute for Chemical Biology and
| | - Tsui-Ling Hsu
- *Department of Chemistry and The Skaggs Institute for Chemical Biology and
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Takeshi Itoh
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Masakazu Sugiyama
- *Department of Chemistry and The Skaggs Institute for Chemical Biology and
| | - Sarah R. Hanson
- *Department of Chemistry and The Skaggs Institute for Chemical Biology and
| | - Peter K. Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Chi-Huey Wong
- *Department of Chemistry and The Skaggs Institute for Chemical Biology and
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Rhomberg S, Fuchsluger C, Rendić D, Paschinger K, Jantsch V, Kosma P, Wilson IBH. Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS J 2006; 273:2244-56. [PMID: 16650000 DOI: 10.1111/j.1742-4658.2006.05239.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The deoxyhexose sugar fucose has an important fine-tuning role in regulating the functions of glycoconjugates in disease and development in mammals. The two genetic model organisms Caenorhabditis elegans and Drosophila melanogaster also express a range of fucosylated glycans, and the nematode particularly has a number of novel forms. For the synthesis of such glycans, the formation of GDP-fucose, which is generated from GDP-mannose in three steps catalysed by two enzymes, is required. By homology we have identified and cloned cDNAs encoding these two proteins, GDP-mannose dehydratase (GMD; EC 4.2.1.47) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GER or FX protein; EC 1.1.1.271), from both Caenorhabditis and Drosophila. Whereas the nematode has two genes encoding forms of GMD (gmd-1 and gmd-2) and one GER-encoding gene (ger-1), the insect has, like mammalian species, only one homologue of each (gmd and gmer). This compares to the presence of two forms of both enzymes in Arabidopsis thaliana. All corresponding cDNAs from Caenorhabditis and Drosophila, as well as the previously uncharacterized Arabidopsis GER2, were separately expressed, and the encoded proteins found to have the predicted activity. The biochemical characterization of these enzymes is complementary to strategies aimed at manipulating the expression of fucosylated glycans in these organisms.
Collapse
Affiliation(s)
- Simone Rhomberg
- Department für Chemie, Universität für Bodenkultur, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
31
|
Du W, Hu Y. Asymmetric synthesis of methyl 6-deoxy-3-O-methyl-α-l-mannopyranoside from a non-carbohydrate precursor. Carbohydr Res 2006; 341:725-9. [PMID: 16458278 DOI: 10.1016/j.carres.2006.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
A novel method is reported for preparing methyl 6-deoxy-3-O-methyl-alpha-L-mannopyranoside (1) by asymmetric synthesis, using 2-acetylfuran (2), a non-chiral simple molecule, as the starting material and achieving high yields via (S)-1-(2-furyl)ethanol and (S)-1-(2,5-dihydro-2,5-dimethoxy-2-furyl)ethanol.
Collapse
Affiliation(s)
- Wenting Du
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, School of Pharmaceutical Sciences, Zhejiang University, Hubin campus, Hangzhou 310031, China
| | | |
Collapse
|
32
|
Rosano C, Zuccotti S, Sturla L, Fruscione F, Tonetti M, Bolognesi M. Quaternary assembly and crystal structure of GDP-d-mannose 4,6 dehydratase from Paramecium bursaria Chlorella virus. Biochem Biophys Res Commun 2006; 339:191-5. [PMID: 16297878 DOI: 10.1016/j.bbrc.2005.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 11/02/2005] [Indexed: 11/19/2022]
Abstract
GDP-D-mannose 4,6 dehydratase is the first enzyme in the de novo biosynthetic pathway of GDP-L-fucose, the activated form of L-fucose, a monosaccharide found in organisms ranging from bacteria to mammals. We determined the three-dimensional structure of GDP-D-mannose 4,6 dehydratase from the Paramecium bursaria Chlorella virus at 3.8A resolution. Unlike other viruses that use the host protein machinery to glycosylate their proteins, P. bursaria Chlorella virus modifies its structural proteins using many glycosyltransferases, being the first virus known to encode enzymes involved in sugar metabolism. P. bursaria Chlorella virus GDP-D-mannose 4,6 dehydratase belongs to the short-chain dehydrogenase/reductase protein superfamily. Accordingly, the family fold and the specific Thr, Tyr, and Lys catalytic triad are well conserved in the viral enzyme.
Collapse
Affiliation(s)
- Camillo Rosano
- Bioinformatics and Structural Proteomics, National Institute for Cancer Research (IST), Largo R. Benzi 10, 16132 Genoa, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Niittymäki J, Mattila P, Roos C, Huopaniemi L, Sjöblom S, Renkonen R. Cloning and expression of murine enzymes involved in the salvage pathway of GDP-L-fucose. ACTA ACUST UNITED AC 2004; 271:78-86. [PMID: 14686921 DOI: 10.1046/j.1432-1033.2003.03904.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the salvage pathway of GDP-L-fucose, free cytosolic fucose is phosphorylated by L-fucokinase to form L-fucose-L-phosphate, which is then further converted to GDP-L-fucose in the reaction catalyzed by GDP-L-fucose pyrophosphorylase. We report here the cloning and expression of murine L-fucokinase and GDP-L-fucose pyrophosphorylase. Murine L-fucokinase is expressed as two transcripts of 3057 and 3270 base pairs, encoding proteins of 1019 and 1090 amino acids with predicted molecular masses of 111 kDa and 120 kDa respectively. Only the longer splice variant of L-fucokinase was enzymatically active when expressed in COS-7 cells. Murine GDP-L-fucose pyrophosphorylase has an open reading frame of 1773 base pairs encoding a protein of 591 amino acids with a predicted molecular mass of 65.5 kDa. GDP-L-fucose, the reaction product of GDP-L-pyrophosphorylase, was identified by HPLC and MALDI-TOF MS analysis. The tissue distribution of murine L-fucokinase and GDP-L-fucose pyrophosphorylase was investigated by quantitative real time PCR, which revealed high expression of L-fucokinase and GDP-L-fucose pyrophosphorylase in various tissues. The wide expression of both enzymes can also be observed from the large amount of data collected from a number of expressed sequence tag libraries, which indicate that not only the de novo pathway alone, but also the salvage pathway, could have a significant role in the synthesis of GDP-L-fucose in the cytosol.
Collapse
Affiliation(s)
- Jaana Niittymäki
- Department of Bacteriology and Immunology, Haartman Institute and Biomedicum, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
34
|
Monti D, Pisvejcová A, Kren V, Lama M, Riva S. Generation of an ?-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol Bioeng 2004; 87:763-71. [PMID: 15329934 DOI: 10.1002/bit.20187] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A screening of 16 different fungal strains was performed under different cultivation conditions, using L-rhamnose or L-rhamnose-containing flavonoid glycosides (rutin, hesperidin, and naringin) as specific inducers. No significant constitutive production of alpha-L-rhamnosidases was detected in noninduced cultures, while high levels of these glycosidase activities were obtained using different inducers. New species, so far unknown for the production of alpha-L-rhamnosidases, were identified. More than 30 different alpha-L-rhamnosidase samples were prepared by ammonium sulfate precipitation. Substrate specificity of this alpha-L-rhamnosidase library was tested with various L-rhamnose-containing natural compounds (flavonoids, terpenoids, and saponins). Most of the enzymatic preparations showed broad substrate specificity, and some of them were also acting on sterically hindered substrates (e.g., quercitrin). The screening of the library under different reaction conditions showed the coexistence, in the same preparation, of more than one alpha-L-rhamnosidase activities with different substrate specificity and different stability towards organic cosolvents. To exploit this enzymatic library for synthetic applications, the presence of contaminating alpha-L-arabinosidases and beta-D-glucosidases was investigated. The latter enzymes were observed in several preparations, while alpha-L-arabinosidase content was generally quite low. The selective derhamnosylation of the saponin desglucoruscin was performed on a preparative scale. The enzyme obtained by rhamnose induction of the Aspergillus niger K2 CCIM strain showed high activity towards this substrate and negligible alpha-L-arabinosidase contamination. Therefore, it was chosen as a catalyst for the selective derhamnosylation reaction, which provided the desired product in 70% yield.
Collapse
Affiliation(s)
- Daniela Monti
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy.
| | | | | | | | | |
Collapse
|
35
|
Western TL, Young DS, Dean GH, Tan WL, Samuels AL, Haughn GW. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. PLANT PHYSIOLOGY 2004; 134:296-306. [PMID: 14701918 PMCID: PMC316309 DOI: 10.1104/pp.103.035519] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 11/12/2003] [Accepted: 11/20/2003] [Indexed: 05/17/2023]
Abstract
The Arabidopsis seed coat epidermis undergoes a complex process of differentiation that includes the biosynthesis and secretion of large quantities of pectinaceous mucilage, cytoplasmic rearrangement, and secondary cell wall biosynthesis. Mutations in MUM4 (MUCILAGE-MODIFIED4) lead to a decrease in seed coat mucilage and incomplete cytoplasmic rearrangement. We show that MUM4 encodes a putative NDP-l-rhamnose synthase, an enzyme required for the synthesis of the pectin rhamnogalacturonan I, the major component of Arabidopsis mucilage. This result suggests that the synthesis of monosaccharide substrates is a limiting factor in the biosynthesis of pectinaceous seed coat mucilage. In addition, the reduced cytoplasmic rearrangement observed in the absence of a key enzyme in pectin biosynthesis in mum4 mutants establishes a causal link between mucilage production and cellular morphogenesis. The cellular phenotype seen in mum4 mutants is similar to that of several transcription factors (AP2 [APETALA2], TTG1 [TRANSPARENT TESTA GLABRA1], TTG2 MYB61, and GL2 [GLABRA2]). Expression studies suggest that MUM4 is developmentally regulated in the seed coat by AP2, TTG1, and GL2, whereas TTG2 and MYB61 appear to be regulating mucilage production through alternate pathway(s). Our results provide a framework for the regulation of mucilage production and secretory cell differentiation.
Collapse
Affiliation(s)
- Tamara L Western
- Botany Department, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | |
Collapse
|
36
|
Luchansky SJ, Hang HC, Saxon E, Grunwell JR, Yu C, Dube DH, Bertozzi CR. Constructing azide-labeled cell surfaces using polysaccharide biosynthetic pathways. Methods Enzymol 2003; 362:249-72. [PMID: 12968369 DOI: 10.1016/s0076-6879(03)01018-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah J Luchansky
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Fucose is a deoxyhexose that is present in a wide variety of organisms. In mammals, fucose-containing glycans have important roles in blood transfusion reactions, selectin-mediated leukocyte-endothelial adhesion, host-microbe interactions, and numerous ontogenic events, including signaling events by the Notch receptor family. Alterations in the expression of fucosylated oligosaccharides have also been observed in several pathological processes, including cancer and atherosclerosis. Fucose deficiency is accompanied by a complex set of phenotypes both in humans with leukocyte adhesion deficiency type II (LAD II; also known as congenital disorder of glycosylation type IIc) and in a recently generated strain of mice with a conditional defect in fucosylated glycan expression. Fucosylated glycans are constructed by fucosyltransferases, which require the substrate GDP-fucose. Two pathways for the synthesis of GDP-fucose operate in mammalian cells, the GDP-mannose-dependent de novo pathway and the free fucose-dependent salvage pathway. In this review, we focus on the biological functions of mammalian fucosylated glycans and the biosynthetic processes leading to formation of the fucosylated glycan precursor GDP-fucose.
Collapse
Affiliation(s)
- Daniel J Becker
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, MSRB I, room 3510, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650, USA.
| | | |
Collapse
|
38
|
Abstract
A rapid procedure for the preparation of D-rhamnose from bacterial lipopolysaccharide (LPS) has been developed. It involves purification of LPS from Pseudomonas syringae pv. phaseolicola by phenol extraction and hydrophobic interaction chromatography (HIC), followed by mild hydrolysis and cleavage of the O-antigen into D-fucose and D-rhamnose. The monosaccharides were separated by column chromatography, and D-rhamnose recovered after filtration over Sephadex-LH 20.
Collapse
Affiliation(s)
- Michael Ramm
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Semmelweisstrasse 10, D-07743 Jena, Germany.
| | | | | |
Collapse
|
39
|
Creuzenet C, Urbanic RV, Lam JS. Structure-function studies of two novel UDP-GlcNAc C6 dehydratases/C4 reductases. Variation from the SYK dogma. J Biol Chem 2002; 277:26769-78. [PMID: 12004063 DOI: 10.1074/jbc.m202882200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two subfamilies of UDP-GlcNAc C6 dehydratases were recently identified. FlaA1, a short soluble protein that exhibits a typical SYK catalytic triad, characterizes one of these subfamilies, and WbpM, a large membrane protein that harbors an altered SMK triad that was not predicted to sustain activity, represents the other subfamily. This study focuses on investigating the structure and function of these C6 dehydratases and the role of the altered triad as well as additional amino acid residues involved in catalysis. The significant activity retained by the FlaA1 Y141M triad mutant and the low activity of the WbpM M438Y mutant indicated that the methionine residue was involved in catalysis. A Glu(589) residue, which is conserved only within the large homologues, was shown to be essential for activity in WbpM. Introduction of this residue in FlaA1 enhanced the activity of the corresponding V266E mutant. Hence, this glutamate residue might be responsible for the retention of catalytic efficiency in the large homologues despite alteration of their catalytic triad. Mutations of residues specific for the short homologues (Asp(70), Asp(149)-Lys(150), Cys(103)) abolished the activity of FlaA1. Among them, C103M prevented dimerization but did not significantly affect the secondary structure. The fact that we could identify subfamily-specific residues that are essential for catalysis suggested an independent evolution for each subfamily of C6 dehydratases. Finally, the loss of activity of the FlaA1 G20A mutant provided evidence that a cofactor is involved in catalysis, and kinetic study of the FlaA1 H86A mutant revealed that this conserved histidine is involved in substrate binding. None of the mutations investigated altered the substrate, product, and function specificity of these enzymes.
Collapse
Affiliation(s)
- Carole Creuzenet
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
40
|
Roos C, Kolmer M, Mattila P, Renkonen R. Composition of Drosophila melanogaster proteome involved in fucosylated glycan metabolism. J Biol Chem 2002; 277:3168-75. [PMID: 11698403 DOI: 10.1074/jbc.m107927200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The whole genome approach enables the characterization of all components of any given biological pathway. Moreover, it can help to uncover all the metabolic routes for any molecule. Here we have used the genome of Drosophila melanogaster to search for enzymes involved in the metabolism of fucosylated glycans. Our results suggest that in the fruit fly GDP-fucose, the donor for fucosyltransferase reactions, is formed exclusively via the de novo pathway from GDP-mannose through enzymatic reactions catalyzed by GDP-D-mannose 4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase/4-reductase (GMER, also known as FX in man). The Drosophila genome does not have orthologs for the salvage pathway enzymes, i.e. fucokinase and GDP-fucose pyrophosphorylase synthesizing GDP-fucose from fucose. In addition we identified two novel fucosyltransferases predicted to catalyze alpha1,3- and alpha1,6-specific linkages to the GlcNAc residues on glycans. No genes with the capacity to encode alpha1,2-specific fucosyltransferases were found. We also identified two novel genes coding for O-fucosyltransferases and a gene responsible for a fucosidase enzyme in the Drosophila genome. Finally, using the Drosophila CG4435 gene, we identified two novel human genes putatively coding for fucosyltransferases. This work can serve as a basis for further whole-genome approaches in mapping all possible glycosylation pathways and as a basic analysis leading to subsequent experimental studies to verify the predictions made in this work.
Collapse
Affiliation(s)
- Christophe Roos
- MediCel Ltd., Haartmaninkatu 8, FIN-00290, Helsinki, Finland
| | | | | | | |
Collapse
|
41
|
Wu B, Zhang Y, Wang PG. Identification and characterization of GDP-d-mannose 4,6-dehydratase and GDP-l-fucose snthetase in a GDP-l-fucose biosynthetic gene cluster from Helicobacter pylori. Biochem Biophys Res Commun 2001; 285:364-71. [PMID: 11444851 DOI: 10.1006/bbrc.2001.5137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study two open reading frames, namely HP0044 and HP0045 from H. pylori, were cloned and overexpressed in E. coli. The two recombinant proteins were demonstrated to have GDP-d-mannose 4,6-dehydratase (GMD) and GDP-l-fucose synthetase (GFS) activities, respectively. The recombinant GMD was a tetramer and had an optimum pH of 6.5. Exogenous NADP(+) was essential for its activity. The K(m) and K(cat) for GDP-d-mannose were 117.3 microM and 0.27 s(-1), respectively. The recombinant GFS was a homodimer with an optimum pH of 8.0. The K(m) and K(cat) for GDP-4-keto-6-deoxy-d-mannose were 64.08 microM and 0.75 s(-1), respectively. It can use both NADPH and NADH, but less efficient with the latter. Amino acid sequence alignment and phylogenetic analysis showed that H. pylori GFS was highly homologous to the GFS of E. coli O111 and both of them were located on a separate phylogenetic branch from other GFS. The unique clustering and origin of the two genes were also discussed.
Collapse
Affiliation(s)
- B Wu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
42
|
Allard ST, Giraud MF, Whitfield C, Graninger M, Messner P, Naismith JH. The crystal structure of dTDP-D-Glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar Typhimurium, the second enzyme in the dTDP-l-rhamnose pathway. J Mol Biol 2001; 307:283-95. [PMID: 11243820 DOI: 10.1006/jmbi.2000.4470] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
l-Rhamnose is a 6-deoxyhexose that is found in a variety of different glycoconjugates in the cell walls of pathogenic bacteria. The precursor of l-rhamnose is dTDP-l-rhamnose, which is synthesised from glucose- 1-phosphate and deoxythymidine triphosphate (dTTP) via a pathway requiring four enzymes. Significantly this pathway does not exist in humans and all four enzymes therefore represent potential therapeutic targets. dTDP-D-glucose 4,6-dehydratase (RmlB; EC 4.2.1.46) is the second enzyme in the dTDP-L-rhamnose biosynthetic pathway. The structure of Salmonella enterica serovar Typhimurium RmlB had been determined to 2.47 A resolution with its cofactor NAD(+) bound. The structure has been refined to a crystallographic R-factor of 20.4 % and an R-free value of 24.9 % with good stereochemistry.RmlB functions as a homodimer with monomer association occurring principally through hydrophobic interactions via a four-helix bundle. Each monomer exhibits an alpha/beta structure that can be divided into two domains. The larger N-terminal domain binds the nucleotide cofactor NAD(+) and consists of a seven-stranded beta-sheet surrounded by alpha-helices. The smaller C-terminal domain is responsible for binding the sugar substrate dTDP-d-glucose and contains four beta-strands and six alpha-helices. The two domains meet to form a cavity in the enzyme. The highly conserved active site Tyr(167)XXXLys(171) catalytic couple and the GlyXGlyXXGly motif at the N terminus characterise RmlB as a member of the short-chain dehydrogenase/reductase extended family. The quaternary structure of RmlB and its similarity to a number of other closely related short-chain dehydrogenase/reductase enzymes have enabled us to propose a mechanism of catalysis for this important enzyme.
Collapse
Affiliation(s)
- S T Allard
- Centre for Biomolecular Sciences, The University, North Haugh, St Andrews Fife, KY16 9ST, Scotland
| | | | | | | | | | | |
Collapse
|
43
|
Creuzenet C, Schur MJ, Li J, Wakarchuk WW, Lam JS. FlaA1, a new bifunctional UDP-GlcNAc C6 Dehydratase/ C4 reductase from Helicobacter pylori. J Biol Chem 2000; 275:34873-80. [PMID: 10954725 DOI: 10.1074/jbc.m006369200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FlaA1 is a small soluble protein of unknown function in Helicobacter pylori. It has homologues that are essential for the virulence of numerous medically relevant bacteria. FlaA1 was overexpressed as a histidine-tagged protein and purified to homogeneity by nickel chelation and cation exchange chromatography. Spectrophotometric assays, capillary electrophoresis, and mass spectrometry analyses showed that FlaA1 is a novel bifunctional C(6) dehydratase/C(4) reductase specific for UDP-GlcNAc. It converts UDP-GlcNAc into a UDP-4-keto-6-methyl-GlcNAc intermediate, which is stereospecifically reduced into UDP-QuiNAc. Substrate conversions as high as 80% were obtained at equilibrium. The K(m) and V(max) for UDP-GlcNAc were 159 microm and 65 pmol/min, respectively. No exogenous cofactor was required to obtain full activity of FlaA1. Additional NADH was only used with poor efficiency for the reduction step. The biochemical characterization of FlaA1 is important for the elucidation of biosynthetic pathways that lead to the formation of 2,6-deoxysugars in medically relevant bacteria. It establishes unambiguously the first step of the pathway and provides the means of preparing the substrate UDP-QuiNAc, which is necessary for the study of downstream enzymes.
Collapse
Affiliation(s)
- C Creuzenet
- University of Guelph, Department of Microbiology, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
44
|
Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants. J Mol Biol 2000; 303:77-91. [PMID: 11021971 DOI: 10.1006/jmbi.2000.4106] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GDP-4-keto-6-deoxy-d-mannose epimerase/reductase is a bifunctional enzyme responsible for the last step in the biosynthesis of GDP-l-fucose, the substrate of fucosyl transferases. Several cell-surface antigens, including the leukocyte Lewis system and cell-surface antigens in pathogenic bacteria, depend on the availability of GDP-l-fucose for their expression. Therefore, the enzyme is a potential target for therapy in pathological states depending on selectin-mediated cell-to-cell interactions. Previous crystallographic investigations have shown that GDP-4-keto-6-deoxy-d-mannose epimerase/reductase belongs to the short-chain dehydrogenase/reductase protein homology family. The enzyme active-site region is at the interface of an N-terminal NADPH-binding domain and a C-terminal domain, held to bind the substrate. The design, expression and functional characterization of seven site-specific mutant forms of GDP-4-keto-6-deoxy-d-mannose epimerase/reductase are reported here. In parallel, the crystal structures of the native holoenzyme and of three mutants (Ser107Ala, Tyr136Glu and Lys140Arg) have been investigated and refined at 1. 45-1.60 A resolution, based on synchrotron data (R-factors range between 12.6 % and 13.9 %). The refined protein models show that besides the active-site residues Ser107, Tyr136 and Lys140, whose mutations impair the overall enzymatic activity and may affect the coenzyme binding mode, side-chains capable of proton exchange, located around the expected substrate (GDP-4-keto-6-deoxy-d-mannose) binding pocket, are selectively required during the epimerization and reduction steps. Among these, Cys109 and His179 may play a primary role in proton exchange between the enzyme and the epimerization catalytic intermediates. Finally, the additional role of mutated active-site residues involved in substrate recognition and in enzyme stability has been analyzed.
Collapse
Affiliation(s)
- C Rosano
- Department of Physics-INFM and Advanced Biotechnology Center-IST, University of Genova, Largo Rosanna Benzi 10, Genova, I-16132, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Mattila P, Räbinä J, Hortling S, Helin J, Renkonen R. Functional expression of Escherichia coli enzymes synthesizing GDP-L-fucose from inherent GDP-D-mannose in Saccharomyces cerevisiae. Glycobiology 2000; 10:1041-7. [PMID: 11030750 DOI: 10.1093/glycob/10.10.1041] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fucosylation of glycans on glycoproteins and -lipids requires the enzymatic activity of relevant fucosyltransferases and GDP-L-fucose as the donor. Due to the biological importance of fucosylated glycans, a readily accessible source of GDP-L-fucose would be required. Here we describe the construction of a stable recombinant S.cerevisiae strain expressing the E.coli genes gmd and wcaG encoding the two enzymes, GDP-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase/4-reductase (GMER(FX)) respectively, needed to convert GDP-mannose to GDP-fucose via the de novo pathway. Taking advantage of the rich inherent cytosolic GDP-mannose pool in S.cerevisiae cells we could easily produce 0.2 mg/l of GDP-L-fucose with this recombinant yeast strain without addition of any external GDP-mannose. The GDP-L-fucose product could be used as the fucose donor for alpha1,3fucosyltransferase to synthesize sialyl Lewis x (sLex), a glycan crucial for the selectin-dependent leukocyte traffic.
Collapse
Affiliation(s)
- P Mattila
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|