1
|
Interferon regulatory factor-1 reverses chemoresistance by downregulating the expression of P-glycoprotein in gastric cancer. Cancer Lett 2019; 457:28-39. [DOI: 10.1016/j.canlet.2019.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/31/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023]
|
2
|
Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology 2017; 223:101-111. [PMID: 29032836 DOI: 10.1016/j.imbio.2017.10.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/03/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
The mononuclear phagocytes control the body homeostasis through the involvement in resolving tissue injury and further wound healing. Indeed, local tissue microenvironmental changes can significantly influence the functional behavior of monocytes and macrophages. Such microenvironmental changes for example occur in an atherosclerotic plaque during all progression stages. In response to exogenous stimuli, macrophages show a great phenotypic plasticity and heterogeneity. Exposure of monocytes to inflammatory or anti-inflammatory conditions also induces predominant differentiation to proinflammatory (M1) or anti-inflammatory (M2) macrophage subsets and phenotype switch between macrophage subsets. The phenotype transition is accompanied with great changes in the macrophage transcriptome and regulatory networks. Interferon-regulatory factors (IRFs) play a key role in hematopoietic development of monocytes, their differentiation to macrophages, and regulating macrophage maturation, phenotypic polarization, phenotypic switch, and function. Of 9 IRFs, at least 3 (IRF-1, IRF-5, and IRF-8) are involved in the commitment of proinflammatory M1 whereas IRF-3 and IRF-4 control M2 polarization. The role of IRF-2 is context-dependent. The IRF impact on macrophage phenotype plasticity and heterogeneity is complex and involves activating and repressive function in triggering transcription of target genes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, Moscow, Russia; Department of Molecular Genetic Diagnostics and Cell Biology, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Veronika A Myasoedova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Victor V Revin
- Biological Faculty, N.P. Ogaryov Mordovian State University, Republic of Mordovia, Saransk 430005, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, NSW, Sydney, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia.
| |
Collapse
|
3
|
Langlais D, Barreiro LB, Gros P. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. J Exp Med 2016; 213:585-603. [PMID: 27001747 PMCID: PMC4821649 DOI: 10.1084/jem.20151764] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
IRF8 and IRF1 are transcriptional regulators that play critical roles in the development and function of myeloid cells, including activation of macrophages by proinflammatory signals such as interferon-γ (IFN-γ). Loss of IRF8 or IRF1 function causes severe susceptibility to infections in mice and in humans. We used chromatin immunoprecipitation sequencing and RNA sequencing in wild type and inIRF8andIRF1mutant primary macrophages to systematically catalog all of the genes bound by (cistromes) and transcriptionally activated by (regulomes) IRF8, IRF1, PU.1, and STAT1, including modulation of epigenetic histone marks. Of the seven binding combinations identified, two (cluster 1 [IRF8/IRF1/STAT1/PU.1] and cluster 5 [IRF1/STAT1/PU.1]) were found to have a major role in controlling macrophage transcriptional programs both at the basal level and after IFN-γ activation. They direct the expression of a set of genes, the IRF8/IRF1 regulome, that play critical roles in host inflammatory and antimicrobial defenses in mouse models of neuroinflammation and of pulmonary tuberculosis, respectively. In addition, this IRF8/IRF1 regulome is enriched for genes mutated in human primary immunodeficiencies and with loci associated with several inflammatory diseases in humans.
Collapse
Affiliation(s)
- David Langlais
- Department of Biochemistry, McGill University, H3G 0B1 Montreal, Quebec, Canada Complex Traits Group, McGill University, H3G 0B1 Montreal, Quebec, Canada
| | - Luis B Barreiro
- Sainte Justine Hospital Research Centre, H3T 1C5 Montreal, Quebec, Canada Department of Pediatrics, Faculty of Medicine, University of Montreal, H3T 1J4 Montreal, Quebec, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill University, H3G 0B1 Montreal, Quebec, Canada Complex Traits Group, McGill University, H3G 0B1 Montreal, Quebec, Canada
| |
Collapse
|
4
|
The regulation role of interferon regulatory factor-1 gene and clinical relevance. Hum Immunol 2014; 75:1110-4. [DOI: 10.1016/j.humimm.2014.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022]
|
5
|
IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death Differ 2009; 17:699-709. [PMID: 19851330 PMCID: PMC2838929 DOI: 10.1038/cdd.2009.156] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon Regulatory Factor-1 (IRF-1) is a transcription factor which acts as a tumor suppressor and causes apoptosis in cancer cells. We evaluated IRF-1 induced apoptosis in gastric cancer cell lines. We established stable clones in AGS cells that have a tetracycline inducible IRF-1 expression system. We used these clones and recombinant adenovirus expressing IRF-1 to explore the mechanism of IRF-1 induced apoptosis in gastric cancer. Expression of IRF-1 causes apoptosis in gastric cancer cell lines as demonstrated by phosphatidylserine exposure and cleavage of caspase-8, caspase-3, and Bid with mitochondrial release of cytochrome c. However, inhibition of caspase-8 and Bid did not inhibit apoptosis and did not decrease cleaved caspase-9 or mitochondrial release of cytochrome c. We then demonstrate that IRF-1 up-regulates PUMA (p53 up-regulated modulator of apoptosis), that is known to activate apoptosis by the intrinsic pathway; this can be p53 independent. IRF-1 binds to distinct sites in the promoter of PUMA and activates PUMA transcription. Moreover, molecular markers of mitochondrial apoptosis are eliminated in PUMA knockout and knockdown cells and phospatidylserine exposure is decreased dramatically. Finally, we demonstrate that IFN-γ induces IRF-1 mediated up-regulation of PUMA in cancer cells. We conclude that IRF-1 can induce apoptosis by the intrinsic pathway independent of the extrinsic pathway by up-regulation of PUMA.
Collapse
|
6
|
Pion E, Narayan V, Eckert M, Ball KL. Role of the IRF-1 enhancer domain in signalling polyubiquitination and degradation. Cell Signal 2009; 21:1479-87. [PMID: 19450680 DOI: 10.1016/j.cellsig.2009.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 05/11/2009] [Indexed: 01/09/2023]
Abstract
The interferon regulated transcription factor IRF-1 is a tumour suppressor protein that is activated in response to viral infection and cell signalling activated by double stranded DNA lesions. IRF-1 has a short half-life (t(0.5) 20-40 min) allowing rapid changes in steady state levels by modulating its rate of degradation and/or synthesis. However, little is known about the pathway(s) leading to IRF-1 protein degradation or what determines the rate of degradation in cells. Here we establish a role for discrete motifs in the enhancer domain of IRF-1 in directing polyubiquitination and degradation. By studying the structure of the enhancer domain as related to its role in the turnover of IRF-1 we have demonstrated that this region is not subject to modification by ubiquitin but rather that it contains both an ubiquitination signal and a distinct degradation signal. Removal of the C-terminal 70 amino acids from IRF-1 inhibits both its degradation and polyubiquitination, whereas removal of the C-terminal 25 amino acids inhibits degradation of the protein but does not prevent its ubiquitination. Furthermore, consistent with the C-terminus being involved in targeting or recognition by an E3-ligase or associated protein(s) the enhancer domain can act in trans to inhibit IRF-1 ubiquitination by endogenous E3-ligase activity. The identification of structural determinants that signals IRF-1 polyubiquitination and which can be uncoupled from IRF-1 degradation lends support to the idea that the degradation of selective substrates can be regulated at multiple steps in the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Emmanuelle Pion
- CRUK Interferon and Cell Signalling Group, Cell Signalling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XR, UK
| | | | | | | |
Collapse
|
7
|
Eckert M, Meek SEM, Ball KL. A novel repressor domain is required for maximal growth inhibition by the IRF-1 tumor suppressor. J Biol Chem 2006; 281:23092-102. [PMID: 16679314 DOI: 10.1074/jbc.m512589200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interferon regulatory factor-1 (IRF-1) is a transcription factor and tumor suppressor that can regulate gene expression in a manner requiring either its sequence specific DNA binding activity or its ability to bind the p300 coactivator. We show that IRF-1-mediated growth inhibition is dependent on the integrity of a C-terminal transcriptional enhancer domain. An enhancer subdomain (amino acids 301-325) that differentially regulates IRF-1 activity has been identified and this region mediates the repression of Cdk2. The repressor domain encompasses an LXXLL coregulator signature motif and mutations or deletions within this region completely uncouple transcriptional activation from repression. The loss of growth suppressor activity when the Cdk2-repressor domain of IRF-1 is mutated implicates repression as a determinant of its maximal growth inhibitory potential. The data link IRF-1 regulatory domains to its growth inhibitory activity and provide information about how differential gene regulation may contribute to IRF-1 tumor suppressor activity.
Collapse
Affiliation(s)
- Mirjam Eckert
- Cancer Research UK (CRUK) Interferon and Cell Signalling Group, Cell Signalling Unit, The University of Edinburgh Cancer Research Centre, Edinburgh EH4 2XR, United Kingdom
| | | | | |
Collapse
|
8
|
Xie RL, Gupta S, Miele A, Shiffman D, Stein JL, Stein GS, van Wijnen AJ. The tumor suppressor interferon regulatory factor 1 interferes with SP1 activation to repress the human CDK2 promoter. J Biol Chem 2003; 278:26589-96. [PMID: 12732645 DOI: 10.1074/jbc.m301491200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cell growth control by interferons (IFNs) involves up-regulation of the tumor suppressor interferon regulatory factor 1 (IRF1). To exert its anti-proliferative effects, this factor must ultimately control transcription of several key genes that regulate cell cycle progression. Here we show that the G1/S phase-related cyclin-dependent kinase 2 (CDK2) gene is a novel proliferation-related downstream target of IRF1. We find that IRF1, but not IRF2, IRF3, or IRF7, selectively represses CDK2 gene transcription in a dose- and time-dependent manner. We delineate the IRF1-responsive repressor element between nt -68 to -31 of the CDK2 promoter. For comparison, the tumor suppressor p53 represses CDK2 promoter activity independently of IRF1 through sequences upstream of nt -68, and the CDP/cut/Cux1 homeodomain protein represses transcription down-stream of -31. Thus, IRF1 repression represents one of three distinct mechanisms to attenuate CDK2 levels. The -68/-31 segment lacks a canonical IRF responsive element but contains a single SP1 binding site. Mutation of this element abrogates SP1-dependent enhancement of CDK2 promoter activity as expected but also abolishes IRF1-mediated repression. Forced elevation of SP1 levels increases endogenous CDK2 levels, whereas IRF1 reduces both endogenous SP1 and CDK2 protein levels. Hence, IRF1 represses CDK2 gene expression by interfering with SP1-dependent transcriptional activation. Our findings establish a causal series of events that functionally connect the anti-proliferative effects of interferons with the IRF1-dependent suppression of the CDK2 gene, which encodes a key regulator of the G1/S phase transition.
Collapse
Affiliation(s)
- Rong-Lin Xie
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Azzam-Smoak K, Noah DL, Stewart MJ, Blum MA, Sherry B. Interferon regulatory factor-1, interferon-beta, and reovirus-induced myocarditis. Virology 2002; 298:20-9. [PMID: 12093169 DOI: 10.1006/viro.2002.1470] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral myocarditis is an important human disease, and reovirus-induced myocarditis in mice provides an excellent model to study direct viral damage to the heart. Previously, we showed that reovirus induction of and sensitivity to interferon-beta (IFN-beta) is an important determinant of viral pathogenicity in the heart and that the transcription factor interferon regulatory factor-3 (IRF-3) is required for reovirus induction of IFN-beta in primary cardiac myocyte cultures. Given several lines of evidence suggesting a possible distinctive environment for IRFs in the heart, we have now focused on IRF-1. Previous studies demonstrated that viruses, double-stranded-RNA (dsRNA), and IFN-alpha/beta can each induce IRF-1 and that IRF-1 plays a role in dsRNA, but perhaps not viral, induction of IFN-alpha/beta. Importantly, none of these studies used a virus with a dsRNA genome (such as reovirus), none of them used a highly differentiated nonlymphoid cell type, and none of them addressed whether viral induction of IRF-1 is direct or is mediated through viral induction of IFN-beta. Indeed, as recently as this year it has been assumed that viral induction of IRF-1 is direct. Here, we found that reovirus induced IRF-1 in primary cardiac myocyte cultures, but that IRF-1 was not required for reovirus induction of IFN-beta. Surprisingly, we found that reovirus failed to induce IRF-1 in the absence of the IFN-alpha/beta response. This provides the first evidence that viruses may not induce IRF-1 directly. Finally, nonmyocarditic reovirus strains induced more cardiac lesions in mice deficient for IRF-1 than they did in wildtype mice, directly demonstrating a protective role for IRF-1. Together, the results indicate that while IRF-1 is downstream of the IFN-beta response, it plays an important protective role against viral myocarditis.
Collapse
Affiliation(s)
- Kathleen Azzam-Smoak
- Department of Microbiology, College of Veterinary Medicine, North Carloina State University, Raleigh 27606, USA
| | | | | | | | | |
Collapse
|
10
|
Wong LH, Sim H, Chatterjee-Kishore M, Hatzinisiriou I, Devenish RJ, Stark G, Ralph SJ. Isolation and characterization of a human STAT1 gene regulatory element. Inducibility by interferon (IFN) types I and II and role of IFN regulatory factor-1. J Biol Chem 2002; 277:19408-17. [PMID: 11909852 DOI: 10.1074/jbc.m111302200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The transcription factor STAT1 plays a pivotal role in signal transduction of type I and II interferons (IFNs). STAT1 activation leads to changes in expression of key regulatory genes encoding caspases and cell cycle inhibitors. Deficient STAT1 expression in human cancer cells and virally mediated inhibition of STAT1 function have been associated with cellular resistance to IFNs and mycobacterial infection in humans. Thus, given the relative importance of STAT1, we isolated and characterized a human STAT1 intronic enhancer region displaying IFN-regulated activity. Functional analyses by transient expression identified a repressor region and type I and II IFN-inducible elements within the STAT1 enhancer sequence. A candidate IRF-E/GAS/IRF-E (IGI) sequence containing GAAANN nucleotide repeats was shown by gel shift assay to bind to IFN regulatory factor-1 (IRF-1), but not to IFN-stimulated gene factor-3 (ISGF-3) or STAT1-3. An additional larger IGI-binding complex containing IRF-1 was identified. Mutation of the GAAANN repeats within the IGI DNA element eliminated IRF-1 binding and the IFN-regulated activity of the STAT1 intronic enhancer region. Transfection of the IFN-resistant MM96 cell line to express increased levels of IRF-1 protein also elevated STAT1, STAT2, and p48/IRF-9 expression and enhanced cellular responsiveness to IFN-beta. Reciprocating regulation between IRF-1 and STAT1 genes and encoded proteins indicates that an intracellular amplifier circuit exists controlling cellular responsiveness to the IFNs.
Collapse
MESH Headings
- Amino Acid Motifs
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 2
- DNA, Complementary/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Enhancer Elements, Genetic
- Exons
- Genes, Reporter
- Genetic Vectors
- Humans
- Interferon Regulatory Factor-1
- Interferon Type I/pharmacology
- Interferon-gamma/pharmacology
- Introns
- Luciferases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Phosphoproteins/metabolism
- Polymerase Chain Reaction
- Protein Binding
- STAT1 Transcription Factor
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Gene expression is a tightly regulated process involving multiple levels of control spanning histone acetylation to protein turnover. One of the first events in this cascade is transcription, which itself is a multistep process involving protein-protein interaction and macromolecular assembly. Here we review the role of the interferon (IFN) regulatory factor (IRF) transcription factor family member IRF-4 in transcriptional regulation. IRF-4 was initially characterized in lymphocytes and was shown to function as both a transcriptional repressor and activator. More recently, IRF-4 expression and function have been reported in macrophages. The ability of IRF-4 to serve as both a transcriptional activator and repressor is determined, in part, by binding to distinct DNA-binding motifs and through interaction with various additional transcription factors, most notably with the Ets family member PU.1. The details governing these functional differences are the focus of this review. Importantly, the role of posttranslational modification and nuclear translocation of IRF-4 in transcriptional regulation are addressed. Several possible paradigms of transcriptional regulation by IRF-4 are proposed, where these paradigms may describe regulatory mechanisms common to many distinct transcription factor families.
Collapse
Affiliation(s)
- Sylvia Marecki
- The Pulmonary Center, Boston University School of Medicine, Boston, MA 02118
| | | |
Collapse
|
12
|
Abstract
Interferon (IFN) regulatory factor-1 (IRF-1) was isolated by virtue of its affinity to specific DNA sequences in the IFN-beta promoter that mediate virus responsiveness. IRF-1 was the first factor identified of the IRF family and was most extensively characterized at the molecular level. Also, its physiologic role in host defense against pathogens, tumor prevention, and development of the immune system was investigated in detail. Even though some of the functions first associated with IRF-1 were later found to be mediated in part or predominantly by other activators of the IRF family of transcription factors, IRF-1 has remained a central paradigm in the transcriptional regulation of the IFN response.
Collapse
Affiliation(s)
- Andrea Kröger
- Department of Gene Regulation and Differentiation, GBF, Gesellschaft für Biotechnologische Forschung, D 38124 Braunschweig Mascheroder Weg 1, Germany
| | | | | | | | | |
Collapse
|
13
|
Xie R, van Wijnen AJ, van Der Meijden C, Luong MX, Stein JL, Stein GS. The cell cycle control element of histone H4 gene transcription is maximally responsive to interferon regulatory factor pairs IRF-1/IRF-3 and IRF-1/IRF-7. J Biol Chem 2001; 276:18624-32. [PMID: 11278666 DOI: 10.1074/jbc.m010391200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon regulatory factors (IRFs) are transcriptional mediators of interferon-responsive signaling pathways that are involved in antiviral defense, immune response, and cell growth regulation. To investigate the role of IRF proteins in the regulation of histone H4 gene transcription, we compared the transcriptional contributions of IRF-1, IRF-2, IRF-3, and IRF-7 using transient transfection assays with H4 promoter/luciferase (Luc) reporter genes. These IRF proteins up-regulate reporter gene expression but IRF-1, IRF-3, and IRF-7 are more potent activators of the H4 promoter than IRF-2. Forced expression of different IRF combinations reveals that IRF-2 reduces IRF-1 or IRF-3 dependent activation, but does not affect IRF-7 function. Thus, IRF-2 may have a dual function in histone H4 gene transcription by acting as a weak activator at low dosage and a competitive inhibitor of other strongly activating IRFs at high levels. IRF-1/IRF-3 and IRF-1/IRF-7 pairs each mediate the highest levels of site II-dependent promoter activity and can up-regulate transcription by 120-150-fold. We also find that interferon gamma up-regulates IRF-1 and site II-dependent promoter activity. This up-regulation is not observed when the IRF site is mutated or if cells are preloaded with IRF-1. Our results indicate that IRF-1, IRF-2, IRF-3, and IRF-7 can all regulate histone H4 gene expression. The pairwise utilization of distinct IRF factors provides a flexible transcriptional mechanism for integration of diverse growth-related signaling pathways.
Collapse
Affiliation(s)
- R Xie
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
14
|
Marié I, Smith E, Prakash A, Levy DE. Phosphorylation-induced dimerization of interferon regulatory factor 7 unmasks DNA binding and a bipartite transactivation domain. Mol Cell Biol 2000; 20:8803-14. [PMID: 11073981 PMCID: PMC86519 DOI: 10.1128/mcb.20.23.8803-8814.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon regulatory factor 7 (IRF7) is an interferon (IFN)-inducible transcription factor required for activation of a subset of IFN-alpha genes that are expressed with delayed kinetics following viral infection. IRF7 is synthesized as a latent protein and is posttranslationally modified by protein phosphorylation in infected cells. Phosphorylation required a carboxyl-terminal regulatory domain that controlled the retention of the active protein exclusively in the nucleus, as well as its binding to specific DNA target sequences, multimerization, and ability to induce target gene expression. Transcriptional activation by IRF7 mapped to two distinct regions, both of which were required for full activity, while all functions were masked in latent IRF7 by an autoinhibitory domain mapping to an internal region. A conditionally active form of IRF7 was constructed by fusing IRF7 with the ligand-binding and dimerization domain of estrogen receptor (ER). Hormone-dependent dimerization of chimeric IRF7-ER stimulated DNA binding and transcriptional transactivation of endogenous target genes. These studies demonstrate the regulation of IRF7 activity by phosphorylation-dependent allosteric changes that result in dimerization and that facilitate nuclear retention, derepress transactivation, and allow specific DNA binding.
Collapse
Affiliation(s)
- I Marié
- Department of Pathology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
15
|
Kirchhoff S, Oumard A, Nourbakhsh M, Levi BZ, Hauser H. Interplay between repressing and activating domains defines the transcriptional activity of IRF-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6753-61. [PMID: 11082185 DOI: 10.1046/j.1432-1033.2000.01750.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferon regulatory factor-1 (IRF-1) is a transcriptional activator with weak activation capacity. By defining the transcriptional activation domain of IRF-1 we identified two activator fragments located between amino acids 185 and 256 functioning in an additive manner. Another fragment of IRF-1, which has no activator function alone, acts as a strong enhancer element of these activator sequences. This enhancer element resides between the activator domains and the C-terminus. In addition, we identified a novel type of inhibitory domain in the N-terminal 60 amino acids of IRF-1 which strongly inhibits its transcriptional activity. Because this fragment is conserved in all interferon regulatory factors, we found similar repression effects in the corresponding fragments in IRF-2, IRF-3 and interferon consensus sequence binding protein (ICSBP/IRF-8). Interestingly, the corresponding sequence in p48/IRF-9 is divergent, so that it does not show this inhibitory activity. A five-amino-acid sequence distinguishes the p48/IRF-9 N-terminus from the homologous parts in other interferon regulatory factors containing the repressing function. Replacing the diverged amino acids in IRF-1 with the corresponding sequence of p48/IRF-9 resulted in a loss of inhibitory activity within IRF-1. The opposing activities within interferon regulatory factors may contribute to balanced or tuned regulation of gene activation, depending on the promoter context.
Collapse
Affiliation(s)
- S Kirchhoff
- National Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
16
|
Chatterjee-Kishore M, van Den Akker F, Stark GR. Adenovirus E1A down-regulates LMP2 transcription by interfering with the binding of stat1 to IRF1. J Biol Chem 2000; 275:20406-11. [PMID: 10764778 DOI: 10.1074/jbc.m001861200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LMP2 gene, which encodes a protein required for efficient presentation of viral antigens, requires both unphosphorylated Stat1 and IRF1 for basal expression. LMP2 expression is down-regulated by the adenovirus protein E1A, which binds to Stat1 and CBP/p300, and by the mutant E1A protein RG2, which binds to Stat1 but not to CBP/p300, but not by the mutant protein Delta2-36, which does not bind to either Stat1 or CBP/p300. Stat1 and IRF1 associate in untreated cells and bind as a complex to the overlapping ICS-2/GAS element of the LMP2 promoter. E1A interferes with the formation of this complex by occupying domains of Stat1 that bind to IRF1. These results reveal how adenovirus infection attenuates LMP2 expression, thereby interfering with the presentation of viral antigens.
Collapse
Affiliation(s)
- M Chatterjee-Kishore
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44145, USA
| | | | | |
Collapse
|