1
|
Aman B, Ciobanu G. Arithmetic abilities of SNP systems with astrocytes producing calcium. Neural Netw 2025; 183:106913. [PMID: 39615449 DOI: 10.1016/j.neunet.2024.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/13/2024] [Accepted: 11/09/2024] [Indexed: 01/22/2025]
Abstract
Are the membrane systems able of performing arithmetic operations? In the last dozen years, there were published several implementations of the arithmetic operations based on membrane systems by using all available topologies (cell-like, tissue-like, or neural-like). In particular, the spiking neural P systems perform arithmetic operations by using the numbers represented in binary base. In this paper, we consider numbers represented in unary base (to each number n corresponds an object with multiplicity n), and we propose two encodings for the main arithmetic operations (addition, subtraction, multiplication and division) between numbers given in unary base: (i) for each pair of input values generate an instance of a spiking neural P system with astrocytes producing calcium with rules based on these values; (ii) generate a spiking neural P system with astrocytes producing calcium that does not depend on these values. While the second approach is commonly used in membrane computing to construct only a system for each operation, the first approach is interesting because each system is uniquely constructed based on a pair of input values , and so it performs faster the desired arithmetic operation. The main advantage (with respect to other attempts) of using any of these two approaches to perform arithmetic operations consists in the reduced size of created systems (number of locations and used rules). Additionally, we extend a semantic interpreter (in Haskell) for spiking neural P systems to test all the encodings of the arithmetic operations presented in this paper.
Collapse
Affiliation(s)
- Bogdan Aman
- Institute of Computer Science, Romanian Academy, Iasi Branch, Romania; Faculty of Computer Science, Alexandru Ioan Cuza University, Iasi, Romania.
| | - Gabriel Ciobanu
- Institute of Computer Science, Romanian Academy, Iasi Branch, Romania
| |
Collapse
|
2
|
Singer A, Trigo F, Vinel L, Gruere O, Llano I, Oheim M. A first morphological and electrophysiological characterization of Fañanas cells of the mouse cerebellum. J Physiol 2025; 603:855-871. [PMID: 39869051 PMCID: PMC11826065 DOI: 10.1113/jp285949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2024] [Indexed: 01/28/2025] Open
Abstract
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents. We identified FCs of the molecular layer in cerebellar slices by their stubby process and small cell bodies. Despite their more compact shape compared to Bergmann glia (BGs), FCs showed similar membrane resistances and basal currents, suggesting that these passive currents are partly a result of electrical coupling between neighbouring glia. Dye filling and pharmacological experiments confirmed both homo- and heterotypic gap-junction coupling among FCs and BGs. Parallel-fibre stimulation evoked TTX-sensitive slow inward currents in FCs that were partially blocked by NBQX but not APV. Occasionally, we observed superimposed fast (milliseconds) current transients. Near-UV flash photolysis of MNI-caged glutamate revealed rapid desensitization of these AMPA-receptor mediated currents, which fully recovered only for stimulation intervals >500 ms. We mapped the highest current densities in proximal processes. We conclude that FCs respond with fast AMPA currents to local glutamate release and they integrate ambient glutamate rises to a slow inward current. Interestingly, we found FCs to prevail throughout adulthood at stable but different densities among cerebellar lobules, with the highest cell densities in lobules I-II and X. Our results strongly suggest that FCs are not just displaced BGs, and that they may have lobule-specific functions - both locally and at the circuit level, yet to be uncovered. KEY POINTS: Using whole-cell recordings and near-UV laser photolyisis of caged glutamate, we provide a first characterization of cells of Fañanas (FCs) in mouse cerebellar slices. FCs are present from postnatal day 5 onward throughout adulthood and have a lobule- dependent density. Parallel-fibre stimulation generates biphasic, predominantly AMPA-mediated currents in FCs. Currents induced in FCs by parallel fibre stimulation are not NMDA receptor-dependent and are enhanced upon glutamate-transporter block with TBOA. Local near-UV glutamate uncaging indicates that FCs can detect fast glutamatergic inputs on the millisecond-time scale. FCs functionally integrate into the glial syncytium.
Collapse
Affiliation(s)
- A. Singer
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - F. Trigo
- Departamento de Neurofisiologia Celular y MolecularInstituto de Investigaciones Biológicas Clemente Estable (IIBCE)MontevideoUruguay
| | - L. Vinel
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - O. Gruere
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - I. Llano
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| | - Martin Oheim
- Université Paris Cité, CNRSSaints‐Pères Paris Institute for the NeurosciencesParisFrance
| |
Collapse
|
3
|
Pushchina EV, Pimenova EA, Kapustyanov IA, Bykova ME. Ultrastructural Study and Immunohistochemical Characteristics of Mesencephalic Tegmentum in Juvenile Chum Salmon ( Oncorhynchus keta) Brain After Acute Traumatic Injury. Int J Mol Sci 2025; 26:644. [PMID: 39859360 PMCID: PMC11765592 DOI: 10.3390/ijms26020644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them. Neurons of three size types with a high metabolic rate, characterized by the presence of numerous mitochondria, polyribosomes, Golgi apparatus, and cytoplasmic inclusions (vacuoles, lipid droplets, and dense bodies), were distinguished. It was found that large interneurons of the NFLM formed contacts with protoplasmic astrocytes. Excitatory synaptic structures were identified in the tegmentum and their detailed characteristic are provided for the first time. Microglia-like cells were found in the NIII. The ultrastructural characteristics of neurogenic zones of the tegmentum of juvenile chum salmon were also determined for the first time. In the neurogenic zones of the tegmentum, adult-type neural stem progenitor cells (aNSPCs) corresponding to cells of types III and IVa Danio rerio. In the neurogenic zones of the tegmentum, neuroepithelial-like cells (NECs) corresponding to cells previously described from the zebrafish cerebellum were found and characterized. In the tegmentum of juvenile chum salmon, patterns of paracrine neurosecretion were observed and their ultrastructural characteristics were recorded. Patterns of apoptosis in large neurons of the tegmentum were examined by TEM. Using immunohistochemical (IHC) labeling of the brain lipid-binding protein (BLBP) and aromatase B (AroB), patterns of their expression in the tegmentum of intact animals and in the post-traumatic period after acute injury to the medulla oblongata were characterized. The response to brainstem injury in chum salmon was found to activate multiple signaling pathways, which significantly increases the BLBP and AroB expression in various regions of the tegmentum and valvula cerebelli. However, post-traumatic patterns of BLBP and AroB localizations are not the same. In addition to a general increase in BLBP expression in the tegmental parenchyma, BLBP overexpression was observed in the rostro-lateral tegmental neurogenic zone (RLTNZ), while AroB expression in the RLTNZ was completely absent. Another difference was the peripheral overexpression of AroB and the formation of dense reactive clusters in the ventro-medial zone of the tegmentum. Thus, in the post-traumatic period, various pathways were activated whose components were putative candidates for inducers of the "astrocyte-like" response in the juvenile chum salmon brain that are similar to those present in the mammalian brain. In this case, BLBP acted as a factor enhancing the differentiation of both radial glia and neurons. Estradiol from AroB+ astrocytes exerted paracrine neuroprotective effects through the potential inhibition of inflammatory processes. These results indicate a new role for neuronal aromatization as a mechanism preventing the development of neuroinflammation. Moreover, our findings support the hypothesis that BLBP is a factor enhancing neuronal and glial differentiation in the post-traumatic period in the chum salmon brain.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.P.); (I.A.K.); (M.E.B.)
| | | | | | | |
Collapse
|
4
|
Dzyubenko E, Hermann DM. Neuroglia and extracellular matrix molecules. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:197-211. [PMID: 40122625 DOI: 10.1016/b978-0-443-19104-6.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter provides a comprehensive overview of the roles of astrocytes, microglia, and the extracellular matrix (ECM) in regulating neuroplasticity and maintaining brain homeostasis. Astrocytes provide essential metabolic support to neurons, regulate synapse development, support neuroplasticity mechanisms, and modulate neurotransmission. Microglia, the resident immune cells of the brain, play a critical role in neuroinflammatory responses and homeostatic brain regulation by modulating synapse formation and pruning. The extracellular space (ECS) mediates intercellular interactions, provides a highly regulated environment for intercellular communication, and is filled with ECM molecules. Proteoglycans and polysaccharides of the ECM play a vital role not only in brain development but also in brain function throughout life. In the injured brain, neuroplasticity and regeneration can be bidirectionally regulated as a result of the interplay between ECM, astrocytes, and microglia. The modulation of synaptic strength, structural remodeling, and modification of intrinsic neuronal properties are among the central mechanisms that contribute to neuronal plasticity in health and disease. We believe that the understanding of ECM-glia interactions and their role in neuroplasticity regulation is key to the development of novel therapeutic strategies in neurologic disorders.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Lu Y, Gu Y, Chan ASL, Yung Y, Wong YH. Activation of Bradykinin B 2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling. Int J Mol Sci 2024; 25:13079. [PMID: 39684791 DOI: 10.3390/ijms252313079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF.
Collapse
Affiliation(s)
- Ying Lu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- School of Public Health, Nantong University, Nantong City 226019, China
| | - Yishan Gu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anthony S L Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong, China
| |
Collapse
|
6
|
Ahrens MB, Khakh BS, Poskanzer KE. Astrocyte Calcium Signaling. Cold Spring Harb Perspect Biol 2024; 16:a041353. [PMID: 38768971 PMCID: PMC11444304 DOI: 10.1101/cshperspect.a041353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system and participate in well-established functional and morphological interactions with neurons, blood vessels, and other glia. These ubiquitous cells display rich intracellular Ca2+ signaling, which has now been studied for over 30 years. In this review, we provide a summary and perspective of recent progress concerning the study of astrocyte intracellular Ca2+ signaling as well as discussion of its potential functions. Progress has occurred in the areas of imaging, silencing, activating, and analyzing astrocyte Ca2+ signals. These insights have collectively permitted exploration of the relationships of astrocyte Ca2+ signals to neural circuit function and behavior in a variety of species. We summarize these aspects along with a framework for mechanistically interpreting behavioral studies to identify directly causal effects. We finish by providing a perspective on new avenues of research concerning astrocyte Ca2+ signaling.
Collapse
Affiliation(s)
- Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Baljit S Khakh
- Department of Physiology and Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
7
|
Amato S, Averna M, Farsetti E, Guidolin D, Pedrazzi M, Gatta E, Candiani S, Maura G, Agnati LF, Cervetto C, Marcoli M. Control of Dopamine Signal in High-Order Receptor Complex on Striatal Astrocytes. Int J Mol Sci 2024; 25:8610. [PMID: 39201299 PMCID: PMC11354247 DOI: 10.3390/ijms25168610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elisa Farsetti
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elena Gatta
- DIFILAB, Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
| | - Guido Maura
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
| | - Luigi Francesco Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Via Largo Benzi 10, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Manuela Marcoli
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, 16132 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
8
|
Wang DS, Ju L, Pinguelo AG, Kaneshwaran K, Haffey SC, Lecker I, Gohil H, Wheeler MB, Kaustov L, Ariza A, Yu M, Volchuk A, Steinberg BE, Goldenberg NM, Orser BA. Crosstalk between GABA A receptors in astrocytes and neurons triggered by general anesthetic drugs. Transl Res 2024; 267:39-53. [PMID: 38042478 DOI: 10.1016/j.trsl.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
General anesthetic drugs cause cognitive deficits that persist after the drugs have been eliminated. Astrocytes may contribute to such cognition-impairing effects through the release of one or more paracrine factors that increase a tonic inhibitory conductance generated by extrasynaptic γ-aminobutyric acid type A (GABAA) receptors in hippocampal neurons. The mechanisms underlying this astrocyte-to-neuron crosstalk remain unknown. Interestingly, astrocytes express anesthetic-sensitive GABAA receptors. Here, we tested the hypothesis that anesthetic drugs activate astrocytic GABAA receptors to initiate crosstalk leading to a persistent increase in extrasynaptic GABAA receptor function in neurons. We also investigated the signaling pathways in neurons and aimed to identify the paracrine factors released from astrocytes. Astrocytes and neurons from mice were grown in primary cell cultures and studied using in vitro electrophysiological and biochemical assays. We discovered that the commonly used anesthetics etomidate (injectable) and sevoflurane (inhaled) stimulated astrocytic GABAA receptors, which in turn promoted the release paracrine factors, that increased the tonic current in neurons via a p38 MAPK-dependent signaling pathway. The increase in tonic current was mimicked by exogenous IL-1β and abolished by blocking IL-1 receptors; however, unexpectedly, IL-1β and other cytokines were not detected in astrocyte-conditioned media. In summary, we have identified a novel form of crosstalk between GABAA receptors in astrocytes and neurons that engages a p38 MAPK-dependent pathway. Brief commentary BACKGROUND: Many older patients experience cognitive deficits after surgery. Anesthetic drugs may be a contributing factor as they cause a sustained increase in the function of "memory blocking" extrasynaptic GABAA receptors in neurons. Interestingly, astrocytes are required for this increase; however, the mechanisms underlying the astrocyte-to-neuron crosstalk remain unknown. TRANSLATIONAL SIGNIFICANCE: We discovered that commonly used general anesthetic drugs stimulate GABAA receptors in astrocytes, which in turn release paracrine factors that trigger a persistent increase in extrasynaptic GABAA receptor function in neurons via p38 MAPK. This novel form of crosstalk may contribute to persistent cognitive deficits after general anesthesia and surgery.
Collapse
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Ju
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arsène G Pinguelo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kirusanthy Kaneshwaran
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean C Haffey
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Irene Lecker
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Himaben Gohil
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Lilia Kaustov
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Anthony Ariza
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - MeiFeng Yu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada
| | - Neil M Goldenberg
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada; Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Room 3318, Medical Sciences Building, 1 King's College Circle, Ontario M5S 1A8, Canada.
| |
Collapse
|
9
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Puebla M, Muñoz MF, Lillo MA, Contreras JE, Figueroa XF. Control of astrocytic Ca 2+ signaling by nitric oxide-dependent S-nitrosylation of Ca 2+ homeostasis modulator 1 channels. Biol Res 2024; 57:19. [PMID: 38689353 PMCID: PMC11059852 DOI: 10.1186/s40659-024-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.
Collapse
Affiliation(s)
- Mariela Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Manuel F Muñoz
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Jorge E Contreras
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
| |
Collapse
|
11
|
Chalmers N, Masouti E, Beckervordersandforth R. Astrocytes in the adult dentate gyrus-balance between adult and developmental tasks. Mol Psychiatry 2024; 29:982-991. [PMID: 38177351 PMCID: PMC11176073 DOI: 10.1038/s41380-023-02386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes, a major glial cell type in the brain, are indispensable for the integration, maintenance and survival of neurons during development and adulthood. Both life phases make specific demands on the molecular and physiological properties of astrocytes, and most research projects traditionally focus on either developmental or adult astrocyte functions. In most brain regions, the generation of brain cells and the establishment of neural circuits ends with postnatal development. However, few neurogenic niches exist in the adult brain in which new neurons and glial cells are produced lifelong, and the integration of new cells into functional circuits represent a very special form of plasticity. Consequently, in the neurogenic niche, the astrocytes must be equipped to execute both mature and developmental tasks in order to integrate newborn neurons into the circuit and yet maintain overall homeostasis without affecting the preexisting neurons. In this review, we focus on astrocytes of the hippocampal dentate gyrus (DG), and discuss specific features of the astrocytic compartment that may allow the execution of both tasks. Firstly, astrocytes of the adult DG are molecularly, morphologically and functionally diverse, and the distinct astrocytes subtypes are characterized by their localization to DG layers. This spatial separation may lead to a functional specification of astrocytes subtypes according to the neuronal structures they are embedded in, hence a division of labor. Secondly, the astrocytic compartment is not static, but steadily increasing in numbers due to lifelong astrogenesis. Interestingly, astrogenesis can adapt to environmental and behavioral stimuli, revealing an unexpected astrocyte dynamic that allows the niche to adopt to changing demands. The diversity and dynamic of astrocytes in the adult DG implicate a vital contribution to hippocampal plasticity and represent an interesting model to uncover mechanisms how astrocytes simultaneously fulfill developmental and adult tasks.
Collapse
Affiliation(s)
- Nicholas Chalmers
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Evangelia Masouti
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
12
|
Wulaer B, Holtz MA, Nagai J. Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology. ADVANCES IN NEUROBIOLOGY 2024; 39:137-163. [PMID: 39190074 DOI: 10.1007/978-3-031-64839-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.
Collapse
Affiliation(s)
- Bolati Wulaer
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mika A Holtz
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
13
|
Harder EV, Franklin JP, VanRyzin JW, Reissner KJ. Astrocyte-Neuron Interactions in Substance Use Disorders. ADVANCES IN NEUROBIOLOGY 2024; 39:165-191. [PMID: 39190075 DOI: 10.1007/978-3-031-64839-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.
Collapse
Affiliation(s)
- Eden V Harder
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Janay P Franklin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan W VanRyzin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Hyung S, Park JH, Jung K. Application of optogenetic glial cells to neuron-glial communication. Front Cell Neurosci 2023; 17:1249043. [PMID: 37868193 PMCID: PMC10585272 DOI: 10.3389/fncel.2023.1249043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Optogenetic techniques combine optics and genetics to enable cell-specific targeting and precise spatiotemporal control of excitable cells, and they are increasingly being employed. One of the most significant advantages of the optogenetic approach is that it allows for the modulation of nearby cells or circuits with millisecond precision, enabling researchers to gain a better understanding of the complex nervous system. Furthermore, optogenetic neuron activation permits the regulation of information processing in the brain, including synaptic activity and transmission, and also promotes nerve structure development. However, the optimal conditions remain unclear, and further research is required to identify the types of cells that can most effectively and precisely control nerve function. Recent studies have described optogenetic glial manipulation for coordinating the reciprocal communication between neurons and glia. Optogenetically stimulated glial cells can modulate information processing in the central nervous system and provide structural support for nerve fibers in the peripheral nervous system. These advances promote the effective use of optogenetics, although further experiments are needed. This review describes the critical role of glial cells in the nervous system and reviews the optogenetic applications of several types of glial cells, as well as their significance in neuron-glia interactions. Together, it briefly discusses the therapeutic potential and feasibility of optogenetics.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji-Hye Park
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Jung
- DAWINBIO Inc., Hanam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Roqué PJ, Barria A, Zhang X, Hashimoto JG, Costa LG, Guizzetti M. Synaptogenesis by Cholinergic Stimulation of Astrocytes. Neurochem Res 2023; 48:3212-3227. [PMID: 37402036 PMCID: PMC10493036 DOI: 10.1007/s11064-023-03979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 h in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and inhibition of the receptor for thrombospondins prevented the increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, where neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.
Collapse
Affiliation(s)
- Pamela J Roqué
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Andrés Barria
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Medicine & Surgery, University of Parma, Parma, Italy
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA.
- VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
16
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
17
|
Suthard RL, Senne RA, Buzharsky MD, Pyo AY, Dorst KE, Diep AH, Cole RH, Ramirez S. Basolateral Amygdala Astrocytes Are Engaged by the Acquisition and Expression of a Contextual Fear Memory. J Neurosci 2023; 43:4997-5013. [PMID: 37268419 PMCID: PMC10324998 DOI: 10.1523/jneurosci.1775-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Astrocytes are key cellular regulators within the brain. The basolateral amygdala (BLA) is implicated in fear memory processing, yet most research has entirely focused on neuronal mechanisms, despite a significant body of work implicating astrocytes in learning and memory. In the present study, we used in vivo fiber photometry in C57BL/6J male mice to record from amygdalar astrocytes across fear learning, recall, and three separate periods of extinction. We found that BLA astrocytes robustly responded to foot shock during acquisition, their activity remained remarkably elevated across days in comparison to unshocked control animals, and their increased activity persisted throughout extinction. Further, we found that astrocytes responded to the initiation and termination of freezing bouts during contextual fear conditioning and recall, and this behavior-locked pattern of activity did not persist throughout the extinction sessions. Importantly, astrocytes do not display these changes while exploring a novel context, suggesting that these observations are specific to the original fear-associated environment. Chemogenetic inhibition of fear ensembles in the BLA did not affect freezing behavior or astrocytic calcium dynamics. Overall, our work presents a real-time role for amygdalar astrocytes in fear processing and provides new insight into the emerging role of these cells in cognition and behavior.SIGNIFICANCE STATEMENT We show that basolateral amygdala astrocytes are robustly responsive to negative experiences, like shock, and display changed calcium activity patterns through fear learning and memory. Additionally, astrocytic calcium responses become time locked to the initiation and termination of freezing behavior during fear learning and recall. We find that astrocytes display calcium dynamics unique to a fear-conditioned context, and chemogenetic inhibition of BLA fear ensembles does not have an impact on freezing behavior or calcium dynamics. These findings show that astrocytes play a key real-time role in fear learning and memory.
Collapse
Affiliation(s)
- Rebecca L Suthard
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Ryan A Senne
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Michelle D Buzharsky
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Kaitlyn E Dorst
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| | - Anh H Diep
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Rebecca H Cole
- Undergraduate Program in Neuroscience, Boston University, Boston, Massachusetts 02215
| | - Steve Ramirez
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
18
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Suthard RL, Jellinger AL, Surets M, Shpokayte M, Pyo AY, Buzharsky MD, Senne RA, Dorst K, Leblanc H, Ramirez S. Chronic Gq activation of ventral hippocampal neurons and astrocytes differentially affects memory and behavior. Neurobiol Aging 2023; 125:9-31. [PMID: 36801699 DOI: 10.1016/j.neurobiolaging.2023.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
Network dysfunction is implicated in numerous diseases and psychiatric disorders, and the hippocampus serves as a common origin for these abnormalities. To test the hypothesis that chronic modulation of neurons and astrocytes induces impairments in cognition, we activated the hM3D(Gq) pathway in CaMKII+ neurons or GFAP+ astrocytes within the ventral hippocampus across 3, 6, and 9 months. CaMKII-hM3Dq activation impaired fear extinction at 3 months and acquisition at 9 months. Both CaMKII-hM3Dq manipulation and aging had differential effects on anxiety and social interaction. GFAP-hM3Dq activation impacted fear memory at 6 and 9 months. GFAP-hM3Dq activation impacted anxiety in the open field only at the earliest time point. CaMKII-hM3Dq activation modified the number of microglia, while GFAP-hM3Dq activation impacted microglial morphological characteristics, but neither affected these measures in astrocytes. Overall, our study elucidates how distinct cell types can modify behavior through network dysfunction, while adding a more direct role for glia in modulating behavior.
Collapse
Affiliation(s)
- Rebecca L Suthard
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Alexandra L Jellinger
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Michelle Surets
- Undergraduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Monika Shpokayte
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | | | - Ryan A Senne
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Kaitlyn Dorst
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Heloise Leblanc
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Steve Ramirez
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA.
| |
Collapse
|
20
|
Dzyubenko E, Hermann DM. Role of glia and extracellular matrix in controlling neuroplasticity in the central nervous system. Semin Immunopathol 2023:10.1007/s00281-023-00989-1. [PMID: 37052711 DOI: 10.1007/s00281-023-00989-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Neuronal plasticity is critical for the maintenance and modulation of brain activity. Emerging evidence indicates that glial cells actively shape neuroplasticity, allowing for highly flexible regulation of synaptic transmission, neuronal excitability, and network synchronization. Astrocytes regulate synaptogenesis, stabilize synaptic connectivity, and preserve the balance between excitation and inhibition in neuronal networks. Microglia, the brain-resident immune cells, continuously monitor and sculpt synapses, allowing for the remodeling of brain circuits. Glia-mediated neuroplasticity is driven by neuronal activity, controlled by a plethora of feedback signaling mechanisms and crucially involves extracellular matrix remodeling in the central nervous system. This review summarizes the key findings considering neurotransmission regulation and metabolic support by astrocyte-neuronal networks, and synaptic remodeling mediated by microglia. Novel data indicate that astrocytes and microglia are pivotal for controlling brain function, indicating the necessity to rethink neurocentric neuroplasticity views.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
21
|
Delepine C, Shih J, Li K, Gaudeaux P, Sur M. Differential Effects of Astrocyte Manipulations on Learned Motor Behavior and Neuronal Ensembles in the Motor Cortex. J Neurosci 2023; 43:2696-2713. [PMID: 36894315 PMCID: PMC10089242 DOI: 10.1523/jneurosci.1982-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Although motor cortex is crucial for learning precise and reliable movements, whether and how astrocytes contribute to its plasticity and function during motor learning is unknown. Here, we report that astrocyte-specific manipulations in primary motor cortex (M1) during a lever push task alter motor learning and execution, as well as the underlying neuronal population coding. Mice that express decreased levels of the astrocyte glutamate transporter 1 (GLT1) show impaired and variable movement trajectories, whereas mice with increased astrocyte Gq signaling show decreased performance rates, delayed response times, and impaired trajectories. In both groups, which include male and female mice, M1 neurons have altered interneuronal correlations and impaired population representations of task parameters, including response time and movement trajectories. RNA sequencing further supports a role for M1 astrocytes in motor learning and shows changes in astrocytic expression of glutamate transporter genes, GABA transporter genes, and extracellular matrix protein genes in mice that have acquired this learned behavior. Thus, astrocytes coordinate M1 neuronal activity during motor learning, and our results suggest that this contributes to learned movement execution and dexterity through mechanisms that include regulation of neurotransmitter transport and calcium signaling.SIGNIFICANCE STATEMENT We demonstrate for the first time that in the M1 of mice, astrocyte function is critical for coordinating neuronal population activity during motor learning. We demonstrate that knockdown of astrocyte glutamate transporter GLT1 affects specific components of learning, such as smooth trajectory formation. Altering astrocyte calcium signaling by activation of Gq-DREADD upregulates GLT1 and affects other components of learning, such as response rates and reaction times as well as trajectory smoothness. In both manipulations, neuronal activity in motor cortex is dysregulated, but in different ways. Thus, astrocytes have a crucial role in motor learning via their influence on motor cortex neurons, and they do so by mechanisms that include regulation of glutamate transport and calcium signals.
Collapse
Affiliation(s)
- Chloe Delepine
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jennifer Shih
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Keji Li
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Pierre Gaudeaux
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Simons Center for the Social Brain, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
22
|
Roqué PJ, Barria A, Zhang X, Costa LG, Guizzetti M. Synaptogenesis by Cholinergic Stimulation of Astrocytes. RESEARCH SQUARE 2023:rs.3.rs-2566078. [PMID: 36824819 PMCID: PMC9949182 DOI: 10.21203/rs.3.rs-2566078/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond by signaling back to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 hours in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and the inhibition of the target receptor for thrombospondins prevented the observed increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, i.e. , neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.
Collapse
|
23
|
Neuronal and astrocytic protein connections and associated adhesion molecules. Neurosci Res 2023; 187:14-20. [PMID: 36202350 DOI: 10.1016/j.neures.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 02/11/2023]
Abstract
Astrocytes are morphologically complex, with a myriad of processes which allow contact with other astrocytes, blood vessels, and neurons. Adhesion molecules expressed by these cells regulate this connectivity. Adhesion molecules are required to form and maintain functional neural circuits, but their importance and mechanisms of action, particularly in astrocyte-neuron contact, remain unresolved. Several studies of neuron-astrocyte connections have demonstrated the vital functions of adhesion molecules, including neuron-glia cell adhesion molecules, astrotactins, and protocadherins. In this review, we provide an overview and perspective of astrocyte-neuron contacts mediated by adhesion molecules in developing neural circuits and synapse formation, especially in the cerebellum. We also outline a novel mechanism of interaction between neurons and astrocytes in the tripartite synapses that has been recently found by our group.
Collapse
|
24
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
25
|
Yamada S, Wang Y, Monai H. Transcranial cortex-wide Ca 2+ imaging for the functional mapping of cortical dynamics. Front Neurosci 2023; 17:1119793. [PMID: 36875638 PMCID: PMC9975744 DOI: 10.3389/fnins.2023.1119793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Visualization and tracking of the information flow in the broader brain area are essential because nerve cells make a vast network in the brain. Fluorescence Ca2+ imaging is a simultaneous visualization of brain cell activities in a wide area. Instead of classical chemical indicators, developing various types of transgenic animals that express Ca2+-sensitive fluorescent proteins enables us to observe brain activities in living animals at a larger scale for a long time. Multiple kinds of literature have reported that transcranial imaging of such transgenic animals is practical for monitoring the wide-field information flow across the broad brain regions, although it has a lower spatial resolution. Notably, this technique is helpful for the initial evaluation of cortical function in disease models. This review will introduce fully intact transcranial macroscopic imaging and cortex-wide Ca2+ imaging as practical applications.
Collapse
Affiliation(s)
- Serika Yamada
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Yan Wang
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Hiromu Monai
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan.,Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
26
|
Li WP, Su XH, Hu NY, Hu J, Li XW, Yang JM, Gao TM. Astrocytes Mediate Cholinergic Regulation of Adult Hippocampal Neurogenesis and Memory Through M 1 Muscarinic Receptor. Biol Psychiatry 2022; 92:984-998. [PMID: 35787318 DOI: 10.1016/j.biopsych.2022.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/02/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND In the neurogenic niches of the adult hippocampus, new functional neurons are continuously generated throughout life, and generation of these neurons has been implicated in learning and memory. Astrocytes, as components of the neurogenic niches, are critical in the regulation of adult hippocampal neurogenesis (AHN). However, little is known about how astrocytes receive and respond to extrinsic cues to regulate AHN. METHODS By using a transgenic strategy to conditionally delete astrocytic CRHM1 in mice and AAV (adeno-associated virus)-mediated overexpression of astrocytic CHRM1 specifically in the hippocampal dentate gyrus, we systematically investigated the role of astrocytic CHRM1 in the regulation of AHN and the underlying mechanisms using the combined approaches of immunohistochemistry, retrovirus labeling, electrophysiology, primary astrocyte cultures, immunoblotting, and behavioral assays. RESULTS We report that genetic ablation of CHRM1 in astrocytes led to defects in neural stem cell survival, neuronal differentiation, and maturation and integration of newborn neurons in the dentate gyrus. Astrocytic CHRM1-mediated modulation of AHN was mediated by BDNF (brain-derived neurotrophic factor) signaling. Furthermore, CHRM1 ablation in astrocytes impaired contextual fear memory. These impairments in both AHN and memory were rescued by overexpression of astrocytic CHRM1 in the dentate gyrus. CONCLUSIONS Our findings reveal a critical role for astrocytes in mediating cholinergic regulation of AHN and memory through CHRM1.
Collapse
Affiliation(s)
- Wei-Peng Li
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Hong Su
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Hu
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Institutes of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Jiménez-González A, Gómez-Acevedo C, Ochoa-Aguilar A, Chavarría A. The Role of Glia in Addiction: Dopamine as a Modulator of Glial Responses in Addiction. Cell Mol Neurobiol 2022; 42:2109-2120. [PMID: 34057683 PMCID: PMC11421599 DOI: 10.1007/s10571-021-01105-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Addiction is a chronic and potentially deadly disease considered a global health problem. Nevertheless, there is still no ideal treatment for its management. The alterations in the reward system are the most known pathophysiological mechanisms. Dopamine is the pivotal neurotransmitter involved in neuronal drug reward mechanisms and its neuronal mechanisms have been intensely investigated in recent years. However, neuroglial interactions and their relation to drug addiction development and maintenance of drug addiction have been understudied. Many reports have found that most neuroglial cells express dopamine receptors and that dopamine activity may induce neuroimmunomodulatory effects. Furthermore, current research has also shown that pro- and anti-inflammatory molecules modulate dopaminergic neuron activity. Thus, studying the immune mechanisms of dopamine associated with drug abuse is vital in researching new pathophysiological mechanisms and new therapeutic targets for addiction management.
Collapse
Affiliation(s)
- Ariadna Jiménez-González
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Gómez-Acevedo
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abraham Ochoa-Aguilar
- Plan de Estudios Combinados en Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
28
|
Pittolo S, Yokoyama S, Willoughby DD, Taylor CR, Reitman ME, Tse V, Wu Z, Etchenique R, Li Y, Poskanzer KE. Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Rep 2022; 40:111426. [PMID: 36170823 PMCID: PMC9555850 DOI: 10.1016/j.celrep.2022.111426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022] Open
Abstract
The prefrontal cortex (PFC) is a hub for cognitive control, and dopamine profoundly influences its functions. In other brain regions, astrocytes sense diverse neurotransmitters and neuromodulators and, in turn, orchestrate regulation of neuroactive substances. However, basic physiology of PFC astrocytes, including which neuromodulatory signals they respond to and how they contribute to PFC function, is unclear. Here, we characterize divergent signaling signatures in mouse astrocytes of the PFC and primary sensory cortex, which show differential responsiveness to locomotion. We find that PFC astrocytes express receptors for dopamine but are unresponsive through the Gs/Gi-cAMP pathway. Instead, fast calcium signals in PFC astrocytes are time locked to dopamine release and are mediated by α1-adrenergic receptors both ex vivo and in vivo. Further, we describe dopamine-triggered regulation of extracellular ATP at PFC astrocyte territories. Thus, we identify astrocytes as active players in dopaminergic signaling in the PFC, contributing to PFC function though neuromodulator receptor crosstalk. Pittolo et al. demonstrate that the neuromodulator dopamine targets astrocytes, a type of brain cell, via receptors specific to another neuromodulator—norepinephrine. This study provides groundwork on how dopamine affects non-neuronal brain cells and suggests that crosstalk between neuromodulatory pathways occurs in vivo, with possible clinical implications.
Collapse
Affiliation(s)
- Silvia Pittolo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sae Yokoyama
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Drew D Willoughby
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte R Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Tse
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
29
|
Webb SM, Sacramento AD, McCloskey MA, Wroten MG, Ploense KL, Kippin TE, Ben-Shahar O, Szumlinski KK. The incubation of cocaine craving is dissociated from changes in glial cell markers within prefrontal cortex and nucleus accumbens of rats. ADDICTION NEUROSCIENCE 2022; 3:100030. [PMID: 36034166 PMCID: PMC9410194 DOI: 10.1016/j.addicn.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Sierra M. Webb
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Arianne D. Sacramento
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Megan A. McCloskey
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Kyle L. Ploense
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Osnat Ben-Shahar
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
30
|
Pan Y, Monje M. Neuron-Glial Interactions in Health and Brain Cancer. Adv Biol (Weinh) 2022; 6:e2200122. [PMID: 35957525 PMCID: PMC9845196 DOI: 10.1002/adbi.202200122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Indexed: 01/28/2023]
Abstract
Brain tumors are devastating diseases of the central nervous system. Brain tumor pathogenesis depends on both tumor-intrinsic oncogenic programs and extrinsic microenvironmental factors, including neurons and glial cells. Glial cells (oligodendrocytes, astrocytes, and microglia) make up half of the cells in the brain, and interact with neurons to modulate neurodevelopment and plasticity. Many brain tumor cells exhibit transcriptomic profiles similar to macroglial cells (oligodendrocytes and astrocytes) and their progenitors, making them likely to subvert existing neuron-glial interactions to support tumor pathogenesis. For example, oligodendrocyte precursor cells, a putative glioma cell of origin, can form bona fide synapses with neurons. Such synapses are recently identified in gliomas and drive glioma pathophysiology, underscoring how brain tumor cells can take advantage of neuron-glial interactions to support cancer progression. In this review, it is briefly summarized how neurons and their activity normally interact with glial cells and glial progenitors, and it is discussed how brain tumor cells utilize neuron-glial interactions to support tumor initiation and progression. Unresolved questions on these topics and potential avenues to therapeutically target neuron-glia-cancer interactions in the brain are also pointed out.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center,co-corresponding: ;
| | - Michelle Monje
- Department of Neurology, Stanford University,Howard Hughes Medical Institute, Stanford University,co-corresponding: ;
| |
Collapse
|
31
|
Looking to the stars for answers: Strategies for determining how astrocytes influence neuronal activity. Comput Struct Biotechnol J 2022; 20:4146-4156. [PMID: 36016711 PMCID: PMC9379862 DOI: 10.1016/j.csbj.2022.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Astrocytes are critical components of neural circuits positioned in close proximity to the synapse, allowing them to rapidly sense and respond to neuronal activity. One repeatedly observed biomarker of astroglial activation is an increase in intracellular Ca2+ levels. These astroglial Ca2+ signals are often observed spreading throughout various cellular compartments from perisynaptic astroglial processes, to major astrocytic branches and on to the soma or cell body. Here we review recent evidence demonstrating that astrocytic Ca2+ events are remarkably heterogeneous in both form and function, propagate through the astroglial syncytia, and are directly linked to the ability of astroglia to influence local neuronal activity. As many of the cellular functions of astroglia can be linked to intracellular Ca2+ signaling, and the diversity and heterogeneity of these events becomes more apparent, there is an increasing need for novel experimental strategies designed to better understand the how these signals evolve in parallel with neuronal activity. Here we review the recent advances that enable the characterization of both subcellular and population-wide astrocytic Ca2+ dynamics. Additionally, we also outline the experimental design required for simultaneous in vivo Ca2+ imaging in the context of neuronal or astroglial manipulation, highlighting new experimental strategies made possible by recent advances in viral vector, imaging, and quantification technologies. Through combined usage of these reagents and methodologies, we provide a conceptual framework to study how astrocytes functionally integrate into neural circuits and to what extent they influence and direct the synaptic activity underlying behavioral responses.
Collapse
|
32
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
33
|
Lyon KA, Allen NJ. From Synapses to Circuits, Astrocytes Regulate Behavior. Front Neural Circuits 2022; 15:786293. [PMID: 35069124 PMCID: PMC8772456 DOI: 10.3389/fncir.2021.786293] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are non-neuronal cells that regulate synapses, neuronal circuits, and behavior. Astrocytes ensheath neuronal synapses to form the tripartite synapse where astrocytes influence synapse formation, function, and plasticity. Beyond the synapse, recent research has revealed that astrocyte influences on the nervous system extend to the modulation of neuronal circuitry and behavior. Here we review recent findings on the active role of astrocytes in behavioral modulation with a focus on in vivo studies, primarily in mice. Using tools to acutely manipulate astrocytes, such as optogenetics or chemogenetics, studies reviewed here have demonstrated a causal role for astrocytes in sleep, memory, sensorimotor behaviors, feeding, fear, anxiety, and cognitive processes like attention and behavioral flexibility. Current tools and future directions for astrocyte-specific manipulation, including methods for probing astrocyte heterogeneity, are discussed. Understanding the contribution of astrocytes to neuronal circuit activity and organismal behavior will be critical toward understanding how nervous system function gives rise to behavior.
Collapse
Affiliation(s)
- Krissy A Lyon
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
34
|
Abstract
Drug addiction remains a key biomedical challenge facing current neuroscience research. In addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes have been increasingly recognized as an "accomplice." According to the tripartite synapse model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft experience-dependent synaptic plasticity, including synapse formation and elimination. Astrocytes within brain regions that are implicated in drug addiction exhibit dynamic changes in activity upon exposure to cocaine and subsequently undergo adaptive changes themselves during chronic drug exposure. Recent results have identified several key astrocytic signaling pathways that are involved in cocaine-induced synaptic and circuit adaptations. In this review, we provide a brief overview of the role of astrocytes in regulating synaptic transmission and neuronal function, and discuss how cocaine influences these astrocyte-mediated mechanisms to induce persistent synaptic and circuit alterations that promote cocaine seeking and relapse. We also consider the therapeutic potential of targeting astrocytic substrates to ameliorate drug-induced neuroplasticity for behavioral benefits. While primarily focusing on cocaine-induced astrocytic responses, we also include brief discussion of other drugs of abuse where data are available.
Collapse
|
35
|
Fukushi I, Takeda K, Pokorski M, Kono Y, Yoshizawa M, Hasebe Y, Nakao A, Mori Y, Onimaru H, Okada Y. Activation of Astrocytes in the Persistence of Post-hypoxic Respiratory Augmentation. Front Physiol 2021; 12:757731. [PMID: 34690820 PMCID: PMC8531090 DOI: 10.3389/fphys.2021.757731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Acute hypoxia increases ventilation. After cessation of hypoxia loading, ventilation decreases but remains above the pre-exposure baseline level for a time. However, the mechanism of this post-hypoxic persistent respiratory augmentation (PHRA), which is a short-term potentiation of breathing, has not been elucidated. We aimed to test the hypothesis that astrocytes are involved in PHRA. To this end, we investigated hypoxic ventilatory responses by whole-body plethysmography in unanesthetized adult mice. The animals breathed room air, hypoxic gas mixture (7% O2, 93% N2) for 2min, and again room air for 10min before and after i.p. administration of low (100mg/kg) and high (300mg/kg) doses of arundic acid (AA), an astrocyte inhibitor. AA suppressed PHRA, with the high dose decreasing ventilation below the pre-hypoxic level. Further, we investigated the role of the astrocytic TRPA1 channel, a putative ventilatory hypoxia sensor, in PHRA using astrocyte-specific Trpa1 knockout (asTrpa1−/−) and floxed Trpa1 (Trpa1f/f) mice. In both Trpa1f/f and asTrpa1−/− mice, PHRA was noticeable, indicating that the astrocyte TRPA1 channel was not directly involved in PHRA. Taken together, these results indicate that astrocytes mediate the PHRA by mechanisms other than TRPA1 channels that are engaged in hypoxia sensing.
Collapse
Affiliation(s)
- Isato Fukushi
- Faculty of Health Sciences, Uekusa Gakuen University, Chiba, Japan.,Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Mieczyslaw Pokorski
- Institute of Health Sciences, University of Opole, Opole, Poland.,Faculty of Health Sciences, The Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | - Yosuke Kono
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masashi Yoshizawa
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yohei Hasebe
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
36
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
37
|
Akther S, Hirase H. Assessment of astrocytes as a mediator of memory and learning in rodents. Glia 2021; 70:1484-1505. [PMID: 34582594 DOI: 10.1002/glia.24099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022]
Abstract
The classical view of astrocytes is that they provide supportive functions for neurons, transporting metabolites and maintaining the homeostasis of the extracellular milieu. This view is gradually changing with the advent of molecular genetics and optical methods allowing interrogation of selected cell types in live experimental animals. An emerging view that astrocytes additionally act as a mediator of synaptic plasticity and contribute to learning processes has gained in vitro and in vivo experimental support. Here we focus on the literature published in the past two decades to review the roles of astrocytes in brain plasticity in rodents, whereby the roles of neurotransmitters and neuromodulators are considered to be comparable to those in humans. We outline established inputs and outputs of astrocytes and discuss how manipulations of astrocytes have impacted the behavior in various learning paradigms. Multiple studies suggest that the contribution of astrocytes has a considerably longer time course than neuronal activation, indicating metabolic roles of astrocytes. We advocate that exploring upstream and downstream mechanisms of astrocytic activation will further provide insight into brain plasticity and memory/learning impairment.
Collapse
Affiliation(s)
- Sonam Akther
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Farhy-Tselnicker I, Boisvert MM, Liu H, Dowling C, Erikson GA, Blanco-Suarez E, Farhy C, Shokhirev MN, Ecker JR, Allen NJ. Activity-dependent modulation of synapse-regulating genes in astrocytes. eLife 2021; 10:70514. [PMID: 34494546 PMCID: PMC8497060 DOI: 10.7554/elife.70514] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Astrocytes regulate the formation and function of neuronal synapses via multiple signals; however, what controls regional and temporal expression of these signals during development is unknown. We determined the expression profile of astrocyte synapse-regulating genes in the developing mouse visual cortex, identifying astrocyte signals that show differential temporal and layer-enriched expression. These patterns are not intrinsic to astrocytes, but regulated by visually evoked neuronal activity, as they are absent in mice lacking glutamate release from thalamocortical terminals. Consequently, synapses remain immature. Expression of synapse-regulating genes and synaptic development is also altered when astrocyte signaling is blunted by diminishing calcium release from astrocyte stores. Single-nucleus RNA sequencing identified groups of astrocytic genes regulated by neuronal and astrocyte activity, and a cassette of genes that show layer-specific enrichment. Thus, the development of cortical circuits requires coordinated signaling between astrocytes and neurons, highlighting astrocytes as a target to manipulate in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Isabella Farhy-Tselnicker
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Matthew M Boisvert
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Cari Dowling
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Galina A Erikson
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
| | - Elena Blanco-Suarez
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Chen Farhy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
39
|
Müller FE, Cherkas V, Stopper G, Caudal LC, Stopper L, Kirchhoff F, Henneberger C, Ponimaskin EG, Zeug A. Elucidating regulators of astrocytic Ca 2+ signaling via multi-threshold event detection (MTED). Glia 2021; 69:2798-2811. [PMID: 34388285 DOI: 10.1002/glia.24070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/23/2023]
Abstract
Recent achievements in indicator optimization and imaging techniques promote the advancement of functional imaging to decipher complex signaling processes in living cells, such as Ca2+ activity patterns. Astrocytes are important regulators of the brain network and well known for their highly complex morphology and spontaneous Ca2+ activity. However, the astrocyte community is lacking standardized methods to analyze and interpret Ca2+ activity recordings, hindering global comparisons. Here, we present a biophysically-based analytical concept for deciphering the complex spatio-temporal changes of Ca2+ biosensor fluorescence for understanding the underlying signaling mechanisms. We developed a pixel-based multi-threshold event detection (MTED) analysis of multidimensional data, which accounts for signal strength as an additional signaling dimension and provides the experimenter with a comprehensive toolbox for a differentiated and in-depth characterization of fluorescence signals. MTED was validated by analyzing astrocytic Ca2+ activity across Ca2+ indicators, imaging setups, and model systems from primary cell culture to awake, head-fixed mice. We identified extended Ca2+ activity at 25°C compared to 37°C physiological body temperature and dissected how neuronal activity shapes long-lasting astrocytic Ca2+ activity. Our MTED strategy, as a parameter-free approach, is easily transferrable to other fluorescent indicators and biosensors and embraces the additional dimensionality of signaling activity strength. It will also advance the definition of standardized procedures and parameters to improve comparability of research data and reports.
Collapse
Affiliation(s)
| | - Volodymyr Cherkas
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Gebhard Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Laura Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, UK
| | | | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
40
|
Nagai J, Bellafard A, Qu Z, Yu X, Ollivier M, Gangwani MR, Diaz-Castro B, Coppola G, Schumacher SM, Golshani P, Gradinaru V, Khakh BS. Specific and behaviorally consequential astrocyte G q GPCR signaling attenuation in vivo with iβARK. Neuron 2021; 109:2256-2274.e9. [PMID: 34139149 PMCID: PMC8418870 DOI: 10.1016/j.neuron.2021.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/14/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022]
Abstract
Astrocytes respond to neurotransmitters and neuromodulators using G-protein-coupled receptors (GPCRs) to mediate physiological responses. Despite their importance, there has been no method to genetically, specifically, and effectively attenuate astrocyte Gq GPCR pathways to explore consequences of this prevalent signaling mechanism in vivo. We report a 122-residue inhibitory peptide from β-adrenergic receptor kinase 1 (iβARK; and inactive D110A control) to attenuate astrocyte Gq GPCR signaling. iβARK significantly attenuated Gq GPCR Ca2+ signaling in brain slices and, in vivo, altered behavioral responses, spared other GPCR responses, and did not alter astrocyte spontaneous Ca2+ signals, morphology, electrophysiological properties, or gene expression in the striatum. Furthermore, brain-wide attenuation of astrocyte Gq GPCR signaling with iβARK using PHP.eB adeno-associated viruses (AAVs), when combined with c-Fos mapping, suggested nuclei-specific contributions to behavioral adaptation and spatial memory. iβARK extends the toolkit needed to explore functions of astrocyte Gq GPCR signaling within neural circuits in vivo.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; RIKEN Center for Brain Science, 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Arash Bellafard
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Zhe Qu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 514 Burrill Hall, 407 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Matthias Ollivier
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Mohitkumar R Gangwani
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Blanca Diaz-Castro
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; West LA Veterans Affairs Medical Center, Los Angeles, CA 90073, USA; Intellectual and Developmental Disabilities Research Center, Los Angeles, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, University of California, David Geffen School of Medicine, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
41
|
Scopolamine prevents aberrant mossy fiber sprouting and facilitates remission of epilepsy after brain injury. Neurobiol Dis 2021; 158:105446. [PMID: 34280524 DOI: 10.1016/j.nbd.2021.105446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Abstract
Prevention or modification of acquired epilepsy in patients at risk is an urgent, yet unmet, clinical need. Following acute brain insults, there is an increased risk of mesial temporal lobe epilepsy (mTLE), which is often associated with debilitating comorbidities and reduced life expectancy. The latent period between brain injury and the onset of epilepsy may offer a therapeutic window for interfering with epileptogenesis. The pilocarpine model of mTLE is widely used in the search for novel antiepileptogenic treatments. Recent biochemical studies indicated that cholinergic mechanisms play a role in the epileptogenic alterations induced by status epilepticus (SE) in this and other models of mTLE, which prompted us to evaluate whether treatment with the muscarinic antagonist scopolamine during the latent period after SE is capable of preventing or modifying epilepsy and associated behavioral and cognitive alterations in female Sprague-Dawley rats. First, in silico pharmacokinetic modeling was used to select a dosing protocol by which M-receptor inhibitory brain levels of scopolamine are maintained during prolonged treatment. This protocol was verified by drug analysis in vivo. Rats were then treated twice daily with scopolamine over 17 days after SE, followed by drug wash-out and behavioral and video/EEG monitoring up to ~6 months after SE. Compared to vehicle controls, rats that were treated with scopolamine during the latent period exhibited a significantly lower incidence of spontaneous recurrent seizures during periods of intermittent recording in the chronic phase of epilepsy, less behavioral excitability, less cognitive impairment, and significantly reduced aberrant mossy fiber sprouting in the hippocampus. The present data may indicate that scopolamine exerts antiepileptogenic/disease-modifying activity in the lithium-pilocarpine rat model, possibly involving increased remission of epilepsy as a new mechanism of disease-modification. For evaluating the rigor of the present data, we envision a study that more thoroughly addresses the gender bias and video-EEG recording limitations of the present study.
Collapse
|
42
|
Matejuk A, Vandenbark AA, Offner H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front Neurol 2021; 12:672455. [PMID: 34135852 PMCID: PMC8200536 DOI: 10.3389/fneur.2021.672455] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The immune system's role is much more than merely recognizing self vs. non-self and involves maintaining homeostasis and integrity of the organism starting from early development to ensure proper organ function later in life. Unlike other systems, the central nervous system (CNS) is separated from the peripheral immune machinery that, for decades, has been envisioned almost entirely as detrimental to the nervous system. New research changes this view and shows that blood-borne immune cells (both adaptive and innate) can provide homeostatic support to the CNS via neuroimmune communication. Neurodegeneration is mostly viewed through the lens of the resident brain immune populations with little attention to peripheral circulation. For example, cognition declines with impairment of peripheral adaptive immunity but not with the removal of microglia. Therapeutic failures of agents targeting the neuroinflammation framework (inhibiting immune response), especially in neurodegenerative disorders, call for a reconsideration of immune response contributions. It is crucial to understand cross-talk between the CNS and the immune system in health and disease to decipher neurodestructive and neuroprotective immune mechanisms for more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
43
|
Yu X, Moye SL, Khakh BS. Local and CNS-Wide Astrocyte Intracellular Calcium Signaling Attenuation In Vivo with CalEx flox Mice. J Neurosci 2021; 41:4556-4574. [PMID: 33903221 PMCID: PMC8260243 DOI: 10.1523/jneurosci.0085-21.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/12/2023] Open
Abstract
Astrocytes exist throughout the CNS and affect neural circuits and behavior through intracellular Ca2+ signaling. Studying the function(s) of astrocyte Ca2+ signaling has proven difficult because of the paucity of tools to achieve selective attenuation. Based on recent studies, we generated and used male and female knock-in mice for Cre-dependent expression of mCherry-tagged hPMCA2w/b to attenuate astrocyte Ca2+ signaling in genetically defined cells in vivo (CalExflox mice for Calcium Extrusion). We characterized CalExflox mice following local AAV-Cre microinjections into the striatum and found reduced astrocyte Ca2+ signaling (∼90%) accompanied with repetitive self-grooming behavior. We also crossed CalExflox mice to astrocyte-specific Aldh1l1-Cre/ERT2 mice to achieve inducible global CNS-wide Ca2+ signaling attenuation. Within 6 d of induction in the bigenic mice, we observed significantly altered ambulation in the open field, disrupted motor coordination and gait, and premature lethality. Furthermore, with histologic, imaging, and transcriptomic analyses, we identified cellular and molecular alterations in the cerebellum following mCherry-tagged hPMCA2w/b expression. Our data show that expression of mCherry-tagged hPMCA2w/b with CalExflox mice throughout the CNS resulted in substantial attenuation of astrocyte Ca2+ signaling and significant behavioral alterations in adult mice. We interpreted these findings candidly in relation to the ability of CalEx to attenuate astrocyte Ca2+ signaling, with regards to additional mechanistic interpretations of the data, and their relation to past studies that reduced astrocyte Ca2+ signaling throughout the CNS. The data and resources provide complementary ways to interrogate the function(s) of astrocytes in multiple experimental scenarios.SIGNIFICANCE STATEMENT Astrocytes represent a significant fraction of all brain cells and tile the entire central nervous system. Unlike neurons, astrocytes lack propagated electrical signals. Instead, astrocytes are proposed to use diverse and dynamic intracellular Ca2+ signals to communicate with other cells. An open question concerns if and how astrocyte Ca2+ signaling regulates behavior in adult mice. We approached this problem by generating a new transgenic mouse line to achieve inducible astrocyte Ca2+ signaling attenuation in vivo We report our data with this mouse line and we interpret the findings candidly in relation to past studies and within the framework of different mechanistic interpretations.
Collapse
Affiliation(s)
- Xinzhu Yu
- Department of Physiology
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704
| | | | - Baljit S Khakh
- Department of Physiology
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095-1751
| |
Collapse
|
44
|
Rodríguez-Campuzano AG, Ortega A. Glutamate transporters: Critical components of glutamatergic transmission. Neuropharmacology 2021; 192:108602. [PMID: 33991564 DOI: 10.1016/j.neuropharm.2021.108602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. Once released, it binds to specific membrane receptors and transporters activating a wide variety of signal transduction cascades, as well as its removal from the synaptic cleft in order to avoid its extracellular accumulation and the overstimulation of extra-synaptic receptors that might result in neuronal death through a process known as excitotoxicity. Although neurodegenerative diseases are heterogenous in clinical phenotypes and genetic etiologies, a fundamental mechanism involved in neuronal degeneration is excitotoxicity. Glutamate homeostasis is critical for brain physiology and Glutamate transporters are key players in maintaining low extracellular Glutamate levels. Therefore, the characterization of Glutamate transporters has been an active area of glutamatergic research for the last 40 years. Transporter activity its regulated at different levels: transcriptional and translational control, transporter protein trafficking and membrane mobility, and through extensive post-translational modifications. The elucidation of these mechanisms has emerged as an important piece to shape our current understanding of glutamate actions in the nervous system.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
45
|
Broadhead MJ, Miles GB. A common role for astrocytes in rhythmic behaviours? Prog Neurobiol 2021; 202:102052. [PMID: 33894330 DOI: 10.1016/j.pneurobio.2021.102052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023]
Abstract
Astrocytes are a functionally diverse form of glial cell involved in various aspects of nervous system infrastructure, from the metabolic and structural support of neurons to direct neuromodulation of synaptic activity. Investigating how astrocytes behave in functionally related circuits may help us understand whether there is any conserved logic to the role of astrocytes within neuronal networks. Astrocytes are implicated as key neuromodulatory cells within neural circuits that control a number of rhythmic behaviours such as breathing, locomotion and circadian sleep-wake cycles. In this review, we examine the evidence that astrocytes are directly involved in the regulation of the neural circuits underlying six different rhythmic behaviours: locomotion, breathing, chewing, gastrointestinal motility, circadian sleep-wake cycles and oscillatory feeding behaviour. We discuss how astrocytes are integrated into the neuronal networks that regulate these behaviours, and identify the potential gliotransmission signalling mechanisms involved. From reviewing the evidence of astrocytic involvement in a range of rhythmic behaviours, we reveal a heterogenous array of gliotransmission mechanisms, which help to regulate neuronal networks. However, we also observe an intriguing thread of commonality, in the form of purinergic gliotransmission, which is frequently utilised to facilitate feedback inhibition within rhythmic networks to constrain a given behaviour within its operational range.
Collapse
Affiliation(s)
- Matthew J Broadhead
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
46
|
Astrocytes promote ethanol-induced enhancement of intracellular Ca 2+ signals through intercellular communication with neurons. iScience 2021; 24:102436. [PMID: 33997707 PMCID: PMC8105650 DOI: 10.1016/j.isci.2021.102436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Ethanol (EtOH) abuse induces significant mortality and morbidity worldwide because of detrimental effects on brain function. Defining the contribution of astrocytes to this malfunction is imperative to understanding the overall EtOH effects due to their role in homeostasis and EtOH-seeking behaviors. Using a highly controllable in vitro system, we identify chemical signaling mechanisms through which acute EtOH exposure induces a modulatory feedback loop between neurons and astrocytes. Neuronally-derived purinergic signaling primed a subpopulation of astrocytes to respond to subsequent acute EtOH exposures (SEastrocytes: signal enhanced astrocytes) with greater calcium signal strength. Generation of SEastrocytes arose from astrocytic hemichannel-derived ATP and accumulation of its metabolite adenosine within the astrocyte microenvironment to modulate adenylyl cyclase and phospholipase C activity. These results highlight an important role of astrocytes in shaping the overall physiological responsiveness to EtOH and emphasize the unique plasticity of astrocytes to adapt to single and multiple exposures of EtOH.
Collapse
|
47
|
Michaluk P, Heller JP, Rusakov DA. Rapid recycling of glutamate transporters on the astroglial surface. eLife 2021; 10:e64714. [PMID: 33860761 PMCID: PMC8079145 DOI: 10.7554/elife.64714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Glutamate uptake by astroglial transporters confines excitatory transmission to the synaptic cleft. The efficiency of this mechanism depends on the transporter dynamics in the astrocyte membrane, which remains poorly understood. Here, we visualise the main glial glutamate transporter GLT1 by generating its pH-sensitive fluorescent analogue, GLT1-SEP. Fluorescence recovery after photobleaching-based imaging shows that 70-75% of GLT1-SEP dwell on the surface of rat brain astroglia, recycling with a lifetime of ~22 s. Genetic deletion of the C-terminus accelerates GLT1-SEP membrane turnover while disrupting its surface pattern, as revealed by single-molecule localisation microscopy. Excitatory activity boosts surface mobility of GLT1-SEP, involving its C-terminus, metabotropic glutamate receptors, intracellular Ca2+, and calcineurin-phosphatase activity, but not the broad-range kinase activity. The results suggest that membrane turnover, rather than lateral diffusion, is the main 'redeployment' route for the immobile fraction (20-30%) of surface-expressed GLT1. This finding reveals an important mechanism helping to control extrasynaptic escape of glutamate.
Collapse
Affiliation(s)
- Piotr Michaluk
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PASWarsawPoland
| | - Janosch Peter Heller
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City UniversityGlasnevinIreland
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
48
|
Kronschläger MT, Siegert ASM, Resch FJ, Rajendran PS, Khakh BS, Sandkühler J. Lamina-specific properties of spinal astrocytes. Glia 2021; 69:1749-1766. [PMID: 33694249 PMCID: PMC8252791 DOI: 10.1002/glia.23990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/19/2022]
Abstract
Astrocytes are indispensable for proper neuronal functioning. Given the diverse needs of neuronal circuits and the variety of tasks astrocytes perform, the perceived homogeneous nature of astrocytes has been questioned. In the spinal dorsal horn, complex neuronal circuitries regulate the integration of sensory information of different modalities. The dorsal horn is organized in a distinct laminar manner based on termination patterns of high‐ and low‐threshold afferent fibers and neuronal properties. Neurons in laminae I (L1) and II (L2) integrate potentially painful, nociceptive information, whereas neurons in lamina III (L3) and deeper laminae integrate innocuous, tactile information from the periphery. Sensory information is also integrated by an uncharacterized network of astrocytes. How these lamina‐specific characteristics of neuronal circuits of the dorsal horn are of functional importance for properties of astrocytes is currently unknown. We addressed if astrocytes in L1, L2, and L3 of the upper dorsal horn of mice are differentially equipped for the needs of neuronal circuits that process sensory information of different modalities. We found that astrocytes in L1 and L2 were characterized by a higher density, higher expression of GFAP, Cx43, and GLAST and a faster coupling speed than astrocytes located in L3. L1 astrocytes were more responsive to Kir4.1 blockade and had higher levels of AQP4 compared to L3 astrocytes. In contrast, basic membrane properties, network formation, and somatic intracellular calcium signaling were similar in L1–L3 astrocytes. Our data indicate that the properties of spinal astrocytes are fine‐tuned for the integration of nociceptive versus tactile information.
Collapse
Affiliation(s)
- Mira T Kronschläger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Physiology, David Geffen Schoof of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Anna S M Siegert
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Felix J Resch
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pradeep S Rajendran
- UCLA Cardiac Arrhythmia Center, Neurocardiology Research Program of Excellence, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen Schoof of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Chemogenetic manipulation of astrocytic activity: Is it possible to reveal the roles of astrocytes? Biochem Pharmacol 2021; 186:114457. [PMID: 33556341 DOI: 10.1016/j.bcp.2021.114457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes are the major glial cells in the central nervous system, but unlike neurons, they do not produce action potentials. For many years, astrocytes were considered supporting cells in the central nervous system (CNS). Technological advances over the last two decades are changing the face of glial research. Accumulating data from recent investigations show that astrocytes display transient calcium spikes and regulate synaptic transmission by releasing transmitters called gliotransmitters. Many new powerful technologies are used to interfere with astrocytic activity, in order to obtain a better understanding of the roles of astrocytes in the brain. Among these technologies, chemogenetics has recently been used frequently. In this review, we will summarize new functions of astrocytes in the brain that have been revealed using this cutting-edge technique. Moreover, we will discuss the possibilities and challenges of manipulating astrocytic activity using this technology.
Collapse
|
50
|
Hanani M, Verkhratsky A. Satellite Glial Cells and Astrocytes, a Comparative Review. Neurochem Res 2021; 46:2525-2537. [PMID: 33523395 DOI: 10.1007/s11064-021-03255-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Astroglia are neural cells, heterogeneous in form and function, which act as supportive elements of the central nervous system; astrocytes contribute to all aspects of neural functions in health and disease. Through their highly ramified processes, astrocytes form close physical contacts with synapses and blood vessels, and are integrated into functional syncytia by gap junctions. Astrocytes interact among themselves and with other cells types (e.g., neurons, microglia, blood vessel cells) by an elaborate repertoire of chemical messengers and receptors; astrocytes also influence neural plasticity and synaptic transmission through maintaining homeostasis of neurotransmitters, K+ buffering, synaptic isolation and control over synaptogenesis and synaptic elimination. Satellite glial cells (SGCs) are the most abundant glial cells in sensory ganglia, and are believed to play major roles in sensory functions, but so far research into SGCs attracted relatively little attention. In this review we compare SGCs to astrocytes with the purpose of using the vast knowledge on astrocytes to explore new aspects of SGCs. We survey the main properties of these two cells types and highlight similarities and differences between them. We conclude that despite the much greater diversity in morphology and signaling mechanisms of astrocytes, there are some parallels between them and SGCs. Both types serve as boundary cells, separating different compartments in the nervous system, but much more needs to be learned on this aspect of SGCs. Astrocytes and SGCs employ chemical messengers and calcium waves for intercellular signaling, but their significance is still poorly understood for both cell types. Both types undergo major changes under pathological conditions, which have a protective function, but an also contribute to disease, and chronic pain in particular. The knowledge obtained on astrocytes is likely to benefit future research on SGCs.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain
| |
Collapse
|