1
|
Abstract
β-thalassemia is an inherited disorder due to mutations found in the β-globin gene, leading to anemia and requiring sporadic or chronic blood transfusions for survival. Without proper chelation, β-thalassemia results in iron overload. Ineffective erythropoiesis can lead to iron overload even in untransfused patients who are affected by β-thalassemia intermedia. Better understanding of the molecular biologic aspects of this disorder has led to improvements in population screening and prenatal diagnosis, which, in turn, have led to dramatic reductions in the number of children born with β-thalassemia major in the Mediterranean littoral. However, as a consequence of decreases in neonatal and childhood mortality in other geographical areas, β-thalassemia has become a worldwide clinical problem. A number of unsolved pathophysiological issues remain, such as ineffective erythropoieis, abnormal iron absorption, oxidative stress, splenomegaly and thrombosis. In the last few years, novel studies have the potential to introduce new therapeutic approaches that might reduce these problems and limit the need for blood transfusion.
Collapse
Affiliation(s)
- Stefano Rivella
- Weill College Medical Center, Department of Pediatrics, Division of Hematology, Oncology, 515 E 71st Street, S702, New York, NY 10021, USA, Tel.: +1 212 746 4941, ,
| | | |
Collapse
|
2
|
LI JI, ZHONG XIAOYAN, LI ZONGYU, CAI JINFANG, ZOU LIN, LI JIANMIN, YANG TAO, LIU WEI. CD133 expression in osteosarcoma and derivation of CD133+ cells. Mol Med Rep 2012; 7:577-84. [DOI: 10.3892/mmr.2012.1231] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/30/2012] [Indexed: 11/06/2022] Open
|
3
|
Raja JV, Rachchh MA, Gokani RH. Recent advances in gene therapy for thalassemia. J Pharm Bioallied Sci 2012; 4:194-201. [PMID: 22923960 PMCID: PMC3425167 DOI: 10.4103/0975-7406.99020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/20/2011] [Accepted: 12/10/2011] [Indexed: 11/16/2022] Open
Abstract
Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS) cells, gene targeting, splice-switching and stop codon readthrough.
Collapse
Affiliation(s)
- J V Raja
- Department of Pharmacology, S. J. Thakkar Pharmacy College, Rajkot, Gujarat, India
| | | | | |
Collapse
|
4
|
Stulpinas A, Imbrasaitė A, Kalvelytė AV. Daunorubicin induces cell death via activation of apoptotic signalling pathway and inactivation of survival pathway in muscle-derived stem cells. Cell Biol Toxicol 2012; 28:103-14. [PMID: 22252735 DOI: 10.1007/s10565-011-9210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/26/2011] [Indexed: 02/02/2023]
Abstract
Daunorubicin (as well as other anthracyclines) is known to be toxic to heart cells and other cells in organism thus limiting its applicability in human cancer therapy. To investigate possible mechanisms of daunorubicin cytotoxicity, we used stem cell lines derived from adult rabbit skeletal muscle. Recently, we have shown that daunorubicin induces apoptotic cell death in our cell model system and distinctly influences the activity of MAP kinases. Here, we demonstrate that two widely accepted antagonistic signalling pathways namely proapoptotic JNK and prosurvival PI3K/AKT participate in apoptosis. Using the Western blot method, we observed the activation of JNK and phosphorylation of its direct target c-Jun along with inactivation of AKT and its direct target GSK in the course of programmed cell death. By means of small-molecule kinase inhibitors and transfection of cells with the genes of the components of these pathways, c-Jun and AKT, we confirm that JNK signalling pathway is proapoptotic, whereas AKT is antiapoptotic in daunorubicin-induced muscle cells. These findings could contribute to new approaches which will result in less toxicity and fewer side effects that are currently associated with the use of daunorubicin in cancer therapies.
Collapse
Affiliation(s)
- Aurimas Stulpinas
- Vilnius University Institute of Biochemistry, Mokslininkų 12, Vilnius, 08662, Lithuania.
| | | | | |
Collapse
|
5
|
Giordano FA, Sorg UR, Appelt JU, Lachmann N, Bleier S, Roeder I, Kleff V, Flasshove M, Zeller WJ, Allgayer H, von Kalle C, Fruehauf S, Moritz T, Laufs S. Clonal inventory screens uncover monoclonality following serial transplantation of MGMT P140K-transduced stem cells and dose-intense chemotherapy. Hum Gene Ther 2011; 22:697-710. [PMID: 21319998 DOI: 10.1089/hum.2010.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene transfer of mutant O(6)-methylguanine-DNA-methyltransferase (MGMT(P140K)) into hematopoietic stem cells (HSCs) protects hematopoiesis from alkylating agents and allows efficient in vivo selection of transduced HSCs. However, insertional mutagenesis, high regenerative stress associated with selection, and the genotoxic potential of alkylating drugs represent considerable risk factors for clinical applications of this approach. Therefore, we investigated the long-term effect of MGMT(P140K) gene transfer followed by repetitive, dose-intensive treatment with alkylating agents in a murine serial bone marrow transplant model and assessed clonality of hematopoiesis up to tertiary recipients. The substantial selection pressure resulted in almost completely transduced hematopoiesis in all cohorts. Ligation-mediated PCR and next-generation sequencing identified several repopulating clones carrying vector insertions in distinct genomic regions that were ∼ 9 kb of size (common integration sites). Beside polyclonal reconstitution in the majority of the mice, we also detected monoclonal or oligoclonal repopulation patterns with HSC clones showing vector insertions in the Usp10 or Tubb3 gene. Interestingly, neither Usp10, Tubb3, nor any of the genes located in common integration sites have been linked to clonal expansion in previous preclinical or clinical gene therapy trials. However, a considerable number of these genes are involved in DNA damage response and cell fate decision pathways following cytostatic drug application. Thus, in summary, our study advocates ligation-mediated PCR and next generation sequencing as an effective and reliable method to identify gene products associated with clonal survival in specific experimental settings such as chemoselection using alkylating agents.
Collapse
Affiliation(s)
- Frank A Giordano
- Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gene therapy in thalassemia and hemoglobinopathies. Mediterr J Hematol Infect Dis 2009; 1:e2009008. [PMID: 21415990 PMCID: PMC3033156 DOI: 10.4084/mjhid.2009.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 11/12/2009] [Indexed: 01/19/2023] Open
Abstract
Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough.
Collapse
|
7
|
Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene. Blood 2009; 113:5747-56. [PMID: 19365082 DOI: 10.1182/blood-2008-10-186684] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However, transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT), driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs, which can be administered to kill residual untransduced, diseased HSCs, whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells, transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin, leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.
Collapse
|
8
|
Sorg UR, Kleff V, Fanaei S, Schumann A, Moellmann M, Opalka B, Thomale J, Moritz T. O6-methylguanine-DNA-methyltransferase (MGMT) gene therapy targeting haematopoietic stem cells: studies addressing safety issues. DNA Repair (Amst) 2007; 6:1197-209. [PMID: 17499560 DOI: 10.1016/j.dnarep.2007.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As haematopoietic stem cell gene therapy utilizing O(6)-methylguanine-DNA-methyltransferase has reached the clinical stage, safety-related questions become increasingly important. These issues concern insertional mutagenesis of viral vectors, the acute toxicity of pre-transplant conditioning protocols and in vivo selection regimens as well as potential genotoxic side effects of the alkylating drugs administered in this context. To address these questions, we have investigated toxicity-reduced conditioning regimens combining low-dose alkylator application with sublethal irradiation and have analysed their influence on engraftment and subsequent selectability of transduced haematopoietic stem cells. In addition, a strategy to monitor the acute and long-term genotoxic effects of drugs with high guanine-O(6) alkylating potential, such as chloroethylnitrosoureas or temozolomide is introduced. For this purpose, assays were implemented which allow an assessment of the generation and fate of primary drug-induced adducts as well as their long-term effect on chromosomal integrity at the single cell level.
Collapse
Affiliation(s)
- Ursula R Sorg
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Duisburg-Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yam P, Jensen M, Akkina R, Anderson J, Villacres MC, Wu J, Zaia JA, Yee JK. Ex Vivo Selection and Expansion of Cells Based on Expression of a Mutated Inosine Monophosphate Dehydrogenase 2 after HIV Vector Transduction: Effects on Lymphocytes, Monocytes, and CD34+ Stem Cells. Mol Ther 2006; 14:236-44. [PMID: 16647299 DOI: 10.1016/j.ymthe.2006.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 11/24/2022] Open
Abstract
Hematopoietic progenitor cells (HPCs) represent an ideal target for gene therapy treatment of human immunodeficiency virus (HIV) infection. However, gene delivery into quiescent HPCs by retroviral or lentiviral vectors remains relatively poor. We evaluated a selection scheme based on the expression of a variant of inosine monophosphate dehydrogenase 2 (IMPDH2), the rate-limiting enzyme in the de novo purine biosynthesis pathway. As lymphocytes depend more than other cell types on de novo synthesis of purines, IMPDH inhibitors such as mycophenolic acid (MPA) can selectively expand lymphocytes overexpressing the enzymes. We used HIV vectors to deliver an IMPDH variant into T cells and HPCs. We showed that the transduced T cells became resistant to MPA selection. By expressing a short hairpin RNA gene targeted to the HIV gag transcript, the MPA-selected T cells became resistant to HIV-1 infection. Monocyte/macrophages derived from the transduced HPCs differentiated normally and exhibited normal function as measured by B7 up-regulation and phagocytosis when stimulated. Our results suggest that this system may be applicable as a selection strategy to enrich transduced T lymphocytes and mononuclear cells in vivo for HIV gene therapy.
Collapse
Affiliation(s)
- Priscilla Yam
- Division of Virology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Horn PA, Morris JC, Neff T, Kiem HP. Stem cell gene transfer--efficacy and safety in large animal studies. Mol Ther 2005; 10:417-31. [PMID: 15336643 DOI: 10.1016/j.ymthe.2004.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022] Open
Affiliation(s)
- Peter A Horn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, 98109, USA
| | | | | | | |
Collapse
|
11
|
Budak-Alpdogan T, Banerjee D, Bertino JR. Hematopoietic stem cell gene therapy with drug resistance genes: an update. Cancer Gene Ther 2005; 12:849-63. [PMID: 16037821 DOI: 10.1038/sj.cgt.7700866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transfer of drug resistance genes into hematopoietic stem cells (HSCs) has promise for the treatment of a variety of inherited, that is, X-linked severe combined immune deficiency, adenosine deaminase deficiency, thalassemia, and acquired disorders, that is, breast cancer, lymphomas, brain tumors, and testicular cancer. Drug resistance genes are transferred into HSCs either for providing myeloprotection against chemotherapy-induced myelosuppression or for selecting HSCs that are concomitantly transduced with another gene for correction of an inherited disorder. In this review, we describe ongoing experimental approaches, observations from clinical trials, and safety concerns related to the drug resistance gene transfer.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 195 Little Albany Street, New Brunswick, New Jersey 08903, USA
| | | | | |
Collapse
|
12
|
Budak-Alpdogan T, Alpdogan O, Banerjee D, Wang E, Moore MAS, Bertino JR. Methotrexate and cytarabine inhibit progression of human lymphoma in NOD/SCID mice carrying a mutant dihydrofolate reductase and cytidine deaminase fusion gene. Mol Ther 2005; 10:574-84. [PMID: 15336657 DOI: 10.1016/j.ymthe.2004.06.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 06/05/2004] [Indexed: 10/26/2022] Open
Abstract
An SFG-based retroviral bicistronic vector containing a double-mutant dihydrofolate reductase-cytidine deaminase fusion cDNA (F/S DHFR-CD) with IRES-eGFP confers resistance to both methotrexate (MTX) and cytarabine (ara-C). Two weeks after transplantation with marrow transduced with either a fusion or a control gene (eGFP-IRES-NeoR), human lymphoma (SKI-DLCL-1) cells were injected sc into the flanks of nonobese diabetic/severe combined immune deficiency mice. In mock-transplanted mice, maximal tolerated dose (MTD) of posttransplant MTX/ara-C (15/10 mg/kg/day, x3) was unable to control tumor growth. Transfer of the fusion gene allowed doses of MTX/ara-C (25/15 mg/kg/day, x4) twofold higher than the MTD to be tolerated. The tumor burden defined the efficiency of posttransplant chemotherapy; early treatment, 48 h after tumor inoculation, provided tumor-free survival, while starting treatment after having palpable tumor growth (7 days) delayed tumor growth a median time of 28 days. In addition, the early treated group had higher gene expression in peripheral blood and marrow cells than the late treated group (P < 0.05), suggesting that early treatment allowed for enrichment of transduced marrow progenitors. These results encourage clinical studies using this retroviral fusion gene construct.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Several different myeloma gene therapy approaches are currently being explored, seeking to impact on the disease process in diverse ways. Therapeutic benefit may result from destroying the myeloma cells directly, provoking an antimyeloma cell immune response, interfering with the paracrine growth signaling pathways between osteoclasts and myeloma cells, or genetically manipulating hematopoietic progenitors or mature T cells in a stem cell transplantation setting. Encouraging progress in each of these areas is being fueled by the development of improved viral and nonviral gene transfer vectors.
Collapse
Affiliation(s)
- S J Russell
- Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|