1
|
Nishigaki A, Kida N, Tsubokura H, Yoshimura M, Shimoi K, Yoshida A, Okada H. Effects of cigarette smoke extract on angiogenesis and aromatase activity in KGN cells. Sci Rep 2025; 15:13967. [PMID: 40263391 PMCID: PMC12015283 DOI: 10.1038/s41598-025-98830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Cigarette smoking is associated with negative reproductive outcomes and an increased likelihood of failed in vitro fertilization. We investigated the impact of cigarette smoke on angiogenesis and aromatase activity in human granulosa cells. The human ovarian granulosa-like tumor cell line (KGN) was exposed to different cigarette smoke extract (CSE) concentrations and/or 10-μM forskolin. mRNA and protein levels and their secretion were measured using real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay techniques, respectively. Additionally, KGN cells were transfected with small interfering RNA (siRNA) targeting hypoxia-inducible factor-1α (HIF-1α) for 24 h, followed by treatment with or without (control) CSE for 48 h. Data were statistically analyzed. Compared with the control group, the CSE group showed significantly increased vascular endothelial growth factor (VEGF), N-myc downstream-regulated gene 1 (NDRG1), and HIF-1α expression. Overexpression of VEGF and NDRG1 induced by CSE was inhibited by HIF-1α siRNA transfection. Furthermore, CSE exposure decreased progesterone and estradiol levels and increased testosterone levels. It also affected the expression of genes associated with steroid hormone synthesis, decreased anti-Müllerian hormone and anti-Müllerian hormone receptor II levels, and caused SMAD signaling pathway desensitization. Thus, CSE adversely affects the maturation of human granulosa cells, affecting both angiogenesis and aromatase activity.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi-cho, Hirakata, Osaka, 573-1010, Japan
| | - Naoko Kida
- KAWA Ladies Clinic, 3-2-3 Wakamatsudai, Minami Ward, Sakai, 590-0116, Japan
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi-cho, Hirakata, Osaka, 573-1010, Japan
| | - Masahiro Yoshimura
- Kansai Medical University Hirakata Hospital, 2-3-1 Shinmachi-cho, Hirakata, 573-1191, Japan
| | - Kayo Shimoi
- Kansai Medical University Hirakata Hospital, 2-3-1 Shinmachi-cho, Hirakata, 573-1191, Japan
| | - Aya Yoshida
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi-cho, Hirakata, Osaka, 573-1010, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi-cho, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
2
|
Detti L, Mari MC, Diamond MP, Saed GM. Anti-Mullerian hormone (AMH) protects ovarian follicle loss by downregulating granulosa cell function in in vitro and in vivo models. J Assist Reprod Genet 2025:10.1007/s10815-025-03473-x. [PMID: 40198512 DOI: 10.1007/s10815-025-03473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
PURPOSE AMH inhibits hormone production in luteinized granulosa cells (GCs) and stalls ovarian follicle development in vitro and in vivo. We sought to confirm AMH's mechanism of action through SMAD activation and investigate AMH inhibition of follicle development and function, in vitro and in vivo. METHODS A primary culture of GCs isolated from follicular fluid was used, and cells were treated with recombinant AMH (rAMH) or placebo for 24 h. For the mouse model, 18-weeks old C57BL female mice were either euthanized at the beginning or treated with rAMH or normal saline for 3 weeks. Primordial (PDF), primary follicle (PRF), secondary (SEF), and tertiary follicles (TEF) were calculated. Real-time RT-PCR and ELISA were performed to quantify GC gene expression and protein translation of human SMAD 1, 5, and 8, FSH-R and mouse FSH-R, inhibin B, caspase 3, Ki67, BMP15, GDF9, and the epigenetic regulators miRNAa and b. RESULTS In vitro, rAMH-treated GC showed activation of the SMAD 1, 5 and downregulation of SMAD 8, with greater magnitude at increasing rAMH doses (p < 0.04) and consequential control of downstream regulators. In vivo, the rAMH-treated mice showed increased SEFs and decreased PRFs while PDFs, TEFs, were unchanged compared with baseline. Compared with Placebo, the rAMH group showed increased PDFs, while PRFs, and TEFs were significantly decreased, and SEFs were unchanged. CONCLUSIONS AMH caused SMAD activation in a dose-dependent manner, with downstream downregulation of cell function and replication, also through activation of miRNAs. These mechanisms were confirmed by the in vivo findings with ultimate downregulation of follicular development and preservation of the ovarian follicle number. Counteracting follicular depletion, AMH could be used to protect the ovarian follicle reservoir.
Collapse
Affiliation(s)
- Laura Detti
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 6651 Main Street, Suite F1020, Houston, TX, 77030, USA.
| | - Michael C Mari
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ghassan M Saed
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
3
|
Wu K, Yue Y, Zhou L, Zhang Z, Shan H, He H, Ge W. Disrupting Amh and androgen signaling reveals their distinct roles in zebrafish gonadal differentiation and gametogenesis. Commun Biol 2025; 8:371. [PMID: 40044757 PMCID: PMC11882886 DOI: 10.1038/s42003-025-07719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Sex determination and differentiation in zebrafish involve a complex interaction of male and female-promoting factors. While Dmrt1 has been established as a critical male-promoting factor, the roles of Anti-Müllerian hormone (Amh) and androgen signaling remain less clear. This study employed an estrogen-deficient zebrafish model (cyp19a1a-/-) to dissect individual and combined roles of Amh and androgen receptor (Ar) signaling in gonadal differentiation and gametogenesis. Loss of amh, but not ar, could rescue all-male phenotype of cyp19a1a-/-, leading to female or intersex, confirming the role of Amh in promoting male differentiation. This rescue was recapitulated in bmpr2a-/- but not bmpr2b-/-, supporting Bmpr2a as the type II receptor for Amh in zebrafish. Interestingly, while disruption of amh or ar had delayed spermatogenesis, the double mutant (amh-/-;ar-/-) exhibited severely impaired spermatogenesis, highlighting their compensatory roles. While Amh deficiency led to testis hypertrophy, likely involving a compensatory increase in Ar signaling, Ar deficiency resulted in reduced hypertrophy in double mutant males. Furthermore, phenotype analysis of triple mutant (amh-/-;ar-/-;cyp19a1a-/-) provided evidence that Ar participated in early follicle development. This study provides novel insights into complex interplay between Amh and androgen signaling in zebrafish sex differentiation and gametogenesis, highlighting their distinct but cooperative roles in male development.
Collapse
Affiliation(s)
- Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yiming Yue
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Lingling Zhou
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China.
| |
Collapse
|
4
|
Jensen JV, Leung PY, Mishler EC, Burch FC, Piekarski N, Bishop CV, Hanna CB. Anti-Müllerian hormone as a predictor of oocyte yield following controlled ovarian stimulation in the rhesus macaque†. Biol Reprod 2025; 112:392-398. [PMID: 39520497 PMCID: PMC12032604 DOI: 10.1093/biolre/ioae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is widely used in the clinic as a biomarker for ovarian reserve and to predict ovarian response to gonadotropin stimulation. Patients with higher AMH levels tend to yield more oocytes and have better outcomes from assisted reproductive technology procedures. The goal of this study is to determine if AMH can be used to predict the outcome of controlled ovarian stimulation in rhesus macaques, which are commonly used in biomedical research, to refine animal use while maximizing oocyte yield. We hypothesized that pre-stimulation AMH values can be used to predict oocyte yield and quality. Regularly cycling adult macaques underwent controlled ovarian stimulation and baseline (pre-stimulation) plasma AMH levels were determined using an AMH-specific enzyme-linked immunoassay. Oocytes were collected by laparoscopic or ultrasound-guided aspiration, then counted and evaluated for quality and stage of meiosis. Sperm from established fertile males were used to inseminate the oocytes in vitro with fertilization success checked 14-16 h later. Females were grouped by oocyte yield: low ≤17; mid = 18-41; high ≥42. We found that high and mid yielders had significantly higher AMH than low yielders (p < 0.0001) and the percent of mature oocytes was greater in the high and mid yielders. There were no significant differences in oocyte quality or ova fertilization rate. These data suggest that AMH is a useful measure for controlled ovarian stimulation success in rhesus macaques and can be used to identify suitable animals for oocyte donation before entering them into a stimulation protocol.
Collapse
Affiliation(s)
- Jared V Jensen
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Philberta Y Leung
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Emily C Mishler
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Fernanda C Burch
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Nadine Piekarski
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Cecily V Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR, USA
| | - Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
5
|
Shen Z, Gao Y, Sun X, Chen M, Cen C, Wang M, Wang N, Liu B, Li J, Cui X, Hou J, Shi Y, Gao F. Inactivation of JNK signalling results in polarity loss and cell senescence of Sertoli cell. Cell Prolif 2025; 58:e13760. [PMID: 39329440 PMCID: PMC11839192 DOI: 10.1111/cpr.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
As major somatic cells in the testis, Sertoli cell development is precisely regulated by numerous factors, and aberrant development of these cells is associated with male reproductive diseases. JNK signalling is evolutionarily conserved and involved in multiple critical biological processes. Here, we found that the double knockout of Jnk1 and Jnk2 resulted in aberrant localisation of Sertoli cells at early developmental stages, with most Sertoli cells being lost at later stages. Further studies revealed that the inactivation of JNK signalling caused polarity loss in Sertoli cells. In vitro-cultured Jnk1/2-DKO Sertoli cells exhibited a senescence-associated phenotype. Mechanistic studies demonstrate that JNK signalling is likely involved in establishing Sertoli cell polarity by regulating the expression of TGF-β2, mediated by c-Jun. The senescence of Sertoli cells in JNKs-deficient mice is caused by aberrant proteolysis of P27KIP1, mediated by c-Myc. This study demonstrates the role of JNK signalling in Sertoli cell development and functional maintenance, which may also represent an aetiology of male infertility in humans.
Collapse
Affiliation(s)
- Zhiming Shen
- Guangdong Cardiovascular InstituteGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouChina
- Department of Reproductive MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Yang Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xuedong Sun
- Eastern Department of NeurologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
- Department of NeurologyNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yuhua Shi
- Department of Reproductive MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
- Department of Obstetrics and Gynecology, Center for Reproductive MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
6
|
Malhotra N, Gupta P, Kamboj S, Chaturvedi P, Kutum R. 'Age specific variations in ovarian reserves in healthy fertile and infertile women: A cross sectional study. PLoS One 2024; 19:e0308865. [PMID: 39446778 PMCID: PMC11500972 DOI: 10.1371/journal.pone.0308865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/31/2024] [Indexed: 10/26/2024] Open
Abstract
Ovarian reserve tests are valuable for evaluation of female fertility, and to formulate appropriate treatment strategies for infertile women. Antral follicle count (AFC) and Anti-Mullerian hormone (AMH) are most reliable markers of ovarian reserve which are related inversely to age. There are many factors that affect ovarian reserve like race, ethnicity, fertility status, BMI or any chronic illness. We conducted this study to find outage specific nomograms for AMH and AFC among fertile and Infertile Indian women, to find out any variations between fertile and Infertile ovarian reserves at various centiles, to define the age cut-off of decline in AMH and AFC among fertile and Infertile Indian women and to find correlation between AMH and AFC. It was a prospective cross sectional single centre study conducted at a tertiary hospital of northern India from March 2017 to February 2022. Fertile healthy women were recruited from family planning clinic, oocyte donors and subfertile women from Gynaecology and ART clinic. AMH was done using ELISA, Beckmann Coulter Gen II assay and AFC was done using TVS with high frequency probe (9.0 MHZ, Voluson,S-6, GE Healthcare, USA) by trained personnel. R Statistical Programming Language was used for statistical modelling and visualization. Age-specific AFC centile chart and AMH centile chart were generated using GAMLSS (Generalized Additive Models for Location Scale and Shape) package available in R Statistical Computing Language. A Non-linear decline in ovarian reserves among fertile, while linear among infertile women was seen. Centiles defined for both groups with a faster decline in infertile women. Age cut off for decline in AMH and AFC in fertile women approximately 31 years using ROC analysis and Age cut off for decline in AMH and AFC in infertile women is approximately 34 years. There seems to be a good correlation between AFC and AMH. We need to counsel women to consider child bearing well before ovarian reserves decline (31-34 years).
Collapse
Affiliation(s)
- Neena Malhotra
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences Delhi, Delhi, India
| | - Pankush Gupta
- Sitaram Bhartia Institute of Science and Research, Delhi, India
| | - Saloni Kamboj
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences Delhi, Delhi, India
| | | | | |
Collapse
|
7
|
Huang H, Liu Y, Wang Q, Dong C, Dong L, Zhang J, Yang Y, Hao X, Li W, Rosa IF, Doretto LB, Cao X, Shao C. Molecular and Physiological Effects of 17α-methyltestosterone on Sex Differentiation of Black Rockfish, Sebastes schlegelii. Genes (Basel) 2024; 15:605. [PMID: 38790234 PMCID: PMC11120931 DOI: 10.3390/genes15050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
It is widely known that all-female fish production holds economic value for aquaculture. Sebastes schlegelii, a preeminent economic species, exhibits a sex dimorphism, with females surpassing males in growth. In this regard, achieving all-female black rockfish production could significantly enhance breeding profitability. In this study, we utilized the widely used male sex-regulating hormone, 17α-methyltestosterone (MT) at three different concentrations (20, 40, and 60 ppm), to produce pseudomales of S. schlegelii for subsequent all-female offspring breeding. Long-term MT administration severely inhibits the growth of S. schlegelii, while short term had no significant impact. Histological analysis confirmed sex reversal at all MT concentrations; however, both medium and higher MT concentrations impaired testis development. MT also influenced sex steroid hormone levels in pseudomales, suppressing E2 while increasing T and 11-KT levels. In addition, a transcriptome analysis revealed that MT down-regulated ovarian-related genes (cyp19a1a and foxl2) while up-regulating male-related genes (amh) in pseudomales. Furthermore, MT modulated the TGF-β signaling and steroid hormone biosynthesis pathways, indicating its crucial role in S. schlegelii sex differentiation. Therefore, the current study provides a method for achieving sexual reversal using MT in S. schlegelii and offers an initial insight into the underlying mechanism of sexual reversal in this species.
Collapse
Affiliation(s)
- Haijun Huang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Qian Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Caichao Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Le Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Jingjing Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Yu Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xiancai Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Weijing Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Ivana F. Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil;
| | - Lucas B. Doretto
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
| | - Xuebin Cao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.L.); (Q.W.); (C.D.); (L.D.); (J.Z.); (Y.Y.); (X.H.); (W.L.); (L.B.D.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
8
|
Liu S, Han C, Huang J, Li M, Yang J, Li G, Lin H, Li S, Zhang Y. Genome-wide identification, evolution and expression of TGF-β signaling pathway members in mandarin fish (Siniperca chuatsi). Int J Biol Macromol 2023; 253:126949. [PMID: 37722635 DOI: 10.1016/j.ijbiomac.2023.126949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Members of the transforming growth factor β (TGF-β) signaling pathway regulate diverse cellular biological processes in embryonic and tissue development. We took mandarin fish (Siniperca chuatsi) as the research object to identify all members of the TGF-β signaling pathway, measure their expression pattern in the key period post hatching, and further explore their possible role in the process of sex regulation. Herein, we identified eighty-three TGF-β signaling pathway members and located them on chromosomes based on the genome of mandarin fish. TGF-β signaling pathway members were highly conserved since each TGF-β subfamily clustered with orthologs from other species. Transcriptome analysis, qRT-PCR and in situ hybridization demonstrated that most mandarin fish TGF-β signaling pathway members presented stage-specific and/or sex-dimorphic expression during gonadal development, and different members of the TGF-β signaling pathway participated in different stages of gonadal development. Taken together, our results provide new insight into the role of TGF-β signaling pathway members in the sex regulation of mandarin fish.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Chong Han
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jingjun Huang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meihui Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiayu Yang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guifeng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China.
| |
Collapse
|
9
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
10
|
Prapaiwan N, Manee-In S, Thanawongnuwech R, Srisuwatanasagul S. Anti-Müllerian hormone levels in serum and testes of male dogs: relations with neuter status and bilateral abdominal cryptorchidism. Theriogenology 2023; 208:171-177. [PMID: 37352559 DOI: 10.1016/j.theriogenology.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
Anti-Müllerian hormone (AMH) analysis has contributed to new information in the reproductive endocrinology of domestic animals, due to clinically available diagnostic tools. An accurate and rapid diagnostic method to distinguish between neutered and bilateral abdominal cryptorchid dogs is needed in veterinary practice. Therefore, this study uses an enzyme-linked immunosorbent assay to evaluate the clinical relevance of AMH analysis in peripheral blood as a diagnostic tool for dogs with suspected bilateral abdominal cryptorchidism. The possible alteration of the AMH localization in testicular tissue caused by this pathologic condition was also investigated using immunohistochemistry. Male dogs were divided into three groups of healthy intact (n = 14), healthy castrated (n = 14), and bilateral abdominal cryptorchid (n = 14) dogs. The results demonstrated a higher level of serum AMH in the cryptorchid group compared to the intact group (P < 0.01), while serum AMH levels of all castrated dogs were below the limit of detection (<0.05 ng/mL). Moreover, the percentage of positive AMH immunostaining of the intact group was less than that of the cryptorchid group (P < 0.01). A significantly positive correlation was found between serum AMH concentration and localization in testicular tissues (r = 0.93, P < 0.01). Our findings suggest that AMH levels in the peripheral blood could be used as an alternative and rapid screening method for detecting dogs with abdominal cryptorchidism.
Collapse
Affiliation(s)
- N Prapaiwan
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - S Manee-In
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - R Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - S Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Ferré-Dolcet L, Bordogna M, Contiero B, Fontaine C, Bedin S, Romagnoli S. Anti-Müllerian Hormone Concentrations for Determining Resumption of Sertoli Cell Function following Removal of a 4.7 mg Deslorelin Implant in Tomcats. Animals (Basel) 2023; 13:2552. [PMID: 37627341 PMCID: PMC10451382 DOI: 10.3390/ani13162552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Background: Deslorelin implant use in cats is a medical alternative to surgical sterilization, and due to its prolonged efficacy, its use has shown growing interest in the veterinary community. In the case of breeding facilities, its removal is often requested for the early restoration of testicular function. As anti-Müllerian hormones (AMH) in males is dependent of testosterone secretion, its assay may determine the restoration of testicular steroid secretion. An average of 3 weeks has been already described for tomcats' testicular function resumption after implant removal, but information about AMH concentrations in deslorelin-treated tomcats is lacking. Methods: Fourteen tomcats were treated for temporary suppression of fertility with a 4.7 mg deslorelin implant, which was surgically removed after 3, 6 or 9 months (n = 6, 4 and 4 tomcats, respectively). A general clinical and reproductive check with a gonadorelin stimulation test for testosterone determination was performed before deslorelin implant administration. After implant removal, tomcats' testicles were ultrasonographically checked for volume determination every 1-2 weeks with observation of the glans penis (presence or absence of spikes) and blood collection to assay both testosterone and AMH concentrations. Results: AMH concentrations increased significantly during the deslorelin treatment from 20.95 ± 4.97 ng/mL to 82.41 ± 14.59 ng/mL (p < 0.05). Following implant removal, AMH concentrations progressively decreased to pre-treatment levels, with a value of 28.42 ± 7.98 ng/mL on the third week post-removal where testosterone secretion was again detected. Conclusions: Even if a big variability of AMH concentrations exists between male individuals, resumption of tomcats' testicular function following a deslorelin treatment can be determined by AMH assay.
Collapse
Affiliation(s)
- Lluis Ferré-Dolcet
- Department of Animal Medicine, Production and Health, University of Padova, 35122 Padova, Italy (S.B.)
| | | | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padova, 35122 Padova, Italy (S.B.)
| | | | - Silvia Bedin
- Department of Animal Medicine, Production and Health, University of Padova, 35122 Padova, Italy (S.B.)
| | - Stefano Romagnoli
- Department of Animal Medicine, Production and Health, University of Padova, 35122 Padova, Italy (S.B.)
| |
Collapse
|
12
|
Celik S, Ozkavukcu S, Celik-Ozenci C. Recombinant anti-Mullerian hormone treatment attenuates primordial follicle loss after ovarian cryopreservation and transplantation. J Assist Reprod Genet 2023; 40:1117-1134. [PMID: 36856968 PMCID: PMC10239422 DOI: 10.1007/s10815-023-02754-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
PURPOSE The foremost drawback of ovarian tissue cryopreservation and re-transplantation (OTCT) technique is the rapid loss of the primordial follicle (PF) pool. In recent studies, we have demonstrated that post-transplantation burnout of the PFs occurs due to the altered expression of the activatory and inhibitory proteins that control PF reserve, and rapamycin prevented it. METHODS Here, we investigated whether anti-Mullerian hormone administration in the bilateral oophorectomy and transplantation group and internal AMH in the unilateral oophorectomy and transplantation group protect follicle reserve by regulating the expression of the molecules that control follicle growth after OTCT in mice. RESULTS After 14 days of OTCT, PF reserve is significantly reduced in both unilateral oophorectomy and transplantation and bilateral oophorectomy and transplantation groups, while anti-Mullerian hormone treatment attenuates PF loss after bilateral oophorectomy and transplantation. The expression of KitL, Bmp-15, and p27 decreased after unilateral oophorectomy and transplantation and bilateral oophorectomy and transplantation, yet recombinant anti-Mullerian hormone treatment did not restore the expression of these proteins in the BLO-T group. CONCLUSION Exogenous recombinant anti-Mullerian hormone administration in the BLO-T group preserved the expressions of Tsc1 and Gdf-9 in PF and p-s6k and Gdf-9 in growing follicles after OTCT. Nonetheless, recombinant anti-Mullerian hormone administration did not affect granulosa cell proliferation and death rates in the growing follicles. These findings suggest a novel hormonal replacement strategy for fertility preservation by restoring anti-Mullerian hormone to regulate Tsc1 and p-s6k, thereby linking this hormone with the mTOR pathway and Gdf-9 signaling.
Collapse
Affiliation(s)
- Soner Celik
- Department of Histology and Embryology, School of Medicine, Akdeniz University, 07070, Antalya, Turkey
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT, USA
| | - Sinan Ozkavukcu
- School of Medicine, Ninewells Hospital, University of Dundee, Assisted Conception Unit, DD2 1SG, Dundee, Scotland
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, School of Medicine, Koc University Medical Faculty, Koc University, Rumelifeneri Yolu 34450, Sariyer, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey.
| |
Collapse
|
13
|
An K, Yao B, Tan Y, Kang Y, Su J. Potential Role of Anti-Müllerian Hormone in Regulating Seasonal Reproduction in Animals: The Example of Males. Int J Mol Sci 2023; 24:5874. [PMID: 36982948 PMCID: PMC10054328 DOI: 10.3390/ijms24065874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Seasonal reproduction is a survival strategy by which animals adapt to environmental changes to improve their fitness. Males are often characterized by a significantly reduced testicular volume, indicating that they are in an immature state. Although many hormones, including gonadotropins, have played a role in testicular development and spermatogenesis, research on other hormones is insufficient. The anti-Müllerian hormone (AMH), which is a hormone responsible for inducing the regression of Müllerian ducts involved in male sex differentiation, was discovered in 1953. Disorders in AMH secretion are the main biomarkers of gonadal dysplasia, indicating that it may play a crucial role in reproduction regulation. A recent study has found that the AMH protein is expressed at a high level during the non-breeding period of seasonal reproduction in animals, implying that it may play a role in restricting breeding activities. In this review, we summarize the research progress on the AMH gene expression, regulatory factors of the gene's expression, and its role in reproductive regulation. Using males as an example, we combined testicular regression and the regulatory pathway of seasonal reproduction and attempted to identify the potential relationship between AMH and seasonal reproduction, to broaden the physiological function of AMH in reproductive suppression, and to provide new ideas for understanding the regulatory pathway of seasonal reproduction.
Collapse
Affiliation(s)
- Kang An
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Baohui Yao
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuchen Tan
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Yukun Kang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Junhu Su
- Key Laboratory of Grassland Ecosystem, Ministry of Education, College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Reny SE, Mukherjee A, Mol PM. The curious case of testicular descent: factors controlling testicular descent with a note on cryptorchidism. AFRICAN JOURNAL OF UROLOGY 2023. [DOI: 10.1186/s12301-023-00342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract
Background
The testicular descent is a uniquely complex process depending upon multiple factors like growth and reorganisation of the specific gonadal ligaments, hormones, etc., which interplay with each other. Though an unambiguous event, it is still laced with incredulity since the data interpretation were intermingled between different species creating more ambiguity in certain aspects of this process. In order to understand the aetiopathology of cryptorchidism the extensive study of the factors controlling the descent is necessitous.
Main body
Though testes originate in the abdomen, they migrate to an extra abdominal site the scrotum, which makes it vulnerable to pathological conditions associated with the descent. The hormones that play vital role in the first phase of descent are insulin-like hormone 3 (INSL3), Anti-müllerian hormone as well as testosterone, whereas androgens, genitofemoral nerve and its neurotransmitter calcitonin gene-related peptide (CGRP) influence the second phase. Despite the vast research regarding the complex nexus of events involving the descent there are disparities among the cross species studies. However all these discrepancies make testicular descent yet again fascinating and perplexing. Our aim is to provide a comprehensive review including recent advances which provides thorough coverage of anatomical and hormonal factors in the descent as well as cryptorchidism.
Conclusion
Though our understanding on testicular descent has evolved over the decades there still has obscurity surrounding it and the studies on the factors responsible for descent are becoming more intense with the time. Our knowledge on many factors such as INSL3 and CGRP is more established now; however, on the other hand the role of androgens still remains speculative. As the knowledge and understanding of the biological process of testicular descent increases it will pave ways to new treatment plans to treat cryptorchidism more effectively.
Collapse
|
15
|
Hou Y, Wang L, Li Y, Ai J, Tian L. Serum levels of anti-Müllerian hormone influence pregnancy outcomes associated with gonadotropin-releasing hormone antagonist treatment: a retrospective cohort study. Sci Rep 2023; 13:2127. [PMID: 36746984 PMCID: PMC9902445 DOI: 10.1038/s41598-023-28724-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
As a specific predictor of ovarian reserve, serum anti-Müllerian hormone (AMH) has become an area of intense research interest in the field of assisted reproductive technology. We assessed the relationship between AMH levels and pregnancy outcomes in Chinese patients and investigate the influencing factors of cumulative live birth in patients with high AMH levels. A total of 1379 patients starting their IVF/ICSI cycle were divided into normal (Group A, 1.1-4.0 ng/ml, n = 639) and high (Group B, > 4.0 ng/ml, n = 740) groups by serum AMH levels. Live birth rate (LBR), cumulative live birth rate (CLBR) and cumulative clinical pregnancy rate (CCPR) were also investigated. Compared with Group A, Group B had a significantly higher CLBR (65.80% vs. 43.95%) and CCPR (76.77% vs. 57.14%), respectively. Binomial logistic regression analysis showed that age over 40 years, LH/FSH > 2.5, total Gn dose and Gn duration, and greater than 4000 ng/ml serum E2 levels on HCG day were significantly associated with CLBR in Group B. The AUC value of CLBR averaged 0.664 (ranging from 0.621 to 0.706) (p < 0.001). The patients with high AMH levels had higher CPR, higher LBR, and lower MR with no statistically significant differences, although there were significant improvements in CLBR. Advanced age (> 40 years) still impacted CLBR, even in women with good ovarian reserves. Consequently, it is still recommended that patients over 40 years old with high AMH levels actively receive IVF treatment if they seek to become pregnant. PCOS diagnoses did not influence the CLBR. In summary, this study showed that serum AMH levels could positively predict patient ovarian responses and further affect pregnancy outcomes.
Collapse
Affiliation(s)
- Yanru Hou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Lu Wang
- Gynaecology and Obstetrics, Beijing Jishuitan Hospital, Beijing, China
| | - Yian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Jiajia Ai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China
| | - Li Tian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
16
|
Chen M, Guo X, Zhong Y, Liu Y, Cai B, Wu R, Huang C, Zhou C. AMH inhibits androgen production in human theca cells. J Steroid Biochem Mol Biol 2023; 226:106216. [PMID: 36356855 DOI: 10.1016/j.jsbmb.2022.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Both excessive ovarian production of AMH and androgen are important features of polycystic ovary syndrome (PCOS). Present study aimed to explore the direct effect of AMH on androgen production in human theca cells. Primary cultured human theca cells were treated with AMH, an ALK2 (the BMP type 1 receptor) inhibitor and an ALK5 (the TGFβ type 1 receptor) inhibitor. AMH significantly suppresses the expression of the androgen synthesis-related enzyme CYP17A1 and reduces the production of androstenedione and testosterone in normal human theca cells and PCOS theca cells. Inhibitors of ALK2/3 and ALK5 antagonize the effect of AMH on the expression of CYP17A1. Although both ALK5 and ALK2 interact with AMHR2 in the presence of AMH, AMH activated neither TGFβR-Smads (Smad 2/3) nor BMPR-Smads (Smad 1/5/8). Our data suggested that AMH suppresses androgen synthesis-related enzyme CYP17A1 expression and inhibits androgen production in human theca cells, which process may be mediated by ALK2 and ALK5.
Collapse
Affiliation(s)
- Minghui Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xi Guo
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiping Zhong
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Cai
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rihan Wu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuan Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Amh/Amhr2 Signaling Causes Masculinization by Inhibiting Estrogen Synthesis during Gonadal Sex Differentiation in Japanese Flounder ( Paralichthys olivaceus). Int J Mol Sci 2023; 24:ijms24032480. [PMID: 36768803 PMCID: PMC9917198 DOI: 10.3390/ijms24032480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The anti-Müllerian hormone (Amh) is a protein belonging to the TGF-β superfamily, the function of which has been considered important for male sex differentiation in vertebrates. The Japanese flounder (Paralichthys olivaceus) is a teleost fish that has an XX/XY sex determination system and temperature-dependent sex determination. In this species, amh expression is up-regulated in genetic males and in temperature-induced masculinization during the sex differentiation period. However, to the best of our knowledge, no reports on the Amh receptor (Amhr2) in flounder have been published, and the details of Amh signaling remain unclear. In this study, we produced amhr2-deficient mutants using the CRISPR/Cas9 system and analyzed the gonadal phenotypes and sex-related genes. The results revealed that the gonads of genetically male amhr2 mutants featured typical ovaries, and the sex differentiation-related genes showed a female expression pattern. Thus, the loss of Amhr2 function causes male-to-female sex reversal in Japanese flounder. Moreover, the treatment of genetically male amhr2 mutants with an aromatase inhibitor fadrozole, which inhibits estrogen synthesis, resulted in testicular formation. These results strongly suggest that Amh/Amhr2 signaling causes masculinization by inhibiting estrogen synthesis during gonadal sex differentiation in the flounder.
Collapse
|
18
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
19
|
Mouanness M, Nava H, Dagher C, Merhi Z. Contribution of Advanced Glycation End Products to PCOS Key Elements: A Narrative Review. Nutrients 2022; 14:nu14173578. [PMID: 36079834 PMCID: PMC9460172 DOI: 10.3390/nu14173578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, data has suggested that dietary advanced glycation end products (AGEs) play an important role in both reproductive and metabolic dysfunctions associated with polycystic ovary syndrome (PCOS). AGEs are highly reactive molecules that are formed by the non-enzymatic glycation process between reducing sugars and proteins, lipids, or nucleic acids. They can be formed endogenously under normal metabolic conditions or under abnormal situations such as diabetes, renal disease, and other inflammatory disorders. Bodily AGEs can also accumulate from exogenous dietary sources particularly when ingested food is cooked and processed under high-temperature conditions, such as frying, baking, or grilling. Women with PCOS have elevated levels of serum AGEs that are associated with insulin resistance and obesity and that leads to a high deposition of AGEs in the ovarian tissue causing anovulation and hyperandrogenism. This review will describe new data relevant to the role of AGEs in several key elements of PCOS phenotype and pathophysiology. Those elements include ovarian dysfunction, hyperandrogenemia, insulin resistance, and obesity. The literature findings to date suggest that targeting AGEs and their cellular actions could represent a novel approach to treating PCOS symptoms.
Collapse
Affiliation(s)
| | - Henry Nava
- Rejuvenating Fertility Center, New York, NY 10019, USA
| | - Christelle Dagher
- Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut P.O. Box 100, Lebanon
| | - Zaher Merhi
- Rejuvenating Fertility Center, New York, NY 10019, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
- Correspondence: ; Tel.: +1-(203)-557-9696
| |
Collapse
|
20
|
Mehanovic S, Pierre KJ, Viger RS, Tremblay JJ. COUP-TFII interacts and functionally cooperates with GATA4 to regulate Amhr2 transcription in mouse MA-10 Leydig cells. Andrology 2022; 10:1411-1425. [PMID: 35973717 DOI: 10.1111/andr.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leydig cells produce testosterone and insulin-like 3, two hormones essential for male sex differentiation and reproductive function. The orphan nuclear receptor COUP-TFII and the zinc finger factor GATA4 are two transcription factors involved in Leydig cell differentiation, gene expression and function. OBJECTIVES Several Leydig cell gene promoters contain binding motifs for both GATA factors and nuclear receptors. The goal of present study is to determine whether GATA4 and COUP-TFII cooperate to regulate gene expression in Leydig cells. MATERIALS AND METHODS The transcriptomes from GATA4- and COUP-TFII-depleted MA-10 Leydig cells were analyzed using bioinformatic tools. Functional cooperation between GATA4 and COUP-TFII, and other related family members, was assessed by transient transfections in Leydig (MA-10 and MLTC-1) and fibroblast (CV-1) cell lines on several gene promoters. Recruitment of GATA4 and COUP-TFII to gene promoters was investigated by chromatin immunoprecipitation. Co-immunoprecipitation was used to determine whether GATA4 and COUP-TFII interact in MA-10 Leydig cells. RESULTS Transcriptomic analyses of GATA4- and COUP-TFII-depleted MA-10 Leydig cells revealed 44 commonly regulated genes including the anti-Müllerian hormone receptor (Amhr2) gene. GATA4 and COUP-TFII independently activated the Amhr2 promoter, and their combination led to a stronger activation. A GC-rich element, located in the proximal Amhr2 promoter was found to be essential for GATA4- and COUP-TFII-dependent activation as well as for the COUP-TFII/GATA4 cooperation. COUP-TFII and GATA4 directly interacted in MA-10 Leydig cell extracts. Chromatin immunoprecipitation revealed that GATA4 and COUP-TFII are recruited to the proximal Amhr2 promoter, which contains binding sites for both factors in addition to the GC-rich element. Cooperation between COUP-TFII and GATA6, but not GATA1 and GATA3, was also observed. DISCUSSION AND CONCLUSION Our results establish the importance of a physical and functional cooperation between COUP-TFII/GATA4 in the regulation of gene expression in MA-10 Leydig cells, and more specifically the Amhr2 gene. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
21
|
Mazumder S, Swank V, Dvorina N, Johnson JM, Tuohy VK. Formulation of an ovarian cancer vaccine with the squalene-based AddaVax adjuvant inhibits the growth of murine epithelial ovarian carcinomas. Clin Exp Vaccine Res 2022; 11:163-172. [PMID: 35799868 PMCID: PMC9200654 DOI: 10.7774/cevr.2022.11.2.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Epithelial ovarian carcinoma (EOC) is the most lethal of all human gynecologic malignancies. We previously reported that vaccination of female mice with the extracellular domain of anti-Müllerian hormone receptor II (AMHR2-ED) in complete Freund’s adjuvant (CFA) generates AMHR2-ED specific immunoglobulin G (IgG) that provides prevention and therapy against murine EOCs. Although CFA is the “gold standard” adjuvant in animal studies, it is not approved for human use because it often induces painful granulomas and abscesses. Thus, the objective of this study is to identify an alternative adjuvant to CFA for use in our ovarian cancer vaccine clinical trials. Materials and Methods Because it has been used successfully without serious adverse effects in numerous human clinical trials, we selected the IgG-inducing squalene-based adjuvant, AddaVax™, for evaluation of its ability to facilitate vaccine-induced prevention and treatment of EOC in mice. To this end, we immunized female C57BL/6 mice with recombinant mouse AMHR2-ED emulsified with either AddaVax or CFA as adjuvant and compared the results. Results We found that formulation of the AMHR2-ED vaccine with AddaVax adjuvant induced high serum titers of IgG and significant inhibition of EOC growth with significantly enhanced overall survival of mice using both prevention and therapeutic protocols. These results were compared favorably with results obtained using CFA as an adjuvant in the AMHR2-ED vaccine. Conclusion Our data indicate that the AMHR2-ED vaccine formulated with AddaVax may be used in human clinical trials and thereby serve as a novel and effective way to control human EOC.
Collapse
Affiliation(s)
- Suparna Mazumder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Valerie Swank
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin M Johnson
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincent K Tuohy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
22
|
Buyukkaba M, Turgut S, Ilhan MM, Ekinci I, Yaylım İ, Zeybek SU, Turan S, Tasan E, Karaman O. Anti-Mullerian Hormone Levels Increase After Bariatric Surgery in Obese Female Patients With and Without Polycystic Ovary Syndrome. Horm Metab Res 2022; 54:194-198. [PMID: 35276745 DOI: 10.1055/a-1756-4798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study was aimed to investigate the effect of weight loss by bariatric surgery on the level of anti-Mullerian hormone (AMH) in morbidly obese female patients with or without polycystic ovary syndrome (PCOS). This prospective study includes 70 females, obese, and fertile patients of reproductive age. All patients were evaluated to determine the changes in weight, body mass index (BMI), serum AMH, and other biochemical parameters at the end of six months. The mean levels of the preop and postop AMH were 1.66±0.87 ng/ml and 5.99±1.39 ng/ml in the PCOS group; 1.35±0.76 ng/ml and 6.23±1.47 ng/ml in the non-PCOS group, respectively. The postop AMH levels were significantly higher than the preop levels for both groups (p<0.001). There were significant differences in the level of glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride, total cholesterol, hemoglobin A1c, HOMA-IR, insulin between preop and postop 6th month. A negative correlation was found between postop AMH and body weight in all patients (r=-0.337, p=0.031). Postop AMH levels were negatively correlated with postop BMI levels in the non-PCOS patient group (r=-0.408, p=0.043). No significant difference was observed between the PCOS and non-PCOS groups in terms of all the parameters examined. In conclusion, our study suggests that the significantly increased AMH levels by losing weight with bariatric surgery in patients with morbid obesity with and without PCOS may indicate the improvement of fertilization potential. It could be considered when evaluating fertility in patients with morbid obesity.
Collapse
Affiliation(s)
- Mitat Buyukkaba
- Department of Internal Medicine, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Seda Turgut
- Department of Internal Medicine, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Mahmut Muzaffer Ilhan
- Department of Endocrinology and Metabolism Diseases, Medipol University, Istanbul, Turkey
| | - Iskender Ekinci
- Department of Internal Medicine, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - İlhan Yaylım
- Department of Molecular Medicine Istanbul University, Istanbul, Turkey
| | - Sakir Umit Zeybek
- Department of Molecular Medicine Istanbul University, Istanbul, Turkey
| | - Saime Turan
- Department of Molecular Medicine Istanbul University, Istanbul, Turkey
| | - Ertugrul Tasan
- Department of Internal Medicine, Bezmialem Foundation University, Istanbul, Turkey
| | - Ozcan Karaman
- Department of Internal Medicine, Bezmialem Foundation University, Istanbul, Turkey
| |
Collapse
|
23
|
Mouanness M, Merhi Z. Impact of Dietary Advanced Glycation End Products on Female Reproduction: Review of Potential Mechanistic Pathways. Nutrients 2022; 14:nu14050966. [PMID: 35267940 PMCID: PMC8912317 DOI: 10.3390/nu14050966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs), a heterogenous group of products formed by the reaction between protein and reducing sugars, can form endogenously due to non-enzymatic reactions or by exogenous sources such as diet where considerable increase in AGEs is observed due to the modification of food mainly by thermal processing. Recent studies have suggested that AGEs could impact, via inducing inflammation and oxidative stress, the reproductive health and fertility in both males and females. This review presents a summary of recently published data pertaining to the pathogenesis of dietary AGEs and their receptors as well as their potential impact on female reproductive health. More specifically, it will present data pertaining to dietary AGEs’ involvement in the mechanistic pathogenesis of polycystic ovary syndrome, ovarian dysfunction, as well as the AGEs’ effect perinatally on the female offspring reproduction. Understanding the mechanistic impact of dietary AGEs on female reproduction can help contribute to the development of targeted pharmacological therapies that will help curb rising female infertility.
Collapse
Affiliation(s)
- Marco Mouanness
- Rejuvenating Fertility Center, 315 W 57th Street, Suite 208, New York, NY 10019, USA;
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Zaher Merhi
- Rejuvenating Fertility Center, 315 W 57th Street, Suite 208, New York, NY 10019, USA;
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Correspondence:
| |
Collapse
|
24
|
Bedenk J, Režen T, Železnik Ramuta T, Jančar N, Vrtačnik Bokal E, Geršak K, Virant Klun I. Recombinant anti-Müllerian hormone in the maturation medium improves the in vitro maturation of human immature (GV) oocytes after controlled ovarian hormonal stimulation. Reprod Biol Endocrinol 2022; 20:18. [PMID: 35073905 PMCID: PMC8785574 DOI: 10.1186/s12958-022-00895-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND In vitro maturation (IVM) of oocytes is a laboratory method that allows the maturation of immature (GV) oocytes retrieved from patients enrolled in the in vitro fertilization (IVF) programme. However, this method is still sparsely researched and used in clinical practice, leading to suboptimal clinical results. Anti-Müllerian hormone (AMH) is an important hormone with known effects on human ovaries, especially on follicles (follicular cells) during folliculogenesis. In contrast, the effect of AMH on the human oocyte itself is unknown. Therefore, we wanted to determine whether human oocytes express AMH receptor 2 (AMHR2) for this hormone. Recombinant AMH was added to the IVM medium to determine whether it affected oocyte maturation. METHODS In total, 247 human oocytes (171 immature and 76 mature) were collected from patients enrolled in the intracytoplasmic sperm injection (ICSI) programme who were aged 20 to 43 years and underwent a short antagonist protocol of ovarian stimulation. The expression of AMHR2 protein and AMHR2 gene was analysed in immature and mature oocytes. Additionally, maturation of GV oocytes was performed in vitro in different maturation media with or without added AMH to evaluate the effect of AMH on the oocyte maturation rate. RESULTS Immunocytochemistry and confocal microscopy revealed that AMHR2 protein is expressed in both immature and mature human oocytes. AMHR2 was expressed in a spotted pattern throughout the whole oocyte. The IVM procedure revealed that AMH in maturation medium improved GV oocyte maturation in vitro, as all oocytes were successfully matured in maturation medium containing recombinant AMH only. Furthermore, antagonism between AMH and follicle-stimulating hormone (FSH) during the maturation process was observed, with fewer oocytes maturing when both AMH and FSH were added to the maturation medium. Finally, AMHR2 gene expression was found in immature and in vitro matured oocytes but absent in mature oocytes. CONCLUSIONS The positive AMHR2 protein and AMHR2 gene expression in human oocytes shows that AMH could directly act on human oocytes. This was further functionally confirmed by the IVM procedure. These findings suggest the potential clinical application of recombinant AMH to improve IVM of human oocytes in the future.
Collapse
Affiliation(s)
- Jure Bedenk
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia.
| | - Tadeja Režen
- Institute of Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Nina Jančar
- Department of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Eda Vrtačnik Bokal
- Department of Gynaecology and Obstetrics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Ksenija Geršak
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Irma Virant Klun
- Clinical Research Centre, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
25
|
Tu M, Wu Y, Wang F, Huang Y, Qian Y, Li J, Lv P, Ying Y, Liu J, Liu Y, Zhang R, Zhao W, Zhang D. Effect of lncRNA MALAT1 on the Granulosa Cell Proliferation and Pregnancy Outcome in Patients With PCOS. Front Endocrinol (Lausanne) 2022; 13:825431. [PMID: 35573984 PMCID: PMC9094420 DOI: 10.3389/fendo.2022.825431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Follicle arrest is one of the main characteristics of polycystic ovary syndrome (PCOS), the most common endocrinological disorder in reproductive-aged women. Increasing evidence proves that high anti-Mullerian hormone (AMH) levels may play an important role in follicular development. Long noncoding RNA (lncRNA) with a length of more than 200 nt is widely involved in the directional differentiation, growth, and development of cells, whereas whether lncRNA is involved in AMH's role in follicular development is unknown. In this study, we analyzed lncRNA expression in ovarian granulosa cells (GCs) collected from women with and without PCOS via high-throughput sequencing. The results showed that a total of 79 noncoding transcripts were differently expressed in GCs of PCOS patients, including upregulated lncRNA MALAT1. The upregulation of MALAT1 was further confirmed by RT-qPCR in GCs from a larger cohort of PCOS patients. Furthermore, knockdown MALAT1 can promote the proliferation of KGN cell in vitro. These data suggested a role for MALAT1 in the development of PCOS. Meanwhile, MALAT1 and phosphorylated SMAD 1/5 (Ser463/465) protein were upregulated in KGN cells after exogenous AMH stimulation, which identified AMH perhaps as a regulator for the expression of MALAT1. We also found that MALAT1 can predict clinical pregnancy outcome to a certain extent by ROC curve analysis (area: 0.771, p = 0.007, 95% CI: 0.617-0.925, sensitivity: 57.1%, specificity: 91.7%). Thus, our findings revealed a role of lncRNA MALAT1 in inhibiting granulosa cell proliferation and may be correlated with pregnancy outcome in PCOS.
Collapse
Affiliation(s)
- Mixue Tu
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wu
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yuli Qian
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Pingping Lv
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Liu
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Runju Zhang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wei Zhao
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province, Hangzhou, China
- *Correspondence: Dan Zhang,
| |
Collapse
|
26
|
Liu X, Dai S, Wu J, Wei X, Zhou X, Chen M, Tan D, Pu D, Li M, Wang D. Roles of anti-Müllerian hormone and its duplicates in sex determination and germ cell proliferation of Nile tilapia. Genetics 2021; 220:6486528. [PMID: 35100374 PMCID: PMC9208641 DOI: 10.1093/genetics/iyab237] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Duplicates of amh are crucial for fish sex determination and differentiation. In Nile tilapia, unlike in other teleosts, amh is located on X chromosome. The Y chromosome amh (amhΔ-y) is mutated with 5 bp insertion and 233 bp deletion in the coding sequence, and tandem duplicate of amh on Y chromosome (amhy) has been identified as the sex determiner. However, the expression of amh, amhΔ-y, and amhy, their roles in germ cell proliferation and the molecular mechanism of how amhy determines sex is still unclear. In this study, expression and functions of each duplicate were analyzed. Sex reversal occurred only when amhy was mutated as revealed by single, double, and triple mutation of the 3 duplicates in XY fish. Homozygous mutation of amhy in YY fish also resulted in sex reversal. Earlier and higher expression of amhy/Amhy was observed in XY gonads compared with amh/Amh during sex determination. Amhy could inhibit the transcription of cyp19a1a through Amhr2/Smads signaling. Loss of cyp19a1a rescued the sex reversal phenotype in XY fish with amhy mutation. Interestingly, mutation of both amh and amhy in XY fish or homozygous mutation of amhy in YY fish resulted in infertile females with significantly increased germ cell proliferation. Taken together, these results indicated that up-regulation of amhy during the critical period of sex determination makes it the sex-determining gene, and it functions through repressing cyp19a1a expression via Amhr2/Smads signaling pathway. Amh retained its function in controlling germ cell proliferation as reported in other teleosts, while amhΔ-y was nonfunctionalized.
Collapse
Affiliation(s)
- Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiahong Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xueyan Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mimi Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dejie Tan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deyong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China,Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China. ; Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China,Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China. ; Corresponding author: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
27
|
Goikoetxea A, Muncaster S, Todd EV, Lokman PM, Robertson HA, De Farias E Moraes CE, Damsteegt EL, Gemmell NJ. A new experimental model for the investigation of sequential hermaphroditism. Sci Rep 2021; 11:22881. [PMID: 34819550 PMCID: PMC8613207 DOI: 10.1038/s41598-021-02063-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
The stunning sexual transformation commonly triggered by age, size or social context in some fishes is one of the best examples of phenotypic plasticity thus far described. To date our understanding of this process is dominated by studies on a handful of subtropical and tropical teleosts, often in wild settings. Here we have established the protogynous New Zealand spotty wrasse, Notolabrus celidotus, as a temperate model for the experimental investigation of sex change. Captive fish were induced to change sex using aromatase inhibition or manipulation of social groups. Complete female-to-male transition occurred over 60 days in both cases and time-series sampling was used to quantify changes in hormone production, gene expression and gonadal cellular anatomy. Early-stage decreases in plasma 17β-estradiol (E2) concentrations or gonadal aromatase (cyp19a1a) expression were not detected in spotty wrasse, despite these being commonly associated with the onset of sex change in subtropical and tropical protogynous (female-to-male) hermaphrodites. In contrast, expression of the masculinising factor amh (anti-Müllerian hormone) increased during early sex change, implying a potential role as a proximate trigger for masculinisation. Collectively, these data provide a foundation for the spotty wrasse as a temperate teleost model to study sex change and cell fate in vertebrates.
Collapse
Affiliation(s)
- A Goikoetxea
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - S Muncaster
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand.
- School of Science, University of Waikato, Tauranga, New Zealand.
| | - E V Todd
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - P M Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - H A Robertson
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - C E De Farias E Moraes
- Environmental Management Group, Toi Ohomai Institute of Technology, Tauranga, New Zealand
| | - E L Damsteegt
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - N J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Lin CJ, Jeng SR, Lei ZY, Yueh WS, Dufour S, Wu GC, Chang CF. Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions. Cells 2021; 10:cells10113007. [PMID: 34831230 PMCID: PMC8616510 DOI: 10.3390/cells10113007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eels.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Zhen-Yuan Lei
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, CEDEX 05, 75231 Paris, France;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Chung Wu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| |
Collapse
|
29
|
Biniasch M, Laubender RP, Hund M, Buck K, De Geyter C. Intra- and inter-cycle variability of anti-Müllerian hormone (AMH) levels in healthy women during non-consecutive menstrual cycles: the BICYCLE study. Clin Chem Lab Med 2021; 60:597-605. [PMID: 34717057 DOI: 10.1515/cclm-2021-0698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Determine variability of serum anti-Müllerian hormone (AMH) levels during ovulatory menstrual cycles between different women (inter-participant), between non-consecutive cycles (inter-cycle) and within a single cycle (intra-cycle) in healthy women. METHODS Eligible participants were women aged 18-40 years with regular ovulatory menstrual cycles. Serum samples were collected every second day during two non-consecutive menstrual cycles. AMH levels were measured in triplicate using the Elecsys® AMH Plus immunoassay (Roche Diagnostics). AMH level variability was evaluated using mixed-effects periodic regression models based on Fourier series. The mesor was calculated to evaluate inter-participant and inter-cycle variability. Inter- and intra-cycle variability was evaluated using peak-to-peak amplitudes. Separation of biological and analytical coefficients of variation (CVs) was determined by analysing two remeasured AMH levels (with and without original AMH levels). RESULTS A total of 47 women were included in the analysis (42 assessed over two cycles; five one cycle only). CV of unexplained biological variability was 9.61%; analytical variability was 3.46%. Inter-participant variability, given by time-series plots of AMH levels, was greater than inter-cycle variability. Between individual participants, both mesor and peak-to-peak amplitudes proved variable. In addition, for each participant, intra-cycle variability was higher than inter-cycle variability. CONCLUSIONS Inter-participant and intra-cycle variability of AMH levels were greater than inter-cycle variability. Unexplained biological variability was higher than analytical variability using the Elecsys AMH Plus immunoassay. Understanding variability in AMH levels may aid in understanding differences in availability of antral ovarian follicles during the menstrual cycle, which may be beneficial in designing gonadotropin dosage for assisted reproductive technology.
Collapse
Affiliation(s)
- Marieke Biniasch
- Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Basel, Switzerland
| | | | - Martin Hund
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | | | - Christian De Geyter
- Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Anti-Müllerian hormone, testosterone, and insulin-like peptide 3 as biomarkers of Sertoli and Leydig cell function during deslorelin-induced testicular downregulation in the dog. Theriogenology 2021; 175:100-110. [PMID: 34534687 DOI: 10.1016/j.theriogenology.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
The role of anti-Müllerian hormone (AMH) and insulin-like peptide 3 (INSL3) in male infertility is not fully understood. We used the downregulated testis as a model of gonadotropin-dependent infertility. Serum testosterone and AMH concentrations were studied in five adult male Beagles implanted (day 0) with 4.7 mg deslorelin (Suprelorin®, Virbac) (DES group). Testicular expression of LH receptor (LHR) and androgen receptor (AR), AMH, type 2 AMH receptor (AMHR2), INSL3 and its receptor (RXFP2) was evaluated 112 days (16 weeks) after deslorelin treatment by qPCR and immunohistochemistry, and compared to untreated adult (CON, n = 6) and prepubertal (PRE, n = 8) dogs. Serum testosterone concentration decreased significantly by the onset of aspermia on study day 14 (four dogs) or day 21 (one dog), and was baseline on day 105 (week 15). In contrast, serum AMH started to increase only after the onset of aspermia and reached the maximum detectable concentration of the assay by day 49-105 in individual dogs. Testicular LHR gene expression in DES was lower than in CON and PRE (P < 0.0001), while AR gene expression in DES was similar to CON and significantly higher than PRE (P < 0.0001). Testicular AMH expression in DES was intermediate compared to the lowest mRNA levels found in CON and the highest in PRE (P ≤ 0.006). AMHR2 gene expression was similar between groups. AMH protein was detected in Sertoli cells only, while AMHR2 immunoreactivity was principally detected in Leydig cells which appeared to be increased in DES. INSL3 and RXFP2 gene expression was significantly downregulated in the DES testis along with noticeably weak Leydig cell immunosignals compared to CON. In conclusion, deslorelin treatment caused testicular LH insensitivity without affecting androgen sensitivity, and de-differentiation of Sertoli and Leydig cells. In DES, upregulation of the AMH-AMHR2 feed-back loop and downregulation of the INSL3-RXFP2 feed-forward loop are paracrine-autocrine mechanisms that may additionally regulate testosterone production independent of gonadotropins. Our results support AMH and INSL3 as unique biomarkers and paracrine-autocrine regulators of testis function involved in the intimate interplay between Sertoli and Leydig cells.
Collapse
|
31
|
Kim JH, Yang YR, Kwon KS, Kim N. Anti-Müllerian Hormone Negatively Regulates Osteoclast Differentiation by Suppressing the Receptor Activator of Nuclear Factor-κB Ligand Pathway. J Bone Metab 2021; 28:223-230. [PMID: 34520656 PMCID: PMC8441534 DOI: 10.11005/jbm.2021.28.3.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Multiple members of the transforming growth factor-β (TGF-β) superfamily have well-established roles in bone homeostasis. Anti-Müllerian hormone (AMH) is a member of TGF-β superfamily of glycoproteins that is responsible for the regression of fetal Müllerian ducts and the transcription inhibition of gonadal steroidogenic enzymes. However, the involvement of AMH in bone remodeling is unknown. Therefore, we investigated whether AMH has an effect on bone cells as other TGF-β superfamily members do. Methods To identify the roles of AMH in bone cells, we administered AMH during osteoblast and osteoclast differentiation, cultured the cells, and then stained the cultured cells with Alizarin red and tartrate-resistant acid phosphatase, respectively. We analyzed the expression of osteoblast- or osteoclast-related genes using real-time polymerase chain reaction and western blot. Results AMH does not affect bone morphogenetic protein 2-mediated osteoblast differentiation but inhibits receptor activator of nuclear factor-κB (NF-κB) ligand-induced osteoclast differentiation. The inhibitory effect of AMH on osteoclast differentiation is mediated by IκB-NF-κB signaling. Conclusions AMH negatively regulates osteoclast differentiation without affecting osteoblast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
32
|
Rodgers RJ, Abbott JA, Walters KA, Ledger WL. Translational Physiology of Anti-Müllerian Hormone: Clinical Applications in Female Fertility Preservation and Cancer Treatment. Front Endocrinol (Lausanne) 2021; 12:689532. [PMID: 34557157 PMCID: PMC8454407 DOI: 10.3389/fendo.2021.689532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background Whilst the ability of AMH to induce the regression of the Müllerian ducts in the male fetus is well appreciated, AMH has additional biological actions in relation to steroid biosynthesis and ovarian follicle dynamics. An understanding of the physiology of AMH illuminates the potential therapeutic utility of AMH to protect the ovarian reserve during chemotherapy and in the treatment of female malignancies. The translation of the biological actions of AMH into clinical applications is an emerging focus of research, with promising preliminary results. Objective and Rationale Studies indicate AMH restrains primordial follicle development, thus administration of AMH during chemotherapy may protect the ovarian reserve by preventing the mass activation of primordial follicles. As AMH induces regression of tissues expressing the AMH receptor (AMHRII), administration of AMH may inhibit growth of malignancies expressing AMHR II. This review evaluates the biological actions of AMH in females and appraises human clinical applications. Search Methods A comprehensive search of the Medline and EMBASE databases seeking articles related to the physiological functions and therapeutic applications of AMH was conducted in July 2021. The search was limited to studies published in English. Outcomes AMH regulates primordial follicle recruitment and moderates sex steroid production through the inhibition of transcription of enzymes in the steroid biosynthetic pathway, primarily aromatase and 17α-hydroxylase/17,20-lyase. Preliminary data indicates that administration of AMH to mice during chemotherapy conveys a degree of protection to the ovarian reserve. Administration of AMH at the time of ovarian tissue grafting has the potential to restrain uncontrolled primordial follicle growth during revascularization. Numerous studies demonstrate AMH induced regression of AMHR II expressing malignancies. As this action occurs via a different mechanism to traditional chemotherapeutic agents, AMH has the capacity to inhibit proliferation of chemo-resistant ovarian cancer cells and cancer stem cells. Wider Implications To date, AMH has not been administered to humans. Data identified in this review suggests administration of AMH would be safe and well tolerated. Administration of AMH during chemotherapy may provide a synchronistic benefit to women with an AMHR II expressing malignancy, protecting the ovarian reserve whilst the cancer is treated by dual mechanisms.
Collapse
Affiliation(s)
- Rachael Jean Rodgers
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
33
|
Abdulateef SM, Majid AA, Al-Bayer MA, Shawkat SS, Tatar A, Mohammed TT, Abdulateef FM, Al-Ani MQ. Effect of aromatase inhibitors on sex differentiation and embryonic development in chicks. Vet Med Sci 2021; 7:2362-2373. [PMID: 34472216 PMCID: PMC8604131 DOI: 10.1002/vms3.623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Sexual differentiation can occur after exposure to aromatase into the left gonad at 6.5 days of incubation. Aromatase inhibitors work by inhibiting the action of the aromatase, which converts androgens into estrogens by a process called aromatization. Objectives The aim of this study was to investigate the effect of in ovo exposure to the aromatase inhibitor from tomato and garlic extract on sexual differentiation and embryonic development in chicken embryos. Methods Three hundred eggs divided into five groups: Control 1 (CO; no injection); control 2 distilled water, DW; 0.1 ml/egg); garlic extract (GAR; 0.1 mg/egg); tomato extract (TOM; 0.1 mg/egg); and garlic and tomato extract mixed (ATM, 0.1 ml/egg). The solution was prepared and injected into the albumin from the thin end of the eggs on day five by using a 1 ml syringe with a 23‐gauge needle. The embryonic test (embryo/egg weight) conducted at 7, 14 and 17 days of incubation. After hatching, feather sexing conducted to determine the initial male. Chicks sex was later confirmed on day 42 by an optical microscope lens. Results The results revealed that there was a significant increase (p < 0.01) in embryonic growth traits in all experimental treatments as compared to control treatments. There was a significant increase (p < 0.01) in the percentage of hatchability for all experimental treatments compared to control treatments and a significant increase (p < 0.01) in chick quality including one‐day‐old chick length and body weight. All experimental treatments showed a significant increase (p < 0.01) in the male‐to‐female ratio compared to control treatments. Conclusions The effect of in ovo exposure to aromatase inhibitors stimulated female‐to‐male sex reversal and improved embryonic development.
Collapse
Affiliation(s)
- Salwan M Abdulateef
- Animal Production, College of Agriculture, University of Anbar, Ramadi, al-Anbar, Iraq
| | - Ahmad A Majid
- Animal Production, College of Agriculture, University of Anbar, Ramadi, al-Anbar, Iraq
| | - Mohammed A Al-Bayer
- Animal Production, College of Agriculture, University of Anbar, Ramadi, al-Anbar, Iraq
| | - Srwd S Shawkat
- Animal Sciences, College of Agricultural Sciences, University of Sulaimani, Sulaimani, Kurdistan, Iraq
| | - Ahmad Tatar
- Animal Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
| | - Thafer T Mohammed
- Animal Production, College of Agriculture, University of Anbar, Ramadi, al-Anbar, Iraq
| | - Firas M Abdulateef
- Ministry of Agriculture - Directorate of Anbar Agriculture, Ramadi, Iraq
| | - Mohammed Q Al-Ani
- Department of Biology, College of Science, University of Anbar, Ramadi, al-Anbar, Iraq
| |
Collapse
|
34
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
35
|
Martínez-Hernández J, Seco-Rovira V, Beltrán-Frutos E, Ferrer C, Serrano-Sánchez MI, Pastor LM. Proliferation, apoptosis, and number of Sertoli cells in the Syrian hamster during recrudescence after exposure to short photoperiod†‡. Biol Reprod 2021; 102:588-597. [PMID: 31621831 DOI: 10.1093/biolre/ioz198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/17/2019] [Accepted: 10/07/2019] [Indexed: 11/14/2022] Open
Abstract
The Sertoli cell (Sc) has been described as a quiescent cell once the animal has reached sexual maturity. Syrian hamster is an animal that displays testicular regression due to short photoperiod, during which process germ cells and Sc are removed through apoptosis. The aim of this work was to investigate histochemically whether the spontaneous testicular recrudescence processes after exposure to a short photoperiod lead to an increase in Sc proliferative activity in order to restore the normal population. Three spontaneous recrudescence groups were established: initial (IR), advanced (AR), and total (TR) recrudescence, which were compared with animal undergoing the regression process (mild: MRg, strong: SRg, and total: TRg) and animals in long photoperiod (Controls). Histological sections were submitted to histochemical techniques for detecting apoptotic and proliferative Sc with bright-field and fluorescence microscopy. For each group, the proliferative Sc index (PScI) and apoptotic Sc index (AScI), and the total number of Sc were obtained. The results revealed the existence of Vimentin+/TUNEL+ as well as Vimentin+/PCNA+ cells. The PScI was significantly higher in TRg and IR than in the other groups. The AScI was only significantly higher in MRg and SRg with respect to the other groups. The total number of Sc increased among TRg, IR, and AR, reaching values similar to those of the Controls. In conclusion, the increase in Sc proliferation from final regression and recrudescence, accompanied by a similar rate of apoptosis to the Control group, is the cause of the restoration of the Sc population during spontaneous recrudescence.
Collapse
Affiliation(s)
- Jesús Martínez-Hernández
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Vicente Seco-Rovira
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Concepción Ferrer
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - María Isabel Serrano-Sánchez
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Luis Miguel Pastor
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| |
Collapse
|
36
|
Zhong X, Jin F, Huang C, Du M, Gao M, Wei X. DNA methylation of AMHRII and INSR gene is associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS). Technol Health Care 2021; 29:11-25. [PMID: 33682741 PMCID: PMC8150467 DOI: 10.3233/thc-218002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: Polycystic ovary syndrome (PCOS) is a common gynecologic endocrinopathy, characterized by menstrual disorders, ovulation disorders, polycystic ovary, hyperandrogen syndrome and insulin resistance. At present, the etiology and exact pathogenesis of PCOS are still unclear. Anti-Müllerian hormone is a local regulator secreted by ovarian granulosa cells, and participates in regulating the occurrence and development of PCOS. Insulin resistance is another important pathophysiological feature of PCOS. Although the expression of anti-müllerian hormone receptor (AMHR) and insulin receptor (INSR) in PCOS have been previously reported, the DNA methylation of the genes have not been well characterized. OBJECTIVE: To study AMHR II/INSR and its role in gene methylation in Ovarian and endometrial pathology of PCOS subjects. METHODS: We recruited seventy-five women with PCOS as cases and twenty healthy women as controls, using immunohistochemical method, study localization, distribution and expression of MHRII/INSR in ovary and endometrium and then discover the correlation of AMHRII/INSR gene methylation. RESULTS: Different clinical features in PCOS group AMHRII gene methylation level and insulin resistance relations have significant differences (r= 0.532, P= 0.000); INSR gene methylation level and insulin resistance relations have significant differences (r= 0.281, P= 0.03). CONCLUSIONS: The analysis of DNA methylation suggested that methylation of AMHRII and INSR genes was associated with basic clinical characteristics and insulin resistance of PCOS. These results provide evidence for AMHRII and INSR genes, and their methylation levels are intimately associated with the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Xingming Zhong
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, Guangdong 510600, China.,Family Planning Research Institute of Guangdong, Guangzhou, Guangdong 510600, China.,Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong 510632, China
| | - Fenpin Jin
- Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong 510632, China
| | - Chuican Huang
- Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong 510632, China
| | - Mengxuan Du
- Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong 510632, China
| | - Mengge Gao
- Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiangcai Wei
- Department of Epidemiology, Medical School of Jinan University, Guangzhou, Guangdong 510632, China.,Women and Children's Hospital of Guangdong Province, Guangzhou, Guangdong 511400, China
| |
Collapse
|
37
|
Kumaresan A, Elango K, Datta TK, Morrell JM. Cellular and Molecular Insights Into the Etiology of Subfertility/Infertility in Crossbred Bulls ( Bos taurus × Bos indicus): A Review. Front Cell Dev Biol 2021; 9:696637. [PMID: 34307374 PMCID: PMC8297507 DOI: 10.3389/fcell.2021.696637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Crossbreeding of indigenous cattle (Bos indicus) with improved (Bos taurus) breeds gained momentum and economic relevance in several countries to increase milk production. While production performance of the crossbred offspring is high due to hybrid vigor, they suffer from a high incidence of reproductive problems. Specifically, the crossbred males suffer from serious forms of subfertility/infertility, which can have a significant effect because semen from a single male is used to breed several thousand females. During the last two decades, attempts have been made to understand the probable reasons for infertility in crossbred bulls. Published evidence indicates that testicular cytology indices, hormonal concentrations, sperm phenotypic characteristics and seminal plasma composition were altered in crossbred compared to purebred males. A few recent studies compared crossbred bull semen with purebred bull semen using genomics, transcriptomics, proteomics and metabolomics; molecules potentially associated with subfertility/infertility in crossbred bulls were identified. Nevertheless, the precise reason behind the poor quality of semen and high incidence of sub-fertility/infertility in crossbred bulls are not yet well defined. To identify the underlying etiology for infertility in crossbred bulls, a thorough understanding of the magnitude of the problem and an overview of the prior art is needed; however, such systematically reviewed information is not available. Therefore, the primary focus of this review is to compile and analyze earlier findings on crossbred bull fertility/infertility. In addition, the differences between purebred and crossbred males in terms of testicular composition, sperm phenotypic characteristics, molecular composition, environmental influence and other details are described; future prospects for research on crossbred males are also outlined.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| | - Jane M Morrell
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
38
|
Abstract
INTRODUCTION Sertoli cells play central roles in the development of testis formation in fetuses and the initiation and maintenance of spermatogenesis in puberty and adulthood, and disorders of Sertoli cell proliferation and/or functional maturation can cause male reproductive disorders at various life stages. It's well documented that various genes are either overexpressed or absent in Sertoli cells during the conversion of an immature, proliferating Sertoli cell to a mature, non-proliferating Sertoli cell, which are considered as Sertoli cell stage-specific markers. Thus, it is paramount to choose an appropriate Sertoli cell marker that will be used not only to identify the developmental, proliferative, and maturation of Sertoli cell status in the testis during the fetal period, prepuberty, puberty, or in the adult, but also to diagnose the mechanisms underlying spermatogenic dysfunction. AREAS COVERED In this review, we principally enumerated 5 categories of testicular Sertoli cell markers - including immature Sertoli cell markers, mature Sertoli cell markers, immature/mature Sertoli cell markers, Sertoli cell functional markers, and others. EXPERT OPINION By delineating the characteristics and applications of more than 20 Sertoli cell markers, this review provided novel Sertoli cell markers for the more accurate diagnosis and mechanistic evaluation of male reproductive disorders.
Collapse
Affiliation(s)
- Xu You
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| | - Qian Chen
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China.,The Second People's Hospital of Yichang, China Three Gorges University, Yichang China
| | - Ding Yuan
- College of Medicine, China Three Gorges University, Yichang, China
| | - Changcheng Zhang
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| | - Haixia Zhao
- College of Medicine, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang China
| |
Collapse
|
39
|
Svanholm S, Säfholm M, Brande-Lavridsen N, Larsson E, Berg C. Developmental reproductive toxicity and endocrine activity of propiconazole in the Xenopus tropicalis model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141940. [PMID: 32890874 DOI: 10.1016/j.scitotenv.2020.141940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants and especially endocrine disrupting chemicals (EDCs) are implicated as one of the drivers of the amphibian declines. To advance the understanding of the risks of EDCs to amphibians, methods to determine endocrine-linked adverse effects are needed. The aims were to 1) develop a partial life-cycle assay with the model frog Xenopus tropicalis to determine endocrine perturbation and adverse developmental effects, and 2) determine effects of propiconazole in this assay. Propiconazole is a pesticide with multiple endocrine modes of action in vitro. Its potential endocrine activity and adverse effects in amphibians remain to be elucidated. Tadpoles were exposed to 0, 33 and 384 μg propiconazole/L during critical developmental windows until completed metamorphosis. At metamorphosis, a sub-sample of animals was analysed for endpoints for disruption of estrogen/androgen (sex ratio, brain aromatase activity) and thyroid pathways (time to metamorphosis). The remaining individuals were kept unexposed for 2 months post-metamorphosis to analyze effects on sexual development including gonadal and Müllerian duct maturity and gametogenesis. At metamorphosis, brain aromatase activity was significantly increased in the high-dose group compared to control. In both propiconazole groups, an increased proportion of individuals reached metamorphosis faster than the mean time for controls, suggesting a stimulatory effect on the thyroid system. At 2 months post-metamorphosis, testis size, sperm and Müllerian duct maturity were reduced in the low-dose males, and the liver somatic index in males was increased in both propiconazole groups, compared with controls. In conclusion, our results show that propiconazole exposure caused endocrine perturbations and subsequent hepatic and reproductive effects evident at puberty, indicating persistent disruption of metabolism and male reproductive function. Our findings advance the development of methodology to determine endocrine and adverse effects of EDCs. Moreover, they increase the understanding of endocrine perturbations and consequent risk of adverse effects of azoles in amphibians.
Collapse
Affiliation(s)
- Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden.
| | - Moa Säfholm
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden
| | - Nanna Brande-Lavridsen
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden
| | - Erika Larsson
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Centre for Reproductive Biology in Uppsala (CRU), Sweden
| |
Collapse
|
40
|
D Occhio MJ, Campanile G, Baruselli PS. Transforming growth factor-β superfamily and interferon-τ in ovarian function and embryo development in female cattle: review of biology and application. Reprod Fertil Dev 2021; 32:539-552. [PMID: 32024582 DOI: 10.1071/rd19123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Survival of the embryo and establishment of a pregnancy is a critical period in the reproductive function of female cattle. This review examines how the transforming growth factor-β (TGFB) superfamily (i.e. bone morphogenetic protein (BMP) 15, growth differentiation factor (GDF) 9, anti-Müllerian hormone (AMH)) and interferon-τ (IFNT) affect ovarian function and embryo development. The oocyte in a primary follicle secretes BMP15 and GDF9, which, together, organise the surrounding granulosa and theca cells into the oocyte-cumulus-follicle complex. At the same time, the granulosa secretes AMH, which affects the oocyte. This autocrine-paracrine dialogue between the oocyte and somatic cells continues throughout follicle development and is fundamental in establishing the fertilisation potential and embryo developmental competency of oocytes. The early bovine embryo secretes IFNT, which acts at the uterine endometrium, corpus luteum and blood leucocytes. IFNT is involved in the maternal recognition of pregnancy and immunomodulation to prevent rejection of the embryo, and supports progesterone secretion. Manipulation of BMP15, GDF9, AMH and IFNT in both invivo and invitro studies has confirmed their importance in reproductive function in female cattle. This review makes the case that a deeper understanding of the biology of BMP15, GDF9, AMH and IFNT will lead to new strategies to increase embryo survival and improve fertility in cattle. The enhancement of oocyte quality, early embryo development and implantation is considered necessary for the next step change in the efficiency of natural and assisted reproduction in cattle.
Collapse
Affiliation(s)
- Michael J D Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 410 Werombi Road, Camden, NSW 2006, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, V. F. Delpino, 1 80137 Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Zootecnia, University of Sao Paulo, Sao Paulo, CEP 05508-270 Brazil; and Corresponding author.
| |
Collapse
|
41
|
Interactions of Cortisol and Prolactin with Other Selected Menstrual Cycle Hormones Affecting the Chances of Conception in Infertile Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207537. [PMID: 33081268 PMCID: PMC7588978 DOI: 10.3390/ijerph17207537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 01/14/2023]
Abstract
One of the major problems of success in infertility treatment could depend on the understanding how the potential factors may affect the conception. The aim of this study was to evaluate present understanding of such factors or hormonal causes that may induce infertility. We studied the interactions between the two menstrual cycle hormones i.e., cortisol (COR) and prolactin (PRL), along with the ultrasonographic ovulation parameters in a group of N = 205 women with diagnosed infertility. The control group consisted of N = 100 women with confirmed fertility. In both groups, follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), thyroid stimulating hormone (TSH), PRL, COR were examined on the third day of the cycle, and estradiol (E2), progesterone (P), and COR were examined during ovulation and 7-days afterwards. In the infertile group, higher levels of PRL and COR were observed than that of in the control group. Cortisol levels at all phases of the menstrual cycle and PRL negatively correlated with E2 secretion during and after ovulation, thus contributed to the attenuation of the ovulatory LH surge. Infertile women who conceived presented with higher levels of E2 during and after ovulation, higher P after ovulation, and thicker endometrium than that of the women who failed to conceive. In conclusion, elevated secretion of COR and PRL in infertile women impairs the menstrual cycle by decreasing the pre-ovulatory LH peak and E2 and postovulatory E2 levels that affect the endometrial growth, and consequently reduce the chances to conceive.
Collapse
|
42
|
Dilaver N, Pellatt L, Jameson E, Ogunjimi M, Bano G, Homburg R, D Mason H, Rice S. The regulation and signalling of anti-Müllerian hormone in human granulosa cells: relevance to polycystic ovary syndrome. Hum Reprod 2020; 34:2467-2479. [PMID: 31735954 DOI: 10.1093/humrep/dez214] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 09/02/2019] [Indexed: 01/14/2023] Open
Abstract
STUDY QUESTION What prevents the fall in anti-Müllerian hormone (AMH) levels in polycystic ovary syndrome (PCOS) and what are the consequences of this for follicle progression in these ovaries? SUMMARY ANSWER Exposure of granulosa cells (GCs) to high levels of androgens, equivalent to that found in PCOS, prevented the fall in AMH and was associated with dysregulated AMH-SMAD signalling leading to stalled follicle progression in PCOS. WHAT IS KNOWN ALREADY In normal ovaries, AMH exerts an inhibitory role on antral follicle development and a fall in AMH levels is a prerequisite for ovulation. Levels of AMH are high in PCOS, contributing to the dysregulated follicle growth that is a common cause of anovulatory infertility in these women. STUDY DESIGN, SIZE, DURATION Human KGN-GC (the cell line that corresponds to immature GC from smaller antral follicles (AF)) were cultured with a range of doses of various androgens to determine the effects on AMH production. KGN-GC were also treated with PHTPP (an oestrogen receptor β (ERβ) antagonist) to examine the relationship between AMH expression and the ratio of ERα:ERβ. The differential dose-related effect of AMH on gene expression and SMAD signalling was investigated in human granulosa-luteal cells (hGLC) from women with normal ovaries, with polycystic ovarian morphology (PCOM) and with PCOS. KGN-GC were also cultured for a prolonged period with AMH at different doses to assess the effect on cell proliferation and viability. PARTICIPANTS/MATERIALS, SETTING, METHODS AMH protein production by cells exposed to androgens was measured by ELISA. The effect of PHTPP on the mRNA expression levels of AMH, ERα and ERβ was assessed by real-time quantitative PCR (qPCR). The influence of AMH on the relative mRNA expression levels of aromatase, AMH and its receptor AMHRII, and the FSH and LH receptor (FSHR and LHR) in control, PCOM and PCOS hGLCs was quantified by qPCR. Western blotting was used to assess changes in levels of SMAD proteins (pSMAD-1/5/8; SMAD-4; SMAD-6 and SMAD-7) after exposure of hGLCs from healthy women and women with PCOS to AMH. The ApoTox-Glo Triplex assay was used to evaluate the effect of AMH on cell viability, cytotoxicity and apoptosis. MAIN RESULTS AND THE ROLE OF CHANCE Testosterone reduced AMH protein secreted from KGN-GC at 10-9-10-7 M (P < 0.05; P < 0.005, multiple uncorrected comparisons Fishers least squares difference), but at equivalent hyperandrogenemic levels no change was seen in AMH levels. 5α-DHT produced a significant dose-related increase in AMH protein secreted into the media (P = 0.022, ANOVA). Increasing the mRNA ratio of ERα:ERβ produced a corresponding increase in AMH mRNA expression (P = 0.015, two-way ANOVA). AMH increased mRNA levels of aromatase (P < 0.05, one-way ANOVA) and FSHR (P < 0.0001, one-way ANOVA) in hGLCs from women with PCOM, but not from normal cells or PCOS (normal n = 7, PCOM n = 5, PCOS n = 4). In contrast to hGLCs from ovulatory ovaries, in PCOS AMH reduced protein levels (cell content) of stimulatory pSMAD-1/5/8 and SMAD-4 but increased inhibitory SMAD-6 and -7 (P < 0.05, normal n = 6, PCOS n = 3). AMH at 20 and 50 ng/ml decreased KGN-GC cell proliferation but not viability after 8 days of treatment (P < 0.005, two-way ANOVA). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Luteinised GC from women undergoing IVF have a relatively low expression of AMH/AMHRII but advantageously continue to display responses inherent to the ovarian morphology from which they are collected. To compensate, we also utilised the KGN cell line which has been characterised to be at a developmental stage close to that of immature GC. The lack of flutamide influence on testosterone effects is not in itself sufficient evidence to conclude that the effect on AMH is mediated via conversion to oestrogen, and the effect of aromatase inhibitors or oestrogen-specific inhibitors should be tested. The effect of flutamide was tested on testosterone but not DHT. WIDER IMPLICATIONS OF THE FINDINGS Normal folliculogenesis and ovulation are dependent on the timely reduction in AMH production from GC at the time of follicle selection. Our findings reveal for the first time that theca-derived androgens may play a role in this model but that this inhibitory action is lost at levels of androgens equivalent to those seen in PCOS. The AMH decline may either be a direct effect of androgens or an indirect one via conversion to oestradiol and acting through the upregulation of ERα, which is known to stimulate the AMH promoter. Interestingly, the ability of GCs to respond to this continually elevated AMH level appears to be reduced in cells from women with PCOS due to an adaptive alteration in the SMAD signalling pathway and lower expression of AMHRII, indicating a form of 'AMH resistance'. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Thomas Addison Scholarship, St Georges Hospital Trust. The authors report no conflict of interest in this work and have nothing to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Nafi Dilaver
- Cell Biology and Genetics Research Centre, St George's University of London, London SW17 0RE, UK.,Academic Foundation Programme, Imperial College London, Charing Cross Hospital, London W6 8RF, UK
| | - Laura Pellatt
- Cell Biology and Genetics Research Centre, St George's University of London, London SW17 0RE, UK.,Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| | - Ella Jameson
- Biomedical Science Undergraduate Programme, St George's University of London, London SW17 0RE, UK
| | - Michael Ogunjimi
- Biomedical Science Undergraduate Programme, St George's University of London, London SW17 0RE, UK
| | - Gul Bano
- Thomas Addison Endocrine Unit, St George's Hospital, Cranmer Terrace, London SW17 0RE, UK
| | - Roy Homburg
- Homerton Fertility Unit, Homerton University Hospital, Homerton Row, London, UK
| | - Helen D Mason
- Cell Biology and Genetics Research Centre, St George's University of London, London SW17 0RE, UK
| | - Suman Rice
- Cell Biology and Genetics Research Centre, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
43
|
Detti L, Abuzeid MI, Peregrin-Alvarez I, Christiansen ME, Malekzadeh P, Sledge J, Saed GM. Recombinant Anti-Müllerian Hormone (rAMH) for Stalling In Vitro Granulosa Cell Replication. Reprod Sci 2020; 27:1873-1878. [PMID: 32617880 DOI: 10.1007/s43032-020-00206-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/16/2020] [Indexed: 11/28/2022]
Abstract
To investigate whether recombinant AMH (rAMH) is able to decrease cellular proliferation/apoptosis in luteinized granulosa cells (GCs) through hormonal regulation, a primary culture of GCs was established from GCs obtained at time of oocyte retrieval from follicular fluid of 3 patients. Cells were seeded in well cell culture plates at a density of 100,000 cells/well in medium and treated with rAMH 20 ng/ml (rAMH group), or phosphate-buffered saline (PBS-control group), for 24 h. Total RNA was extracted from all cells, followed by cDNA synthesis and real-time RT-PCR to quantify the expression levels of AMH, AMH-R2, FSH-R, inhibin B, cell proliferation (Ki67), and apoptosis (Caspase 3). We used independent sample t test (SPSS v25) and a p < 0.05 significance. Cellular expressions of AMH, AMH-R2, FSH-R, and inhibin B were reduced greater than 50% in the rAMH group, compared with that of the the control group (p ≤ 0.005 for all). Ki67 and Caspase3 were also reduced greater than 30% in the rAMH group (p ≤ 0.001 for both). Our findings show a direct inhibitory effect of AMH on luteinized GCs' expression of the major regulatory hormones, in addition to a significant decrease in markers of cell proliferation and apoptosis. These results confirm the inhibitory effects of AMH on follicular development.
Collapse
Affiliation(s)
- Laura Detti
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA. .,Department of Obstetrics and Gynecology Subspecialties, Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | | - Irene Peregrin-Alvarez
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mary E Christiansen
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pouran Malekzadeh
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jennifer Sledge
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ghassan M Saed
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
44
|
Racoubian E, Aimagambetova G, Finan RR, Almawi WY. Age-dependent changes in anti-Müllerian hormone levels in Lebanese females: correlation with basal FSH and LH levels and LH/FSH ratio: a cross-sectional study. BMC Womens Health 2020; 20:134. [PMID: 32586307 PMCID: PMC7318543 DOI: 10.1186/s12905-020-00998-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background To investigate the age-dependent changes in circulating anti-Müllerian hormone (AMH) levels in healthy Arabic-speaking Lebanese women, and to correlate changes in serum AMH levels with serum FSH and LH values, and LH/FSH ratio. Methods Cross-sectional study, involving 1190 healthy females, age 17–54 years, with regular menses and both ovaries. Serum AMH levels (ng/ml) were measured by ELISA. Results There was an inverse proportion of AMH and subject’s age, which declined from median 6.71 (2.91) ng/ml in young subjects, to 0.68 (0.45) ng/ml in subjects older than 50 years. Average yearly decrease in median AMH levels was 0.27 ng/ml/year through age 35, but then diminished to 0.12 ng/ml/year afterwards. Receiver operating characteristic curve analysis demonstrated high sensitivity and specificity of age as determinant of AMH levels. In contrast to AMH, FSH levels increased progressively from 5.89 (0.11–62.10) ng/ml in young subjects, to 38.43 (3.99–88.30) ng/ml in subjects older than 50 years. On the other hand, age-dependent changes in LH/FSH ratio paralleled those of AMH. Linear regression modeling testing the independent effect of AMH on FSH and LH, adjusted for age, showed that AMH was significant predictor of FSH and LH/FSH ratio, but not LH. This did not contribute significantly to baseline LH and FSH prediction. Conclusions Circulating AMH levels are inversely related to age as also shown elsewhere, and are predictors of LH/FSH ratio and FSH but not LH levels in eumenorrheic females.
Collapse
Affiliation(s)
- Eddie Racoubian
- St. Marc Medical and Diagnostic Center, Ashrafieh, Beirut, Lebanon
| | | | - Ramzi R Finan
- Department of Obstetrics and Gynecology, Hôtel-Dieu de France, Beirut, Lebanon
| | - Wassim Y Almawi
- School of Medicine, Nazarbayev University, Nur-Sultan, Astana, Kazakhstan. .,Faculte' des Sciences de Tunis, Universite' de Tunis El Manar, Tunis, Tunisia. .,College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
45
|
Mazumder S, Swank V, Komar AA, Johnson JM, Tuohy VK. Immunotherapy of ovarian cancer with a monoclonal antibody specific for the extracellular domain of anti-Müllerian hormone receptor II. Oncotarget 2020; 11:1894-1910. [PMID: 32499873 PMCID: PMC7244012 DOI: 10.18632/oncotarget.27585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is the most prevalent and lethal form of ovarian cancer. The low five-year overall survival after EOC diagnosis indicates an urgent need for more effective ways to control this disease. Anti-Müllerian hormone receptor 2 (AMHR2) is an ovarian protein overexpressed in the majority of human EOCs. We have previously found that vaccination against the ovarian-specific extracellular domain of AMHR2 (AMHR2-ED) significantly inhibits growth of murine EOCs through an IgG-mediated mechanism that agonizes receptor signaling of a Bax/caspase-3 dependent proapoptotic cascade. To determine if a single monoclonal antibody (mAb) could inhibit growth of human EOC, we generated a panel of mAbs specific for recombinant human AMHR2-ED and characterized a candidate mAb for humanization and use in clinical trials. We found that our candidate 4D12G1 mAb is an IgG1 that shows high affinity antigen-specific binding to the 7-mer 20KTLGELL26 sequence of AMHR2-ED that facilitates induction of programmed cell death in EOC cells. Most importantly, the 4D12G1 mAb significantly inhibits growth of primary human EOCs in patient-derived xenografts (PDXs) by inducing direct apoptosis of EOC tumors. Our results support the view that a humanized 4D12G1 mAb may be a much needed and effective reagent for passive immunotherapy of human EOC.
Collapse
Affiliation(s)
- Suparna Mazumder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Valerie Swank
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anton A Komar
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Justin M Johnson
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Vincent K Tuohy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Cleveland, OH, USA.,Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
46
|
Kirschen GW, Wood LF, Semenyuk N. A Practical Approach to Congenital Urogenital Anomalies in Female Pediatric Patients. Pediatr Ann 2020; 49:e188-e195. [PMID: 32275764 DOI: 10.3928/19382359-20200323-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Congenital anomalies of the female reproductive tract are relatively common and can be both confusing to understand as well as challenging to diagnose and manage in a busy pediatric clinical practice. Here, we lay out some of the most common genitourinary tract anomalies in female pediatric patients. We highlight the key embryologic development, present case examples, and discuss appropriate testing, treatment, and counseling for patients and their families regarding congenital disorders of the vulva, vagina, uterus, ovaries, and associated pathology. The goal of this review is to demystify these conditions and provide a practical guide for the general pediatrician who is often at the frontline making the initial diagnosis and caring for these patients. [Pediatr Ann. 2020;49(4):e188-e195.].
Collapse
|
47
|
Loss of Cx43 in Murine Sertoli Cells Leads to Altered Prepubertal Sertoli Cell Maturation and Impairment of the Mitosis-Meiosis Switch. Cells 2020; 9:cells9030676. [PMID: 32164318 PMCID: PMC7140672 DOI: 10.3390/cells9030676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Male factor infertility is a problem in today’s society but many underlying causes are still unknown. The generation of a conditional Sertoli cell (SC)-specific connexin 43 (Cx43) knockout mouse line (SCCx43KO) has provided a translational model. Expression of the gap junction protein Cx43 between adjacent SCs as well as between SCs and germ cells (GCs) is known to be essential for the initiation and maintenance of spermatogenesis in different species and men. Adult SCCx43KO males show altered spermatogenesis and are infertile. Thus, the present study aims to identify molecular mechanisms leading to testicular alterations in prepubertal SCCx43KO mice. Transcriptome analysis of 8-, 10- and 12-day-old mice was performed by next-generation sequencing (NGS). Additionally, candidate genes were examined by qRT-PCR and immunohistochemistry. NGS revealed many significantly differentially expressed genes in the SCCx43KO mice. For example, GC-specific genes were mostly downregulated and found to be involved in meiosis and spermatogonial differentiation (e.g., Dmrtb1, Sohlh1). In contrast, SC-specific genes implicated in SC maturation and proliferation were mostly upregulated (e.g., Amh, Fshr). In conclusion, Cx43 in SCs appears to be required for normal progression of the first wave of spermatogenesis, especially for the mitosis-meiosis switch, and also for the regulation of prepubertal SC maturation.
Collapse
|
48
|
Zhou Y, Sun W, Cai H, Bao H, Zhang Y, Qian G, Ge C. The Role of Anti-Müllerian Hormone in Testis Differentiation Reveals the Significance of the TGF-β Pathway in Reptilian Sex Determination. Genetics 2019; 213:1317-1327. [PMID: 31645361 PMCID: PMC6893390 DOI: 10.1534/genetics.119.302527] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
Anti-Müllerian hormone (Amh, or Müllerian-inhibiting substance, Mis), a member of TGF-β superfamily, has been well documented in some vertebrates as initiator or key regulator in sexual development, and particularly in fish. However, its functional role has not yet been identified in reptiles. Here, we characterized the Amh gene in the Chinese soft-shelled turtle Pelodiscus sinensis, a typical reptilian species exhibiting ZZ/ZW sex chromosomes. The messenger RNA of Amh was initially expressed in male embryonic gonads by stage 15, preceding gonadal sex differentiation, and exhibited a male-specific expression pattern throughout embryogenesis. Moreover, Amh was rapidly upregulated during female-to-male sex reversal induced by aromatase inhibitor letrozole. Most importantly, Amh loss of function by RNA interference led to complete feminization of genetic male (ZZ) gonads, suppression of the testicular marker Sox9, and upregulation of the ovarian regulator Cyp19a1 Conversely, overexpression of Amh in ZW embryos resulted in female-to-male sex reversal, characterized by the formation of a testis structure, ectopic activation of Sox9, and a remarkable decline in Cyp19a1 Collectively, these findings provide the first solid evidence that Amh is both necessary and sufficient to drive testicular development in a reptilian species, P. sinensis, highlighting the significance of the TGF-β pathway in reptilian sex determination.
Collapse
Affiliation(s)
- Yingjie Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Han Cai
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Haisheng Bao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yu Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
49
|
The role of anti-Müllerian hormone (AMH) in ovarian disease and infertility. J Assist Reprod Genet 2019; 37:89-100. [PMID: 31755000 DOI: 10.1007/s10815-019-01622-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In this review, the current knowledge on anti-Müllerian hormone (AMH) is presented, concerning its value in disease and IVF treatment as well as in terms of its prospective clinical use. METHODS AMH is becoming the most appropriate biomarker for the ovarian reserve measured predominantly for assisted reproductive treatment (ART) patients in comparison to the currently used antral follicle count (AFC). However, this is not the only way AMH measurements can be used in the clinics. Because of this, we reviewed the current literature for the use of AMH in current or prospective clinical practice. RESULTS We found that AMH has a high predictive value in assessing the ovarian reserve, which can lead to a better efficiency of in vitro fertilization (IVF) procedures. It has a high potential to be developed as a staple diagnostic marker of ovarian disease, especially for ovarian cancers and even as a possible treatment tool for certain cancers. It could potentially be used to prevent oocyte loss due to chemo- or radiotherapy. CONCLUSION AMH is an important hormone especially in women reproductive organs and is currently seen as the best biomarker for a multitude of uses in reproductive medicine. Currently, the biggest issue lies in the lack of international standardization of AMH. However, it is encouraging to see that there is interest in AMH in the form of research on its action and use in reproductive medicine.
Collapse
|
50
|
Lemcke RA, Stephens CS, Hildebrandt KA, Johnson PA. Anti-Müllerian hormone type II receptor in avian follicle development. Biol Reprod 2019; 99:1227-1234. [PMID: 29931109 DOI: 10.1093/biolre/ioy140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Anti-Müllerian hormone (AMH) helps maintain the ovarian reserve by regulating primordial follicle activation and follicular selection in mammals, although its role within the avian ovary is unknown. In mammals, AMH is primarily produced in granulosa cells of preantral and early antral follicles. Similarly, in the hen, the granulosa cells of smaller follicles are the predominant source of AMH. The importance of AMH in mammalian ovarian dynamics suggests the protein and its specific Type II receptor, AMHRII, may have conserved functions in the hen. AMHRII mRNA expression is highest (P < 0.01) in small follicles of the hen and decreases as follicle size increases. Similarly, expression of AMHRII and AMH is highest in granulosa cells from small follicles as compared to larger follicles. Dissection of 3-5 mm follicles into ooplasm and granulosa components shows that AMHRII mRNA levels are greater in ooplasm than granulosa cells. Furthermore, immunohistochemistry also revealed AMHRII staining in the oocyte and granulosa cells. AMH expression in mammals is elevated during periods of reproductive dormancy, possibly protecting the ovarian reserve. AMHRII and AMH mRNA were significantly higher (P < 0.05) in nonlaying ovaries of broiler hens. In molting layer hens, AMHRII mRNA was significantly greater (P < 0.05) compared to nonmolting hen ovaries. These results suggest that AMH may have a direct effect on the oocyte and, thereby, contribute to bidirectional communication between oocyte and granulosa cells. Enhanced expression of AMHRII and AMH during reproductive quiescence supports a potential role of AMH in protecting the ovarian reserve in hens.
Collapse
Affiliation(s)
- R A Lemcke
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - C S Stephens
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - K A Hildebrandt
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - P A Johnson
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|