1
|
Shakeri Abroudi A, Azizi H, Djamali M, Qorbanee A, Skutella T. Integration of Microarray and Single-Cell RNA-Seq Data and Machine Learning Allows the Identification of Key Histone Modification Gene Changes in Spermatogonial Stem Cells. BIOLOGY 2025; 14:387. [PMID: 40282252 PMCID: PMC12024924 DOI: 10.3390/biology14040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Histone modifications play a critical role in regulating gene expression and maintaining the functionality of spermatogonial stem cells (SSCs), which are essential for male fertility and spermatogenesis. In this study, we integrated microarray and single-cell RNA-sequencing (scRNA-seq) data to identify key histone modification gene changes associated with SSC function and aging. Through differential expression analysis, we identified 2509 differentially expressed genes (DEGs) in SSCs compared to fibroblasts. Among these, genes involved in histone modification, such as KDM5B, SCML2, SIN3A, and ASXL3, were highlighted for their significant roles in chromatin remodeling and gene regulation. Protein-protein interaction (PPI) networks and gene ontology (GO) enrichment analysis revealed critical biological processes such as chromatin organization, histone demethylation, and chromosome structure maintenance. Weighted gene co-expression network analysis (WGCNA) further revealed three key modules of co-expressed genes related to spermatogonial aging. Additionally, ligand-receptor interaction scoring based on tumor microenvironment analysis suggested potential signaling pathways that could influence the stemness and differentiation of SSCs. Our findings provide new insights into the molecular mechanisms underlying SSC aging, highlighting histone modification genes as potential therapeutic targets for preserving male fertility and improving SSC-culturing techniques. This study advances our understanding of histone modification in SSC biology and will serve as a valuable resource for future investigations into male fertility preservation.
Collapse
Affiliation(s)
- Ali Shakeri Abroudi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1936893813, Iran;
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol 4615664616, Iran
| | - Melika Djamali
- Department of Biology, Faculty of Science, Tehran University, Tehran 1417614411, Iran;
| | - Ali Qorbanee
- Department of Surgery, Faculty of General of Medicine, Koya University, Koya KOY45, Kurdistan Region—F.R., Iraq;
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany;
| |
Collapse
|
2
|
Singh AK, Chatterjee S, Singh A, Bhattacharjee R. Diet in Thyroid Disorders: A Survey among Clinicians and a Review of the Current Perspective. Indian J Endocrinol Metab 2024; 28:378-384. [PMID: 39371648 PMCID: PMC11451952 DOI: 10.4103/ijem.ijem_68_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 10/08/2024] Open
Abstract
Physicians and endocrinologists commonly face various questions related to dietary interventions during clinical encounters with their patients with thyroid disorders. Indeed, both patients and treating physicians have various misconceptions regarding thyroid-specific diets, possibly because of misinformation circulated in lay media or grey literature and the misinterpretation of contradictory scientific data, respectively. In this review, we attempted to answer some frequently asked questions by the patients in the backdrop of contraindicatory perceptions of physicians observed in our survey. Additionally, we tried to put a perspective on dietary factors related to thyroid disorders through the available scientific evidence to help make an informed decision-making.
Collapse
Affiliation(s)
- Awadhesh Kumar Singh
- Department of Diabetes and Endocrinology, G. D. Hospital and Diabetes Institute, Kolkata, West Bengal, India
- Department of Diabetes and Endocrinology, Sun Valley Hospital and Diabetes Research Center, Guwahati, Assam, India
- Department of Diabetes and Endocrinology, Horizon Life Line Multispecialty Hospital, Kalyani, West Bengal, India
| | - Subhankar Chatterjee
- Department of Endocrinology and Metabolism, Medical College and Hospital, Kalyani, West Bengal, India
| | - Akriti Singh
- Department of Medicine, Jawaharlal Nehru Medical College and Hospital, Kalyani, West Bengal, India
| | - Rana Bhattacharjee
- Department of Endocrinology and Metabolism, Medical College and Hospital, Kalyani, West Bengal, India
| |
Collapse
|
3
|
Wei Z, Wang K, Hui Y, Yan H, Zhu H, Qu L, Pan C, Chen H, Lan X. Detection of insertion/deletions (indels) of the <i>ATBF1</i> gene and their effects on growth-related traits in three indigenous goat breeds. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-311-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The AT motif-binding factor (ATBF1), also known as zinc finger homeobox 3
(ZFXH3), is necessary for activating the POU1F1 gene; thus,
the ATBF1 gene greatly affects the grow traits in animals. The
objective of this work was to explore novel indel (insertion/deletion)
variations and their associations with growth traits in three native Chinese
goat breeds. Two indels within the ATBF1 gene were found in the
Shaanbei white cashmere goat (SWCG; n=581), the Guanzhong dairy goat
(GZDG; n=334) and the Hainan black goat (HNBG; n=270) for the first time
using 12 pairs of primers. Association analysis revealed that the P1-12-bp
indel was consistently correlated with the body height of the three breeds,
and individuals with ID (insertion/deletion) and
DD (deletion/deletion) genotypes had a higher body weight than the
II (insertion/insertion) genotype (P=0.036); the P11-6-bp indel
was consistently correlated with chest circumference and hip width of the
three breeds. Moreover, these two loci were associated with other several
growth-related traits in different breeds. Hence, these findings indicated
that the goat ATBF1 gene had marked effects on growth traits and the
growth-trait-related loci, which would contribute to improving the
growth-related traits of local breeds in the goat industry by implementing
marker-assisted selection (MAS).
Collapse
|
4
|
Llorens MC, Lorenzatti G, Cavallo NL, Vaglienti MV, Perrone AP, Carenbauer AL, Darling DS, Cabanillas AM. Phosphorylation Regulates Functions of ZEB1 Transcription Factor. J Cell Physiol 2016; 231:2205-17. [PMID: 26868487 DOI: 10.1002/jcp.25338] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/09/2016] [Indexed: 01/02/2023]
Abstract
ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Candelaria Llorens
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Guadalupe Lorenzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Natalia L Cavallo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Maria V Vaglienti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Ana P Perrone
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Anne L Carenbauer
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Kentucky
- Center for Genetics and Molecular Medicine, University of Louisville, Kentucky
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Kentucky
- Center for Genetics and Molecular Medicine, University of Louisville, Kentucky
| | - Ana M Cabanillas
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
5
|
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2015; 90:1-37. [DOI: 10.1007/s00204-015-1579-5] [Citation(s) in RCA: 610] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
|
6
|
Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol 2011; 86:521-34. [PMID: 22071549 DOI: 10.1007/s00204-011-0775-1] [Citation(s) in RCA: 569] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/26/2011] [Indexed: 02/07/2023]
Abstract
The importance of micronutrients in health and nutrition is undisputable, and among them, zinc is an essential element whose significance to health is increasingly appreciated and whose deficiency may play an important role in the appearance of diseases. Zinc is one of the most important trace elements in the organism, with three major biological roles, as catalyst, structural, and regulatory ion. Zinc-binding motifs are found in many proteins encoded by the human genome physiologically, and free zinc is mainly regulated at the single-cell level. Zinc has critical effect in homeostasis, in immune function, in oxidative stress, in apoptosis, and in aging, and significant disorders of great public health interest are associated with zinc deficiency. In many chronic diseases, including atherosclerosis, several malignancies, neurological disorders, autoimmune diseases, aging, age-related degenerative diseases, and Wilson's disease, the concurrent zinc deficiency may complicate the clinical features, affect adversely immunological status, increase oxidative stress, and lead to the generation of inflammatory cytokines. In these diseases, oxidative stress and chronic inflammation may play important causative roles. It is therefore important that status of zinc is assessed in any case and zinc deficiency is corrected, since the unique properties of zinc may have significant therapeutic benefits in these diseases. In the present paper, we review the zinc as a multipurpose trace element, its biological role in homeostasis, proliferation and apoptosis and its role in immunity and in chronic diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases.
Collapse
Affiliation(s)
- Christos T Chasapis
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
7
|
Sybirna K, Petryk N, Zhou YF, Sibirny A, Bolotin-Fukuhara M. A novel Hansenula polymorpha transcriptional factor HpHAP4-B, able to functionally replace the S. cerevisiae HAP4 gene, contains an additional bZip motif. Yeast 2010; 27:941-54. [DOI: 10.1002/yea.1802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
8
|
Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem 2008; 318:89-99. [PMID: 18622689 DOI: 10.1007/s11010-008-9860-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/25/2008] [Indexed: 01/13/2023]
Abstract
The zinc finger E-box binding transcription factor ZEB1 (deltaEF1/Nil-2-a/AREB6/zfhx1a/TCF8/zfhep/BZP) is emerging as an important regulator of the epithelial to mesenchymal transitions (EMT) required for development and cancer metastasis. ZEB1 promotes EMT by repressing genes contributing to the epithelial phenotype while activating those associated with the mesenchymal phenotype. TCF8 (zfhx1a), the gene encoding ZEB1, is induced by several potentially oncogenic ligands including TGF-beta, estrogen, and progesterone. TGF-beta appears to activate EMT, at least in part, by inducing ZEB1. However, our understanding of how ZEB1 contributes to signaling pathways elicited by estrogen and progesterone is quite limited, as is our understanding of its functional roles in normal adult tissues. To begin to address these questions, a human tissue mRNA array analysis was done. In adults, the highest ZEB1 mRNA expression is in bladder and uterus, whereas in the fetus highest expression is in lung, thymus, and heart. To further investigate the regulation of TCF8 by estrogen, ZEB1 mRNA was measured in ten estrogen-responsive cell lines, but it is only induced in the OV266 ovarian carcinoma line. Although high expression of ZEB1 mRNA is estrogen-dependent in normal human ovarian and endometrial biopsies, high expression is estrogen-independent in late stage ovarian and endometrial carcinomas, raising the possibility that deregulated expression promotes cancer progression. In contrast, TCF8 is at least partially deleted in 4 of 5 well-differentiated, grade I endometrial carcinomas, which may contribute to their non-aggressive phenotype. These data support the contention that high ZEB1 encourages gynecologic carcinoma progression.
Collapse
Affiliation(s)
- Elaine M Hurt
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
9
|
Jin JZ, Li Q, Higashi Y, Darling DS, Ding J. Analysis of Zfhx1a mutant mice reveals palatal shelf contact-independent medial edge epithelial differentiation during palate fusion. Cell Tissue Res 2008; 333:29-38. [PMID: 18470539 PMCID: PMC2516965 DOI: 10.1007/s00441-008-0612-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/18/2008] [Indexed: 11/25/2022]
Abstract
Cleft palate is a common birth defect that involves disruptions in multiple developmental steps such as growth, differentiation, elevation, and fusion. Medial edge epithelial (MEE) differentiation is essential for palate fusion. An important question is whether the MEE differentiation that occurs during fusion is induced by palate shelf contact or is programmed intrinsically by the palate shelf itself. Here, we report that the loss of Zfhx1a function in mice leads to a cleft palate phenotype that is mainly attributable to a delay in palate elevation. Zfhx1a encodes a transcription regulatory protein that modulates several signaling pathways including those activated by members of the transforming growth factor-beta (TGF-beta) superfamily. Loss of Zfhx1a function in mice leads to a complete cleft palate with 100% penetrance. Zfhx1a mutant palatal shelves display normal cell differentiation and proliferation and are able to fuse in an in vitro culture system. The only defect detected was a delay of 24-48 h in palatal shelf elevation. Using the Zfhx1a mutant as a model, we studied the relationship between MEE differentiation and palate contact/adhesion. We found that down-regulation of Jag2 expression in the MEE cells, a key differentiation event establishing palate fusion competence, was independent of palate contact/adhesion. Moreover, the expression of several key factors essential for fusion, such as TGF-beta3 and MMP13, was also down-regulated at embryonic stage 16.5 in a contact-independent manner, suggesting that differentiation of the medial edge epithelium was largely programmed through an intrinsic mechanism within the palate shelf.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| | - Qun Li
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| | - Yujiro Higashi
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Douglas S. Darling
- Department of Periodontics, Endodontics and Dental Hygiene, and Birth Defects Center, University of Louisville, Louisville, KY 40202, USA
| | - Jixiang Ding
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
10
|
Park J, Park J, Jang S, Kim S, Kong S, Choi J, Ahn K, Kim J, Lee S, Kim S, Park B, Jung K, Kim S, Kang S, Lee YH. FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics 2008; 24:1024-5. [PMID: 18304934 DOI: 10.1093/bioinformatics/btn058] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY Genomes of more than 60 fungal species have been sequenced to date, yet there has been no systematic approach to analyze fungal transcription factors (TFs) kingdom widely. We developed a standardized pipeline for annotating TFs in fungal genomes. Resulting data have been archived in a new database termed the Fungal Transcription Factor Database (FTFD). In FTFD, 31,832 putative fungal TFs, identified from 62 fungal and 3 Oomycete species, were classified into 61 families and phylogenetically analyzed. The FTFD will serve as a community resource supporting comparative analyses of the distribution and domain structure of TFs within and across species. AVAILABILITY All data described in this study can be browsed through the FTFD web site at http://ftfd.snu.ac.kr/.
Collapse
Affiliation(s)
- Jongsun Park
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kowase T, Walsh HE, Darling DS, Shupnik MA. Estrogen enhances gonadotropin-releasing hormone-stimulated transcription of the luteinizing hormone subunit promoters via altered expression of stimulatory and suppressive transcription factors. Endocrinology 2007; 148:6083-91. [PMID: 17823254 DOI: 10.1210/en.2007-0407] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcription of the LH subunit genes is stimulated by GnRH and may be modulated physiologically by steroids such as 17beta-estradiol (E). We found that E treatment amplified GnRH stimulation of the rat LHbeta and alpha-subunit promoters, and expression of the endogenous mRNA, in LbetaT2 gonadotrope cells 2- to 5-fold above GnRH alone. We examined gene expression in LbetaT2 cells after E and/or GnRH treatment, and found that E suppressed expression of transcription factor Zfhx1a, and enhanced GnRH stimulation of Egr-1 mRNA and protein. E effects were abolished in the presence of antiestrogen. Egr-1 is critical for LHbeta expression; however, the role of Zfhx1a, which binds to E-box sequences, was untested. We found E-box motifs in both the rat LHbeta (-381, -182, and -15 bp) and alpha-subunit (-292, -64, -58 bp) promoters. Zfhx1a overexpression suppressed basal and GnRH-stimulated activity of both promoters. Mutation of the alpha-subunit promoter E boxes at either -64 or -58 bp eliminated Zfhx1a suppression, whereas mutation of the -292 bp E box had no effect. Gel shift assays demonstrated that Zfhx1a bound to the -64 and -58, but not -292, bp E-box DNA. Similarly, mutation of LHbeta promoter E boxes at either -381 or -182, but not -15, bp reduced Zfhx1a suppression, correlating with binding of Zfhx1a. The -381 bp LHbeta E box overlaps with an Sp1 binding site in the distal GnRH-stimulatory region, and increased Sp1 expression overcame Zfhx1a suppression. Thus, one mechanism by which E may enhance GnRH-stimulated LH subunit promoter activity is through regulation of both activators and suppressors of transcription.
Collapse
Affiliation(s)
- Takanori Kowase
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
12
|
Manavella PA, Roqueiro G, Darling DS, Cabanillas AM. The ZFHX1A gene is differentially autoregulated by its isoforms. Biochem Biophys Res Commun 2007; 360:621-6. [PMID: 17610840 PMCID: PMC2770808 DOI: 10.1016/j.bbrc.2007.06.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/19/2007] [Indexed: 11/20/2022]
Abstract
The Zfhx1a gene expresses two different isoforms; the full length Zfhx1a-1 and a truncated isoform termed Zfhx1a-2 lacking the first exon. Deletion analysis of the Zfhx1a-1 promoter localized cell-specific repressors, and a proximal G-string that is critically required for transactivation. Transfection of Zfhx1a-1 cDNA, but not Zfhx1a-2, downregulates Zfhx1a-1 promoter activity. Mutation of an E2-box disrupted the binding of both Zfhx1a isoforms. Consistent with this, transfected Zfhx1a-1 does not regulate the transcriptional activity of the E-box mutated Zfhx1a-1 promoter. Competitive EMSAs and transfection assays show that Zfhx1a-2 can function as a dominant negative isoform since it is able to compete and displace Zfhx1a-1 from its binding site and overcome Zfhx1a-1 induced repression of the Zfhx1a-1 promoter in cells. Hence, the Zfhx1a-1 gene is autoregulated in part by negative feedback on its own promoter which is, in turn, modified by the availability of the negative dominant isoform Zfhx1a-2.
Collapse
Affiliation(s)
- Pablo A Manavella
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
13
|
Nolting N, Pöggeler S. A STE12 homologue of the homothallic ascomyceteSordaria macrosporainteracts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol Microbiol 2006; 62:853-68. [PMID: 16999832 DOI: 10.1111/j.1365-2958.2006.05415.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MADS box protein MCM1 controls diverse developmental processes and is essential for fruiting body formation in the homothallic ascomycete Sordaria macrospora. MADS box proteins derive their regulatory specificity from a wide range of different protein interactions. We have recently shown that the S. macrospora MCM1 is able to interact with the alpha-domain mating-type protein SMTA-1. To further evaluate the functional roles of MCM1, we used the yeast two-hybrid approach to identify MCM1-interacting proteins. From this screen, we isolated a protein with a putative N-terminal homeodomain and C-terminal C2/H2-Zn2+ finger domains. The protein is a member of the highly conserved fungal STE12 transcription factor family of proteins and was therefore termed STE12. Furthermore, we demonstrate by means of two-hybrid and far western analysis that in addition to MCM1, the S. macrospora STE12 protein is able to interact with the mating-type protein SMTA-1. Unlike the situation in the closely related heterothallic ascomycete Neurospora crassa, deletion (Delta) of the ste12 gene in S. macrospora neither affects vegetative growth nor fruiting body formation. However, ascus and ascospore development are highly impaired by the Deltaste12 mutation. Our data provide another example of the functional divergence within the fungal STE12 transcription factor family.
Collapse
Affiliation(s)
- Nicole Nolting
- Department of General and Molecular Botany, Ruhr University of Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
14
|
Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol 2005; 80:1-9. [PMID: 16187101 DOI: 10.1007/s00204-005-0009-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/14/2005] [Indexed: 12/14/2022]
Abstract
Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning.
Collapse
Affiliation(s)
- M Stefanidou
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75, Mikras Asias street, Goudi, Athens 11527, Greece.
| | | | | | | |
Collapse
|
15
|
Darling DS, Stearman RP, Qi Y, Qiu MS, Feller JP. Expression of Zfhep/deltaEF1 protein in palate, neural progenitors, and differentiated neurons. Gene Expr Patterns 2004; 3:709-17. [PMID: 14643678 PMCID: PMC3682426 DOI: 10.1016/s1567-133x(03)00147-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zfhep/deltaEF1 is essential for embryonic development. We have investigated the expression pattern of Zfhep protein during mouse embryogenesis. We show expression of Zfhep in the mesenchyme of the palatal shelves, establishing concordance of expression with the reported cleft palate of the deltaEF1-null mice. Zfhep protein is strongly expressed in proliferating progenitors of the nervous system. In most regions of the brain, post-mitotic cells stop expressing Zfhep when they migrate out of the ventricular zone (VZ) and differentiate. However, in the hindbrain, Zfhep protein is also highly expressed in post-mitotic migratory neuronal cells of the precerebellar extramural stream that arise from the neuroepithelium adjacent to the lower rhombic lip. Also, Zfhep is expressed as cells migrate from a narrow region of the pons VZ towards the trigeminal nucleus. Co-expression with Islet1 shows that Zfhep is expressed in motor neurons of the trigeminal nucleus of the pons, but not in the inferior olive motor neurons at E12.5. Therefore, Zfhep is strongly expressed in a tightly regulated pattern in proliferating neural stem cells and a subset of neurons. Zfhep protein is also strongly expressed in trigeminal ganglia, and is moderately expressed in other cranial ganglia. In vitro studies have implicated Zfhep as a repressor of myogenesis, however, we find that Zfhep protein expression increases during muscle differentiation.
Collapse
Affiliation(s)
- Douglas S Darling
- Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Health Sciences Center, 501 South Preston Street, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
16
|
Smith GE, Darling DS. Combination of a zinc finger and homeodomain required for protein-interaction. Mol Biol Rep 2004; 30:199-206. [PMID: 14672405 PMCID: PMC3675762 DOI: 10.1023/a:1026330907065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Zinc Finger Homeodomain Enhancer-binding Protein (Zfhep) is involved in skeletal patterning, immune cell, muscle, and brain development, and is necessary for life. Zfhep contains a single central homeodomain (HD) adjacent to an isolated zinc finger, the function of which is unknown. The placement of a zinc finger so close to a homeodomain is novel in nature. The aim of this work was to characterize the Zfhep homeodomain (HD) or the zinc finger homeodomain (ZHD), with respect to DNA-binding and protein-protein interactions. Glutathione-S-transferase (GST) fusion proteins containing either just the HD or both the zinc finger and HD (ZHD) were expressed in E. coli. The GST fusion protein affinity-binding assay demonstrated that Zfhep ZHD interacts specifically with the POU domain of the Oct-1 transcription factor. The adjacent zinc finger is required since Zfhep HD alone does not interact with Oct-1 POU domain. Furthermore, ZHD does not bind to the POU homeodomain lacking the POU specific region. These results demonstrate that the Zfhep zinc finger homeodomain motif functions as a protein-binding domain in vitro, and suggests that Zfhep may modulate the activity of POU domain transcription factors. However, neither the Zfhep ZHD nor the HD bound DNA in EMSA or selected a DNA-binding site from a pool of random oligonucleotides. This is the first demonstration of a function for the HD region of Zfhep, which is the first case of a bi-partite domain requiring both a zinc finger and a HD for binding to protein.
Collapse
Affiliation(s)
- Gregory E. Smith
- Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine University of Louisville Health Sciences Center Louisville, KY 40292
| | - Douglas S. Darling
- Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine University of Louisville Health Sciences Center Louisville, KY 40292
- Periodontics, Endodontics and Dental Hygiene, and Center for Genetics and Molecular Medicine University of Louisville Health Sciences Center Louisville, KY 40292
- To whom correspondence should be addressed at University of Louisville School of Dentistry 501 South Preston St., Room 209 Louisville, KY 40292 Tel: (502) 852-5508 FAX: (502) 852-1317
| |
Collapse
|
17
|
Mocchegiani E, Muzzioli M, Giacconi R, Cipriano C, Gasparini N, Franceschi C, Gaetti R, Cavalieri E, Suzuki H. Metallothioneins/PARP-1/IL-6 interplay on natural killer cell activity in elderly: parallelism with nonagenarians and old infected humans. Effect of zinc supply. Mech Ageing Dev 2003; 124:459-68. [PMID: 12714254 DOI: 10.1016/s0047-6374(03)00023-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metallothioneins (MTs) play pivotal role in zinc-related cell homeostasis because of their high affinity for this trace element which is in turn relevant against oxidative stress and for the efficiency of the entire immune system, including natural killer (NK) cell activity. In order to accomplish this role, MTs sequester and/or dispense zinc during stress and inflammation to protect cells against reactive oxygen species. MTs gene expression is affected by IL-6 for a prompt immune response. Concomitantly, MTs release zinc for the activity of antioxidant zinc-dependent enzymes, including poly(ADP-ribose)polymerase-1(PARP-1), which is involved in base excision DNA-repair. This role of MTs is peculiar in young adult-age during transient stress and inflammation, but not in ageing because stress-like condition and inflammation are persistent. This may lead MTs to turn-off from role of protection in young age to deleterious one in ageing with subsequent appearance of age-related diseases (severe infections). The aim is to study the role played by MTs/IL-6/PARP-1 interplay on NK cell activity in elderly, in old infected patients (acute and remission phases by bronchopneumonia infection) and in health nonagenarian/centenarian subjects. MTmRNA is high in lymphocytes from elderly people coupled with high IL-6, low zinc ion bioavailability, decreased NK cell activity and impaired capacity of PARP-1 in base excision DNA-repair. The same trend in this altered physiological cascade during ageing also occurs in old infected patients (both acute and remission phases) with more marked immune damage, inflammatory condition and very impaired PARP-1 in base excision DNA-repair. By contrast, centenarian subjects display low MTmRNA, good zinc ion bioavailability, satisfactory NK cell activity and higher capacity of PARP-1 in base excision DNA-repair. These findings clearly demonstrate that the sequester of zinc by MTs in ageing is deleterious because leading to low zinc ion bioavailability with subsequent impairment of PARP-1 and NK cell activity and appearance of severe infections. Physiological zinc supply (12 mg Zn(++)/day) for 1 month in elderly and in old infected patients (remission phase) restores NK cells activity with values observed in health centenarians. Therefore, the zinc ion bioavailability by zinc-bound MTs homeostasis is pivotal to reach health longevity and successful ageing.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Immunology Center (Section Nutrition, Immunity and Ageing), Research Department Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Costantino ME, Stearman RP, Smith GE, Darling DS. Cell-specific phosphorylation of Zfhep transcription factor. Biochem Biophys Res Commun 2002; 296:368-73. [PMID: 12163027 PMCID: PMC3682420 DOI: 10.1016/s0006-291x(02)00880-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zinc finger homeodomain enhancer-binding protein (Zfhep/Zfhx1a) is a transcription factor essential for immune system development, skeletal patterning, and life. Regulation of the interleukin-2 gene in T cells has been suggested to depend on post-translational processing of Zfhep, however, no modifications of Zfhep are known. Here we demonstrate that Zfhep is present in both hyperphosphorylated and hypophosphorylated forms. Western blot analysis demonstrates two forms of Zfhep with different mobilities. Differences in phosphorylation are sufficient to explain the difference in mobilities. Zfhep is primarily phosphorylated on Ser and Thr residues since PP2A dephosphorylates the slower mobility band. Treatment of nuclear extract with O-GlcNAcase did not detect O-linked sugar. Importantly, post-translational processing is cell-specific. Doublets of Zfhep were detected in five cell lines, whereas 6 cell lines contain only, or predominantly, non-phosphorylated Zfhep, and Saos-2 cells contain predominantly the phosphorylated form. These data provide the first demonstration that Zfhep is post-translationally modified.
Collapse
Affiliation(s)
- Mary E. Costantino
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Randi P. Stearman
- Periodontics, Endodontics and Dental Hygiene, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Gregory E. Smith
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Douglas S. Darling
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
- Periodontics, Endodontics and Dental Hygiene, University of Louisville Health Sciences Center, Louisville, KY 40292
- To whom correspondence should be addressed at University of Louisville School of Dentistry 501 South Preston St., Room 315 Louisville, KY 40292, Tel: (502) 852-5508, FAX: (502) 852-1317,
| |
Collapse
|
19
|
Mocchegiani E, Giacconi R, Cipriano C, Gasparini N, Orlando F, Stecconi R, Muzzioli M, Isani G, Carpenè E. Metallothioneins (I+II) and thyroid-thymus axis efficiency in old mice: role of corticosterone and zinc supply. Mech Ageing Dev 2002; 123:675-94. [PMID: 11850030 PMCID: PMC7127331 DOI: 10.1016/s0047-6374(01)00414-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thymic atrophy or thymus absence causes depressed thyroid-thymus axis (TTA) efficiency in old, young propyl-thiouracil (PTU) (experimental hypothyroidism) and in young-adult thymectomised (Tx) mice, respectively. Altered zinc turnover may be also involved in depressed TTA efficiency. Zinc turnover is under the control of zinc-bound metallothioneins (Zn-MTs) synthesis. Thyroid hormones, corticosterone and nutritional zinc affect Zn-MT induction. Zn-MT releases zinc in young-adult age during transient oxidative stress for prompt immune response. In constant oxidative stress (ageing and liver regeneration after partial hepatectomy), high liver Zn-MTs, low zinc ion bioavailability and depressed TTA efficiency appear. This last finding suggested that MT might not release zinc during constant oxidative stress leading to impaired TTA efficiency. The aim of this work/study is to clarify the role of Zn-MTs (I+II) in TTA efficiency during development and ageing. The main results are (1) Old and PTU mice display high corticosterone, enhanced liver MTmRNA, low zinc and depressed TTA efficiency restored by zinc supply. Increased survival and no significant increments in basal liver Zn-MTs proteins occur in old and PTU mice after zinc supply. (2) Lot of zinc ions bound with MT in the liver from old mice than young (HPLC). (3) Young-adult Tx mice, evaluated at 15 days from thymectomy, display high MTmRNA and nutritional-endocrine-immune damage restored by zinc supply or by thymus grafts from old zinc-treated mice. (4) Young-adult Tx mice, but evaluated at 40 days from thymectomy, display natural normalisation in MTmRNA and nutritional-endocrine-immune profile with survival similar to normal mice. (5) Stressed (constant dark for 10 days) mice overexpressing MT display low zinc, depressed immunity, reduced thymic cortex, high corticosterone, altered thyroid hormones turnover showing a likeness with old mice. These findings, taken altogether, show that corticosterone is pivotal in MTs induction under stress. MTs bind preferentially zinc ions in constant oxidative stress, but with no release of zinc from MT leading to impaired TTA efficiency. Zinc supply restores the defect because zinc has no interference in affecting pre-existing Zn-MTs protein concentrations in old and PTU mice. Therefore, free zinc ions are available for TTA efficiency after zinc supply. Thymus from old zinc-treated mice induces the same restoring effect when transplanted in Tx recipients. However, Tx mice display natural normalisation in MTmRNA and in nutritional-endocrine-immune profile in the long run. Therefore, Zn-MTs (I+II) are crucial in zinc homeostasis for endocrine-immune efficiency during the entire life assuming a role of potential and novel 'biological clock of ageing'.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Section: Nutrition, Immunity and Ageing, Immunology Centre, Research Department of Gerontology and Geriatrics Nino Masera, Italian National Research Centre on Ageing, Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yen G, Croci A, Dowling A, Zhang S, Zoeller RT, Darling DS. Developmental and functional evidence of a role for Zfhep in neural cell development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:59-67. [PMID: 11731009 DOI: 10.1016/s0169-328x(01)00267-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rat Zfhep gene encodes a member of the Zfh family of transcription factors having a homeodomain-like sequence and multiple zinc fingers. We examined expression of Zfhep in the rat forebrain during embryonic and postnatal development. Zfhep mRNA was strongly expressed in the progenitor cells of the ventricular zone around the lateral ventricles on E14 and E16, but showed little expression in cells that had migrated to form the developing cortex. Dual labeling with PCNA demonstrated expression of Zfhep mRNA in proliferating cells. Expression of Zfhep in the ventricular zone decreases during late development as the population of progenitor cells decreases. This pattern is distinctly different from other members of the Zfh family. We also examined the expression of Zfhep protein during retinoic acid-induced neurogenesis of P19 embryonal carcinoma cells. Zfhep is highly expressed in P19 neuroblasts, and expression decreases by the time of morphological neurogenesis. Hence, both P19 cells and embryonic brain demonstrate a loss of Zfhep expression during the transition from proliferating precursor to differentiated neural cells. We investigated a possible link between Zfhep and proliferation by treating human glial cell lines with Zfhep antisense phosphorothioate oligodeoxynucleotides. Two Zfhep antisense oligonucleotides repressed proliferation of either U-138 or U-343 glioblastoma cells more than control oligonucleotides. Based on the expression patterns of Zfhep in vivo and in the P19 cell model of neurogenesis, we suggest that Zfhep may play a role in proliferation or differentiation of neural cells.
Collapse
Affiliation(s)
- G Yen
- Department of Molecular, Cellular and Craniofacial Biology, School of Dentistry, University of Louisville, 501 South Preston Street, Room 315, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
21
|
Miyoshi I, Maki K, Kon Y, Yamashita T, Aoyama S, Hayashizaki Y, Kasai N. Targeting oncogenesis by introduction of a 5.2-kbp segment of the 5' regulatory region of the human thyrotropin beta-subunit gene. Endocr Res 2001; 27:387-98. [PMID: 11794463 DOI: 10.1081/erc-100107863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We produced transgenic mice carrying a fusion gene (TTP-5) consisting of a 5.2-kbp segment of the 5' flanking sequence of the human thyrotropin beta-subunit (TSH beta) gene linked to the simian virus 40 large T antigen (SVT) gene. These mice developed pituitary tumors 6 months after birth and wasted away. With the 5.2-kbp TSH beta 5' flanking region governing SVT expression, SVT mRNA was present in the pituitary and testis but not in other tissues, as detected by the reverse transcriptase-polymerase chain reaction. Histological and immunohistochemical analyses showed that the pituitary tumors of the transgenic mice were composed of moderately differentiated pituitary cells that expressed TSH, growth hormone, and prolactin. These results indicate that the 5.2-kbp segment of the human TSH beta 5' regulatory region is sufficient to drive expression of SVT and induce tumorigenesis of hormone-producing pituitary cells in transgenic mice.
Collapse
Affiliation(s)
- I Miyoshi
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Cabanillas AM, Smith GE, Darling DS. T3-activation of the rat growth hormone gene is inhibited by a zinc finger/homeodomain protein. Mol Cell Endocrinol 2001; 181:131-7. [PMID: 11476947 DOI: 10.1016/s0303-7207(01)00531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Since the transcription factor Zfhep is expressed in somatotropes and binds the rat growth hormone (rGH) gene T3-response element (TRE), we investigated whether Zfhep regulates the response of this gene to T3. In cotransfection experiments, Zfhep did not regulate the native rGH promoter in the absence of T3. However, Zfhep repressed T3-mediated activation significantly in either GH(3) or JEG-3 cells. Up to 70% repression was mediated through the rGH TRE in a heterologous promoter (thymidine kinase), but was not observed with the idealized DR4 or chicken lysozyme F2 TREs. Zfhep apparently does not repress T3-mediated activation simply by competition for binding to DNA since the C-terminal DNA-binding domain of Zfhep (which is sufficient for DNA-binding) is not sufficient for repression and since cotransfection of excess thyroid hormone receptor (TR) did not prevent repression by Zfhep. These data indicate that the rGH TRE is a composite element that can integrate Zfhep and T3 regulation.
Collapse
Affiliation(s)
- A M Cabanillas
- Department of Molecular, Cellular and Craniofacial Biology, School of Dentistry, University of Louisville, 501 South Preston Street, Louisville, KY 40292, USA
| | | | | |
Collapse
|
23
|
Chang YC, Penoyer LA, Kwon-Chung KJ. The second STE12 homologue of Cryptococcus neoformans is MATa-specific and plays an important role in virulence. Proc Natl Acad Sci U S A 2001; 98:3258-63. [PMID: 11248066 PMCID: PMC30641 DOI: 10.1073/pnas.061031998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans STE12alpha, a homologue of Saccharomyces cerevisiae STE12, exists only in MATalpha strains. We identified another STE12 homologue, STE12a, which is MATa specific. As in the case with Deltaste12alpha, the mating efficiency for Deltaste12a was reduced significantly. The Deltaste12a strains surprisingly still mated with Deltaste12alpha strains. In MATalpha strains, STE12a functionally complemented STE12alpha for mating efficacy, haploid fruiting, and regulation of capsule size in the mouse brain. Furthermore, when STE12a was replaced with two copies of STE12alpha, the resulting MATa strain produced hyphae on filament agar. STE12a regulates mRNA levels of several genes that are important for virulence including CNLAC1 and CAP genes. STE12a also modulates enzyme activities of phospholipase and superoxide dismutase. Importantly, deletion of STE12a markedly reduced the virulence in mice, as is the case with STE12alpha. Brain smears of mice infected with the Deltaste12a strain showed yeast cells with a considerable reduction in capsule size compared with those infected with STE12a strains. When the disrupted locus of ste12a was replaced with a wild-type STE12a gene, both in vivo and in vitro mutant phenotypes were reversed. These results suggest that STE12a and STE12alpha have similar functions, and that the mating type of the cells influences the alleles to exert their biological effects. C. neoformans, thus, is the first fungal species that contains a mating-type-specific STE12 homologue in each mating type. Our results demonstrate that mating-type-specific genes are not only important for saprobic reproduction but also play an important role for survival of the organism in host tissue.
Collapse
Affiliation(s)
- Y C Chang
- Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
24
|
Vallim MA, Miller KY, Miller BL. Aspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn+2 finger transcription factor required for sexual reproduction. Mol Microbiol 2000; 36:290-301. [PMID: 10792717 DOI: 10.1046/j.1365-2958.2000.01874.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae Ste12p plays a key role in coupling signal transduction through MAP kinase modules to cell-specific or morphogenesis-specific gene expression required for mating and pseudohyphal (PH)/filamentous growth (FG). Ste12p homologues in the pathogenic yeasts Candida albicans and Filobasidiela neoformans apparently play similar roles during dimorphic transitions. Here we report the isolation and characterization of the first Ste12 protein from a true filamentous fungus. Aspergillus nidulans steA encodes a protein with a homeodomain 63-75% identical to those of other Ste12 proteins, with greatest similarity to FnSte12alphap. SteAp and Ste12alphap lack the pheromone induction domain found in budding yeast Ste12p, but have C-terminal C2/H2-Zn+2 finger domains not present in the other Ste12 proteins. A DeltasteA strain is sterile and differentiates neither ascogenous tissue nor fruiting bodies (cleistothecia). However, the development of sexual cycle-specific Hülle cells is unaffected. Filamentous growth, conidiation and the differentiation of PH-like asexual reproductive cells (metulae and phialides) are normal in the deletion strain. Northern analysis of key regulators of the asexual and sexual reproductive cycles support the observation that although SteAp function is restricted to the sexual cycle, cross regulation between the two developmental pathways exists. Our results further suggest that while several classes of related proteins control similar morphogenetic events in A. nidulans and the dimorphic yeasts, significant differences must exist in the regulatory circuitry.
Collapse
Affiliation(s)
- M A Vallim
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | |
Collapse
|