1
|
Bakir A, Darbre PD. Effect of aluminium on migration of oestrogen unresponsive MDA-MB-231 human breast cancer cells in culture. J Inorg Biochem 2015; 152:180-5. [DOI: 10.1016/j.jinorgbio.2015.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 11/16/2022]
|
2
|
Biologic roles of estrogen receptor-β and insulin-like growth factor-2 in triple-negative breast cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:925703. [PMID: 25874233 PMCID: PMC4385615 DOI: 10.1155/2015/925703] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022]
Abstract
Triple-negative breast cancer (TNBC) occurs in 10–15% of patients yet accounts for almost half of all breast cancer deaths. TNBCs lack expression of estrogen and progesterone receptors and HER-2 overexpression and cannot be treated
with current targeted therapies. TNBCs often occur in African American and younger women. Although initially responsive to some chemotherapies, TNBCs tend to relapse and metastasize. Thus, it is critical to find new therapeutic targets. A second ER gene product, termed ERβ, in the absence of ERα may be such a target. Using human TNBC specimens with known clinical outcomes to assess ERβ expression, we find that ERβ1 associates with significantly worse 5-year overall survival. Further, a panel of TNBC cell lines exhibit significant levels of ERβ protein. To assess ERβ effects on proliferation, ERβ expression in TNBC cells was silenced using shRNA, resulting in a significant reduction in TNBC proliferation. ERβ-specific antagonists similarly suppressed TNBC growth. Growth-stimulating effects of ERβ may be due in part to downstream actions that promote VEGF, amphiregulin, and Wnt-10b secretion, other factors associated with tumor promotion. In vivo, insulin-like growth factor-2 (IGF-2), along with ERβ1, is significantly expressed in TNBC and stimulates high ERβ mRNA in TNBC cells. This work may help elucidate the interplay of metabolic and growth factors in TNBC.
Collapse
|
3
|
Barar J, Omidi Y. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes. BIOIMPACTS : BI 2012; 2:127-43. [PMID: 23678451 DOI: 10.5681/bi.2012.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/02/2012] [Accepted: 09/11/2012] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub-stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. METHODS Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. RESULTS Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA) for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. CONCLUSION Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno-medicines into clinical applications, it is essential 1) to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s); 2) to conduct necessary animal experimental studies to show the "proof of concept" for the proposed genomedicines; 3) to perform an initial clinical investigation; and 4) to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno-medicine development and clinical applications.
Collapse
Affiliation(s)
- Jaleh Barar
- Ovarian Cancer Research Center, Translational Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
4
|
Akman BH, Can T, Erson-Bensan AE. Estrogen-induced upregulation and 3'-UTR shortening of CDC6. Nucleic Acids Res 2012; 40:10679-88. [PMID: 22977174 PMCID: PMC3510512 DOI: 10.1093/nar/gks855] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
3′-Untranslated region (UTR) shortening of mRNAs via alternative polyadenylation (APA) has important ramifications for gene expression. By using proximal APA sites and switching to shorter 3′-UTRs, proliferating cells avoid miRNA-mediated repression. Such APA and 3′-UTR shortening events may explain the basis of some of the proto-oncogene activation cases observed in cancer cells. In this study, we investigated whether 17 β-estradiol (E2), a potent proliferation signal, induces APA and 3′-UTR shortening to activate proto-oncogenes in estrogen receptor positive (ER+) breast cancers. Our initial probe based screen of independent expression arrays suggested upregulation and 3′-UTR shortening of an essential regulator of DNA replication, CDC6 (cell division cycle 6), upon E2 treatment. We further confirmed the E2- and ER-dependent upregulation and 3′UTR shortening of CDC6, which lead to increased CDC6 protein levels and higher BrdU incorporation. Consequently, miRNA binding predictions and dual luciferase assays suggested that 3′-UTR shortening of CDC6 was a mechanism to avoid 3′-UTR-dependent negative regulations. Hence, we demonstrated CDC6 APA induction by the proliferative effect of E2 in ER+ cells and provided new insights into the complex regulation of APA. E2-induced APA is likely to be an important but previously overlooked mechanism of E2-responsive gene expression.
Collapse
Affiliation(s)
- Begum H Akman
- Department of Biological Sciences, METU (Middle East Technical University), Universiteler Mah, Dumlupınar Blv. No. 1, 06800 Çankaya, Ankara, Turkey
| | | | | |
Collapse
|
5
|
Wong C, Chen S. The development, application and limitations of breast cancer cell lines to study tamoxifen and aromatase inhibitor resistance. J Steroid Biochem Mol Biol 2012; 131:83-92. [PMID: 22265958 PMCID: PMC3369003 DOI: 10.1016/j.jsbmb.2011.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/28/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
Estrogen plays important roles in hormone receptor-positive breast cancer. Endocrine therapies, such as the antiestrogen tamoxifen, antagonize the binding of estrogen to estrogen receptor (ER), whereas aromatase inhibitors (AIs) directly inhibit the production of estrogen. Understanding the mechanisms of endocrine resistance and the ways in which we may better treat these types of resistance has been aided by the development of cellular models for resistant breast cancers. In this review, we will discuss what is known thus far regarding both de novo and acquired resistance to tamoxifen or AIs. Our laboratory has generated a collection of AI- and tamoxifen-resistant cell lines in order to comprehensively study the individual types of resistance mechanisms. Through the use of microarray analysis, we have determined that our cell lines resistant to a particular AI (anastrozole, letrozole, or exemestane) or tamoxifen are distinct from each other, indicating that these mechanisms can be quite complex. Furthermore, we will describe two novel de novo AI-resistant cell lines that were generated from our laboratory. Initial characterization of these cells reveals that they are distinct from our acquired AI-resistant cell models. In addition, we will review potential therapies which may be useful for overcoming resistant breast cancers through studies using endocrine resistant cell lines. Finally, we will discuss the benefits and shortcomings of cell models. Together, the information presented in this review will provide us a better understanding of acquired and de novo resistance to tamoxifen and AI therapies, the use of appropriate cell models to better study these types of breast cancer, which are valuable for identifying novel treatments and strategies for overcoming both tamoxifen and AI-resistant breast cancers.
Collapse
Affiliation(s)
- Cynthie Wong
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
6
|
Cho SW, Yang JY, Her SJ, Choi HJ, Jung JY, Sun HJ, An JH, Cho HY, Kim SW, Park KS, Kim SY, Baek WY, Kim JE, Yim M, Shin CS. Osteoblast-targeted overexpression of PPARγ inhibited bone mass gain in male mice and accelerated ovariectomy-induced bone loss in female mice. J Bone Miner Res 2011; 26:1939-52. [PMID: 21351141 DOI: 10.1002/jbmr.366] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PPARγ has critical role in the differentiation of mesenchymal stem cells into adipocytes while suppressing osteoblastic differentiation. We generated transgenic mice that overexpress PPARγ specifically in osteoblasts under the control of a 2.3-kb procollagen type 1 promoter (Col.1-PPARγ). Bone mineral density (BMD) of 6- to 14-week-old Col.1 - PPARγ male mice was 8% to 10% lower than that of their wild-type littermates, whereas no difference was noticed in Col.1-PPARγ female mice. Col.1-PPARγ male mice exhibited decreased bone volume (45%), trabecular thickness (23%), and trabecular number (27%), with a reciprocal increase in trabecular spacing (51%). Dynamic histomorphometric analysis also revealed that bone-formation rate (42%) and mineral apposition rate (32%) were suppressed significantly in Col.1-PPARγ male mice compared with their wild-type littermates. Interestingly, osteoclast number and surface also were decreased by 40% and 58%, respectively, in Col.1-PPARγ male mice. In vitro whole-marrow culture for osteoclastogenesis also showed a significant decrease in osteoclast formation (approximately 35%) with the cells from Col.1-PPARγ male mice, and OPG/RANKL ratio was reduced in stromal cells from Col.1-PPARγ male mice. Although there was no significant difference in BMD in Col.1-PPARγ female mice up to 30 weeks, bone loss was accelerated after ovariectomy compared with wild-type female mice (-3.9% versus -6.8% at 12 weeks after ovariectomy, p < .01), indicating that the effects of PPARγ overexpression becomes more evident in an estrogen-deprived state in female mice. In conclusion, in vivo osteoblast-specific overexpression of PPARγ negatively regulates bone mass in male mice and accelerates estrogen-deficiency-related bone loss in female mice.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tolhurst RS, Thomas RS, Kyle FJ, Patel H, Periyasamy M, Photiou A, Thiruchelvam PTR, Lai CF, Al-Sabbagh M, Fisher RA, Barry S, Crnogorac-Jurcevic T, Martin LA, Dowsett M, Charles Coombes R, Kamalati T, Ali S, Buluwela L. Transient over-expression of estrogen receptor-α in breast cancer cells promotes cell survival and estrogen-independent growth. Breast Cancer Res Treat 2011; 128:357-68. [PMID: 20730598 DOI: 10.1007/s10549-010-1122-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 08/09/2010] [Indexed: 01/30/2023]
Abstract
Estrogen receptor-α (ERα) positive breast cancer frequently responds to inhibitors of ERα activity, such as tamoxifen, and/or to aromatase inhibitors that block estrogen biosynthesis. However, many patients become resistant to these agents through mechanisms that remain unclear. Previous studies have shown that expression of ERα in ERα-negative breast cancer cell lines frequently inhibits their growth. In order to determine the consequence of ERα over-expression in ERα-positive breast cancer cells, we over-expressed ERα in the MCF-7 breast cancer cell line using adenovirus gene transduction. ERα over-expression led to ligand-independent expression of the estrogen-regulated genes pS2 and PR and growth in the absence of estrogen. Interestingly, prolonged culturing of these cells in estrogen-free conditions led to the outgrowth of cells capable of growth in cultures from ERα transduced, but not in control cultures. From these cultures a line, MLET5, was established which remained ERα-positive, but grew in an estrogen-independent manner. Moreover, MLET5 cells were inhibited by anti-estrogens showing that ERα remains important for their growth. Gene expression microarray analysis comparing MCF-7 cells with MLET5 highlighted apoptosis as a major functional grouping that is altered in MLET5 cells, such that cell survival would be favoured. This conclusion was further substantiated by the demonstration that MLET5 show resistance to etoposide-induced apoptosis. As the gene expression microarray analysis also shows that the apoptosis gene set differentially expressed in MLET5 is enriched for estrogen-regulated genes, our findings suggest that transient over-expression of ERα could lead to increased cell survival and the development of estrogen-independent growth, thereby contributing to resistance to endocrine therapies in breast cancer patients.
Collapse
Affiliation(s)
- Robert S Tolhurst
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang Y, Li X, Muyan M. Estrogen receptors similarly mediate the effects of 17β-estradiol on cellular responses but differ in their potencies. Endocrine 2011; 39:48-61. [PMID: 21069581 PMCID: PMC3683410 DOI: 10.1007/s12020-010-9411-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/04/2010] [Indexed: 02/06/2023]
Abstract
17β-estradiol (E2), as the main circulating estrogen hormone, plays critical roles in the physiology and pathophysiology of various tissues. The E2 information is primarily conveyed by the transcription factors, estrogen receptors (ERs) α and β. ERs share similar structural and functional features. Experimental studies indicate that upon binding to E2, ERs directly or indirectly interact with DNA and regulate gene expressions with ERα being more potent transregulator than ERβ. However, studies also showed that ERβ induces alterations in phenotypic features of cancer cell lines independent of E2. These observations suggested that the manner in which the unliganded ERβ induces phenotypic alterations in cancer cell models differs from that of ERα. Studies demonstrated that while requiring E2 for function at low levels of synthesis, the unliganded ERα at augmented concentrations modulates gene expressions and cellular growth. We, therefore, anticipated that heightened levels of ERβ synthesis could similarly circumvent the dependency on E2 leading to gene transcriptions and cellular proliferation. To test this prediction, we used adenovirus-infected cancer cell lines in which ERs were shown to induce genomic and cellular responses. We found that while ERβ at low levels of synthesis was dependent upon E2 for function, the receptor at high levels regulated gene expression and cellular proliferation independent of E2. We then addressed whether ERs at comparable levels that require E2 for function differentially alter gene expressions and cellular responses. We found that ERs mediate the effects of E2 on gene expression, cellular proliferation, apoptosis, and motility with an overlapping pattern. However, ERα was more potent regulator than ERβ in inducing cellular responses. Our results suggest that differences in potencies to regulate the expression of genes are a critical feature of the ER subtypes in mediating E2 signaling in cancer cell lines.
Collapse
Affiliation(s)
- Yanfang Huang
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
9
|
Pugazhendhi D, Darbre PD. Differential effects of overexpression of ERα and ERβ in MCF10A immortalised, non-transformed human breast epithelial cells. Horm Mol Biol Clin Investig 2010; 1:117-26. [DOI: 10.1515/hmbci.2010.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/15/2009] [Indexed: 11/15/2022]
Abstract
Abstract: Cellular effects of oestrogen are mediated by two intracellular receptors ERα and ERβ. However, to compare responses mediated through these two receptors, experimental models are needed where ERα and ERβ are individually stably overexpressed in the same cell type.: We compared the effects of stable overexpression of ERα and ERβ in the MCF10A cell line, which is an immortalised but non-transformed breast epithelial cell line without high endogenous ER expression.: Clones of MCF10A cells were characterised which stably overexpressed ERα (10A-ERα2, 10A-ERα13) or which stably overexpressed ERβ (10A-ERβ12, 10A-ERβ15). Overexpression of either ERα or ERβ allowed induction of an oestrogen-regulated ERE-LUC reporter gene by oestradiol which was not found in the untransfected cells. Oestradiol also increased proliferation of 10A-ERα13 and 10A-ERβ12 cells, but not untransfected cells, by 1.3-fold over 7 days. The phytoestrogen, genistein, which is reported to bind more strongly to ERβ than to ERα, could induce luciferase gene expression from an ERE-LUC reporter gene at concentrations of 10: This provides a model system to compare effects of oestradiol with other oestrogenic ligands in cells stably overexpressing individually ERα or ERβ.
Collapse
|
10
|
Gionet N, Jansson D, Mader S, Pratt MC. NF-κB and estrogen receptor α interactions: Differential function in estrogen receptor-negative and -positive hormone-independent breast cancer cells. J Cell Biochem 2009; 107:448-59. [DOI: 10.1002/jcb.22141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Nott SL, Huang Y, Li X, Fluharty BR, Qiu X, Welshons WV, Yeh S, Muyan M. Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations. J Biol Chem 2009; 284:15277-88. [PMID: 19321454 DOI: 10.1074/jbc.m900365200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrogen (E2) signaling is conveyed by the transcription factors estrogen receptor (ER) alpha and beta. ERs modulate the expression of genes involved in cellular proliferation, motility, and death. The regulation of transcription by E2-ERalpha through binding to estrogen-responsive elements (EREs) in DNA constitutes the ERE-dependent signaling pathway. E2-ERalpha also modulates gene expression by interacting with transregulators bound to cognate DNA-regulatory elements, and this regulation is referred to as the ERE-independent signaling pathway. The relative importance of the ERE-independent pathway in E2-ERalpha signaling is unclear. To address this issue, we engineered an ERE-binding defective ERalpha mutant (ERalpha(EBD)) by changing residues in an alpha-helix of the protein involved in DNA binding to render the receptor functional only through the ERE-independent signaling pathway. Using recombinant adenovirus-infected ER-negative MDA-MB-231 cells derived from a breast adenocarcinoma, we found that E2-ERalpha(EBD) modulated the expression of a subset of ERalpha-responsive genes identified by microarrays and verified by quantitative PCR. However, E2-ERalpha(EBD) did not affect cell cycle progression, cellular growth, death, or motility in contrast to E2-ERalpha.ERalpha(EBD) in the presence of E2 was also ineffective in inducing phenotypic alterations in ER-negative U-2OS cells derived from an osteosarcoma. E2-ERalpha, on the other hand, effectively repressed growth in this cell line. Our findings suggest that genomic responses from the ERE-dependent signaling pathway are required for E2-ERalpha to induce alterations in cellular responses.
Collapse
Affiliation(s)
- Stephanie L Nott
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang G, Liu X, Farkas AM, Parwani AV, Lathrop KL, Lenzner D, Land SR, Srinivas H. Estrogen receptor beta functions through nongenomic mechanisms in lung cancer cells. Mol Endocrinol 2008; 23:146-56. [PMID: 19106194 DOI: 10.1210/me.2008-0431] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent studies have shown that estrogens promote the growth of lung cancer cells and may potentially be responsible for increased susceptibility to lung cancer in women. These observations raise the possibility of using antiestrogens in treating and preventing lung cancer. However, it is not clear how estrogen receptors (ERs) modulate the growth of non-small cell lung cancer (NSCLC) cells. Our Western blotting and real-time PCR analysis showed that NSCLC cells expressed ERbeta, but not ERalpha. In addition, ERbeta-specific ligands, but not ERalpha-specific ligands, promoted the growth of lung cancer cells. Furthermore, knockdown of ERbeta by short hairpin RNA constructs resulted in loss of estrogen-dependent growth of lung cancer cells. Interestingly, endogenous ERbeta failed to transcriptionally activate estrogen response element (ERE)-luciferase constructs in NSCLC cells, suggesting a lack of genomic function. Upon further investigation, ERbeta was found to be in the cytoplasm in all lung cancer cells and failed to translocate to the nucleus in the presence of estrogen, as observed by biochemical, ArrayScan, and confocal microscopy experiments. Nonetheless, estrogen caused rapid activation of cAMP, Akt, and MAPK signaling pathways in lung cancer cells. Immunohistochemical analysis of lung tumor biopsies showed strong ERbeta staining in the cytoplasm, whereas no staining was observed for ERalpha. In conclusion, our results suggest that that proliferative effects of estrogen in lung cancer cells is mediated primarily, if not exclusively, by the nongenomic action of ERbeta.
Collapse
Affiliation(s)
- Guangfeng Zhang
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bake S, Ma L, Sohrabji F. Estrogen receptor-alpha overexpression suppresses 17beta-estradiol-mediated vascular endothelial growth factor expression and activation of survival kinases. Endocrinology 2008; 149:3881-9. [PMID: 18450951 PMCID: PMC2488252 DOI: 10.1210/en.2008-0288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen and its receptors influence growth and differentiation by stimulating the production and secretion of growth factors. Our previous studies indicate an increased expression of estrogen receptor (ER)-alpha and decreased growth factor synthesis in the olfactory bulb of reproductive senescent female rats as compared with young animals. The present study tests the hypothesis that abnormal overexpression of ERalpha contributes to decreased growth factor synthesis. We developed the HeLa-Tet-On cell line stably transfected with ERalpha (HTERalpha) that expresses increasing amounts of ERalpha with increasing doses of doxycycline (Dox). Increasing doses of Dox had no effect on vascular endothelial growth factor (VEGF) secretion in HTERalpha cells. However, in the presence of 40 nm 17beta-estradiol, VEGF secretion increased in low-dose Dox-exposed HTERalpha cultures, which was attenuated by the ERalpha antagonist, 1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]1H-pyrazole dihydrochloride. However, at high-dose Dox and, consequently, high ERalpha levels, estradiol failed to increase VEGF. In the HeLa X6 cell line in which the Tet-On construct is upstream of an unrelated gene (Pitx2A), estradiol failed to induce VEGF at any Dox dose. Furthermore, in the HTERalpha cell line, estradiol selectively down-regulates phospho-ERK2 and phospho-Akt at high ERalpha expression. This study clearly demonstrates that the dose of receptor critically mediates estradiol's ability to regulate growth factors and survival kinases. The present data also support the hypothesis that 17beta-estradiol treatment to an ERalpha overexpressing system, such as the senescent brain, could reverse the normally observed beneficial effect of estrogen.
Collapse
Affiliation(s)
- Shameena Bake
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
14
|
Li X, Nott SL, Huang Y, Hilf R, Bambara RA, Qiu X, Yakovlev A, Welle S, Muyan M. Gene expression profiling reveals that the regulation of estrogen-responsive element-independent genes by 17 beta-estradiol-estrogen receptor beta is uncoupled from the induction of phenotypic changes in cell models. J Mol Endocrinol 2008; 40:211-29. [PMID: 18434428 PMCID: PMC3683411 DOI: 10.1677/jme-07-0156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Estrogen hormone 17beta-estradiol (E(2)) is involved in the physiology and pathology of many tissues. E(2) information is conveyed by the transcription factors estrogen receptors (ER) alpha and beta that mediate a complex array of nuclear and non-nuclear events. The interaction of ER with specific DNA sequences, estrogen-responsive elements (EREs), constitutes a critical nuclear signaling pathway. In addition, E(2)-ER regulates transcription through interactions with transfactors bound to their cognate regulatory elements on DNA, hence the ERE-independent signaling pathway. However, the relative importance of the ERE-independent pathway in E(2)-ERbeta signaling is unclear. To address this issue, we engineered an ERE-binding defective ERbeta mutant (ERbeta(EBD)) by changing critical residues in the DNA-binding domain required for ERE binding. Biochemical and functional studies revealed that ERbeta(EBD) signaled exclusively through the ERE-independent pathway. Using the adenovirus infected ER-negative cancer cell models, we found that although E(2)-ERbeta(EBD) regulated the expression of a number of genes identified by microarrays, it was ineffective in altering cellular proliferation, motility, and death in contrast to E(2)-ERbeta. Our results indicate that genomic responses from the ERE-independent pathway to E(2)-ERbeta are not sufficient to alter the cellular phenotype. These findings suggest that the ERE-dependent pathway is a required signaling route for E(2)-ERbeta to induce cellular responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Qiu
- Department of Biochemistry & Biophysics, Biostatistics & Computational Biology, University of Rochester Medical School, Rochester, NY 14642
| | - Andrei Yakovlev
- Department of Biochemistry & Biophysics, Biostatistics & Computational Biology, University of Rochester Medical School, Rochester, NY 14642
| | - Stephen Welle
- Department of Medicine, University of Rochester Medical School, Rochester, NY 14642
| | - Mesut Muyan
- Address correspondence to: Mesut Muyan, 601 Elmwood Avenue, Box 712, Rochester, NY 14642; (585) 275 5613, Fax: (585) 271 2683;
| |
Collapse
|
15
|
DeNardo DG, Cuba VL, Kim H, Wu K, Lee AV, Brown PH. Estrogen receptor DNA binding is not required for estrogen-induced breast cell growth. Mol Cell Endocrinol 2007; 277:13-25. [PMID: 17825481 DOI: 10.1016/j.mce.2007.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/10/2007] [Indexed: 11/16/2022]
Abstract
In this study, we determined whether ER DNA binding is necessary for estrogen to stimulate the growth of breast cancer cells. To investigate the requirement of ER DNA binding we expressed either wild-type or a DNA-binding mutant ERalpha in a clone of the MCF-7 breast cancer cell line that no longer expressed endogenous ERalpha. Estrogen did not activate non-genomic kinase cascades in the parental MCF-7 cells or in cells expressing ERalpha mutant. In cells expressing the ERalpha mutant, estrogen did not induce ERE-dependent gene expression but did induce AP-1- and Sp1-dependent gene expression and the cell cycle regulatory genes cyclin D1 and c-myc. However, we demonstrated that estrogen still induced cell proliferation in MCF-7 cells expressing the ERalpha mutant. These results demonstrate that ER DNA binding is not absolutely required for estrogen to induce breast cancer cell growth.
Collapse
Affiliation(s)
- David G DeNardo
- Department of Molecular and Cellular Biology, and Breast Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
16
|
Stender JD, Frasor J, Komm B, Chang KCN, Kraus WL, Katzenellenbogen BS. Estrogen-regulated gene networks in human breast cancer cells: involvement of E2F1 in the regulation of cell proliferation. Mol Endocrinol 2007; 21:2112-23. [PMID: 17550982 DOI: 10.1210/me.2006-0474] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Estrogens generally stimulate the proliferation of estrogen receptor (ER)-containing breast cancer cells, but they also suppress proliferation of some ER-positive breast tumors. Using a genome-wide analysis of gene expression in two ER-positive human breast cancer cell lines that differ in their proliferative response to estrogen, we sought to identify genes involved in estrogen-regulated cell proliferation. To this end, we compared the transcriptional profiles of MCF-7 and MDA-MB-231ER+ cells, which have directionally opposite 17beta-estradiol (E2)-dependent proliferation patterns, MCF-7 cells being stimulated and 231ER+ cells suppressed by E2. We identified a set of approximately 70 genes regulated by E2 in both cells, with most being regulated by hormone in an opposite fashion. Using a variety of bioinformatics approaches, we found the E2F binding site to be overrepresented in the potential regulatory regions of many cell cycle-related genes stimulated by estrogen in MCF-7 but inhibited by estrogen in 231ER+ cells. Biochemical analyses confirmed that E2F1 and E2F downstream target genes were increased in MCF-7 and decreased in 231ER+ cells upon estrogen treatment. Furthermore, RNA interference-mediated knockdown of E2F1 blocked estrogen regulation of E2F1 target genes and resulted in loss of estrogen regulation of proliferation. These results demonstrate that regulation by estrogen of E2F1, and subsequently its downstream target genes, is critical for hormone regulation of the proliferative program of these breast cancer cells, and that gene expression profiling combined with bioinformatic analyses of transcription factor binding site enrichment in regulated genes can identify key components associated with nuclear receptor hormonal regulation of important cellular functions.
Collapse
Affiliation(s)
- Joshua D Stender
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3704, USA
| | | | | | | | | | | |
Collapse
|
17
|
Lazennec G. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Lett 2006; 231:151-7. [PMID: 16399219 PMCID: PMC1942069 DOI: 10.1016/j.canlet.2005.01.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 01/19/2005] [Indexed: 11/30/2022]
Abstract
Ovarian cancer is one of the leading causes of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERalpha and ERbeta. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERbeta, compared to normal tissues. In addition, restoration of ERbeta in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERbeta in ovarian carcinogenesis are discussed.
Collapse
Affiliation(s)
- Gwendal Lazennec
- INSERM U540, Molecular and Cellular Endocrinology of Cancers, 60, rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
18
|
Zhang H, Xie X, Zhu X, Zhu J, Hao C, Lu Q, Ding L, Liu Y, Zhou L, Liu Y, Huang C, Wen C, Ye Q. Stimulatory Cross-talk between NFAT3 and Estrogen Receptor in Breast Cancer Cells. J Biol Chem 2005; 280:43188-97. [PMID: 16219765 DOI: 10.1074/jbc.m506598200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptors (ERalpha and ERbeta) are ligand-regulated transcription factors that play critical roles in the development and progression of breast cancer by regulating target genes involved in cellular proliferation. The transcriptional activity of ERalpha and ERbeta is known to be modulated by cofactor proteins. We used a yeast two-hybrid system and identified NFAT3 as a novel ERbeta-binding protein. NFAT3 interacted with ERalpha and ERbeta both in vitro and in mammalian cells in a ligand-independent fashion. NFAT3 bound specifically to the ERbeta region containing the activation function-1 domain, a ligand-independent transactivation domain. Overexpression of NFAT3 enhanced both ERalpha and ERbeta transcriptional activities in a ligand-independent manner and up-regulated downstream estrogen-responsive genes including pS2 and cathepsin D. Reduction of endogenous NFAT3 with NFAT3 small interfering RNA or overexpression of NFAT3 deletion mutants that lack the ER-binding sites reduced the NFAT3 coactivation of ERalpha and ERbeta. NFAT3 increased binding of ERalpha to the estrogen-responsive element and was recruited to endogenous estrogen-responsive promoters. NFAT3 was expressed differentially in many breast cancer cell lines and overexpressed in a subset of breast cancer patients. Knockdown of endogenous NFAT3 reduced the growth of human breast cancer ZR75-1 cells in a ligand-independent manner. Taken together, these results suggest that NFAT3 may play important roles in ER signaling and represent a novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Molecular Oncology, Beijing Institute of Biotechnology, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The xenoestrogen group of endocrine disruptors has the potential to cause reproductive and developmental effects through stimulation or disruption of sex steroid nuclear receptor signalling pathways. A more detailed understanding of the ways in which xenoestrogens interact with biological systems at the molecular level will provide a mechanistic basis for improved safety assessment. The recent sequencing of mammalian genomes has driven the development of toxicogenomic technologies, including microarray based gene expression profiling, which allow the expression levels of thousands of genes to be measured simultaneously. Since the cellular responses to xenoestrogens are predominantly mediated by estrogen receptors, which function as ligand-activated transcription factors to regulate gene expression, the application of toxicogenomics has great potential for providing insights into the molecular mechanisms of xenoestrogen action. A major challenge in applying toxicogenomics to the field of endocrine disruption is the need to define how xenoestrogen-induced changes in gene expression relate to conventional physiological and toxicological endpoints. Gene Ontology Mapping, Pathway Mapping and Phenotypic Anchoring of xenoestrogen-induced gene expression changes to cellular pathways and processes represent key steps in defining these relationships. Mechanistic insights into how xenoestrogens target specific genes and into the functional significance of xenoestrogen-induced alterations in gene expression can be further enhanced by combining transcript profiling with transgenic animal models or cell-based systems in which the estrogen receptor signalling pathways have been modified experimentally. This review illustrates how these toxicogenomic approaches are providing an unprecedented amount of mechanistic information on the molecular responses to xenoestrogens and how they are likely to impact on hazard and risk assessment.
Collapse
Affiliation(s)
- Jonathan G Moggs
- Syngenta Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, UK.
| |
Collapse
|
20
|
Lambertini E, Penolazzi L, Magaldi S, Giordano S, Senno LD, Piva R. Transcription factor decoy against promoter C of estrogen receptor α gene induces a functional ERα protein in breast cancer cells. Breast Cancer Res Treat 2005; 92:125-32. [PMID: 15986121 DOI: 10.1007/s10549-005-2413-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study addresses the hypothesis that transfection of oligonucleotide mimicking a negative regulatory sequence of promoter C of estrogen receptor alpha (ER alpha) gene is sufficient for its re-expression in ER-negative human cancer cell lines. Even if the negative transcription regulator subtracted by the transcription factor decoy is not yet been identified, we demonstrated that after this decoy treatment, the cells produced a functional ER alpha protein able to respond to 17-beta-estradiol and to transactivate a transfected estrogen response element (ERE)-regulated reporter gene. The effects of reactivated ER alpha protein and its estrogen dependence on endogenous target gene expression level, such as ER beta, have been also assessed. The proliferation of the cells transfected with low levels of decoy was significantly increased by estrogen and not by tamoxifen, suggesting that the levels of reactivated ER alpha in these decoy conditions confers a certain hormone sensitivity. On the contrary, high-level expression of ER alpha obtained at high doses of transfected decoy molecule produced a progressive decrease of cell proliferation. Since ER alpha is important in the transcription of different genes and its loss is involved in several pathological processes including neoplastic and chronic diseases, our findings may be of relevance for a possible new therapeutical approach of such diseases.
Collapse
Affiliation(s)
- Elisabetta Lambertini
- Department of Biochemistry and Molecular Biology, Ferrara University, 44100 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Rai D, Frolova A, Frasor J, Carpenter AE, Katzenellenbogen BS. Distinctive actions of membrane-targeted versus nuclear localized estrogen receptors in breast cancer cells. Mol Endocrinol 2005; 19:1606-17. [PMID: 15831524 DOI: 10.1210/me.2004-0468] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogens regulate multiple activities in breast cancer cells, including proliferation. Whereas these hormones are most commonly known to regulate gene transcription through direct interaction with estrogen receptors (ERs) and with specific DNA sequences of target genes, recent studies show that ER also activates a number of rapid signaling events that are initiated at the cell membrane. To study the membrane-initiated effects of estrogen and separate them from the activities initiated by the nuclear localized ER in human breast cancer cells, we generated MDA-MB-231 breast cancer cell lines that have stably integrated either the wild-type nuclear form of ER (WT-ER) or a modified, membrane-targeted ER (MT-ER) that lacks a nuclear localization sequence and is dually acylated with a myristoylation sequence at the N terminus and a palmitoylation sequence at the C terminus. We demonstrate that MT-ER is membrane localized in the absence of estradiol (E2), showing punctate membrane and cytoplasmic speckles after E2 exposure. In contrast to WT-ER, MT-ER was not down-regulated by E2 or by antiestrogen ICI 182,780 exposure, and MT-ER failed to regulate endogenous E2-responsive genes highly up-regulated by WT-ER. Cells expressing MT-ER showed a greater serum response element-mediated transcriptional response that was partially inhibited by antiestrogen ICI 182,780. The MT-ER and WT-ER differentially altered ERK1/2 and Akt activities and the proliferation of breast cancer cells in response to E2. Hence, this study reveals distinct actions of the MT-ER vs. the WT-ER in effecting estrogen actions in breast cancer cells.
Collapse
Affiliation(s)
- Deshanie Rai
- Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801-3704, USA
| | | | | | | | | |
Collapse
|
22
|
Barrón-González A, Castro Romero I. Re-expression of estrogen receptor alpha using a tetracycline-regulated gene expression system induced estrogen-mediated growth inhibition of the MDA-MB-231 breast cancer cell line. Biochem Cell Biol 2004; 82:335-42. [PMID: 15060629 DOI: 10.1139/o03-083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen receptor (ER)-negative breast carcinomas are often difficult to treat with antiestrogens. This work was performed to determine if the re-expression of the human ER alpha could restore the hormone response of these cells. We have transfected the human wild-type ER alpha to an ER-negative breast cancer cell line (MDA-MB-231) using a tetracycline-regulated gene expression system. We obtained a new cell line, MDA-A4-5/2. Cell count and flow cytometry "S" phase cell fraction showed that 17-beta-estradiol induced an inhibition on the proliferation of these cells; on the contrary, the antiestrogens ICI 182 780, and tamoxifen blocked this effect. Finally, we demonstrated an induction of the endogenous progesterone receptor gene when ER alpha was present. These results suggest that the re-expression of ER alpha in ER-negative breast cancer cells recreate, at least partially, a hormone-responsive phenotype and may be useful as a therapeutic approach to control this pathology.
Collapse
Affiliation(s)
- Arturo Barrón-González
- Department of Biochemistry and Molecular Biology, National Institute of Perinatology, Lomas de Virreyes, Mexico City, Mexico
| | | |
Collapse
|
23
|
Gaben AM, Saucier C, Bedin M, Redeuilh G, Mester J. Mitogenic activity of estrogens in human breast cancer cells does not rely on direct induction of mitogen-activated protein kinase/extracellularly regulated kinase or phosphatidylinositol 3-kinase. Mol Endocrinol 2004; 18:2700-13. [PMID: 15297603 DOI: 10.1210/me.2003-0133] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have addressed the question of rapid, nongenomic mechanisms that may be involved in the mitogenic action of estrogens in hormone-dependent breast cancer cells. In quiescent, estrogen-deprived MCF-7 cells, estradiol did not induce a rapid activation of either the MAPK/ERK or phosphatidylinositol-3 kinase (PI-3K)/Akt pathway, whereas the entry into the cell cycle was documented by the successive inductions of cyclin D1 expression, hyperphosphorylation of the retinoblastoma protein (Rb), activity of the promoter of the cyclin A gene, and DNA synthesis. However, pharmacological inhibitors of the src family kinases, 4-amino-5-(4-methylphenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP1) or of the PI-3K (LY294002) did prevent the entry of the cells into the cell cycle and inhibited the late G1 phase progression, whereas the inhibitor of MAPK/ERK activation (U0126) had only a partial inhibitory effect in the early G1 phase. In agreement with these results, small interfering RNA targeting Akt strongly inhibited the estradiolinduced cell cycle progression monitored by the activation of the promoter of the cyclin A gene. The expression of small interfering RNA targeting MAPK 1 and 2 also had a clear inhibitory effect on the estradiol-induced activation of the cyclin A promoter and also antagonized the estradiol-induced transcription directed by the estrogen response element. Finally, transfection of the estrogen receptor into NIH3T3 fibroblasts did not confer to the cells sensitivity to a mitogenic action of estradiol. We conclude that the induction of the cell cycle by estradiol does not require a direct activation of MAPK/ERK or PI-3K signaling protein kinase cascades, but that these kinases appear to have a permissive role in the cell cycle progression.
Collapse
Affiliation(s)
- Anne-Marie Gaben
- Institut National de la Santé et de la Recherche Médicale, Unité 482, 184 rue du Faubourg Saint Antoine, 75012 Paris, France.
| | | | | | | | | |
Collapse
|
24
|
Acevedo ML, Lee KC, Stender JD, Katzenellenbogen BS, Kraus WL. Selective recognition of distinct classes of coactivators by a ligand-inducible activation domain. Mol Cell 2004; 13:725-38. [PMID: 15023342 DOI: 10.1016/s1097-2765(04)00121-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 02/18/2004] [Accepted: 02/23/2004] [Indexed: 11/13/2022]
Abstract
How nuclear receptors (NRs) coordinate the sequential, ligand-dependent recruitment of multiple coactivator complexes (e.g., SRC complexes and Mediator) that share similar receptor binding determinants is unclear. We show that although the receptor binding subunits of these complexes (i.e., SRCs and Med220, respectively) share overlapping binding sites on estrogen receptor alpha (ERalpha), information contained in the receptor-coactivator interface allows the receptor to distinguish between them. In support of this conclusion, we have identified an ERalpha AF-2 point mutant (L540Q) that selectively binds and recruits Med220, but not SRCs, both in vitro and in vivo. In cells expressing this mutant, the recruitment of Med220 to the pS2 promoter is delayed, and the expression of the vast majority of estrogen target genes is impaired, suggesting a nearly global functional interdependence of these coactivators. Collectively, our results suggest that "facilitated recruitment," rather than competition, drives the sequential recruitment of SRC complexes and Mediator by NRs.
Collapse
Affiliation(s)
- Mari Luz Acevedo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
25
|
Huang J, Li X, Yi P, Hilf R, Bambara RA, Muyan M. Targeting estrogen responsive elements (EREs): design of potent transactivators for ERE-containing genes. Mol Cell Endocrinol 2004; 218:65-78. [PMID: 15130512 DOI: 10.1016/j.mce.2003.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Revised: 12/17/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
The estrogen hormone (E2) plays an important role in the physiology and pathophysiology of target tissues. The effects of E2 are conveyed by the estrogen receptors (ER) alpha and beta. The E2-ER complex mediates an array of genomic and non-genomic events that orchestrate the expression of a number of genes involved in the regulation of cell proliferation and differentiation. The interaction of with the regulatory DNA sequence, estrogen responsive element (ERE), of each responsive gene constitutes a critical genomic signaling pathway. However, the relative importance of ERE-dependent E2-ER signaling in cell proliferation remains to be elucidated. To address this issue, we engineered ERE-binding activators (EBAs) that specifically and potently regulate ERE-containing genes. The modular nature of ER allowed us to initially design a monomeric ERE-binding module by genetically joining two DNA-binding domains with the hinge domain. Integration of strong activation domains from other transcription factors into this module generated constitutively active EBAs. These transactivators robustly induced the expression of only ERE-containing promoter constructs in transfected cells independent of ligand, dimerization, ER-subtype and -status. Moreover, EBAs altered cell cycle progression in breast cancer cell lines in a manner similar to E2-ER. These results demonstrate the importance of ERE-containing genes in the regulation of cell proliferation. These novel ERE-binding transregulators could also be a basis for the targeted regulation of ERE-containing genes, the identification of estrogen responsive gene networks, and the development of alternative/complementary therapeutic approaches for estrogen target tissue cancers.
Collapse
Affiliation(s)
- Jing Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
26
|
Licznar A, Caporali S, Lucas A, Weisz A, Vignon F, Lazennec G. Identification of genes involved in growth inhibition of breast cancer cells transduced with estrogen receptor. FEBS Lett 2003; 553:445-50. [PMID: 14572667 DOI: 10.1016/s0014-5793(03)01090-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor alpha (ERalpha)-negative breast cancer cells display an aggressive phenotype. We previously showed that adenoviral expression of ERalpha in ER-negative breast cancer cells leads to an estrogen-dependent down-regulation of the proliferation, which could be of interest to control the growth of such cells. In this study, we observed an increase in protein levels of p21 and p27 cyclin-dependent kinase inhibitors, whereas pRb phosphorylation is strongly decreased. Flow cytometry experiments showed a slower transit of cells in G1 (hormone-independent), a hormone-induced accelerated transit through S phase and a possible arrest in G2/M phase. In addition, ERalpha-expressing cells were undergoing apoptosis. By using cDNA macroarrays, we identified a novel collection of genes regulated by liganded ERalpha potentially regulating cell cycle, apoptosis, cell signalling, stress response and DNA repair.
Collapse
Affiliation(s)
- Anne Licznar
- INSERM U540 'Molecular and Cellular Endocrinology of Cancers', 60 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | | | |
Collapse
|
27
|
Wang X, Kilgore MW. Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Mol Cell Endocrinol 2002; 194:123-33. [PMID: 12242035 DOI: 10.1016/s0303-7207(02)00154-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed and transcriptionally responsive to both synthetic and natural ligands in a variety of human breast cancer cells. We also observed significant differences in basal and ligand-mediated transactivation of PPARgamma in cells with variable expression of the estrogen receptor. While previous reports indicate that PPARgamma can mediate the expression of estrogen target genes, no data have suggested that estrogen receptor (ER) expression can alter the transcriptional regulation of PPARgamma target gene expression. Here we have demonstrated that the expression of either ERalpha or beta, but not the androgen or aryl hydrocarbon receptors, lowers both basal and stimulated PPARgamma-mediated reporter activity. Interestingly, the presence of an ER antagonist does not inhibit this response while estradiol treatment further inhibits the ligand-stimulated transactivation of PPARgamma in cells expressing ERalpha but not ERbeta. Cells transfected with ERalpha deletion mutants demonstrate that the DNA binding domain of the ER is required to repress PPAR transactivation in these cells. Finally, using RNase protection assays we show that the inhibition of PPAR function is not due to a decrease in the expression of PPARgamma. These data suggest that signal cross talk exists bidirectionally between PPARgamma and ER in breast cancer cells.
Collapse
Affiliation(s)
- Xin Wang
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
28
|
Gross JM, Yee D. How does the estrogen receptor work? Breast Cancer Res 2002; 4:62-4. [PMID: 11879565 PMCID: PMC138721 DOI: 10.1186/bcr424] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Revised: 01/30/2002] [Accepted: 01/30/2002] [Indexed: 11/21/2022] Open
Abstract
In breast cancer, interruption of estrogen receptor (ER)-alpha function is an effective therapeutic strategy. Despite the clinical benefit of interruption of ER-alpha function, the precise biological action of ER-alpha in breast tumors is not completely understood. Results of a recent study show that ER-alpha promotes growth of breast cancer cells by targeting expression of signaling components of the insulin-like growth factor system. Intriguingly, the authors of this study raise the possibility that unliganded ER-alpha itself may affect gene expression and breast cancer biology, and they suggest a potential mechanism for ER-alpha to stimulate proliferation in breast cancer.
Collapse
Affiliation(s)
- Jennifer M Gross
- University of Minnesota Cancer Center, Department of Pharmacology, Minneapolis, Minnesota, USA
| | - Douglas Yee
- University of Minnesota Cancer Center, Department of Pharmacology, Minneapolis, Minnesota, USA
| |
Collapse
|
29
|
Ye Q, Cinar B, Edlund M, Chung LW, Zhau HE. Inhibition of growth and cell cycle arrest of ARCaP human prostate cancer cells by ectopic expression of ER-alpha. Mol Cell Biochem 2001; 228:105-10. [PMID: 11855735 DOI: 10.1023/a:1013303414460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The estrogen receptor-alpha (ER-alpha) is a ligand-dependent transcription factor that regulates the growth, differentiation, and development of hormone-responsive target organs. While ER-alpha has been reported to play critical role in the pathogenesis and prognosis of breast and prostate cancers, its possible functional role in regulating prostate cancer cell growth in a ligand-dependent or -independent manner is poorly understood. We addressed this question by stably transfecting wild type (wt) ER-alpha cDNA into an invasive estrogen receptor-negative human prostate cancer cell line ARCaP. We isolated several clonal lines of transfected cells expressing varying levels of ER-alpha. The ectopic expression of wt ER-a markedly inhibited the growth of ARCaP cells in vitro in an ER-a dose-dependent but ligand-independent manner. Flow cytometric analysis of the wt ER-alpha-transfected ARCaP cells revealed that wt ER-alpha expression arrested cell growth in G1 phase. Our results suggest that ER-alpha may regulate prostate cell growth and participate in the pathogenesis of prostate cancer. ER-alpha may be delivered and expressed ectopically to target prostate cancer progression.
Collapse
Affiliation(s)
- Q Ye
- Department of Urology, University of Virginia School of Medicine, Charlottesville 22908, USA.
| | | | | | | | | |
Collapse
|
30
|
Lee EJ, Jakacka M, Duan WR, Chien PY, Martinson F, Gehm BD, Jameson JL. Adenovirus-directed Expression of Dominant Negative Estrogen Receptor Induces Apoptosis in Breast Cancer Cells and Regression of Tumors in Nude Mice. Mol Med 2001. [DOI: 10.1007/bf03401968] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F. ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 2001; 142:4120-30. [PMID: 11517191 PMCID: PMC2040491 DOI: 10.1210/endo.142.9.8395] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that the expression of ER beta in breast cancer is lower than in the normal breast, suggesting that ER beta could play an important role in carcinogenesis. To investigate this hypothesis, we engineered ER-negative MDA-MB-231 (human breast cancer cells) to reintroduce either ER alpha or ER beta protein with an adenoviral vector. In these cells, ER beta (as ER alpha) expression was monitored using RT-PCR and Western blot. ER beta protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of E2. ER beta and ER alpha induced the expression of several endogenous genes such as pS2, TGF alpha, or the cyclin kinase inhibitor p21 but, in contrast to ER alpha, ER beta was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ER alpha and ER beta estrogen-induced activities. ER beta inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ER alpha inhibition of proliferation is hormone dependent. Moreover, ER beta and ER alpha decreased cell motility and invasion. Our data bring the first evidence that ER beta is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ER beta expression could be one of the events leading to the development of breast cancer.
Collapse
Affiliation(s)
- G Lazennec
- INSERM U540 Molecular and Cellular Endocrinology of Cancers, 34090 Montpellier, France.
| | | | | | | | | |
Collapse
|
32
|
Biswas DK, Cruz A, Pettit N, Mutter GL, Pardee AB. A Therapeutic Target for Hormone-independent Estrogen Receptor-positive Breast Cancers. Mol Med 2001. [DOI: 10.1007/bf03401839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|