1
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
2
|
Murray AF, Delivopoulos E. Adhesion and Growth of Neuralized Mouse Embryonic Stem Cells on Parylene-C/SiO 2 Substrates. MATERIALS 2021; 14:ma14123174. [PMID: 34207642 PMCID: PMC8226677 DOI: 10.3390/ma14123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Neuronal patterning on microfabricated architectures has developed rapidly over the past few years, together with the emergence of soft biocompatible materials and tissue engineering scaffolds. Previously, we introduced a patterning technique based on serum and the biopolymer parylene-C, achieving highly compliant growth of primary neurons and astrocytes on different geometries. Here, we expanded this technique and illustrated that neuralized cells derived from mouse embryonic stem cells (mESCs) followed stripes of variable widths with conformity equal to or higher than that of primary neurons and astrocytes. Our results indicate the presence of undifferentiated mESCs, which also conformed to the underlying patterns to a high degree. This is an exciting and unexpected outcome, as molecular mechanisms governing cell and ECM protein interactions are different in stem cells and primary cells. Our study enables further investigations into the development and electrophysiology of differentiating patterned neural stem cells.
Collapse
Affiliation(s)
- Alan F. Murray
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK;
| | - Evangelos Delivopoulos
- School of Biological Sciences, University of Reading, Reading RG6 6DH, UK
- Correspondence: ; Tel.: +44-11-8378-8615
| |
Collapse
|
3
|
Jia C, Keasey MP, Malone HM, Lovins C, Sante RR, Razskazovskiy V, Hagg T. Vitronectin from brain pericytes promotes adult forebrain neurogenesis by stimulating CNTF. Exp Neurol 2018; 312:20-32. [PMID: 30408465 DOI: 10.1016/j.expneurol.2018.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/17/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Abstract
Vitronectin (VTN) is a glycoprotein in the blood and affects hemostasis. VTN is also present in the extracellular matrix of various organs but little is known about its function in healthy adult tissues. We show, in adult mice, that VTN is uniquely expressed by approximately half of the pericytes of subventricular zone (SVZ) where neurogenesis continues throughout life. Intracerebral VTN antibody injection or VTN knockout reduced neurogenesis as well as expression of pro-neurogenic CNTF, and anti-neurogenic LIF and IL-6. Conversely, injections of VTN, or plasma from VTN+/+, but not VTN-/- mice, increased these cytokines. VTN promoted SVZ neurogenesis when LIF and IL-6 were suppressed by co-administration of a gp130 inhibitor. Unexpectedly, VTN inhibited FAK signaling and VTN-/- mice had increased FAK signaling in the SVZ. Further, an FAK inhibitor or VTN increased CNTF expression, but not in conditional astrocytic FAK knockout mice, suggesting that VTN increases CNTF through FAK inhibition in astrocytes. These results identify a novel role of pericyte-derived VTN in the brain, where it regulates SVZ neurogenesis through co-expression of CNTF, LIF and IL-6. VTN-integrin-FAK and gp130 signaling may provide novel targets to induce neurogenesis for cell replacement therapies.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Hannah M Malone
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Richard R Sante
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Vlad Razskazovskiy
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
4
|
Intra- and extracellular plasminogen activator inhibitor-1 regulate effect of vitronectin against radiation-induced endothelial cell death. Vascul Pharmacol 2016; 87:150-158. [PMID: 27650166 DOI: 10.1016/j.vph.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/13/2016] [Accepted: 09/10/2016] [Indexed: 01/12/2023]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is induced by radiation resulting in endothelial cell impairment, potentially leading to multiple organ failure. Vitronectin (VN) is a 75-kDa glycoprotein (VN75) cleaved into two forms (VN75 or VN65/10) by furin, which is regulated by intracellular PAI-1. VN protects against radiation-induced endothelial cell death, but the mechanisms involved in VN processing and its interactions with intra- and extracellular PAI-1 remain unclear. We examined these processes in cells in vitro using recombinant proteins or overexpression of VN and PAI-1 genes, including furin-susceptible (T381) and furin-resistant VN (A381). VN processing was analyzed using a mutant PAI-1 with relatively weaker binding to VN. VN function was evaluated by survival of radiation-damaged endothelial cells. Wild-type, but not mutant PAI-1 inhibited furin-dependent VN processing. Gene transfer revealed that furin-susceptible VN was processed more than the furin-resistant form, but processing of both was inhibited by PAI-1 overexpression. Intracellular PAI-1 formed a complex with VN75 (T381) in cells and media, and the VN75 form was secreted preferentially. Only VN75 protected against radiation-induced endothelial cell death, in which its effect was abolished by wild-type but not mutant PAI-1. These findings indicate that intracellular PAI-1 inhibits VN processing and protects against radiation-induced endothelial cell death.
Collapse
|
5
|
Zhu S, Gladson CL, White KE, Ding Q, Stewart J, Jin TH, Chapman HA, Olman MA. Urokinase receptor mediates lung fibroblast attachment and migration toward provisional matrix proteins through interaction with multiple integrins. Am J Physiol Lung Cell Mol Physiol 2009; 297:L97-108. [PMID: 19411312 PMCID: PMC2711805 DOI: 10.1152/ajplung.90283.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/27/2009] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts from patients with pulmonary fibrosis express higher levels of the receptor for urokinase, and the extent of fibrosis in some animal models exhibits a dependence on the urokinase receptor. Recent observations have identified the urokinase receptor as a trans-interacting receptor with consequences on signaling and cell responses that vary depending on its interacting partner, the relative levels of expression, and the state of cellular transformation. We undertook this study to define the urokinase-type plasminogen activator cellular receptor (u-PAR)-integrin interactions and to determine the functional consequences of such interactions on normal human lung fibroblast attachment and migration. u-PAR colocalizes in lammelipodia/filopodia with relevant integrins that mediate fibroblast attachment and spreading on the provisional matrix proteins vitronectin, fibronectin, and collagens. Inhibitory antibody studies have revealed that human lung fibroblasts utilize alpha(v)beta(5) to attach to vitronectin, predominantly alpha(5)beta(1) (and alpha(v)beta(3)) to attach to fibronectin, and alpha(1)beta(1), alpha(2)beta(1), and alpha(3)beta(1) to attach to collagen. Blocking studies with alpha-integrin subunit decoy peptides and u-PAR neutralizing antibodies indicate that u-PAR modulates the integrin-mediated attachment to purified provisional matrix proteins, to anti-integrin antibodies, or to fibroproliferative lesions from fibrotic lungs. Furthermore, these decoy peptides blunt fibroblast spreading and migration. We show that u-PAR can interact with multiple alpha-integrins but with a preference for alpha(3). Taken together, these data demonstrate that u-PAR may interact with multiple integrins in normal human lung fibroblasts thereby promoting attachment, spreading, and migration. Modulation of fibroblast invasion would be expected to lead to amelioration of fibroproliferative diseases of the lung.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
McFarland BC, Stewart J, Hamza A, Nordal R, Davidson DJ, Henkin J, Gladson CL. Plasminogen kringle 5 induces apoptosis of brain microvessel endothelial cells: sensitization by radiation and requirement for GRP78 and LRP1. Cancer Res 2009; 69:5537-45. [PMID: 19549899 DOI: 10.1158/0008-5472.can-08-4841] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recombinant plasminogen kringle 5 (rK5) has been shown to induce apoptosis of dermal microvessel endothelial cells (MvEC) in a manner that requires glucose-regulated protein 78 (GRP78). As we are interested in antiangiogenic therapy for glioblastoma tumors, and the effectiveness of antiangiogenic therapy can be enhanced when combined with radiation, we investigated the proapoptotic effects of rK5 combined with radiation on brain MvEC. We found that rK5 treatment of brain MvEC induced apoptosis in a dose- and time-dependent manner and that prior irradiation significantly sensitized (500-fold) the cells to rK5-induced apoptosis. The rK5-induced apoptosis of both unirradiated and irradiated MvEC required expression of GRP78 and the low-density lipoprotein receptor-related protein 1 (LRP1), a scavenger receptor, based on down-regulation studies with small interfering RNA, and blocking studies with either a GRP78 antibody or a competitive inhibitor of ligand binding to LRP1. Furthermore, p38 mitogen-activated protein kinase was found to be a necessary downstream effector for rK5-induced apoptosis. These data suggest that irradiation sensitizes brain MvEC to the rK5-induced apoptosis and that this signal requires LRP1 internalization of GRP78 and the activation of p38 mitogen-activated protein kinase. Our findings suggest that prior irradiation would have a dose-sparing effect on rK5 antiangiogenic therapy for brain tumors and further suggest that the effects of rK5 would be tumor specific, as the expression of GRP78 protein is up-regulated on the brain MvEC in glioblastoma tumor biopsies compared with the normal brain.
Collapse
Affiliation(s)
- Braden C McFarland
- Division of Neuropathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Minor KH, Schar CR, Blouse GE, Shore JD, Lawrence DA, Schuck P, Peterson CB. A mechanism for assembly of complexes of vitronectin and plasminogen activator inhibitor-1 from sedimentation velocity analysis. J Biol Chem 2005; 280:28711-20. [PMID: 15905170 PMCID: PMC2034521 DOI: 10.1074/jbc.m500478200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) and vitronectin are cofactors involved in pathological conditions such as injury, inflammation, and cancer, during which local levels of PAI-1 are increased and the active serpin forms complexes with vitronectin. These complexes become deposited into surrounding tissue matrices, where they regulate cell adhesion and pericellular proteolysis. The mechanism for their co-localization has not been elucidated. We hypothesize that PAI-1-vitronectin complexes form in a stepwise and concentration-dependent fashion via 1:1 and 2:1 intermediates, with the 2:1 complex serving a key role in assembly of higher order complexes. To test this hypothesis, sedimentation velocity experiments in the analytical ultracentrifuge were performed to identify different PAI-1-vitronectin complexes. Analysis of sedimentation data invoked a novel multisignal method to discern the stoichiometry of the two proteins in the higher-order complexes formed (Balbo, A., Minor, K. H., Velikovsky, C. A., Mariuzza, R. A., Peterson, C. B., and Schuck, P. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 81-86). Our results demonstrate that PAI-1 and vitronectin assemble into higher order forms via a pathway that is triggered upon saturation of the two PAI-1-binding sites of vitronectin to form the 2:1 complex. This 2:1 PAI-1-vitronectin complex, with a sedimentation coefficient of 6.5 S, is the key intermediate for the assembly of higher order complexes.
Collapse
Affiliation(s)
- Kenneth H Minor
- Department of Biochemistry, Cellular, and Molecular Biology and the Center of Excellence in Structural Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Chen SH, Benveniste EN. Oncostatin M: a pleiotropic cytokine in the central nervous system. Cytokine Growth Factor Rev 2005; 15:379-91. [PMID: 15450253 DOI: 10.1016/j.cytogfr.2004.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oncostatin M (OSM), a member of the interleukin-6 (IL-6) cytokine family, has yet to be well studied, especially in the context of the central nervous system (CNS). The biological functions of OSM are complex and variable, depending on the cellular microenvironment. Inflammatory responses and tumor development are among two of the major events that OSM is involved in. Although OSM levels remain low in the normal CNS, elevated expression occurs in pathological conditions. Therefore, it is crucial to understand the regulation of OSM to control its expression and/or its effects. Accumulating data demonstrate that OSM binds to specific receptor complexes, then activates two major signaling pathways: Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) and Mitogen-Activated Protein Kinase (MAPK), to regulate downstream events. In this review, we focus on the biological functions of OSM, the signaling pathways of OSM in the CNS, and OSM involvement in CNS diseases.
Collapse
Affiliation(s)
- Shao-Hua Chen
- Department of Cell Biology, MCLM 386, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294-0005, USA.
| | | |
Collapse
|
9
|
Singleton C, Menino AR. EFFECTS OF INHIBITORS OF INTEGRIN BINDING ON CELLULAR OUTGROWTH FROM BOVINE INNER CELL MASSES IN VITRO. ACTA ACUST UNITED AC 2005; 41:29-37. [PMID: 15926857 DOI: 10.1290/0407054.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine inner cell masses (ICM) cultured on fibronectin give rise to extensive cellular outgrowths containing endoderm. Peptides with the Glu-Ile-Leu-Asp-Val (EILDV) and Arg-Gly-Asp (RGD) sequences inhibit cell migration on fibronectin by binding to the fibronectin-recognition site in several integrins. To identify integrins involved in endodermal cell outgrowth on fibronectin and vitronectin, the effects of the EILDV and RGD peptides were evaluated in vitro. In experiment 1, ICM were cultured on fibronectin in medium containing 0.5 or 1.0 mg/ml EILDV or RGD (or both). Compared with 0 mg/ml, 0.5 mg/ml EILDV suppressed (P<0.10) outgrowth area overall, and 1.0 mg/ml EILDV reduced (P<0.05) outgrowth area after 72 h of culture. Compared with 0 mg/ml, 0.5 and 1.0 mg/ml RGD reduced (P<0.05) outgrowth area after 72 h of culture. Plasminogen activator activity in conditioned medium increased (P<0.05) in 0.5 mg/ml RGD but decreased (P<0.10) in 1.0 mg/ml RGD compared with 0 mg/ml RGD. In experiment 2, bovine ICM were cultured on vitronectin in medium containing 0.5 or 1.0 mg/ml RGD. Neither concentration of RGD (P>0.10) affected the extent of cellular outgrowth on vitronectin. Bovine endodermal cell migration on fibronectin can be modulated by the RGD and EILDV peptides. Despite inhibition, neither peptide completely prevented outgrowth on fibronectin. In contrast, cellular outgrowth on vitronectin was unaffected by RGD. The persistence of cellular outgrowth on fibronectin and the absence of inhibition by RGD for ICM cultured on vitronectin suggests that bovine endodermal cells can use alternative cellular adhesion systems, such as nonintegrin receptors, during outgrowth.
Collapse
Affiliation(s)
- Coreyayne Singleton
- Department of Animal Sciences, Oregon State University, Corvallis, Oregon 97331-6702, USA
| | | |
Collapse
|
10
|
Dai E, Guan H, Liu L, Little S, McFadden G, Vaziri S, Cao H, Ivanova IA, Bocksch L, Lucas A. Serp-1, a viral anti-inflammatory serpin, regulates cellular serine proteinase and serpin responses to vascular injury. J Biol Chem 2003; 278:18563-72. [PMID: 12637546 DOI: 10.1074/jbc.m209683200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complex DNA viruses have tapped into cellular serpin responses that act as key regulatory steps in coagulation and inflammatory cascades. Serp-1 is one such viral serpin that effectively protects virus-infected tissues from host inflammatory responses. When given as purified protein, Serp-1 markedly inhibits vascular monocyte invasion and plaque growth in animal models. We have investigated mechanisms of viral serpin inhibition of vascular inflammatory responses. In vascular injury models, Serp-1 altered early cellular plasminogen activator (tissue plasminogen activator), inhibitor (PAI-1), and receptor (urokinase-type plasminogen activator) expression (p < 0.01). Serp-1, but not a reactive center loop mutant, up-regulated PAI-1 serpin expression in human endothelial cells. Treatment of endothelial cells with antibody to urokinase-type plasminogen activator and vitronectin blocked Serp-1-induced changes. Significantly, Serp-1 blocked intimal hyperplasia (p < 0.0001) after aortic allograft transplant (p < 0.0001) in PAI-1-deficient mice. Serp-1 also blocked plaque growth after aortic isograft transplant and after wire-induced injury (p < 0.05) in PAI-1-deficient mice indicating that increase in PAI-1 expression is not required for Serp-1 to block vasculopathy development. Serp-1 did not inhibit plaque growth in uPAR-deficient mice after aortic allograft transplant. We conclude that the poxviral serpin, Serp-1, attenuates vascular inflammatory responses to injury through a pathway mediated by native uPA receptors and vitronectin.
Collapse
Affiliation(s)
- Erbin Dai
- Vascular Biology Research Group, John P. Robarts' Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vasilyev DV, Barish ME. Regulation of an inactivating potassium current (IA) by the extracellular matrix protein vitronectin in embryonic mouse hippocampal neurones. J Physiol 2003; 547:859-71. [PMID: 12562917 PMCID: PMC2342723 DOI: 10.1113/jphysiol.2002.036889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Integrins are a class of intrinsic membrane receptors for extracellular matrix ligands. In the central nervous system, integrins and their ligands influence neuronal growth and synaptic function, but relatively little is known about their potential to regulate intrinsic excitability. To explore this area, we examined the effects of matrix components on potassium currents in developing mouse hippocampal neurones, using electrophysiological and immunochemical approaches. We tested the effects of three integrin ligands present in the hippocampus, fibronectin, laminin and vitronectin, on electrogenesis in late embryonic hippocampal pyramidal neurones. Explants cultured in serum-free medium were exposed to ligands (fibronectin at 3 microg ml-1, laminin at 5 microg ml-1, vitronectin at 10 microg ml-1) for 3-4 days, and voltage-gated potassium currents were recorded from presumptive CA3 pyramidal neurones. Of the three matrix components, only vitronectin affected potassium currents, selectively increasing the amplitude of the inactivating potassium current (IA, or A-current) by about 75 % over control levels, and its density (current per unit area) by about 40 % (measured after 3 day exposures from embryonic day 15.5). Other potassium currents were spared, except to the extent that membrane area was increased. The actions of vitronectin were sensitive to RGD (Arg-Gly-Asp)-sequence-containing peptide, indicating the involvement of integrins as vitronectin receptors. The kinetic properties of IA, including the voltage-dependence of activation and inactivation, inactivation rate and the rate of recovery from inactivation, were minimally affected by vitronectin and were consistent with enhanced functional expression of Kv4-family subunits. Analyses of Kv4.2 and Kv1.4 immunoreactivity also suggested a preferential increase in Kv4.2 levels, with lesser effects on Kv1.4 levels. These results indicate that vitronectin can selectively regulate IA, and together with other observations suggest that modulation of neuronal excitability by integrins and their ligands occurs commonly.
Collapse
Affiliation(s)
- Dmitry V Vasilyev
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
12
|
Kasza A, Kiss DL, Gopalan S, Xu W, Rydel RE, Koj A, Kordula T. Mechanism of plasminogen activator inhibitor-1 regulation by oncostatin M and interleukin-1 in human astrocytes. J Neurochem 2002; 83:696-703. [PMID: 12390531 PMCID: PMC4567031 DOI: 10.1046/j.1471-4159.2002.01163.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glial cells that produce and respond to various cytokines mediate inflammatory processes in the brain. Here, we show that oncostatin M (OSM) and interleukin-1 (IL-1) regulate the expression of plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA) in human astrocytes. Using the PAI-1 reporter constructs we show that the -58 to -51 proximal element mediates activation by both cytokines. This element is already bound by c-fos/c-jun heterodimers in unstimulated astrocytes, and treatment with cytokine strongly stimulates both expression of c-fos and binding of c-fos/c-jun heterodimers. In addition, IL-1 activates an inhibitory mechanism that down-regulates PAI-1 expression after longer exposure to this cytokine. Overexpression of dominant-negative signal transducer and activator of transcription-1 (STAT1), STAT3, STAT5 and inhibitor of nuclear factor-kappaB (IkappaB) suppressed OSM/IL-1-induced expression of the PAI-1 reporter construct. We conclude that OSM and IL-1 regulate the PAI-1 gene expression via up-regulating c-fos levels and subsequent binding of c-fos/c-jun heterodimers to the proximal element of the PAI-1 gene.
Collapse
Affiliation(s)
- Aneta Kasza
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Department of Cell Biochemistry, Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | - Daniel L. Kiss
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Sunita Gopalan
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | - Weili Xu
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
| | | | - Aleksander Koj
- Department of Cell Biochemistry, Institute of Molecular Biology, Jagiellonian University, Kraków, Poland
| | - Tomasz Kordula
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115
- Corresponding author: Dr. Tomasz Kordula, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, tel. (216) 687-2435, fax. (216) 687-6972,
| |
Collapse
|
13
|
Minor KH, Peterson CB. Plasminogen activator inhibitor type 1 promotes the self-association of vitronectin into complexes exhibiting altered incorporation into the extracellular matrix. J Biol Chem 2002; 277:10337-45. [PMID: 11796716 DOI: 10.1074/jbc.m109564200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitors, including plasminogen activator inhibitor type 1 (PAI-1) and antithrombin, are key regulators of hemostatic processes such as thrombosis and wound healing. Much evidence suggests that PAI-1 can influence such processes, as well as pathological events like tumor metastasis, through its ability to directly regulate binding of blood platelets and cells to extracellular substrata. One way that PAI-1 influences these processes may be mediated through its binding to the plasma protein vitronectin. Binding to PAI-1 results in the incorporation of vitronectin into a higher order complex with a potential for multivalent interactions (Podor, T. J., Shaughnessy, S. G., Blackburn, M. N., and Peterson, C. B. (2000) J. Biol. Chem. 275, 25402-25410). In this study, evidence is provided to support this concept from studies on the effects of PAI-1-induced multimerization on the interactions of vitronectin with matrix components and cell surface receptors. By monitoring complex formation and stability over time using size-exclusion high performance liquid chromatography, a correlation is made between PAI-1-induced multimerization and enhanced cell/matrix binding properties of vitronectin. This evidence indicates that PAI-1 alters the adhesive functions of vitronectin by converting the protein via the higher order complex to a self-associated, multivalent species that is functionally distinct from the abundant monomeric form found in the circulation.
Collapse
Affiliation(s)
- Kenneth H Minor
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
14
|
Milner R, Relvas JB, Fawcett J, ffrench-Constant C. Developmental regulation of alphav integrins produces functional changes in astrocyte behavior. Mol Cell Neurosci 2001; 18:108-18. [PMID: 11461157 DOI: 10.1006/mcne.2001.1003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the role of the extracellular matrix in regulating astrocyte behavior we previously characterized alphav integrin expression on postnatal astrocytes in vitro and found that they express alphavbeta5 and alphavbeta8. Here we show that differentiation of immature cells into astrocytes is accompanied by developmental regulation of alphav integrins, downregulation of alphavbeta1 and alphavbeta8, and upregulation of alphavbeta5. In addition, using two previously described astrocyte cell lines, we found that the neurite-permissive A7 cell line expressed high levels of alphavbeta1 in addition to alphavbeta5 and alphavbeta8, while the neurite-inhibitory Neu7 cell line expressed only alphavbeta5. To examine integrin function we generated clones of the Neu7 cell line expressing alphavbeta1 or alphavbeta3 in addition to alphavbeta5. This showed that the parent Neu7 cells migrated more slowly than the A7 cells on fibronectin and vitronectin, but that Neu7 cells expressing alphavbeta1 or alphavbeta3 integrins showed enhanced migration on fibronectin and vitronectin, respectively. These results show that alphav integrin expression is regulated during astrocyte development and confirm an instructive role in cell migration for alphavbeta1 in embryonic cells and alphavbeta3 in astroglial tumors.
Collapse
Affiliation(s)
- R Milner
- Department of Medical Genetics, Department of Physiology, University of Cambridge and Cambridge Centre for Brain Repair, University Forvie Site, Robinson Way, Cambridge, CB2 2PT, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Wang D, Yamamoto S, Hijiya N, Benveniste EN, Gladson CL. Transcriptional regulation of the human osteopontin promoter: functional analysis and DNA-protein interactions. Oncogene 2000; 19:5801-9. [PMID: 11126367 DOI: 10.1038/sj.onc.1203917] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synthesis of cell attachment proteins and cytokines, such as osteopontin (OPN), can promote tumor cell remodeling of the extracellular matrix into an environment that promotes tumor cell attachment and migration. We investigated the transcriptional regulation of OPN in the U-251MG and U-87MG human malignant astrocytoma cell lines. Deletion and mutagenesis analyses of the OPN promoter region identified a proximal promoter element (-24 to -94 relative to the transcription initiation site) that is essential for maintaining high levels of OPN expression in the tumor cells. This element, designated RE-1, consists of two cis-acting elements, RE-1a (-55 to -86) and RE-1b (-22 to -45), which act synergistically to regulate the activity of the OPN promoter. Gel shift assays using nuclear extracts of U-251MG cells demonstrated that RE-1a contains binding sites for transcription factors Sp1, the glucocorticoid receptor, and the E-box-binding factors, whereas RE-1b contains a binding site for the octamer motif-binding protein (OCT-1/OCT-2). Inclusion of antibodies directed toward Myc and OCT-1 in the gel shift assays indicated that Myc and OCT-1 participate in forming DNA-protein complexes on the RE-1a and RE-1b elements, respectively. Our results identify two previously unrecognized elements in the OPN promoter that act synergistically to promote upregulation of OPN synthesis by tumor cells but are regulated by different transcription factors.
Collapse
Affiliation(s)
- D Wang
- Department of Pathology, The University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|