1
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
2
|
Ravinder D, Rampogu S, Dharmapuri G, Pasha A, Lee KW, Pawar SC. Inhibition of DDX3 and COX-2 by forskolin and evaluation of anti-proliferative, pro-apoptotic effects on cervical cancer cells: molecular modelling and in vitro approaches. Med Oncol 2022; 39:61. [PMID: 35478276 DOI: 10.1007/s12032-022-01658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Several studies have reported up-regulation of both cyclooxygenase-2 (COX-2) and DEAD-box RNA helicase3 (DDX3) and have validated their oncogenic role in many cancers. Inhibition of COX-2 and DDX3 offers a potential pharmacological strategy for prevention of cancer progression. The COX-2 isoform is expressed in response to pro-inflammatory stimuli in premalignant lesions, including cervical tissues. This study elucidates the potential role of plant derived compound Forskolin (FSK) in plummeting the expression of COX-2 and DDX3 in cervical cancer. To establish this, the cervical cancer cells were treated with the FSK compound which induced a dose dependent significant inhibition of COX-2 and DDX3 expression. The FSK treatment also significantly induced apoptosis in cancer cells by modulating the expression of apoptotic markers like caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, full length-poly ADP ribose polymerase (PARP), cleaved-poly ADP ribose polymerase (C-PARP) and Bcl2 in dose dependent manner. Further FSK significantly modulated the cell survival pathway Phosphatidylinositol 3-kinase (PI3-K)/Akt signalling pathway upon 24 h of incubation in cervical cancer cells. The molecular docking studies revealed that the FSK engaged the active sites of both the targets by interacting with key residues.
Collapse
Affiliation(s)
- Doneti Ravinder
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Gangappa Dharmapuri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Akbar Pasha
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| | - Smita C Pawar
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
3
|
Boczek T, Radzik T, Ferenc B, Zylinska L. The Puzzling Role of Neuron-Specific PMCA Isoforms in the Aging Process. Int J Mol Sci 2019; 20:ijms20246338. [PMID: 31888192 PMCID: PMC6941135 DOI: 10.3390/ijms20246338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
The aging process is a physiological phenomenon associated with progressive changes in metabolism, genes expression, and cellular resistance to stress. In neurons, one of the hallmarks of senescence is a disturbance of calcium homeostasis that may have far-reaching detrimental consequences on neuronal physiology and function. Among several proteins involved in calcium handling, plasma membrane Ca2+-ATPase (PMCA) is the most sensitive calcium detector controlling calcium homeostasis. PMCA exists in four main isoforms and PMCA2 and PMCA3 are highly expressed in the brain. The overall effects of impaired calcium extrusion due to age-dependent decline of PMCA function seem to accumulate with age, increasing the susceptibility to neurotoxic insults. To analyze the PMCA role in neuronal cells, we have developed stable transfected differentiated PC12 lines with down-regulated PMCA2 or PMCA3 isoforms to mimic age-related changes. The resting Ca2+ increased in both PMCA-deficient lines affecting the expression of several Ca2+-associated proteins, i.e., sarco/endoplasmic Ca2+-ATPase (SERCA), calmodulin, calcineurin, GAP43, CCR5, IP3Rs, and certain types of voltage-gated Ca2+ channels (VGCCs). Functional studies also demonstrated profound changes in intracellular pH regulation and mitochondrial metabolism. Moreover, modification of PMCAs membrane composition triggered some adaptive processes to counterbalance calcium overload, but the reduction of PMCA2 appeared to be more detrimental to the cells than PMCA3.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tomasz Radzik
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
- Correspondence: ; Tel.: +48-42-272-5680
| |
Collapse
|
4
|
Park HJ, Zhao TT, Park KH, Lee MK. Repeated treatments with the D 1 dopamine receptor agonist SKF-38393 modulate cell viability via sustained ERK-Bad-Bax activation in dopaminergic neuronal cells. Behav Brain Res 2019; 367:166-175. [PMID: 30930179 DOI: 10.1016/j.bbr.2019.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 01/23/2023]
Abstract
The D1 dopamine receptor agonist, SKF-38393, induces cytotoxicity in striatal dopaminergic neurons via an extracellular signal-regulated kinase (ERK) signaling cascade. However, the underlying mechanism remains unclear. We hypothesized that repeated activation of dopaminergic receptors by agonists could lead to neuronal cell death. This study investigated the effects of SKF-38393 on dopaminergic neuronal cell death in a 6-hydroxydopamine-lesioned rat model of Parkinson's disease (PD) and PC12 cells. In the PD model, SKF-38393 administration (3 and 10 mg/kg per day, s.c.) for 8 weeks significantly increased the number of tyrosine hydroxylase-immunopositive neuronal cells in nigrostriatal regions. SKF-38393 administration for 8 weeks induced phosphorylation of sustained ERK1/2 and Bad (Bcl-2-associated death promoter) at Ser155 (BadSer155), and augmented Bax (Bcl-2-associated X protein) expression. However, SKF-38393 only increased Bad phosphorylation at Ser112 (BadSer112) when administered for 4 weeks. In PC12 cells, toxic levels of SKF-38393 (20 and 50 μM) rapidly induced formation of neurite-like processes, but not in the presence of an adenylyl cyclase inhibitor (MDL-12330 A). SKF-38393 (20 and 50 μM) induced sustained ERK1/2 and BadSer155 phosphorylation as well as caspase-3 activation. At a non-toxic level (5 μM), SKF-38393 produced only transient ERK1/2 and BadSer112 phosphorylation. Repeated treatments with SKF-38393 (5 μM) for 1-3 days activated BadSer112. Repeated treatments for 4-7 days induced sustained ERK1/2 and BadSer155 phosphorylation as well as Bax and caspase-3 activation. These results suggest that SKF-38393 induces neurotoxicity by activation of the sustained ERK-Bad-Bax system. These findings contribute to an understanding of the adverse effects of D1 dopamine receptor agonists in patients with PD.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Ting Ting Zhao
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Keun Hong Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea
| | - Myung Koo Lee
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong, Heungduk-gu, Cheongju 28160, Republic of Korea.
| |
Collapse
|
5
|
Park HJ, Kang JK, Lee MK. 1- O-Hexyl-2,3,5-Trimethylhydroquinone Ameliorates l-DOPA-Induced Cytotoxicity in PC12 Cells. Molecules 2019; 24:molecules24050867. [PMID: 30823626 PMCID: PMC6429301 DOI: 10.3390/molecules24050867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| | - Jong Koo Kang
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju 28644, Korea.
| | - Myung Koo Lee
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| |
Collapse
|
6
|
L-DOPA modulates cell viability through the ERK-c-Jun system in PC12 and dopaminergic neuronal cells. Neuropharmacology 2016; 101:87-97. [DOI: 10.1016/j.neuropharm.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/25/2015] [Accepted: 09/03/2015] [Indexed: 01/20/2023]
|
7
|
Park KH, Park HJ, Shin KS, Lee MK. Multiple treatments with L-3,4-dihydroxyphenylalanine modulate dopamine biosynthesis and neurotoxicity through the protein kinase A-transient extracellular signal-regulated kinase and exchange protein activation by cyclic AMP-sustained extracellular signal-regulated kinase signaling pathways. J Neurosci Res 2014; 92:1746-56. [PMID: 25044243 DOI: 10.1002/jnr.23450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
Multiple treatments with L-3,4-dihydroxyphenylalanine (L-DOPA; 20 µM) induce neurite-like outgrowth and reduce dopamine biosynthesis in rat adrenal pheochromocytoma (PC) 12 cells. We therefore investigated the effects of multiple treatments with L-DOPA (MT-LD) on cell survival and death over a duration of 6 days by using PC12 cells and embryonic rat midbrain primary cell cultures. MT-LD (10 and 20 µM) decreased cell viability, and both types of cells advanced to the differentiation process at 4-6 days. MT-LD induced cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) phosphorylation and exchange protein activation by cAMP (Epac) expression at 1-3 days, which led to transient extracellular signal-regulated kinase (ERK1/2) phosphorylation in both cells. In these states, MT-LD activated cAMP-response element binding protein (CREB; Ser133) and tyrosine hydroxylase (Ser40) phosphorylation in PC12 cells, which led to an increase in intracellular dopamine levels. In contrast, MT-LD induced prolonged Epac expression at 4-5 days in both cells, which led to sustained ERK1/2 phosphorylation. In these states, the dopamine levels were decreased in PC12 cells. In addition, MT-LD induced c-Jun N-terminal kinase1/2 phosphorylation and cleaved caspase-3 expression at 4-6 days in both cells. These results suggest that MT-LD maintains cell survival via PKA-transient ERK1/2 activation, which stimulates dopamine biosynthesis. In contrast, at the later time period, MT-LD induces differentiation via both prolonged Epac and sustained ERK1/2 activation, which subsequently leads to the cell death process. Our data demonstrate that L-DOPA can cause neurotoxicity by modulating the Epac-ERK pathways in neuronal and PC12 cells.
Collapse
Affiliation(s)
- Keun Hong Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Park HJ, Park KH, Shin KS, Lee MK. The roles of cyclic AMP-ERK-Bad signaling pathways on 6-hydroxydopamine-induced cell survival and death in PC12 cells. Toxicol In Vitro 2013; 27:2233-41. [PMID: 24055892 DOI: 10.1016/j.tiv.2013.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/17/2013] [Accepted: 09/11/2013] [Indexed: 01/07/2023]
Abstract
The roles of cyclic AMP (cAMP)-ERK1/2-Bad signaling pathways in 6-hydroxydopamine (6-OHDA)-induced cell survival and death were investigated. In PC12 cells, 6-OHDA (10-100μM) concentration-dependently increased the intracellular levels of cAMP mediated by the Ca(2+)-CaMKII-adenylyl cyclase system. 6-OHDA at the non-toxic level (10μM) induced transient ERK1/2 phosphorylation and BadSer112 phosphorylation, which maintained cell survival. In contrast, the high levels of cAMP induced by toxic levels (50 and 100μM) of 6-OHDA induced sustained ERK1/2 phosphorylaton and BadSer155 phosphorylation. The cells then moved to cell death process through Bcl2 phosphorylation and caspase-3 activation. BadSer155 phosphorylation by 6-OHDA was inhibited by PKA (H89) and MEK (U0126) inhibitors, indicating that it was mediated via the cAMP-PKA-sustained ERK1/2 system. In SK-N-BE(2)C cells, the non-toxic level of 6-OHDA also showed transient ERK1/2 phosphorylation and BadSer112 phosphorylation, and toxic levels of 6-OHDA exhibited sustained ERK1/2 phosphorylation and BadSer155 phosphorylation. These results suggest that ERK1/2 phosphorylation by 6-OHDA shows biphasic functions on cell survival and death in PC12 cells. It is, therefore, proposed that the cAMP-ERK1/2-Bad signaling pathways incurred by toxic levels of 6-OHDA play a role in dopamine neuron death of animal models of Parkinson's disease.
Collapse
Affiliation(s)
- Hyun Jin Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 52, Naesudong-ro, Heungduk-gu, Cheongju 361-763, Republic of Korea
| | | | | | | |
Collapse
|
9
|
Zhang M, Lee HJ, Park KH, Park HJ, Choi HS, Lim SC, Lee MK. Modulatory effects of sesamin on dopamine biosynthesis and l-DOPA-induced cytotoxicity in PC12 cells. Neuropharmacology 2012; 62:2219-26. [DOI: 10.1016/j.neuropharm.2012.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
|
10
|
Park KH, Park HJ, Shin KS, Choi HS, Kai M, Lee MK. Modulation of PC12 cell viability by forskolin-induced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons. Toxicol Sci 2012; 128:247-57. [PMID: 22539619 DOI: 10.1093/toxsci/kfs139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intracellular levels of cyclic AMP (cAMP) increase in response to cytotoxic concentrations of L-DOPA in PC12 cells, and forskolin that induces intracellular cAMP levels either protects PC12 cells from L-DOPA-induced cytotoxicity or enhances cytotoxicity in a concentration-dependent manner. This study investigated the effects of cAMP induced by forskolin on cell viability of PC12 cells, relevant to L-DOPA-induced cytotoxicity in Parkinson's disease therapy. The low levels of forskolin (0.01 and 0.1 μM)-induced cAMP increased dopamine biosynthesis and tyrosine hydroxylase (TH) phosphorylation, and induced transient phosphorylation of ERK1/2 within 1 h. However, at the high levels of forskolin (1.0 and 10 μM)-induced cAMP, dopamine biosynthesis and TH phosphorylation did not increase, but rapid differentiation in neurite-like formation was observed with a steady state. The high levels of forskolin-induced cAMP also induced sustained increase in ERK1/2 phosphorylation within 0.25-6 h and then led to apoptosis, which was apparently mediated by JNK1/2 and caspase-3 activation. Multiple treatment of PC12 cells with nontoxic L-DOPA (20 μM) for 4-6 days induced neurite-like formation and decreased intracellular dopamine levels by reducing TH phosphorylation. These results suggest that the low levels of forskolin-induced cAMP increased dopamine biosynthesis in cell survival via transient ERK1/2 phosphorylation. In contrast, the high levels of forskolin-induced cAMP induced differentiation via sustained ERK1/2 phosphorylation and then led to apoptosis. Taken together, the intracellular levels of cAMP play a dual role in cell survival and death through the ERK1/2 and JNK1/2 pathways in PC12 cells.
Collapse
Affiliation(s)
- Keun Hong Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Maruoka H, Sasaya H, Sugihara K, Shimoke K, Ikeuchi T. Low-molecular-weight compounds having neurotrophic activity in cultured PC12 cells and neurons. J Biochem 2011; 150:473-5. [PMID: 21908547 DOI: 10.1093/jb/mvr113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent reports have indicated that some low-molecular-weight compounds mimic neurotrophic factors inducing neurite outgrowth and neuroprotection. Carnosic acid (CA) promotes neurite outgrowth through the activation of Nrf2 in PC12 cells. CA also protects neurons via the keap/Nrf2 transcriptional pathway from oxidative stress. Forskolin-induced neurite outgrowth is mediated by activation of the PKA signalling pathway and this PKA-mediated neurite outgrowth is achieved by the expression of nur77 in PC12 cells. In addition, forskolin at its low concentration is closely related to the cAMP-induced protective function against L-DOPA-induced cytotoxicity in PC12 cells. A HDAC inhibitor trichostatin A (TSA) increases neurite length via p53 acetylation in rat cultured cerebellar granule neurons and in cerebral cortical neurons, and also protects neurons against glutathione depletion-induced oxidative stress. Recently, it was revealed that Nrf2 and p53 bind to CBP/p300 directly, and Nur77 is acetylated in vivo and in vitro by CBP/p300. Acetylation of Nrf2, p53 and Nur77 by CBP/p300 may constitute a novel similar regulatory mechanism for low-molecular-weight compounds with neurotrophic activities.
Collapse
Affiliation(s)
- Hiroki Maruoka
- Laboratory of Neurobiology, Department of Life Science and Biotechnology, Materials and Bioengineering and Strategic Research Base, Kansai University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
12
|
Effects of scoparone on dopamine release in PC12 cells. Fitoterapia 2010; 81:497-502. [DOI: 10.1016/j.fitote.2010.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/05/2010] [Accepted: 01/10/2010] [Indexed: 11/16/2022]
|
13
|
Jin CM, Yang YJ, Huang HS, Kai M, Lee MK. Mechanisms of L-DOPA-induced cytotoxicity in rat adrenal pheochromocytoma cells: implication of oxidative stress-related kinases and cyclic AMP. Neuroscience 2010; 170:390-8. [PMID: 20670675 DOI: 10.1016/j.neuroscience.2010.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/06/2010] [Accepted: 07/18/2010] [Indexed: 11/16/2022]
Abstract
L-DOPA therapy for Parkinson's disease has a double-edge effect on nigrostriatal dopaminergic neurons: L-DOPA increases the intracellular level of dopamine, but it induces neuron cytotoxicity in a concentration-dependent manner. To investigate the molecular signaling mechanisms that underlie the concentration-dependent effects of L-DOPA on cell viability, the activities of mitogen-activated protein kinases (MAPKs) and apoptotic enzymes were measured in rat adrenal pheochromocytoma (PC12) cells in the presence of a low concentration (20 muM) and high concentrations (100-200 muM) of L-DOPA. At the low concentration, L-DOPA was not cytotoxic and its presence increased the activities of extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, BadSer112, Bcl-2, and caspase-12. At the high concentrations, L-DOPA was cytotoxic and stimulated the activities of ERK1/2, p38 MAPK, c-Jun N-terminal kinase (JNK)1/2, BadSer155, caspase-12 and caspase-3. The increased levels of ERK1/2 and BadSer155 in the presence of high concentrations of L-DOPA did not protect against L-DOPA-mediated cytotoxicity. In addition, the levels of L-type Ca(2+) channel-sensitive intracellular cyclic AMP (cAMP) and Ca(2+) were elevated in the presence of L-DOPA, and the increase in the levels of intracellular cAMP may also play a role in cellular viability, since cAMP levels and cytotoxicity increased in parallel with L-DOPA concentrations and the addition of forskolin in the medium increased cytotoxicity in a concentration-dependent manner. These results suggest that, at a low and non-toxic concentration, L-DOPA may promote cell survival by increasing the activities of ERK1/2, BadSer112 and Bcl-2, while, at high concentrations, L-DOPA activates the caspase-3 cell death enzyme through the JNK1/2 and p38 MAPK signaling pathways as well as endoplasmic reticulum stress that activates caspase-12. Intracellular cAMP levels may also play a role here. The results may lead to an effective therapy for Parkinson's disease.
Collapse
Affiliation(s)
- C M Jin
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, 410, Sungbong-ro, Heungduk-gu, Cheongju 361-763, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Chen MC, Lin H, Hsu FN, Huang PH, Lee GS, Wang PS. Involvement of cAMP in nerve growth factor-triggered p35/Cdk5 activation and differentiation in PC12 cells. Am J Physiol Cell Physiol 2010; 299:C516-27. [PMID: 20463173 DOI: 10.1152/ajpcell.00534.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signaling mechanisms underlying cell differentiation have been extensively studied with the use of rat PC12 cells as a model system. Nerve growth factor (NGF) is a trophic factor inducing PC12 cell differentiation through the activation of the p35/cyclin-dependent kinase 5 (Cdk5) complex. It has been reported that adenylyl cyclase activation and cAMP production may be involved in NGF-dependent actions. Our previous results indicate that cAMP activates the p35/Cdk5 complex in reproductive cells. Therefore, the role of cAMP in NGF-triggered p35/Cdk5 activation and PC12 differentiation was interesting to explore. Our results indicate that roscovitine, a molecular inhibitor of Cdk5, blocks cAMP-triggered PC12 differentiation, which was evaluated by neurite initiation, a decrease in proliferation, and cell cycle G(1) arrest. The following data show that cAMP treatment increased Cdk5 activity through p35 upregulation. cAMP downstream components, protein kinase A (PKA) and phosphorylated cAMP response element binding protein (CREB), are involved in this regulation. The immunocytochemical results indicate that PKA inhibition disrupted cAMP-triggered p35/Cdk5 localization in PC12 cells. In addition, adenylyl cyclase inhibition was found to diminish NGF-induced intracellular cAMP production, CREB phosphorylation, and p35 expression. The cAMP antagonist and the PKA inhibitors reduced NGF-induced p35 expression. Finally, NGF-triggered PC12 differentiation was partially decreased by adenylyl cyclase or PKA inhibitors. In conclusion, these results demonstrate that cAMP may play a role in NGF-p35/Cdk5-dependent PC12 differentiation.
Collapse
Affiliation(s)
- Mei-Chih Chen
- Dept. of Physiology, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Borin A, Toledo RN, Ho PL, Testa JRG, Cruz OLM, Fukuda Y. Influence of cyclic AMP on facial nerve regeneration in rats. Braz J Otorhinolaryngol 2009; 74:675-683. [PMID: 19082348 PMCID: PMC9445902 DOI: 10.1016/s1808-8694(15)31376-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 08/04/2007] [Indexed: 11/25/2022] Open
Abstract
Promoting facial nerve regeneration is a significant challenge. Aim To evaluate the possible neurotrophic influence of cyclic AMP on facial nerve regeneration of Wistar rats. Method The right facial nerve of thirty-two animals were completely transected and immediately sutured, followed by exposure or not to topical cyclic AMP. Behavioral and histometric analyses were done at 14 and 28 days. Results Statistical differences (p<0.05) were found in the behavioral and histometric analyses on the 14th day, suggesting an early regenerative response of the facial nerve to cAMP exposure. Conclusion This study demonstrates a possible neurotrophic effect of cAMP on facial nerve regeneration in rats.
Collapse
Affiliation(s)
- Andrei Borin
- Master's degree in otorhinolaryngology; doctoral student.
| | - Ronaldo Nunes Toledo
- Biologist and doctorate in biochemistry; researcher at the Centro de Biotecnologia, Instituto Butantan
| | - Paulo Lee Ho
- Doctorate in otorhinolaryngology, adjunct professor, otorhinolaryngology discipline, UNIFESP/EPM
| | - José Ricardo Gurgel Testa
- Livre-docente (habilitation) professor, affiliated professor, otorhinolaryngology discipline, UNIFESP/EPM
| | - Oswaldo Laércio Mendonça Cruz
- Livre-docente (habilitation) professor, otorhinolaryngology discipline, UNIFESP/EPM. Otorhinolaryngology and Head & Neck Department, Universidade Federal de Sao Paulo
| | - Yotaka Fukuda
- Livre-docente (habilitation) professor, otorhinolaryngology discipline, UNIFESP/EPM. Otorhinolaryngology and Head & Neck Department, Universidade Federal de Sao Paulo
| |
Collapse
|
16
|
Yang YJ, Lee HJ, Huang HS, Lee BK, Choi HS, Lim SC, Lee CK, Lee MK. Effects of scoparone on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells. J Neurosci Res 2009; 87:1929-37. [PMID: 19185027 DOI: 10.1002/jnr.22009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of scoparone on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells were investigated. PC12 cells treated with scoparone at concentrations of 100-200 microM showed a 128-136% increase in dopamine levels over the course of 24 hr. Scoparone significantly increased the secretion of dopamine into the culture medium. Under the same conditions, the activities of tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) were enhanced by treatment with 200 microM scoparone for 6-48 hr, but the activity of TH was regulated for a longer period than that of AADC. The intracellular levels of cyclic AMP and Ca(2+) were increased by treatment with 200 microM scoparone. The levels of TH mRNA and the phosphorylation of cyclic AMP-response element-binding protein (CREB) were also significantly increased by treatment with 200 microM scoparone. In addition, scoparone at a concentration of 200 microM stimulated the activities of cyclic AMP-dependent protein kinase (PKA), protein kinase C (PKC), and Ca(2+)/calmodulin kinase II (CaMK II). Finally, pretreatment with 200 microM scoparone reduced the cytotoxicity induced by L-DOPA (20-100 microM) at 24 hr. These results suggest that scoparone enhances dopamine biosynthesis by regulating TH activity and TH gene expression, which is mediated by the PKA, CREB, PKC, and CaMK II pathways, and protects cells from L-DOPA-induced cytotoxicity by inducing cyclic AMP-PKA systems in PC12 cells.
Collapse
Affiliation(s)
- Yoo Jung Yang
- College of Pharmacy and Research Center for Bioresources and Health, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zylinska L, Kowalska I, Ferenc B. Calmodulin effects on steroids-regulated plasma membrane calcium pump activity. Cell Biochem Funct 2009; 27:111-7. [PMID: 19226536 DOI: 10.1002/cbf.1543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is now generally accepted that non-genomic steroids action precedes their genomic effects by modulation of intracellular signaling pathways within seconds after application. Ca(2+) is a very potent and ubiquitous ion in all cells, and its concentration is precisely regulated. The most sensitive on Ca(2+) increase is ATP-consuming plasma membrane calcium pump (PMCA). The enzyme is coded by four genes, but isoforms diversity was detected in excitable and non-excitable cells. It is the only ion pump stimulated directly by calmodulin (CaM). We examined the role of PMCA isoforms composition and CaM effect in regulation of Ca(2+) uptake by estradiol, dehydroepiandrosterone (DHEA), pregnenolone (PREG), and their sulfates in a concentration range from 10(-9) to 10(-6) M, using the membranes from rat cortical synaptosomes, differentiated PC12 cells, and human erythrocytes. In excitable membranes with full set of PMCAs steroids apparently increased Ca(2+) uptake, although to a variable extent. In most of the cases, CaM decreased transport by 30-40% below controls. Erythrocyte PMCA was regulated by the steroids somewhat differently than excitable cells. CaM strongly increased the potency for Ca(2+) extrusion in membranes incubated with 17-beta-estradiol and PREG. Our results indicated that steroids may sufficiently control cytoplasmic calcium concentration within physiological and therapeutic range. The response depended on the cell type, PMCA isoforms expression profile, CaM presence, and the steroids structure.
Collapse
Affiliation(s)
- Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Lodz, Poland.
| | | | | |
Collapse
|
18
|
Jin CM, Yang YJ, Huang HS, Lim SC, Kai M, Lee MK. Induction of dopamine biosynthesis by l-DOPA in PC12 cells: implications of L-DOPA influx and cyclic AMP. Eur J Pharmacol 2008; 591:88-95. [PMID: 18602388 DOI: 10.1016/j.ejphar.2008.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/04/2008] [Accepted: 06/12/2008] [Indexed: 11/19/2022]
Abstract
The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).
Collapse
Affiliation(s)
- Chun Mei Jin
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Yu YG, Tang FG, Pan J, Gu XF. Effects of Phenylalanine and its Metabolites on Cytoplasmic Free Calcium in Cortical Neurons. Neurochem Res 2007; 32:1292-301. [PMID: 17401656 DOI: 10.1007/s11064-007-9303-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Accepted: 01/30/2007] [Indexed: 01/16/2023]
Abstract
Classic phenylketonuria (PKU) is characterized by brain lesions. However, its underlying neurotoxic mechanisms remain unknown. Based on our previous studies, we hypothesized that calcium might participate in PKU-associated neuropathy. In cultured cortical neurons, cytoplasmic free calcium concentration ([Ca(2+)](i)) decreased dramatically when treatment with phenylalanine (Phe) and phenyllactic acid, while phenylacetic acid treatment immediately increased [Ca(2+)](i), which began to decrease after 3 min. Moreover, [Ca(2+)](i) decreased dramatically after Phe treatment in the presence of EGTA suggesting that Phe might increase [Ca(2+)](i) efflux. Phe-induced [Ca(2+)](i) decrease was strongly inhibited by vanadate, a non-specific plasma membrane Ca(2+)-ATPase (PMCA) antagonist, suggesting that Phe might increase [Ca(2+)](i) efflux throught modulating PMCA. These findings were further supported by the facts that Phe could increase membrance (45)Ca-uptake capability and PMCA activity. In contrast, treatment of KBR7943 or thapsigargin, antagonists to Na/Ca Exchanger (NCX) and Sarco/Endoplasmic reticulum Ca(2+)-ATPase (SERCA), respectively, did not elicit any changes in [Ca(2+)](i). Specific siRNA against PMCA had an effect similar to vanadate. Since the brain injury induced by phenylalaninemia was thought to be a chronic process, we cultured cortical neurons in the presence of Phe for 2 weeks and measured [Ca(2+)](i), PMCA activity and (45)Ca-uptake capability at days 3, 7, 9 and 14, respectively. PMCA activity and (45)Ca-uptake capability decreased from day 9, at the same time [Ca(2+)](i) increase was observed. In conclusion, PMCA participate in regulating Phe-induced initial rapid decrease in [Ca(2+)](i) and subsequent long-term increase in [Ca(2+)](i).
Collapse
Affiliation(s)
- Y G Yu
- Department of Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China.
| | | | | | | |
Collapse
|
20
|
Kavya R, Saluja R, Singh S, Dikshit M. Nitric oxide synthase regulation and diversity: Implications in Parkinson’s disease. Nitric Oxide 2006; 15:280-94. [PMID: 16934505 DOI: 10.1016/j.niox.2006.07.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/31/2006] [Accepted: 07/12/2006] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is a janus faced chemical messenger, which, in the recent years, has been the focus of neurobiologists for its involvement in neurodegenerative disorders in particular, Parkinson's disease (PD). Nitric oxide synthase, the key enzyme involved in NO production exists in three known isoforms. The neuronal and inducible isoforms have been implicated in the pathogenesis of PD. These enzymes are subject to complex expressional and functional regulation involving mRNA diversity, phosphorylation and protein interaction. In the recent years, mRNA diversity and polymorphisms have been identified in the NOS isoforms. Some of these genetic variations have been associated with PD, indicating an etiological role for the NOS genes. This review mainly focuses on the NOS genes - their differential regulation and genetic heterogeneity, highlighting their significance in the pathobiology of PD.
Collapse
Affiliation(s)
- Ramkumar Kavya
- Pharmacy Group, Birla Institute of Technology and Science, Pilani 333031, India
| | | | | | | |
Collapse
|
21
|
Lambeng N, Willaime-Morawek S, Mariani J, Ruberg M, Brugg B. Activation of mitogen-activated protein kinase pathways during the death of PC12 cells is dependent on the state of differentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 111:52-60. [PMID: 12654505 DOI: 10.1016/s0169-328x(02)00669-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PC12 cells that are differentiated with NGF and cAMP become totally dependent on these factors for their survival, unlike those that are differentiated with NGF alone. We have asked whether the MAP Kinases, ERKs, JNKs and p38s play a role in the cell death induced by withdrawal of trophic factors on NGF- and NGF/cAMP-differentiated PC12 cells. By Western-blot analyses with antibodies directed against the activated forms of these kinases, we show that when the trophic factors were withdrawn, ERK phosphorylation was reduced to very low levels within 1 h in both cases. Changes in the other enzymes were observed only in the NGF/cAMP-differentiated cells, in which the JNK phosphorylation increased about 160% by 6 h and that of p38 increased linearly to at least 18-fold throughout the cell death process. The increases in p38 and JNK phosphorylation were implicated in the death of the cells, since the p38 inhibitor PD169316 and the JNK inhibitor SP600125 were protective. These results demonstrate that the state of differentiation of PC12 cells, a model for the differentiation of sympathetic neurons, determines their vulnerability to cell death by modifying the state of phosphorylation and the regulation of specific kinases implicated in signal transduction pathways that are responsible for the survival or the death of these cells.
Collapse
Affiliation(s)
- Nathalie Lambeng
- INSERM U.289, Hôpital de la Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
22
|
Choi JJ, Oh YK, Kim HS, Kim HC, Ko KH, Kim WK. Mimosine prevents the death of glucose-deprived immunostimulated astrocytes by scavenging peroxynitrite. Glia 2002; 39:37-46. [PMID: 12112374 DOI: 10.1002/glia.10084] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immunostimulated astrocytes become highly vulnerable to glucose deprivation (Choi and Kim: J Neurosci Res 54:870-875, 1998a). The increased vulnerability is caused by the enhanced level of peroxynitrite endogenously produced in glucose-deprived immunostimulated astrocytes. In the present study, we report that the plant amino acid mimosine can attenuate the increased death by scavenging peroxynitrite. Treatment with mimosine blocked the increase of nitrotyrosine immunoreactivity, a marker of peroxynitrite, in glucose-deprived immunostimulated astrocytes. Furthermore, mimosine directly inhibited the nitration of tyrosine residues of bovine serum albumin and the oxidation of dihydrorhodamine-123 to rhodamine-123 by peroxynitrite. Mimosine has been used experimentally as a cell cycle G1/S phase transition blocker (Lalande: Exp Cell Res 186:332-339, 1990; Hoffman et al.: Cytometry 12:26-32, 1991). Flow cytometry analysis, however, showed that the cytoprotective effect of mimosine was not attributed to its inhibition of cell cycle progression. Furthermore, under our experimental conditions, mimosine did not alter the levels of cell cycle regulatory proteins, including p21(WAF1/CIP1), cyclins D1 and E, and proliferating cell nuclear antigen. In addition, cyclin-dependent kinase inhibitors olomoucine and roscovitine did not block the increased death. These results indicate that mimosine inhibits the augmented death of glucose-deprived immunostimulated astrocytes by scavenging peroxynitrite rather than suppressing the cell cycle progression.
Collapse
Affiliation(s)
- Jung-Jin Choi
- Department of Pharmacology, College of Medicine, Laboratory of Neurodegenerative Diseases, Ewha Institute of Neuroscience, Ewha Women's University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|