1
|
Yu Q, Guo Q, Jin S, Gao C, Zheng P, Li DP, Wu Y. Melatonin suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity in the hypothalamus. Front Physiol 2023; 14:1166246. [PMID: 37064887 PMCID: PMC10090494 DOI: 10.3389/fphys.2023.1166246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Melatonin (5-methoxy-N-acetyl-tryptamine) is a circadian hormone synthesized and secreted by the pineal gland. In addition to regulating circadian rhythms of many physiological functions, melatonin is involved in regulating autonomic nervous function and blood pressure. Hypothalamus paraventricular nucleus (PVN), receiving melatonin projections from the superchiasmatic nucleus, is a critical brain region to regulate neuroendocrine and cardiovascular function. Here, we determined the synaptic mechanisms involved in the effect of melatonin on the sympathetic outflow and blood pressure.Methods and Results: Microinjection of melatonin into the PVN produced a depressor effect and decreased renal sympathetic nerve activity (RSNA). While microinjection of luzindole, a non-selective melatonin receptor antagonist, into the PVN did not change melatonin-induced sympathoinhibition, GABAA receptor antagonist bicuculline eliminated melatonin-induced sympathoinhibition. Furthermore, melatonin decreased firing rate of retrogradely labeled PVN neurons which project to the rostral ventrolateral medulla (RVLM), an effect was not altered by luzindole but eliminated by bicuculline. Melatonin significantly increased the amplitude of spontaneous and evoked GABAergic inhibitory synaptic currents, as well as GABA-induced currents.Conclusion: These data suggest that melatonin in the PVN suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity. This study provides novel information for understanding the cellular mechanisms involved in the effect of melatonin on regulating blood pressure and sympathetic output.
Collapse
Affiliation(s)
- Qiyao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Office of Academic Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Chao Gao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Peiru Zheng
- Department of Medicine, University of Missouri, Columbia, KY, United States
| | - De-Pei Li
- Department of Medicine, University of Missouri, Columbia, KY, United States
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
- *Correspondence: Yuming Wu,
| |
Collapse
|
2
|
Cardinali DP, Golombek DA, Rosenstein RE, Brusco LI, Vigo DE. Assessing the efficacy of melatonin to curtail benzodiazepine/Z drug abuse. Pharmacol Res 2016; 109:12-23. [DOI: 10.1016/j.phrs.2015.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022]
|
3
|
Hong SI, Kwon SH, Hwang JY, Ma SX, Seo JY, Ko YH, Kim HC, Lee SY, Jang CG. Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice. Biomol Ther (Seoul) 2016; 24:115-22. [PMID: 26902082 PMCID: PMC4774491 DOI: 10.4062/biomolther.2015.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/05/2022] Open
Abstract
Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantl. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findingssuggest that modulation of D2-like receptors might enhance the effect of MT on sleep.
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Young Hwang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyoung-Chun Kim
- Neurotoxicology Program, College of Pharmacy, Korea Institute of Drug Abuse, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Tchekalarova J, Moyanova S, Fusco AD, Ngomba RT. The role of the melatoninergic system in epilepsy and comorbid psychiatric disorders. Brain Res Bull 2015; 119:80-92. [DOI: 10.1016/j.brainresbull.2015.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/04/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023]
|
5
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
6
|
Cheng XP, Sun H, Ye ZY, Zhou JN. Melatonin Modulates the GABAergic Response in Cultured Rat Hippocampal Neurons. J Pharmacol Sci 2012; 119:177-85. [DOI: 10.1254/jphs.11183fp] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
7
|
|
8
|
|
9
|
Dinet V, Korf HW. Impact of melatonin receptors on pCREB and clock-gene protein levels in the murine retina. Cell Tissue Res 2007; 330:29-34. [PMID: 17701055 DOI: 10.1007/s00441-007-0468-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 07/04/2007] [Indexed: 12/15/2022]
Abstract
In several mammalian species, the retina is capable of synthesizing melatonin and contains an autonomous circadian clock that relies on interlocking transcriptional/translational feedback loops involving several clock genes, such as Per1 and Cry2. Our previous investigations have shown remarkable differences in retinae of melatonin-deficient (C57BL) and melatonin-proficient (C3H) mice with regard to the protein levels of PER1, CRY2, and phosphorylated (p) cyclic AMP response element binding protein (CREB). To elucidate the melatonin receptor type possibly responsible for these differences, we have performed immunocytochemical analyses for PER1, CRY2, and pCREB in retinae of melatonin-proficient wild type (WT) mice and mice with targeted deletions of the MT1 receptor (MelaaBB) or the MT1 and MT2 receptors (Melaabb) at four different time points. Immunoreactions for PER1, CRY2 and pCREB were localized to the nuclei of cells in the inner nuclear layer (INL) and ganglion cell layer (GC) of all strains. Surprisingly, in MelaaBB and Melaabb the day/night rhythm of pCREB, PER1, and CRY2 levels was not abolished, but the maxima and minima of PER1 were 180 degrees out of phase as compared to the WT. These data suggest that MT1 and MT2 melatonin receptors are not necessary to maintain rhythmic changes in clock-gene protein levels in the murine retina, but, as shown for PER1, appear to be involved in internal synchronization.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cryptochromes
- Flavoproteins/genetics
- Male
- Mice
- Mice, Knockout
- Nuclear Proteins/genetics
- Period Circadian Proteins
- Phosphorylation
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/genetics
- Receptors, Melatonin/physiology
- Retina/physiology
Collapse
Affiliation(s)
- Virginie Dinet
- Dr Senckenbergische Anatomie, Institut für Anatomie II, Johann Wolfgang Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | | |
Collapse
|
10
|
Abstract
The hypnotic, antinociceptive, and anticonvulsant properties of melatonin endow this neurohormone with the profile of a novel hypnotic-anesthetic agent. Sublingually or orally administered melatonin is an effective premedicant in adults and children. Melatonin premedication like midazolam is associated with sedation and preoperative anxiolysis, however, unlike midazolam these effects are not associated with impaired psychomotor skills or the quality of recovery. Melatonin administration also is associated with a tendency toward faster recovery and a lower incidence of postoperative excitement than midazolam. Oral premedication with 0.2 mg/kg melatonin significantly reduces the propofol and thiopental doses required for loss of responses to verbal commands and eyelash stimulation. In rats, melatonin and the more potent melatonin analogs 2-bromomelatonin and phenylmelatonin have been found to have anesthetic properties similar to those of thiopental and propofol, with the added advantage of providing potent antinociceptive effects. The exact mechanism(s) by which structurally diverse intravenous and volatile anesthetics produce general anesthesia is still largely unknown, but positive modulation of gamma-aminobutyric acid type A (GABAA) receptor function has been recognized as an important and common pathway underlying the depressant effects of many of these agents. Accumulating evidence indicates that there is interplay between the melatonergic and GABAergic systems, and it has been demonstrated that melatonin administration produces significant, dose-dependent increases in GABA concentrations in the central nervous system. Additional in vitro data suggest that melatonin alters GABAergic transmission by modulating GABAA receptor function. Of greater importance, data from in vivo studies suggest that the central anesthetic effects of melatonin are mediated, at least in part, via GABAergic system activation, as they can be blocked or reversed by GABAA receptor antagonists. Further work is needed to better understand the general anesthetic properties of melatonin at the molecular, cellular, and systems levels.
Collapse
Affiliation(s)
- Mohamed Naguib
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
11
|
Liu J, Li GL, Yang XL. An ionotropic GABA receptor with novel pharmacology at bullfrog cone photoreceptor terminals. Neurosignals 2006; 15:13-25. [PMID: 16825800 DOI: 10.1159/000094384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 11/19/2022] Open
Abstract
Characteristics of ionotropic gamma-aminobutyric acid (GABA) receptors at bullfrog cone terminals were studied by patch clamp techniques in isolated cell and retinal slice preparations. GABA-induced inward currents from isolated cones reversed in polarity at a potential, very close to the chloride equilibrium potential, and they were completely suppressed by picrotoxin. Unexpectedly, the GABA current was dose-dependently potentiated by the well-known GABA(A) receptor antagonist bicuculline (BIC), but was suppressed by gabazine, another GABA(A) antagonist, and imidazole-4-acetic acid (I4AA), a GABA(C) receptor antagonist. Similarly, currents induced by both GABA(A) agonist muscimol and GABA(C) agonist cis-4-aminocrotonic acid (CACA) were also potentiated by BIC. Furthermore, currents induced from cones by GABA and kainate-caused depolarization of horizontal cells in retinal slice preparations were both potentiated by BIC. All these results suggest that the ionotropic GABA receptor at the bullfrog cone terminal exhibits novel pharmacology, distinct from both traditional GABA(A) and GABA(C) receptors.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Neurobiology, Institute of Brain Science, Fudan University, Shanghai, PR China
| | | | | |
Collapse
|
12
|
Huang H, Lee SC, Yang XL. Modulation by melatonin of glutamatergic synaptic transmission in the carp retina. J Physiol 2005; 569:857-71. [PMID: 16239269 PMCID: PMC1464261 DOI: 10.1113/jphysiol.2005.098798] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin is involved in a variety of physiological functions through activating specific receptors coupled to GTP-binding protein. Melatonin and its receptors are abundant in the retina. Here we show for the first time that melatonin modulates glutamatergic synaptic transmission from cones to horizontal cells (HCs) in carp retina. Immunocytochemical data revealed the expression of the MT1 receptor on carp HCs. Whole-cell recordings further showed that melatonin of physiological concentrations potentiated glutamate-induced currents from isolated cone-driven HCs (H1 cells) in a dose-dependent manner, by increasing the efficacy and apparent affinity of the glutamate receptor. The effects of melatonin were reversed by luzindole, but not by K 185, indicating the involvement of the MT1 receptor. Like melatonin, methylene blue (MB), a guanylate cyclase inhibitor, also potentiated the glutamate currents, but internal infusion of cGMP suppressed them. The effects of melatonin were not observed in cGMP-filled and MB-incubated HCs. These results suggest that the melatonin effects may be mediated by decreasing the intracellular concentration of cGMP. Consistent with these observations, melatonin depolarized the membrane potential of H1 cells and reduced their light responses, which could also be blocked by luzindole. These effects of melatonin persisted in the presence of the antagonists of receptors for dopamine, GABA and glycine, indicating a direct action of melatonin on H1 cells. Such modulation by melatonin of glutamatergic transmission from cones to HCs is thought to be in part responsible for circadian changes in light responsiveness of cone HCs in teleost retina.
Collapse
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | | | | |
Collapse
|
13
|
Izquierdo-Claros RM, Boyano-Adánez MDC, Arilla-Ferreiro E. Activity of the hippocampal somatostatinergic system following daily administration of melatonin. ACTA ACUST UNITED AC 2004; 126:107-13. [PMID: 15249133 DOI: 10.1016/j.molbrainres.2004.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2004] [Indexed: 11/19/2022]
Abstract
If melatonin or its analogs are to be used therapeutically in humans, their chronic effects on responsiveness of melatonin target cells need to be assessed. We have previously demonstrated that acute melatonin treatment regulates the somatostatinergic system in the rat hippocampus. In the present study, we have investigated the effects of subchronic and chronic daily treatment with melatonin on the somatostatinergic system in the rat hippocampus. Male Wistar rats (200-250 g) were injected with melatonin (25 microg/kg body weight, subcutaneously) daily for 4, 7 or 14 days and sacrificed 24 h after the last injection. Melatonin administration for 4 days induced a decrease in the hippocampal somatostatin (SRIF)-like immunoreactivity content as well as a decrease in the number of SRIF receptors and an increase in their apparent affinity. The decreased number of SRIF receptors in the melatonin (4 days)-treated rats was associated with a decreased capacity of SRIF to inhibit both basal and forskolin-stimulated adenylyl cyclase activity. These melatonin-induced effects reversed to control values after 7 or 14 days of treatment. Hippocampal membranes from control and melatonin-treated rats showed similar Gi and Gs activities. Melatonin treatment altered neither the functional Gi activity nor the Gialpha 1 or Gialpha 2 levels at any of the time periods studied. The present results suggest that chronic exposure to melatonin results in a tolerance of the hippocampus to this hormone.
Collapse
Affiliation(s)
- Rosa María Izquierdo-Claros
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Grupo de Neurobioquímica, Ctra. Madrid-Barcelona Km. 33,600, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
14
|
Olmez E, Kurcer Z. Melatonin attenuates alpha-adrenergic-induced contractions by increasing the release of vasoactive intestinal peptide in isolated rat penile bulb. UROLOGICAL RESEARCH 2003; 31:276-9. [PMID: 12844242 DOI: 10.1007/s00240-003-0327-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 03/26/2003] [Indexed: 11/27/2022]
Abstract
The effects of melatonin on alpha-adrenergic-induced contractions caused by electrical field stimulation (EFS) or the alpha(1)-adrenoceptor agonist phenylephrine (Phe) were investigated in isolated rat penile bulb. Melatonin as well as melatonin receptor agonists N-acetylserotonin and 2-iodomelatonin and melatonin antagonist luzindole attenuated the EFS-induced contractions and the concentration-response curve to Phe. The effect of melatonin on Phe-induced contractions was completely reversed by treatment with tetrodotoxin, guanethidine or vasoactive intestinal peptide (VIP) antagonist. On the other hand, pretreatment with N-methyl-l-arginine, atropine, and luzindole did not reverse the effect of melatonin. Thus, we demonstrated that melatonin at nanomolar concentrations inhibits the alpha-adrenergic responses in isolated rat penile bulb. Since alpha-adrenoceptor blocking agents are known to interfere with detumescence of the erect penis, serum levels or administration of this pineal hormone may affect erectile function. This effect of melatonin may be the result of its allosteric interaction with the presynaptic receptors on VIPergic neurons, which are affected by sympathetic transmission, and then an increase in VIP release from these neurons.
Collapse
Affiliation(s)
- Ercument Olmez
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44069, Malatya, Turkey
| | | |
Collapse
|
15
|
El-Sherif Y, Hogan MV, Tesoriero J, Wieraszko A. Factors regulating the influence of melatonin on hippocampal evoked potentials: comparative studies on different strains of mice. Brain Res 2002; 945:191-201. [PMID: 12126881 DOI: 10.1016/s0006-8993(02)02752-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Factors regulating the influence of melatonin on the hippocampal glutamergic system in mouse hippocampal slices were evaluated. The sensitivity of hippocampal pyramidal neurons to melatonin (Sigma) was highest at 2 h following slice preparation and then declined with time. This pattern of sensitivity to melatonin correlated well with a reduced binding of melatonin to its receptors. The slices obtained from older animals remained sensitive to melatonin through the entire incubation period. Most of the experiments evaluating the influence of melatonin on hippocampal evoked potentials were performed within 2 h following slice preparation. The effect of melatonin was biphasic: an initial depression of the potential was followed by a recovery/amplification phase. The recovery phase was not a result of melatonin decomposition. The effect of melatonin was similar in three different strains of mice tested: CD-1, C57J/B6, and Swiss Webster. While the melatonin from another vendor (Regis) gave similar results, it was effective at much lower concentrations. In slices obtained from CD-1 light-deprived mice, the sensitivity to melatonin was significantly reduced. Thus, it appears that melatonin may control the hippocampal glutamergic system in a complex manner, which may be regulated by the circadian rhythm. This may influence memory formation in the hippocampus.
Collapse
Affiliation(s)
- Yasir El-Sherif
- Department of Biology/CSI/IBR Center for Developmental Neuroscience, College of Staten Island/CUNY, 2800 Victory Boulevard, Staten Island, NY 10314, USA
| | | | | | | |
Collapse
|