1
|
Staats Pires A, Krishnamurthy S, Sharma S, Chow S, Klistorner S, Guillemin GJ, Klistorner A, You Y, Heng B. Dysregulation of the Kynurenine Pathway in Relapsing Remitting Multiple Sclerosis and Its Correlations With Progressive Neurodegeneration. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200372. [PMID: 39823555 PMCID: PMC11744609 DOI: 10.1212/nxi.0000000000200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND AND OBJECTIVES Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration. METHODS To gain insights into the links between the KP and neurodegeneration in MS, we investigated the KP metabolomics profile of relapsing remitting MS (RRMS) patients and their correlation with parameters of neurodegeneration in brain and retinal. Outpatients with a clinical diagnosis of RRMS (n = 98) or age-matched and sex-matched healthy controls (n = 39) were included. MS participants undertook yearly evaluation of MRI and optical coherence tomography scan to evaluate neuroaxonal loss. Blood samples were collected at the baseline from all participants for the biochemical analysis of KP metabolites. RESULTS We identified increased plasma levels of AA and 3HAA in the MS group, indicating an anti-inflammatory response alongside active neurodegeneration. By contrast, plasma levels of KYNA and 3HK were lower in the MS group than in healthy controls. Our analysis revealed a higher KYN:tryptophan (TRP) and QUIN:KYNA ratios in the MS cohort, suggesting activation of the pathway toward the production of neurotoxic QUIN. Another important finding was that KP metabolites were correlated with measures of axonal degeneration in patients with MS. Notably, central brain atrophy positively correlated with the TRP levels, but negatively correlated with KYN and level KYN:TRP ratio. Finally, the choroid plexus volume was inversely correlated with KYNA plasma levels. DISCUSSION These findings highlight changes in the biosynthesis of KP during the progression of RRMS and its correlation with axonal loss. This study underscores the potential of targeting the KP in developing novel treatments for neuroaxonal damage in MS and warrants future research in greater depth.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Sharron Chow
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| | - Samuel Klistorner
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | | | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
- Save Sight Institute, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; and
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney
| |
Collapse
|
2
|
Polyák H, Galla Z, Rajda C, Monostori P, Klivényi P, Vécsei L. Plasma and Visceral Organ Kynurenine Metabolites Correlate in the Multiple Sclerosis Cuprizone Animal Model. Int J Mol Sci 2025; 26:976. [PMID: 39940744 PMCID: PMC11817772 DOI: 10.3390/ijms26030976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The cuprizone (CPZ) model of multiple sclerosis (MS) is excellent for studying the molecular differences behind the damage caused by poisoning. Metabolic differences in the kynurenine pathway (KP) of tryptophan (TRP) degradation are observed in both MS and a CPZ mouse model. Our goal was to analyze the kynurenine, serotonin, and indole pathways of TRP degradation on the periphery, in the neurodegenerative processes of inflammation. In our study, mice were fed with 0.2% CPZ toxin for 5 weeks. We examined the metabolites in the three pathways of TRP breakdown in urine, plasma, and relevant visceral organs with bioanalytical measurements. In our analyses, we found a significant increase in plasma TRP, 5-hydroxytryptophan (5-HTP), and indole-3-acetic acid (IAA) levels, while a decrease in the concentrations of 3-hydroxy-L-kynurenine (3-HK), xanthurenic acid (XA), kynurenic acid (KYNA), and quinaldic acid in the plasma of toxin-treated group was found. A marked decrease in the levels of 3-HK, XA, KYNA, quinaldic acid, and indole-3-lactic acid was also observed in the visceral organs by the end of the poisoning. Furthermore, we noticed a decrease in the urinary levels of the TRP, KYNA, and XA metabolites, while an increase in serotonin and 5-hydroxyindoleacetic acid in the CPZ group was noticed. The toxin treatment resulted in elevated tryptamine and indoxyl sulfate levels and reduced IAA concentration. Moreover, the urinary para-cresyl sulfate concentration also increased in the treated group. In the present study, we showed the differences in the three main metabolic pathways of TRP degradation in the CPZ model. We confirmed the relationship and correlation between the content of the kynurenine metabolites in the plasma and the tissues of the visceral organs. We emphasized the suppression of the KP and the activity of the serotonin and indole pathways with a particular regard to the involvement of the microbiome by the indole pathway. Consequently, this is the first study to analyze in detail the distribution of the kynurenine, serotonin, and indole pathways of TRP degradation in the periphery.
Collapse
Affiliation(s)
- Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.G.); (P.M.)
| | - Cecilia Rajda
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
| | - Péter Monostori
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary; (Z.G.); (P.M.)
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; (H.P.); (C.R.); (P.K.)
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Baran H, Jan Pietryja M, Kepplinger B. Importance of Modulating Kynurenic Acid Metabolism-Approaches for the Treatment of Dementia. Biomolecules 2025; 15:74. [PMID: 39858468 PMCID: PMC11764436 DOI: 10.3390/biom15010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
In this article, we focus on kynurenic acid metabolism in neuropsychiatric disorders and the biochemical processes involved in memory and cognitive impairment, followed by different approaches in the fight against dementia. Kynurenic acid-a biochemical part of L-tryptophan catabolism-is synthesized from L-kynurenine by kynurenine aminotransferases. Experimental pharmacological studies have shown that elevated levels of kynurenic acid in the brain are associated with impaired learning and that lowering kynurenic acid levels can improve these symptoms. The discovery of new compounds with the ability to block kynurenine aminotransferases opens new therapeutic avenues for the treatment of memory impairment and dementia. The newly developed Helix pomatia snail model of memory can be used for the assessment of novel pharmacological approaches. Dietary supplementation with natural molecular/herbal extracts, exercise, and physical activity have significant impacts on endogenous pharmacology by reducing kynurenic acid synthesis, and these factors are likely to significantly modulate steady-state biological conditions and delay the negative consequences of aging, including the onset of pathological processes.
Collapse
Affiliation(s)
- Halina Baran
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Neurophysiology Unit, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Marcelin Jan Pietryja
- St. Francis Herbarium, Monastery of the Franciscan Friars Minor, 40-760 Katowice, Poland;
| | - Berthold Kepplinger
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Department of Neurology, Neuropsychiatric Hospital, 3362 Mauer-Amstetten, Austria
| |
Collapse
|
4
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
5
|
Montgomery TL, Peipert D, Krementsov DN. Modulation of multiple sclerosis risk and pathogenesis by the gut microbiota: Complex interactions between host genetics, bacterial metabolism, and diet. Immunol Rev 2024; 325:131-151. [PMID: 38717158 PMCID: PMC11338732 DOI: 10.1111/imr.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, affecting nearly 2 million people worldwide. The etiology of MS is multifactorial: Approximately 30% of the MS risk is genetic, which implies that the remaining ~70% is environmental, with a number of factors proposed. One recently implicated risk factor for MS is the composition of the gut microbiome. Numerous case-control studies have identified changes in gut microbiota composition of people with MS (pwMS) compared with healthy control individuals, and more recent studies in animal models have begun to identify the causative microbes and underlying mechanisms. Here, we review some of these mechanisms, with a specific focus on the role of host genetic variation, dietary inputs, and gut microbial metabolism, with a particular emphasis on short-chain fatty acid and tryptophan metabolism. We put forward a model where, in an individual genetically susceptible to MS, the gut microbiota and diet can synergize as potent environmental modifiers of disease risk and possibly progression, with diet-dependent gut microbial metabolites serving as a key mechanism. We also propose that specific microbial taxa may have divergent effects in individuals carrying distinct variants of MS risk alleles or other polymorphisms, as a consequence of host gene-by-gut microbiota interactions. Finally, we also propose that the effects of specific microbial taxa, especially those that exert their effects through metabolites, are highly dependent on the host dietary intake. What emerges is a complex multifaceted interaction that has been challenging to disentangle in human studies, contributing to the divergence of findings across heterogeneous cohorts with differing geography, dietary preferences, and genetics. Nonetheless, this provides a complex and individualized, yet tractable, model of how the gut microbiota regulate susceptibility to MS, and potentially progression of this disease. Thus, we conclude that prophylactic or therapeutic modulation of the gut microbiome to prevent or treat MS will require a careful and personalized consideration of host genetics, baseline gut microbiota composition, and dietary inputs.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dan Peipert
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
6
|
Carrillo-Mora P, Landa-Solís C, Valle-Garcia D, Luna-Angulo A, Avilés-Arnaut H, Robles-Bañuelos B, Sánchez-Chapul L, Rangel-López E. Kynurenines and Inflammation: A Remarkable Axis for Multiple Sclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:983. [PMID: 39204088 PMCID: PMC11356993 DOI: 10.3390/ph17080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune neurological disease characterized by the recurrent appearance of demyelinating lesions and progressive disability. Currently, there are multiple disease-modifying treatments, however, there is a significant need to develop new therapeutic targets, especially for the progressive forms of the disease. This review article provides an overview of the most recent studies aimed at understanding the inflammatory processes that are activated in response to the accumulation of kynurenine pathway (KP) metabolites, which exacerbate an imbalance between immune system cells (e.g., Th1, Th2, and T reg) and promote the release of pro-inflammatory interleukins that modulate different mechanisms: membrane-receptors function; nuclear factors expression; and cellular signals. Together, these alterations trigger cell death mechanisms in brain cells and promote neuron loss and axon demyelination. This hypothesis could represent a remarkable approach for disease-modifying therapies for MS. Here, we also provide a perspective on the repositioning of some already approved drugs involved in other signaling pathways, which could represent new therapeutic strategies for MS treatment.
Collapse
Affiliation(s)
- Paul Carrillo-Mora
- Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Carlos Landa-Solís
- Tissue Engineering, Cell Therapy, and Regenerative Medicine Unit, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - David Valle-Garcia
- Neuroimmunology Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Alexandra Luna-Angulo
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Hamlet Avilés-Arnaut
- Faculty of Biological Sciences, Institute of Biotechnology, National Autonomous University of Nuevo Leon, Nuevo León 66455, Mexico;
| | - Benjamín Robles-Bañuelos
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Laura Sánchez-Chapul
- Neuromuscular Diseases Laboratory, Clinical Neurosciences Division, National Institute of Rehabilitation “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico;
| | - Edgar Rangel-López
- Cell Reprogramming Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| |
Collapse
|
7
|
Gawel K. A Review on the Role and Function of Cinnabarinic Acid, a "Forgotten" Metabolite of the Kynurenine Pathway. Cells 2024; 13:453. [PMID: 38474418 PMCID: PMC10930587 DOI: 10.3390/cells13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland
| |
Collapse
|
8
|
Montgomery TL, Toppen LC, Eckstrom K, Heney ER, Kennedy JJ, Scarborough MJ, Krementsov DN. Lactobacillaceae differentially impact butyrate-producing gut microbiota to drive CNS autoimmunity. Gut Microbes 2024; 16:2418415. [PMID: 39462277 PMCID: PMC11520542 DOI: 10.1080/19490976.2024.2418415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), produced by the gut microbiota, are thought to exert an anti-inflammatory effect on the host immune system. The levels of SCFAs and abundance of the microbiota that produce them are depleted in multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS). The mechanisms leading to this depletion are unknown. Using experimental autoimmune encephalomyelitis (EAE) as a model for MS, we have previously shown that gut microbiomes divergent in their abundance of specific commensal Lactobacillaceae, Limosilactobacillus reuteri (L. reuteri) and Ligilactobacillus murinus (L. murinus), differentially impact CNS autoimmunity. To determine the underlying mechanisms, we employed colonization by L. reuteri and L. murinus in disparate gut microbiome configurations in vivo and in vitro, profiling their impact on gut microbiome composition and metabolism, coupled with modulation of dietary fiber in the EAE model. RESULTS We show that stable colonization by L. reuteri, but not L. murinus, exacerbates EAE, in conjunction with a significant remodeling of gut microbiome composition, depleting SCFA-producing microbiota, including Lachnospiraceae, Prevotellaceae, and Bifidobacterium, with a net decrease in bacterial metabolic pathways involved in butyrate production. In a minimal microbiome culture model in vitro, L. reuteri directly inhibited SCFA-producer growth and depleted butyrate. Genomic analysis of L. reuteri isolates revealed an enrichment in bacteriocins with known antimicrobial activity against SCFA-producing microbiota. Functionally, provision of excess dietary fiber, as the prebiotic substrate for SCFA production, elevated SCFA levels and abrogated the ability of L. reuteri to exacerbate EAE. CONCLUSTIONS Our data highlight a potential mechanism for reduced SCFAs and their producers in MS through depletion by other members of the gut microbiome, demonstrating that interactions between microbiota can impact CNS autoimmunity in a diet-dependent manner. These data suggest that therapeutic restoration of SCFA levels in MS may require not only dietary intervention, but also modulation of the gut microbiome.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Lucinda C. Toppen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Eamonn R. Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | | | - Matthew J. Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
9
|
Isık SMT, Onmaz DE, Ekmekci AH, Ozturk S, Unlu A, Abusoglu S. Relationship of tryptophan metabolites with the type and severity of multiple sclerosis. Mult Scler Relat Disord 2023; 77:104898. [PMID: 37481818 DOI: 10.1016/j.msard.2023.104898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Tryptophan is an essential amino acid primarily metabolized by the kynurenine pathway in mammals. Intermediate metabolites emerging in this pathway have been associated with many neurogenerative diseases. This study aimed to compare tryptophan pathway metabolite levels in patients with multiple sclerosis (MS) and healthy controls and reveal the relationship of tryptophan metabolites with disease subtype and the Expanded Disability Status Scale (EDSS) score. METHODS The study included a total of 80 MS cases [53 with relapsing remitting MS (RRMS) and 27 with secondary progressive MS (SPMS)] and 41 healthy volunteers. The patients with RRMS were further divided into relapse (RRMS-attack) and non-attack (RRMS-stable) groups. Using liquid chromatography mass spectrometry, tryptophan, kynurenine, kynurenic acid, quinolinic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid levels were measured. The serum metabolite levels of the patient and control groups were compared. In addition, the link and relationship between the EDSS score and disease duration of the patients and their plasma tryptophan metabolite levels were examined. RESULTS The tryptophan level of the patient group was significantly lower than that of the healthy controls (p<0.05). The kynurenine (105.38±65.43), quinolinic acid (10.42±3.56), kynurenine/tryptophan ratio (0.0218±0.019), and quinolinic acid/kynurenic acid ratio (1.7054±0.96141) of the patients with MS were significantly higher compared to the controls (p<0.05). In the receiver operating characteristic analysis of the power of kynurenine/tryptophan and quinolinic acid/kynurenic acid ratios in predicting the disease, both ratios predicted the diagnosis of MS (area under the curve: 0.793 and 0.645, respectively; p<0.05), albeit at low sensitivity and specificity. The parameters were similar between the RRMS-attack and RRMS-stable patient groups (p>0.05). There was also no significant difference between the RRMS and SPMS patient groups in terms of tryptophan metabolites (p>0.05). Lastly, no significant relationship was observed between tryptophan metabolites and MS subtype and the EDSS score. CONCLUSION Our findings revealed that the kynurenine pathway involved in the tryptophan metabolism differed between the patients with MS and healthy controls, and this difference may be a limited guide in the diagnosis of MS, due to major overlaps in values for MS versus Controls, and is insufficient to determine the disease subtype.
Collapse
Affiliation(s)
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkiye
| | - Ahmet Hakan Ekmekci
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkiye
| | - Serefnur Ozturk
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkiye
| | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkiye
| | - Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkiye
| |
Collapse
|
10
|
Gill AJ, Schorr EM, Gadani SP, Calabresi PA. Emerging imaging and liquid biomarkers in multiple sclerosis. Eur J Immunol 2023; 53:e2250228. [PMID: 37194443 PMCID: PMC10524168 DOI: 10.1002/eji.202250228] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
The advent of highly effective disease modifying therapy has transformed the landscape of multiple sclerosis (MS) care over the last two decades. However, there remains a critical, unmet need for sensitive and specific biomarkers to aid in diagnosis, prognosis, treatment monitoring, and the development of new interventions, particularly for people with progressive disease. This review evaluates the current data for several emerging imaging and liquid biomarkers in people with MS. MRI findings such as the central vein sign and paramagnetic rim lesions may improve MS diagnostic accuracy and evaluation of therapy efficacy in progressive disease. Serum and cerebrospinal fluid levels of several neuroglial proteins, such as neurofilament light chain and glial fibrillary acidic protein, show potential to be sensitive biomarkers of pathologic processes such as neuro-axonal injury or glial-inflammation. Additional promising biomarkers, including optical coherence tomography, cytokines and chemokines, microRNAs, and extracellular vesicles/exosomes, are also reviewed, among others. Beyond their potential integration into MS clinical care and interventional trials, several of these biomarkers may be informative of MS pathogenesis and help elucidate novel targets for treatment strategies.
Collapse
Affiliation(s)
- Alexander J. Gill
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Emily M. Schorr
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Sachin P. Gadani
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
| | - Peter A. Calabresi
- Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, US
- Department of Neuroscience, Baltimore, MD, US
- Department of Ophthalmology, Baltimore, MD, US
| |
Collapse
|
11
|
Polyák H, Galla Z, Nánási N, Cseh EK, Rajda C, Veres G, Spekker E, Szabó Á, Klivényi P, Tanaka M, Vécsei L. The Tryptophan-Kynurenine Metabolic System Is Suppressed in Cuprizone-Induced Model of Demyelination Simulating Progressive Multiple Sclerosis. Biomedicines 2023; 11:biomedicines11030945. [PMID: 36979924 PMCID: PMC10046567 DOI: 10.3390/biomedicines11030945] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Progressive multiple sclerosis (MS) is a chronic disease with a unique pattern, which is histologically classified into the subpial type 3 lesions in the autopsy. The lesion is also homologous to that of cuprizone (CPZ) toxin-induced animal models of demyelination. Aberration of the tryptophan (TRP)-kynurenine (KYN) metabolic system has been observed in patients with MS; nevertheless, the KYN metabolite profile of progressive MS remains inconclusive. In this study, C57Bl/6J male mice were treated with 0.2% CPZ toxin for 5 weeks and then underwent 4 weeks of recovery. We measured the levels of serotonin, TRP, and KYN metabolites in the plasma and the brain samples of mice at weeks 1, 3, and 5 of demyelination, and at weeks 7 and 9 of remyelination periods by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) after body weight measurement and immunohistochemical analysis to confirm the development of demyelination. The UHPLC-MS/MS measurements demonstrated a significant reduction of kynurenic acid, 3-hydoxykynurenine (3-HK), and xanthurenic acid in the plasma and a significant reduction of 3-HK, and anthranilic acid in the brain samples at week 5. Here, we show the profile of KYN metabolites in the CPZ-induced mouse model of demyelination. Thus, the KYN metabolite profile potentially serves as a biomarker of progressive MS and thus opens a new path toward planning personalized treatment, which is frequently obscured with immunologic components in MS deterioration.
Collapse
Affiliation(s)
- Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Nikolett Nánási
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Cecília Rajda
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Gábor Veres
- Independent Researcher, H-6726 Szeged, Hungary
| | - Eleonóra Spekker
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Danube Neuroscience Research Laboratory, ELKH-SZTE Neuroscience Research Group, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
12
|
Montgomery TL, Eckstrom K, Lile KH, Caldwell S, Heney ER, Lahue KG, D'Alessandro A, Wargo MJ, Krementsov DN. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. MICROBIOME 2022; 10:198. [PMID: 36419205 PMCID: PMC9685921 DOI: 10.1186/s40168-022-01408-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dysregulation of gut microbiota-associated tryptophan metabolism has been observed in patients with multiple sclerosis. However, defining direct mechanistic links between this apparent metabolic rewiring and individual constituents of the gut microbiota remains challenging. We and others have previously shown that colonization with the gut commensal and putative probiotic species, Lactobacillus reuteri, unexpectedly enhances host susceptibility to experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. To identify underlying mechanisms, we characterized the genome of commensal L. reuteri isolates, coupled with in vitro and in vivo metabolomic profiling, modulation of dietary substrates, and gut microbiota manipulation. RESULTS The enzymes necessary to metabolize dietary tryptophan into immunomodulatory indole derivatives were enriched in the L. reuteri genomes, including araT, fldH, and amiE. Moreover, metabolite profiling of L. reuteri monocultures and serum of L. reuteri-colonized mice revealed a depletion of kynurenines and production of a wide array of known and novel tryptophan-derived aryl hydrocarbon receptor (AhR) agonists and antagonists, including indole acetate, indole-3-glyoxylic acid, tryptamine, p-cresol, and diverse imidazole derivatives. Functionally, dietary tryptophan was required for L. reuteri-dependent EAE exacerbation, while depletion of dietary tryptophan suppressed disease activity and inflammatory T cell responses in the CNS. Mechanistically, L. reuteri tryptophan-derived metabolites activated the AhR and enhanced T cell production of IL-17. CONCLUSIONS Our data suggests that tryptophan metabolism by gut commensals, such as the putative probiotic species L. reuteri, can unexpectedly enhance autoimmunity, inducing broad shifts in the metabolome and immunological repertoire. Video Abstract.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Katarina H Lile
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Eamonn R Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA
| | - Matthew J Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05401, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| |
Collapse
|
13
|
Fathi M, Vakili K, Yaghoobpoor S, Tavasol A, Jazi K, Mohamadkhani A, Klegeris A, McElhinney A, Mafi Z, Hajiesmaeili M, Sayehmiri F. Dynamic changes in kynurenine pathway metabolites in multiple sclerosis: A systematic review. Front Immunol 2022; 13:1013784. [PMID: 36426364 PMCID: PMC9680557 DOI: 10.3389/fimmu.2022.1013784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Multiple sclerosis (MS) is a debilitating neurodegenerative disorder characterized by axonal damage, demyelination, and perivascular inflammatory lesions in the white matter of the central nervous system (CNS). Kynurenine pathway (KP), which is the major route of tryptophan (TRP) metabolism, generates a variety of neurotoxic as well as neuroprotective compounds, affecting MS pathology and the severity of impairments. Alterations in KP have been described not only in MS, but also in various psychiatric and neurodegenerative diseases. The purpose of this systematic review is to investigate the previously reported dysregulation of KP and differences in its metabolites and enzymes in patients with MS compared to healthy control subjects. Method Electronic databases of PubMed, Scopus, Cochrane Database of Systematic Reviews, and Web of Science were searched to identify studies measuring concentrations of KP metabolites and enzymes in MS patients and control subjects. The following metabolites and enzymes implicated in the KP were investigated: TRP, kynurenine (KYN), kynurenic acid (KYNA), quinolinic acid (QUIN), picolinic acid (PIC), hydroxyindoleacetic acid (HIAA), indoleamine 2,3-dioxygenase (IDO), kynurenine aminotransferase (KAT), and their related ratios. Result Ten studies were included in our systematic review. Our review demonstrates that IDO expression is reduced in the peripheral blood mononuclear cells (PBMCs) of MS patients compared to healthy controls. Also, increased levels of QUIN and QUIN/KYNA in the serum and cerebrospinal fluid (CSF) of MS patients is observed. Differences in levels of other metabolites and enzymes of KP are also reported in some of the reviewed studies, however there are discrepancies among the included reports. Conclusion The results of this investigation suggest a possible connection between alterations in the levels of KP metabolite or enzymes and MS. QUIN levels in CSF were higher in MS patients than in healthy controls, suggesting that QUIN may be involved in the pathogenesis of MS. The data indicate that differences in the serum/blood or CSF levels of certain KP metabolites and enzymes could potentially be used to differentiate between MS patients and control subjects.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Jazi
- Faculty of Medicine, Medical University of Qom, Qom, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Alyssa McElhinney
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Zahedeh Mafi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Turska M, Paluszkiewicz P, Turski WA, Parada-Turska J. A Review of the Health Benefits of Food Enriched with Kynurenic Acid. Nutrients 2022; 14:4182. [PMID: 36235834 PMCID: PMC9570704 DOI: 10.3390/nu14194182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA), a metabolite of tryptophan, is an endogenous substance produced intracellularly by various human cells. In addition, KYNA can be synthesized by the gut microbiome and delivered in food. However, its content in food is very low and the total alimentary supply with food accounts for only 1-3% of daily KYNA excretion. The only known exception is chestnut honey, which has a higher KYNA content than other foods by at least two orders of magnitude. KYNA is readily absorbed from the gastrointestinal tract; it is not metabolized and is excreted mainly in urine. It possesses well-defined molecular targets, which allows the study and elucidation of KYNA's role in various pathological conditions. Following a period of fascination with KYNA's importance for the central nervous system, research into its role in the peripheral system has been expanding rapidly in recent years, bringing some exciting discoveries. KYNA does not penetrate from the peripheral circulation into the brain; hence, the following review summarizes knowledge on the peripheral consequences of KYNA administration, presents data on KYNA content in food products, in the context of its daily supply in diets, and systematizes the available pharmacokinetic data. Finally, it provides an analysis of the rationale behind enriching foods with KYNA for health-promoting effects.
Collapse
Affiliation(s)
- Monika Turska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, 02-778 Warsaw, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
15
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Ntranos A, Park HJ, Wentling M, Tolstikov V, Amatruda M, Inbar B, Kim-Schulze S, Frazier C, Button J, Kiebish MA, Lublin F, Edwards K, Casaccia P. Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma. Brain 2022; 145:569-583. [PMID: 34894211 PMCID: PMC10060700 DOI: 10.1093/brain/awab320] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/14/2022] Open
Abstract
The identification of intestinal dysbiosis in patients with neurological and psychiatric disorders has highlighted the importance of gut-brain communication, and yet the question regarding the identity of the components responsible for this cross-talk remains open. We previously reported that relapsing remitting multiple sclerosis patients treated with dimethyl fumarate have a prominent depletion of the gut microbiota, thereby suggesting that studying the composition of plasma and CSF samples from these patients may help to identify microbially derived metabolites. We used a functional xenogeneic assay consisting of cultured rat neurons exposed to CSF samples collected from multiple sclerosis patients before and after dimethyl fumarate treatment to assess neurotoxicity and then conducted a metabolomic analysis of plasma and CSF samples to identify metabolites with differential abundance. A weighted correlation network analysis allowed us to identify groups of metabolites, present in plasma and CSF samples, whose abundance correlated with the neurotoxic potential of the CSF. This analysis identified the presence of phenol and indole group metabolites of bacterial origin (e.g. p-cresol sulphate, indoxyl sulphate and N-phenylacetylglutamine) as potentially neurotoxic and decreased by treatment. Chronic exposure of cultured neurons to these metabolites impaired their firing rate and induced axonal damage, independent from mitochondrial dysfunction and oxidative stress, thereby identifying a novel pathway of neurotoxicity. Clinical, radiological and cognitive test metrics were also collected in treated patients at follow-up visits. Improved MRI metrics, disability and cognition were only detected in dimethyl fumarate-treated relapsing remitting multiple sclerosis patients. The levels of the identified metabolites of bacterial origin (p-cresol sulphate, indoxyl sulphate and N-phenylacetylglutamine) were inversely correlated to MRI measurements of cortical volume and directly correlated to the levels of neurofilament light chain, an established biomarker of neurodegeneration. Our data suggest that phenol and indole derivatives from the catabolism of tryptophan and phenylalanine are microbially derived metabolites, which may mediate gut-brain communication and induce neurotoxicity in multiple sclerosis.
Collapse
Affiliation(s)
- Achilles Ntranos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Hye-Jin Park
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Maureen Wentling
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | | | - Mario Amatruda
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Benjamin Inbar
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Frazier
- Multiple Sclerosis Center of Northeastern New York, Latham, NY 12110, USA
| | - Judy Button
- Multiple Sclerosis Center of Northeastern New York, Latham, NY 12110, USA
| | | | - Fred Lublin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keith Edwards
- Multiple Sclerosis Center of Northeastern New York, Latham, NY 12110, USA
| | - Patrizia Casaccia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY 10031, USA
- Graduate Program in Biology and Biochemistry at the Graduate Center of the City University of New York, New York, NY, USA
| |
Collapse
|
17
|
Recent advances in clinical trials targeting the kynurenine pathway. Pharmacol Ther 2021; 236:108055. [PMID: 34929198 DOI: 10.1016/j.pharmthera.2021.108055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway (KP) is the major catabolic pathway for the essential amino acid tryptophan leading to the production of nicotinamide adenine dinucleotide. In inflammatory conditions, the activation of the KP leads to the production of several bioactive metabolites including kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, kynurenic acid and quinolinic acid. These metabolites can have redox and immune suppressive activity, be neurotoxic or neuroprotective. While the activity of the pathway is tightly regulated under normal physiological condition, it can be upregulated by immunological activation and inflammation. The dysregulation of the KP has been implicated in wide range of neurological diseases and psychiatric disorders. In this review, we discuss the mechanisms involved in KP-mediated neurotoxicity and immune suppression, and its role in diseases of our expertise including cancer, chronic pain and multiple sclerosis. We also provide updates on the clinical trials evaluating the efficacy of KP inhibitors and/or analogues in each respective disease.
Collapse
|
18
|
Metabolomics in Autoimmune Diseases: Focus on Rheumatoid Arthritis, Systemic Lupus Erythematous, and Multiple Sclerosis. Metabolites 2021; 11:metabo11120812. [PMID: 34940570 PMCID: PMC8708401 DOI: 10.3390/metabo11120812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolomics approach represents the last downstream phenotype and is widely used in clinical studies and drug discovery. In this paper, we outline recent advances in the metabolomics research of autoimmune diseases (ADs) such as rheumatoid arthritis (RA), multiple sclerosis (MuS), and systemic lupus erythematosus (SLE). The newly discovered biomarkers and the metabolic mechanism studies for these ADs are described here. In addition, studies elucidating the metabolic mechanisms underlying these ADs are presented. Metabolomics has the potential to contribute to pharmacotherapy personalization; thus, we summarize the biomarker studies performed to predict the personalization of medicine and drug response.
Collapse
|
19
|
Tan LSY, Francis HM, Lim CK. Exploring the roles of tryptophan metabolism in MS beyond neuroinflammation and neurodegeneration: A paradigm shift to neuropsychiatric symptoms. Brain Behav Immun Health 2021; 12:100201. [PMID: 34589733 PMCID: PMC8474511 DOI: 10.1016/j.bbih.2021.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/05/2022] Open
Abstract
The metabolism of tryptophan through the kynurenine pathway (KP) has been increasingly recognised in contributing to disease progression in the autoimmune and inflammatory disease multiple sclerosis (MS). In this review, the roles of inflammation and the KP are recontextualised to better understand the aetiology of the neuropsychiatric symptoms (depression, postpartum depression, suicidality, fatigue and cognitive dysfunction) in MS. These symptoms will be discussed in the context of cytokine-induced sickness behaviours, KP activation and levels of neurotoxicity and neuroprotection in MS. In particular, there will be emphasis on how neuropsychiatric symptoms in MS occur against the shared background of inflammation and KP dysregulation. The discourse of this review aims to promote future research in elucidating KP mechanisms in MS that would inevitably lead to more targeted treatment options for neuropsychiatric symptoms and disease progression. Research on tryptophan metabolism and neuroinflammation on neurodegeneration in multiple sclerosis (MS) is mounting. This review reframes the roles of neuroinflammation and tryptophan metabolism dysregulation on mental health issues in MS. The impact of neuroinflammation and tryptophan metabolism on depression, suicidality, fatigue, and cognitive impairment in MS are discussed.
Collapse
Affiliation(s)
- Lorraine S Y Tan
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Heather M Francis
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Chai K Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| |
Collapse
|
20
|
Yan J, Kuzhiumparambil U, Bandodkar S, Dale RC, Fu S. Cerebrospinal fluid metabolomics: detection of neuroinflammation in human central nervous system disease. Clin Transl Immunology 2021; 10:e1318. [PMID: 34386234 PMCID: PMC8343457 DOI: 10.1002/cti2.1318] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
The high morbidity and mortality of neuroinflammatory diseases drives significant interest in understanding the underlying mechanisms involved in the innate and adaptive immune response of the central nervous system (CNS). Diagnostic biomarkers are important to define treatable neuroinflammation. Metabolomics is a rapidly evolving research area offering novel insights into metabolic pathways, and elucidation of reliable metabolites as biomarkers for diseases. This review focuses on the emerging literature regarding the detection of neuroinflammation using cerebrospinal fluid (CSF) metabolomics in human cohort studies. Studies of classic neuroinflammatory disorders such as encephalitis, CNS infection and multiple sclerosis confirm the utility of CSF metabolomics. Additionally, studies in neurodegeneration and neuropsychiatry support the emerging potential of CSF metabolomics to detect neuroinflammation in common CNS diseases such as Alzheimer's disease and depression. We demonstrate metabolites in the tryptophan-kynurenine pathway, nitric oxide pathway, neopterin and major lipid species show moderately consistent ability to differentiate patients with neuroinflammation from controls. Integration of CSF metabolomics into clinical practice is warranted to improve recognition and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Jingya Yan
- Centre for Forensic ScienceUniversity of Technology SydneySydneyNSWAustralia
| | | | - Sushil Bandodkar
- Department of Clinical BiochemistryThe Children's Hospital at WestmeadSydneyNSWAustralia
- Clinical SchoolThe Children's Hospital at WestmeadFaculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Russell C Dale
- Clinical SchoolThe Children's Hospital at WestmeadFaculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Shanlin Fu
- Centre for Forensic ScienceUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
21
|
Sandi D, Fricska-Nagy Z, Bencsik K, Vécsei L. Neurodegeneration in Multiple Sclerosis: Symptoms of Silent Progression, Biomarkers and Neuroprotective Therapy-Kynurenines Are Important Players. Molecules 2021; 26:molecules26113423. [PMID: 34198750 PMCID: PMC8201043 DOI: 10.3390/molecules26113423] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegeneration is one of the driving forces behind the pathogenesis of multiple sclerosis (MS). Progression without activity, pathopsychological disturbances (cognitive impairment, depression, fatigue) and even optic neuropathy seems to be mainly routed in this mechanism. In this article, we aim to give a comprehensive review of the clinical aspects and symptomology, radiological and molecular markers and potential therapeutic targets of neurodegeneration in connection with MS. As the kynurenine pathway (KP) was evidenced to play an important role in the pathogenesis of other neurodegenerative conditions (even implied to have a causative role in some of these diseases) and more and more recent evidence suggest the same central role in the neurodegenerative processes of MS as well, we pay special attention to the KP. Metabolites of the pathway are researched as biomarkers of the disease and new, promising data arising from clinical evaluations show the possible therapeutic capability of KP metabolites as neuroprotective drugs in MS. Our conclusion is that the kynurenine pathway is a highly important route of research both for diagnostic and for therapeutic values and is expected to yield concrete results for everyday medicine in the future.
Collapse
Affiliation(s)
- Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-384; Fax: +36-62-545-597
| |
Collapse
|
22
|
Pukoli D, Polyák H, Rajda C, Vécsei L. Kynurenines and Neurofilament Light Chain in Multiple Sclerosis. Front Neurosci 2021; 15:658202. [PMID: 34113231 PMCID: PMC8185147 DOI: 10.3389/fnins.2021.658202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis is an autoimmune, demyelinating, and neurodegenerative disease of the central nervous system. In recent years, it has been proven that the kynurenine system plays a significant role in the development of several nervous system disorders, including multiple sclerosis. Kynurenine pathway metabolites have both neurotoxic and neuroprotective effects. Moreover, the enzymes of the kynurenine pathway play an important role in immunomodulation processes, among others, as well as interacting with neuronal energy balance and various redox reactions. Dysregulation of many of the enzymatic steps in kynurenine pathway and upregulated levels of these metabolites locally in the central nervous system, contribute to the progression of multiple sclerosis pathology. This process can initiate a pathogenic cascade, including microglia activation, glutamate excitotoxicity, chronic oxidative stress or accumulated mitochondrial damage in the axons, that finally disrupt the homeostasis of neurons, leads to destabilization of neuronal cell cytoskeleton, contributes to neuro-axonal damage and neurodegeneration. Neurofilaments are good biomarkers of the neuro-axonal damage and their level reliably indicates the severity of multiple sclerosis and the treatment response. There is increasing evidence that connections exist between the molecules generated in the kynurenine metabolic pathway and the change in neurofilament concentrations. Thus the alterations in the kynurenine pathway may be an important biomarker of the course of multiple sclerosis. In our present review, we report the possible relationship and connection between neurofilaments and the kynurenine system in multiple sclerosis based on the available evidences.
Collapse
Affiliation(s)
- Dániel Pukoli
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Neurology, Vaszary Kolos Hospital, Esztergom, Hungary
| | - Helga Polyák
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Cecilia Rajda
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Spekker E, Laborc KF, Bohár Z, Nagy-Grócz G, Fejes-Szabó A, Szűcs M, Vécsei L, Párdutz Á. Effect of dural inflammatory soup application on activation and sensitization markers in the caudal trigeminal nucleus of the rat and the modulatory effects of sumatriptan and kynurenic acid. J Headache Pain 2021; 22:17. [PMID: 33789568 PMCID: PMC8011387 DOI: 10.1186/s10194-021-01229-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. Aim We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. Material and methods After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. Results and conclusion Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.
Collapse
Affiliation(s)
- Eleonóra Spekker
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Klaudia Flóra Laborc
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | | | - Mónika Szűcs
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| |
Collapse
|
24
|
Correale J. Immunosuppressive Amino-Acid Catabolizing Enzymes in Multiple Sclerosis. Front Immunol 2021; 11:600428. [PMID: 33552055 PMCID: PMC7855700 DOI: 10.3389/fimmu.2020.600428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system. Although the pathogenesis of MS is not yet fully elucidated, several evidences suggest that autoimmune processes mediated by Th1, Th17, and B cells play an important role in the development of the disease. Similar to other cells, immune cells need continuous access to amino acids (AA) in order to maintain basal metabolism and maintain vitality. When immune cells are activated by inflammation or antigenic signals, their demand for AA increases rapidly. Although AA deprivation itself may weaken the immune response under certain conditions, cells also have AA sensitive pathways that can activate intense alterations in cell metabolism based on changes in AA levels. Several data indicate that cells expressing enzymes that can degrade AA can regulate the functions of antigen-presenting cells and lymphocytes, revealing that the AA pathways are essential for controlling the function, and survival of immune cells, as well as immune cell gene expression. Basal AA catabolism may contribute to immune homeostasis and prevent autoimmunity, while increased AA catalytic activity may enhance immune suppression. In addition, there is increasing evidence that some downstream AA metabolites are important biological mediators of autoimmune response regulation. Two of the most important AA that modulate the immune response are L-Tryptophan (Trp) and L-Arginine (Arg). Tryptophan is catabolized through 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) 1 and IDO2 enzymes, while three other enzymes catabolize Arg: inducible nitric oxide synthetase (iNOS), and two arginase isoforms (ARG1, ARG2). Genes encoding IDO, iNOS and ARG are induced by inflammatory cues such as cytokines, a key feature that distinguishes them from enzymes that catabolize other AA. Evidence suggests that AA catabolism is decreased in MS patients and that this decrease has functional consequences, increasing pro-inflammatory cytokines and decreasing Treg cell numbers. These effects are mediated by at least two distinct pathways involving serine/threonine kinases: the general control nonderepressible 2 kinase (GCN2K) pathway; and the mammalian target of rapamycin (mTOR) pathway. Similarly, IDO1-deficient mice showed exacerbation of experimental autoimmune encephalomyelitis (EAE), increased Th1 and Th17 cells, and decreased Treg cells. On the contrary, the administration of downstream Trp metabolite 3-HAA, inhibits Th1/Th17 effector cells and promotes Treg response by up-regulating TGF-β production by dendritic cells, thereby improving EAE. Collectively, these observations stand out the significance of AA catabolism in the regulation of the immune responses in MS patients. The molecules related to these pathways deserve further exploration as potential new therapeutic targets in MS.
Collapse
|
25
|
SZR-104, a Novel Kynurenic Acid Analogue with High Permeability through the Blood-Brain Barrier. Pharmaceutics 2021; 13:pharmaceutics13010061. [PMID: 33466551 PMCID: PMC7824826 DOI: 10.3390/pharmaceutics13010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
By being an antagonist of glutamate and other receptors, kynurenic acid serves as an endogenous neuroprotectant in several pathologies of the brain. Unfortunately, systemic administration of kynurenic acid is hindered by its low permeability through the blood–brain barrier. One possibility to overcome this problem is to use analogues with similar biological activity as kynurenic acid, but with an increased permeability through the blood–brain barrier. We synthesized six novel aminoalkylated amide derivatives of kynurenic acid, among which SZR-104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide) proved to have the highest permeability through an in vitro blood–brain barrier model. In addition, permeability of SZR-104 was significantly higher than that of kynurenic acid, xanthurenic acid and 39B, a quinolone derivative/xanthurenic acid analogue. Since peripherally administered SZR-104 is able to inhibit epileptiform activity in the brain, we conclude that SZR-104 is a promising kynurenic acid analogue with good penetrability into the central nervous system.
Collapse
|
26
|
Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci 2021; 22:ijms22010403. [PMID: 33401674 PMCID: PMC7795784 DOI: 10.3390/ijms22010403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.
Collapse
|
27
|
Török N, Tanaka M, Vécsei L. Searching for Peripheral Biomarkers in Neurodegenerative Diseases: The Tryptophan-Kynurenine Metabolic Pathway. Int J Mol Sci 2020; 21:E9338. [PMID: 33302404 PMCID: PMC7762583 DOI: 10.3390/ijms21249338] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a central role for tailoring a personalized therapeutic plan for patients who suffered from neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, among others. Nevertheless, the use of biomarkers in clinical practice is still underappreciated and data presented in biomarker research for clinical use is still uncompelling, compared to the abundant data available for drug research and development. So is the case with kynurenines (KYNs) and the kynurenine pathway (KP) enzymes, which have been associated with a wide range of diseases including cancer, autoimmune diseases, inflammatory diseases, neurologic diseases, and psychiatric disorders. This review article discusses current knowledge of KP alterations observed in the central nervous system as well as the periphery, its involvement in pathogenesis and disease progression, and emerging evidence of roles of microbiota in the gut-brain axis, searching for practical peripheral biomarkers which ensure personalized treatment plans for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (N.T.); (M.T.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
28
|
Bai JH, Zheng YL, Yu YP. Urinary kynurenine as a biomarker for Parkinson's disease. Neurol Sci 2020; 42:697-703. [PMID: 32661882 DOI: 10.1007/s10072-020-04589-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine whether urine kynurenine (KYN) levels were associated with early-stage Parkinson's disease (PD), as well as the value of urine KYN as a potential biomarker in early-stage PD. METHOD Eighty-two participants including 41 PD patients and 41 healthy controls were enrolled into this study. Urine KYN levels were measured with a KYN enzyme-linked immunoassay kit. In order to explore the correlation between some clinical parameters and urine KYN, the clinical parameters for these participants were recorded. Diagnostic value and clinical relevance of urine KYN were assessed by using receiver operator characteristic (ROC) curve and correlation analysis. RESULTS Urine KYN levels were significantly higher in the PD group than in the healthy group (891.95 ± 276.65 pg/ml vs. 640.11 ± 122.37 pg/ml, p = 0.000). The correlations between urine KYN levels and clinical parameters are as follows: Hoehn-Yahr stage (r = 0.676, p = 0.000), disease duration (r = 0.772, p = 0.000), Mini-Mental State Examination scores (r = -0.434, p = 0.005). There was no statistically significant correlation between urine KYN with age, low-density cholesterol (LDL), triglycerides (TG), cholesterol (TC), homocysteine (HCY), uric acid (UA), and glomerular filtration rate (GFR). The ROC analysis showed that urine KYN optimal cutoff value of 751.88 pg/ml had a sensitivity of 65.9% and a specificity of 90.2% for distinguishing between PD and controls, with an area under the curve (AUC) of 0.776. CONCLUSION Urine KYN were significantly associated with PD severity and mild cognitive impairment. Urine KYN may be a new biomarker for early-stage PD.
Collapse
Affiliation(s)
- Jia-He Bai
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China
| | - Ya-Li Zheng
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China
| | - Yong-Peng Yu
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China. .,Department of Neurology, Weihai Central Hospital, Weifang Medical college, Weihai, 264400, China.
| |
Collapse
|
29
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
30
|
Sundaram G, Lim CK, Brew BJ, Guillemin GJ. Kynurenine pathway modulation reverses the experimental autoimmune encephalomyelitis mouse disease progression. J Neuroinflammation 2020; 17:176. [PMID: 32505212 PMCID: PMC7276083 DOI: 10.1186/s12974-020-01844-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune-mediated disorder of the central nervous system characterized by demyelination, neuroinflammation, and neurodegeneration. Activation of the kynurenine pathway (KP) results from acute and chronic neuroinflammation leading to both immune suppression and neurotoxicity. However, the exact effects of KP metabolites and changes in neurodegenerative diseases over time are not fully understood. Studies, including those in MS models, have reported that short-term KP activation is beneficial through immune tolerance. However, the effects of long-term KP activation are poorly understood. We hypothesized that such chronic activation is responsible for the neurodegeneration in MS, and further, modulating the KP in EAE-induced mice could significantly decrease the EAE disease severity. METHODS We biochemically altered the KP at different stages of the disease in experimental allergic encephalomyelitis (EAE) mouse model of MS and at two different enzymatic levels of the KP (IDO-1 (indoleamine 2,3 dioxygenase)) and KMO (kynurenine monooxygenase). CNS tissue and blood samples were analyzed longitudinally using GCMS, HPLC, IHC, and RT-PCR. RESULTS We showed that the KP was steadily upregulated correlating with disease severity and associated with a shift towards increasing concentrations of the KP metabolite quinolinic acid, a neuro- and gliotoxin. KP modulation by inhibition of IDO-1 with 1-methyl tryptophan (1-MT) was dependent on the timing of treatment at various stages of EAE. IDO-1 inhibition at EAE score 2 led to significantly higher numbers of FoxP3 cells (p < 0.001) in the spleen than earlier IDO-1 inhibition (prophylactic 1-MT treatment group (p < 0.001)), 1-MT treatment after EAE induction (EAE score 0; p < 0.001), and 1-MT treatment at EAE score of 1 (p < 0.05). Significant improvement of disease severity was observed in EAE mice treated with 1-MT at EAE score 2 compared to the untreated group (p < 0.05). KP modulation by KMO inhibition with Ro 61-8048 led to significantly greater numbers of Foxp3 cells (p < 0.05) in Ro 61-8048 treated mice and even more significant amelioration of EAE disease compared to the 1-MT treatment groups. CONCLUSIONS These results provide a new mechanistic link between neuroinflammation and neurodegeneration and point to KP modulation at the KMO level to preserve immune tolerance and limit neurodegeneration in EAE. They provide the foundation for new clinical trials for MS.
Collapse
Affiliation(s)
- Gayathri Sundaram
- Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chai K Lim
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bruce J Brew
- Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Sydney, NSW, 2010, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, 2010, Australia.
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
31
|
Cerebrospinal Fluid Neurofilament Light Chain Is Associated with Kynurenine Pathway Metabolite Changes in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21082665. [PMID: 32290514 PMCID: PMC7216195 DOI: 10.3390/ijms21082665] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofilament light (NFL) has proved to be a good prognostic factor in multiple sclerosis (MS), as its level is proportionally elevated with extended neuraxonal damage. The involvement of the kynurenine pathway in neuroinflammation has been proved. The precursor of this pathway is the essential amino acid tryptophan, which is catabolized 95% towards kynurenine metabolites. Quinolinic acid (QUIN) within the brain is only produced in activated microglia and macrophages, leading to axonal degeneration via the activation of N-Methyl-D-aspartate receptors. Neopterin is a biomarker for inflammation produced by macrophages. The association of these biomarkers has not previously been investigated. Our aim was to assess whether there is an association of the neurodegenerative biomarker NFL with the markers of neuroinflammation, e.g., kynurenine metabolites and neopterin, in the cerebrospinal fluid (CSF). CSF samples of patients with MS (pwMS; n = 37) and age-matched controls (n = 22) were compared for NFL levels by ELISA, while the kynurenine pathway metabolites tryptophan and neopterin were detected with mass spectrometry. Spearman’s correlation showed that NFL is an independent predictor of neurological disability in the MS group. Significant correlations were found between NFL, neopterin, and QUIN, and between kynurenine and neopterin. Receiver operating characteristic (ROC) curve analysis was used to plot the top three best predictors of MS-related disability that yielded the best specificity and sensitivity. Normalized NFL (AUC: 0.923), QUIN (AUC: 0.803), and neopterin (AUC: 0.843) were the best independent predictors of neurological disability in pwMS. The CSF NFL and CSF QUIN, together with neopterin, were elevated in the CSF of pwMS compared to controls. The combination of the neurodegenerative biomarkers together with biomarkers of neuroinflammation could provide additional information on the underlying pathomechanism of disease activity, which is essential for the identification of patients at risk of developing cumulative disabilities.
Collapse
|
32
|
Tömösi F, Kecskeméti G, Cseh EK, Szabó E, Rajda C, Kormány R, Szabó Z, Vécsei L, Janáky T. A validated UHPLC-MS method for tryptophan metabolites: Application in the diagnosis of multiple sclerosis. J Pharm Biomed Anal 2020; 185:113246. [PMID: 32182446 DOI: 10.1016/j.jpba.2020.113246] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 10/24/2022]
Abstract
The simultaneous quantitative estimation of tryptophan (TRP) and its metabolites represents a great challenge because of their diverse chemical properties, e.g., presence of acidic, basic, and nonpolar functional groups and their immensely different concentrations in biological matrices. A short ultra high-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS) method was validated for targeted analysis of TRP and its 11 most important metabolites derived via both kynurenine (KYN) and serotonin (SERO) pathways in human serum and cerebrospinal fluid (CSF): SERO, KYN, 3-hydroxyanthranilic acid, 5-hydroxyindoleacetic acid, anthranilic acid, kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), xanthurenic acid, melatonin, picolinic acid (PICA), and quinolinic acid (QUIN). After selecting the "best" reversed-phase column and organic modifier, DryLab®4 was used to optimize the gradient time and temperature in chromatographic separation. To achieve absolute quantification, deuterium-labeled internal standards were used. Among all compounds, 3 were analyzed in derivatized (butyl ester) forms (3-HK, PICA, and QUIN) and the remaining 9 in underivatized forms. Validation was performed in accordance with the ICH and FDA guidelines to determine the intraday and interday precision, accuracy, sensitivity, and recovery. To demonstrate the applicability of the developed UHPLC-MS/MS method, the aforementioned metabolites were analyzed in serum and CSF samples from patients with multiple sclerosis (multiple sclerosis group) and those with symptomatic or noninflammatory neurological diseases (control group). The concentration of QUIN dramatically increased, whereas that of KYNA slightly decreased in the multiple sclerosis group, resulting in a significantly increased QUIN/KYNA ratio and significantly decreased PICA/QUIN ratio.
Collapse
Affiliation(s)
- Ferenc Tömösi
- Department of Medical Chemistry, Interdisciplinary Centre of Excellence, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Interdisciplinary Centre of Excellence, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Edina Katalin Cseh
- Department of Neurology, Interdisciplinary Centre of Excellence, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Elza Szabó
- Department of Neurology, Interdisciplinary Centre of Excellence, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Cecília Rajda
- Department of Neurology, Interdisciplinary Centre of Excellence, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Róbert Kormány
- Egis Pharmaceuticals Plc., Keresztúri út 30-38, H-1106, Budapest, Hungary
| | - Zoltán Szabó
- Department of Medical Chemistry, Interdisciplinary Centre of Excellence, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Centre of Excellence, University of Szeged, Semmelweis u. 6, H-6725, Szeged, Hungary; Hungarian Academy of Sciences, MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725, Szeged, Hungary
| | - Tamás Janáky
- Department of Medical Chemistry, Interdisciplinary Centre of Excellence, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary.
| |
Collapse
|
33
|
|
34
|
Vécsei L, Lukács M, Tajti J, Fülöp F, Toldi J, Edvinsson L. The Therapeutic Impact of New Migraine Discoveries. Curr Med Chem 2019; 26:6261-6281. [PMID: 29848264 DOI: 10.2174/0929867325666180530114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is one of the most disabling neurological conditions and associated with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered to be the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. OBJECTIVE The present study is a review of the current literature regarding new therapeutic lines in migraine research. METHODS A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in a migraine published until July 2017. RESULTS Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. CONCLUSION Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies.
Collapse
Affiliation(s)
- László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTASZTE Neuroscience Research Group, Szeged, Hungary
| | - Melinda Lukács
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
35
|
Dudzińska E, Szymona K, Kloc R, Gil-Kulik P, Kocki T, Świstowska M, Bogucki J, Kocki J, Urbanska EM. Increased expression of kynurenine aminotransferases mRNA in lymphocytes of patients with inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12:1756284819881304. [PMID: 31666808 PMCID: PMC6801885 DOI: 10.1177/1756284819881304] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Complex interaction of genetic defects with environmental factors seems to play a substantial role in the pathogenesis of inflammatory bowel disease (IBD). Accumulating data implicate a potential role of disturbed tryptophan metabolism in IBD. Kynurenic acid (KYNA), a derivative of tryptophan (TRP) along the kynurenine (KYN) pathway, displays cytoprotective and immunomodulating properties, whereas 3-OH-KYN is a cytotoxic compound, generating free radicals. METHODS The expression of lymphocytic mRNA encoding enzymes synthesizing KYNA (KAT I-III) and serum levels of TRP and its metabolites were evaluated in 55 patients with IBD, during remission or relapse [27 patients with ulcerative colitis (UC) and 28 patients with Crohn's disease (CD)] and in 50 control individuals. RESULTS The increased expression of KAT1 and KAT3 mRNA characterized the entire cohorts of patients with UC and CD, as well as relapse-remission subsets. Expression of KAT2 mRNA was enhanced in patients with UC and in patients with CD in remission. In the entire cohorts of UC or CD, TRP levels were lower, whereas KYN, KYNA and 3-OH-KYN were not altered. When analysed in subsets of patients with UC and CD (active phase-remission), KYNA level was significantly lower during remission than relapse, yet not versus control. Functionally, in the whole groups of patients with UC or CD, the TRP/KYN ratio has been lower than control, whereas KYN/KYNA and KYNA/3-OH-KYN ratios were not altered. The ratio KYN/3-OH-KYN increased approximately two-fold among all patients with CD; furthermore, patients with CD with relapse, manifested a significantly higher KYNA/3-OH-KYN ratio than patients in remission. CONCLUSION The presented data indicate that IBD is associated with an enhanced expression of genes encoding KYNA biosynthetic enzymes in lymphocytes; however, additional mechanisms appear to influence KYNA levels. Higher metabolic conversion of serum TRP in IBD seems to be followed by the functional shift of KYN pathway towards the arm producing KYNA during exacerbation. We propose that KYNA, possibly via interaction with aryl hydrocarbon receptor or G-protein-coupled orphan receptor 35, may serve as a counter-regulatory mechanism, decreasing cytotoxicity and inflammation in IBD. Further longitudinal studies evaluating the individual dynamics of TRP and KYN pathway in patients with IBD, as well as the nature of precise mechanisms regulating KYNA synthesis, should be helpful in better understanding the processes underlying the observed changes.
Collapse
Affiliation(s)
- Ewa Dudzińska
- Medical University of Lublin, Chodźki 1 Street,
Lublin, 20-093, Lubelskie, Poland
| | - Kinga Szymona
- Medical University of Lublin, Lublin, Lubelskie,
Poland
| | - Renata Kloc
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Małgorzata Świstowska
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Jacek Bogucki
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical
University of Lublin, Lublin, Lubelskie, Poland
| | - Ewa M. Urbanska
- Department of Experimental and Clinical
Pharmacology, Medical University of Lublin, Lublin, Lubelskie, Poland
| |
Collapse
|
36
|
Fertan E, Stover KR, Brant MG, Stafford PM, Kelly B, Diez-Cecilia E, Wong AA, Weaver DF, Brown RE. Effects of the Novel IDO Inhibitor DWG-1036 on the Behavior of Male and Female 3xTg-AD Mice. Front Pharmacol 2019; 10:1044. [PMID: 31607909 PMCID: PMC6773979 DOI: 10.3389/fphar.2019.01044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
The kynurenine pathway metabolizes tryptophan into nicotinamide adenine dinucleotide, producing a number of intermediary metabolites, including 3-hydroxy kynurenine and quinolinic acid, which are involved in the neurodegenerative mechanisms that underlie Alzheimer's disease (AD). Indolamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of this pathway, is increased in AD, and it has been hypothesized that blocking this enzyme may slow the progression of AD. In this study, we treated male and female 3xTg-AD and wild-type mice with the novel IDO inhibitor DWG-1036 (80 mg/kg) or vehicle (distilled water) from 2 to 6 months of age and then tested them in a battery of behavioral tests that measured spatial learning and memory (Barnes maze), working memory (trace fear conditioning), motor coordination and learning (rotarod), anxiety (elevated plus maze), and depression (tail suspension test). The 3xTg-AD mice treated with DWG-1036 showed better memory in the trace fear conditioning task and significant improvements in learning but poorer spatial memory in the Barnes maze. DWG-1036 treatment also ameliorated the behaviors associated with increased anxiety in the elevated plus maze and depression-like behaviors in the tail suspension test in 3xTg-AD mice. However, the effects of DWG-1036 treatment on the behavioral tasks were variable, and sex differences were apparent. In addition, high doses of DWG-1036 resulted in reduced body weight, particularly in females. Taken together, our results suggest that the kynurenine pathway is a promising target for treating AD, but more work is needed to determine the effective compounds, examine sex differences, and understand the side effects of the compounds.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kurt R.J. Stover
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Brant
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul M. Stafford
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Brendan Kelly
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Elena Diez-Cecilia
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Aimée A. Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Richard E. Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
37
|
Tan VX, Guillemin GJ. Kynurenine Pathway Metabolites as Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:1013. [PMID: 31616242 PMCID: PMC6764462 DOI: 10.3389/fnins.2019.01013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) currently lacks a robust and well-defined biomarker that can 1) assess the progression of the disease, 2) predict and/or delineate the various clinical subtypes, and 3) evaluate or predict a patient's response to treatments. The kynurenine Pathway (KP) of tryptophan degradation represent a promising candidate as it is involved with several neuropathological features present in ALS including neuroinflammation, excitotoxicity, oxidative stress, immune system activation and dysregulation of energy metabolism. Some of the KP metabolites (KPMs) can cross the blood brain barrier, and many studies have shown their levels are dysregulated in major neurodegenerative diseases including ALS. The KPMs can be easily analyzed in body fluids and tissue and as they are small molecules, and are stable. KPMs have a Janus face action, they can be either or both neurotoxic and/or neuroprotective depending of their levels. This mini review examines and presents evidence supporting the use of KPMs as a relevant set of biomarkers for ALS, and highlights the criteria required to achieve a valid biomarker set for ALS.
Collapse
Affiliation(s)
| | - Gilles J. Guillemin
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
38
|
Dehhaghi M, Kazemi Shariat Panahi H, Guillemin GJ. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. Int J Tryptophan Res 2019; 12:1178646919852996. [PMID: 31258331 PMCID: PMC6585246 DOI: 10.1177/1178646919852996] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
The kynurenine pathway is important in cellular energy generation and limiting cellular ageing as it degrades about 90% of dietary tryptophan into the essential co-factor NAD+ (nicotinamide adenine dinucleotide). Prior to the production of NAD+, various intermediate compounds with neuroactivity (kynurenic acid, quinolinic acid) or antioxidant activity (3-hydroxykynurenine, picolinic acid) are synthesized. The kynurenine metabolites can participate in numerous neurodegenerative disorders (Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease) or other diseases such as AIDS, cancer, cardiovascular diseases, inflammation, and irritable bowel syndrome. Recently, the role of gut in affecting the emotional and cognitive centres of the brain has attracted a great deal of attention. In this review, we focus on the bidirectional communication between the gut and the brain, known as the gut-brain axis. The interaction of components of this axis, namely, the gut, its microbiota, and gut pathogens; tryptophan; the kynurenine pathway on tryptophan availability; the regulation of kynurenine metabolite concentration; and diversity and population of gut microbiota, has been considered.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Hamed Kazemi Shariat Panahi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.,Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
39
|
Mondanelli G, Iacono A, Carvalho A, Orabona C, Volpi C, Pallotta MT, Matino D, Esposito S, Grohmann U. Amino acid metabolism as drug target in autoimmune diseases. Autoimmun Rev 2019; 18:334-348. [DOI: 10.1016/j.autrev.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
|
40
|
Biochemical Differences in Cerebrospinal Fluid between Secondary Progressive and Relapsing⁻Remitting Multiple Sclerosis. Cells 2019; 8:cells8020084. [PMID: 30678351 PMCID: PMC6406712 DOI: 10.3390/cells8020084] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022] Open
Abstract
To better understand the pathophysiological differences between secondary progressive multiple sclerosis (SPMS) and relapsing-remitting multiple sclerosis (RRMS), and to identify potential biomarkers of disease progression, we applied high-resolution mass spectrometry (HRMS) to investigate the metabolome of cerebrospinal fluid (CSF). The biochemical differences were determined using partial least squares discriminant analysis (PLS-DA) and connected to biochemical pathways as well as associated to clinical and radiological measures. Tryptophan metabolism was significantly altered, with perturbed levels of kynurenate, 5-hydroxytryptophan, 5-hydroxyindoleacetate, and N-acetylserotonin in SPMS patients compared with RRMS and controls. SPMS patients had altered kynurenine compared with RRMS patients, and altered indole-3-acetate compared with controls. Regarding the pyrimidine metabolism, SPMS patients had altered levels of uridine and deoxyuridine compared with RRMS and controls, and altered thymine and glutamine compared with RRMS patients. Metabolites from the pyrimidine metabolism were significantly associated with disability, disease activity and brain atrophy, making them of particular interest for understanding the disease mechanisms and as markers of disease progression. Overall, these findings are of importance for the characterization of the molecular pathogenesis of SPMS and support the hypothesis that the CSF metabolome may be used to explore changes that occur in the transition between the RRMS and SPMS pathologies.
Collapse
|
41
|
Fakan B, Szalardy L, Vecsei L. Exploiting the Therapeutic Potential of Endogenous Immunomodulatory Systems in Multiple Sclerosis-Special Focus on the Peroxisome Proliferator-Activated Receptors (PPARs) and the Kynurenines. Int J Mol Sci 2019; 20:ijms20020426. [PMID: 30669473 PMCID: PMC6358998 DOI: 10.3390/ijms20020426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neurodegenerative disease, characterized by autoimmune central nervous system (CNS) demyelination attributable to a disturbed balance between encephalitic T helper 1 (Th1) and T helper 17 (Th17) and immunomodulatory regulatory T cell (Treg) and T helper 2 (Th2) cells, and an alternatively activated macrophage (M2) excess. Endogenous molecular systems regulating these inflammatory processes have recently been investigated to identify molecules that can potentially influence the course of the disease. These include the peroxisome proliferator-activated receptors (PPARs), PPARγ coactivator-1alpha (PGC-1α), and kynurenine pathway metabolites. Although all PPARs ameliorate experimental autoimmune encephalomyelitis (EAE), recent evidence suggests that PPARα, PPARβ/δ agonists have less pronounced immunomodulatory effects and, along with PGC-1α, are not biomarkers of neuroinflammation in contrast to PPARγ. Small clinical trials with PPARγ agonists have been published with positive results. Proposed as immunomodulatory and neuroprotective, the therapeutic use of PGC-1α activation needs to be assessed in EAE/MS. The activation of indolamine 2,3-dioxygenase (IDO), the rate-limiting step of the kynurenine pathway of tryptophan (Trp) metabolism, plays crucial immunomodulatory roles. Indeed, Trp metabolites have therapeutic relevance in EAE and drugs with structural analogy to kynurenines, such as teriflunomide, are already approved for MS. Further studies are required to gain deeper knowledge of such endogenous immunomodulatory pathways with potential therapeutic implications in MS.
Collapse
Affiliation(s)
- Bernadett Fakan
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Levente Szalardy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| | - Laszlo Vecsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
- MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|
42
|
Negrotto L, Correale J. Amino Acid Catabolism in Multiple Sclerosis Affects Immune Homeostasis. THE JOURNAL OF IMMUNOLOGY 2017; 198:1900-1909. [PMID: 28130499 DOI: 10.4049/jimmunol.1601139] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
Abstract
Amino acid catabolism has been implicated in immunoregulatory mechanisms present in several diseases, including autoimmune disorders. Our aims were to assess expression and activity of enzymes involved in Trp and Arg catabolism, as well as to investigate amino acid catabolism effects on the immune system of multiple sclerosis (MS) patients. To this end, 40 MS patients, 30 healthy control subjects, and 30 patients with other inflammatory neurological diseases were studied. Expression and activity of enzymes involved in Trp and Arg catabolism (IDO1, IDO2, Trp 2,3-dioxygenase [TDO], arginase [ARG] 1, ARG2, inducible NO synthetase) were evaluated in PBMCs. Expression of general control nonrepressed 2 serine/threonine kinase and mammalian target of rapamycin (both molecules involved in sensing amino acid levels) was assessed in response to different stimuli modulating amino acid catabolism, as were cytokine secretion levels and regulatory T cell numbers. The results demonstrate that expression and activity of IDO1 and ARG1 were significantly reduced in MS patients compared with healthy control subjects and other inflammatory neurological diseases. PBMCs from MS patients stimulated with a TLR-9 agonist showed reduced expression of general control nonrepressed 2 serine/threonine kinase and increased expression of mammalian target of rapamycin, suggesting reduced amino acid catabolism in MS patients. Functionally, this reduction resulted in a decrease in regulatory T cells, with an increase in myelin basic protein-specific T cell proliferation and secretion of proinflammatory cytokines. In contrast, induction of IDO1 using CTLA-4 or a TLR-3 ligand dampened proinflammatory responses. Overall, these results highlight the importance of amino acid catabolism in the modulation of the immunological responses in MS patients. Molecules involved in these pathways warrant further exploration as potential new therapeutic targets in MS.
Collapse
Affiliation(s)
- Laura Negrotto
- Department of Neurology, Raúl Carrea Institute for Neurological Research, FLENI, 1428 Buenos Aires, Argentina
| | - Jorge Correale
- Department of Neurology, Raúl Carrea Institute for Neurological Research, FLENI, 1428 Buenos Aires, Argentina
| |
Collapse
|
43
|
Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, Guillemin GJ, Brew BJ. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 2017; 112:373-388. [DOI: 10.1016/j.neuropharm.2016.03.024] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 12/13/2022]
|
44
|
Strasser B, Becker K, Fuchs D, Gostner JM. Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology 2017; 112:286-296. [DOI: 10.1016/j.neuropharm.2016.02.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
|
45
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
46
|
Aeinehband S, Brenner P, Ståhl S, Bhat M, Fidock MD, Khademi M, Olsson T, Engberg G, Jokinen J, Erhardt S, Piehl F. Cerebrospinal fluid kynurenines in multiple sclerosis; relation to disease course and neurocognitive symptoms. Brain Behav Immun 2016; 51:47-55. [PMID: 26189678 DOI: 10.1016/j.bbi.2015.07.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/22/2015] [Accepted: 07/14/2015] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system, with a high rate of neurocognitive symptoms for which the molecular background is still uncertain. There is accumulating evidence for dysregulation of the kynurenine pathway (KP) in different psychiatric and neurodegenerative conditions. We here report the first comprehensive analysis of cerebrospinal fluid (CSF) kynurenine metabolites in MS patients of different disease stages and in relation to neurocognitive symptoms. Levels of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN) were determined with liquid chromatography mass spectrometry in cell-free CSF. At the group level MS patients (cohort 1; n=71) did not differ in absolute levels of TRP, KYN, KYNA or QUIN as compared to non-inflammatory neurological disease controls (n=20). Stratification of patients into different disease courses revealed that both absolute QUIN levels and the QUIN/KYN ratio were increased in relapsing-remitting MS (RRMS) patients in relapse. Interestingly, secondary progressive MS (SPMS) displayed a trend for lower TRP and KYNA, while primary progressive (PPMS) patients displayed increased levels of all metabolites, similar to a group of inflammatory neurological disease controls (n=13). In the second cohort (n=48), MS patients with active disease and short disease duration were prospectively evaluated for neuropsychiatric symptoms. In a supervised multivariate analysis using orthogonal projection to latent structures (OPLS-DA) depressed patients displayed higher KYNA/TRP and KYN/TRP ratios, mainly due to low TRP levels. Still, this model had low predictive value and could not completely separate the clinically depressed patients from the non-depressed MS patients. No correlation was evident for other neurocognitive measures. Taken together these results demonstrate that clinical disease activity and differences in disease courses are reflected by changes in KP metabolites. Increased QUIN levels of RRMS patients in relapse and generally decreased levels of TRP in SPMS may relate to neurotoxicity and failure of remyelination, respectively. In contrast, PPMS patients displayed a more divergent pattern more resembling inflammatory conditions such as systemic lupus erythematosus. The pattern of KP metabolites in RRMS patients could not predict neurocognitive symptoms.
Collapse
Affiliation(s)
- Shahin Aeinehband
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Philip Brenner
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Ståhl
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Bhat
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; AstraZeneca, Research & Development, Innovative Medicines, Personalized Healthcare & Biomarkers, Science for Life Laboratory, Stockholm, Sweden
| | - Mark D Fidock
- AstraZeneca, Research & Development, Innovative Medicines, Personalized Healthcare & Biomarkers, Science for Life Laboratory, Stockholm, Sweden
| | - Mohsen Khademi
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Jokinen
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
O'Farrell K, Harkin A. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology 2015; 112:307-323. [PMID: 26690895 DOI: 10.1016/j.neuropharm.2015.12.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 02/08/2023]
Abstract
The kynurenine pathway (KP), which is activated in times of stress and infection has been implicated in the pathophysiology of neurodegenerative and psychiatric disorders. Activation of this tryptophan metabolising pathway results in the production of neuroactive metabolites which have the potential to interfere with normal neuronal functioning which may contribute to altered neuronal transmission and the emergence of symptoms of these brain disorders. This review investigates the involvement of the KP in a range of neurological disorders, examining recent in vitro, in vivo and clinical discoveries highlights evidence to indicate that the KP is a potential therapeutic target in both neurodegenerative and stress-related neuropsychiatric disorders. Furthermore, this review identifies gaps in our knowledge with regard to this field which are yet to be examined to lead to a more comprehensive understanding of the role of KP activation in brain health and disease. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Collapse
Affiliation(s)
- Katherine O'Farrell
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland; Neuroimmunology Research Group, Department of Physiology, School of Medicine & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
48
|
Kynurenines and Multiple Sclerosis: The Dialogue between the Immune System and the Central Nervous System. Int J Mol Sci 2015; 16:18270-82. [PMID: 26287161 PMCID: PMC4581244 DOI: 10.3390/ijms160818270] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system, in which axonal transection takes place in parallel with acute inflammation to various, individual extents. The importance of the kynurenine pathway in the physiological functions and pathological processes of the nervous system has been extensively investigated, but it has additionally been implicated as having a regulatory function in the immune system. Alterations in the kynurenine pathway have been described in both preclinical and clinical investigations of multiple sclerosis. These observations led to the identification of potential therapeutic targets in multiple sclerosis, such as synthetic tryptophan analogs, endogenous tryptophan metabolites (e.g., cinnabarinic acid), structural analogs (laquinimod, teriflunomid, leflunomid and tranilast), indoleamine-2,3-dioxygenase inhibitors (1MT and berberine) and kynurenine-3-monooxygenase inhibitors (nicotinylalanine and Ro 61-8048). The kynurenine pathway is a promising novel target via which to influence the immune system and to achieve neuroprotection, and further research is therefore needed with the aim of developing novel drugs for the treatment of multiple sclerosis and other autoimmune diseases.
Collapse
|
49
|
Dounay AB, Tuttle JB, Verhoest PR. Challenges and Opportunities in the Discovery of New Therapeutics Targeting the Kynurenine Pathway. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00461] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Amy B. Dounay
- Department
of Chemistry and Biochemistry, Colorado College, 14 E. Cache
La Poudre Street, Colorado Springs, Colorado 80903, United States
| | - Jamison B. Tuttle
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Patrick R. Verhoest
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int J Mol Sci 2015; 16:9772-93. [PMID: 25938971 PMCID: PMC4463617 DOI: 10.3390/ijms16059772] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Kynurenines are the products of tryptophan metabolism. Among them, kynurenine and kynurenic acid are generally thought to have neuroprotective properties, while 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid are considered neurotoxic. They participate in immunoregulation and inflammation and possess pro- or anti-excitotoxic properties, and their involvement in oxidative stress has also been suggested. Consequently, it is not surprising that kynurenines have been closely related to neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. More information about the less-known metabolites, picolinic and cinnabarinic acid, evaluation of new receptorial targets, such as aryl-hydrocarbon receptors, and intensive research on the field of the immunomodulatory function of kynurenines delineated the high importance of this pathway in general homeostasis. Emerging knowledge about the kynurenine pathway provides new target points for the development of therapeutical solutions against neurodegenerative diseases.
Collapse
|