1
|
Prasad SK, Acharjee A, Singh VV, Trigun SK, Acharjee P. Modulation of brain energy metabolism in hepatic encephalopathy: impact of glucose metabolic dysfunction. Metab Brain Dis 2024; 39:1649-1665. [PMID: 39120853 DOI: 10.1007/s11011-024-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cerebral function is linked to a high level of metabolic activity and relies on glucose as its primary energy source. Glucose aids in the maintenance of physiological brain activities; as a result, a disruption in metabolism has a significant impact on brain function, launching a chain of events that leads to neuronal death. This metabolic insufficiency has been observed in a variety of brain diseases and neuroexcitotoxicity disorders, including hepatic encephalopathy. It is a significant neurological complication that develops in people with liver disease, ranging from asymptomatic abnormalities to coma. Hyperammonemia is the main neurotoxic villain in the development of hepatic encephalopathy and induces a wide range of complications in the brain. The neurotoxic effects of ammonia on brain function are thought to be mediated by impaired glucose metabolism. Accordingly, in this review, we provide an understanding of deranged brain energy metabolism, emphasizing the role of glucose metabolic dysfunction in the pathogenesis of hepatic encephalopathy. We also highlighted the differential metabolic profiles of brain cells and the status of metabolic cooperation between them. The major metabolic pathways that have been explored are glycolysis, glycogen metabolism, lactate metabolism, the pentose phosphate pathway, and the Krebs cycle. Furthermore, the lack of efficacy in current hepatic encephalopathy treatment methods highlights the need to investigate potential therapeutic targets for hepatic encephalopathy, with regulating deficient bioenergetics being a viable alternative in this case. This review also demonstrates the importance of the development of glucose metabolism-focused disease diagnostics and treatments, which are now being pursued for many ailments.
Collapse
Affiliation(s)
- Shambhu Kumar Prasad
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arup Acharjee
- Department of Zoology, University of Allahabad, Prayagraj, 211002, India.
| | - Vishal Vikram Singh
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surendra Kumar Trigun
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Papia Acharjee
- Biochemistry and Molecular Biology Unit, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Mazdeh M, Abolfathi P, Sabetghadam M, Mohammadi Y, Mehrpooya M. Clinical Evidence of Acetyl-L-Carnitine Efficacy in the Treatment of Acute Ischemic Stroke: A Pilot Clinical Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2493053. [PMID: 35936217 PMCID: PMC9355767 DOI: 10.1155/2022/2493053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/16/2022] [Accepted: 07/02/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study was undertaken to evaluate the influence of oral Acetyl-L-carnitine (ALC) in patients with acute ischemic stroke. METHODS Sixty-nine cases with acute ischemic stroke with the onset of symptoms less than 24 hours not candidates for reperfusion therapy were randomly assigned to either the ALC group (1000 mg three times per day for three consecutive days) or the matching placebo group. The study outcomes based on intention-to-treat criteria included the change in the modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS) score from baseline to day 90, as well as the change in serum levels of the inflammatory and oxidative stress biomarkers over the 3-day treatment protocol. RESULTS The NIHSS score and mRS score on day 90 were improved by 5.82 and 0.94 scores, respectively, in the ALC-treated group compared to 2.83 and 0.11 scores, respectively, in the placebo-treated group, which demonstrated the superiority of ALC relative to placebo. By using the multivariable analysis after adjusting for other variables in the model, compared to the group treated with placebo, patients in the ALC group had lower NIHSS score (β: -2.40, 95% CI: -0.69, -4.10 (p = 0.007)) and mRS score (β: -1.18, 95% CI: -0.52, -1.84 (p = 0.001)) 90 days after the intervention. The percentage of patients with a favourable functional outcome at day 90, defined as mRS scores of 0 or 1, was significantly higher in the ALC group in comparison to the placebo group (52.9% versus 28.6%). Further, over the 3-day treatment protocol, in the patients receiving ALC, the serum levels of proinflammatory biomarkers, including soluble intercellular adhesion molecule-1 (sICAM-1), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and neuron-specific enolase (NSE), showed a significant decrease, while the serum levels of antioxidant biomarkers, including glutathione peroxidase (GPx), superoxide dismutase (SOD), and total antioxidant capacity (TAC), as well as the total L-carnitine's level showed a significant increase compared to those in patients receiving placebo indicating significant alteration. CONCLUSIONS Although preliminary, these results suggested that ALC administration during the acute phase of ischemic stroke might be helpful in improving functional and neurological outcomes that are probably linked to its anti-inflammatory and antioxidant properties. Trial Registration. This trial is registered with IRCT20150629022965N17 at Iranian Registry of Clinical Trials (registration date: 25/07/2018).
Collapse
Affiliation(s)
- Mehrdokht Mazdeh
- Department of Neurology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parnaz Abolfathi
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Sabetghadam
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
4
|
Is the Brain Undernourished in Alzheimer's Disease? Nutrients 2022; 14:nu14091872. [PMID: 35565839 PMCID: PMC9102563 DOI: 10.3390/nu14091872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Cerebrospinal fluid (CSF) amino acid (AA) levels and CSF/plasma AA ratios in Alzheimer Disease (AD) in relation to nutritional state are not known. Methods: In 30 fasting patients with AD (46% males, 74.4 ± 8.2 years; 3.4 ± 3.2 years from diagnosis) and nine control (CTRL) matched subjects, CSF and venous blood samples were drawn for AA measurements. Patients were stratified according to nutritional state (Mini Nutritional Assessment, MNA, scores). Results: Total CSF/plasma AA ratios were lower in the AD subpopulations than in NON-AD (p < 0.003 to 0.017. In combined malnourished (16.7%; MNA < 17) and at risk for malnutrition (36.6%, MNA 17−24) groups (CG), compared to CTRL, all essential amino acids (EAAs) and 30% of non-EAAs were lower (p < 0.018 to 0.0001), whereas in normo-nourished ADs (46.7%, MNA > 24) the CSF levels of 10% of EAAs and 25% of NON-EAAs were decreased (p < 0.05 to 0.00021). CG compared to normo-nourished ADs, had lower CSF aspartic acid, glutamic acid and Branched-Chain AA levels (all, p < 0.05 to 0.003). CSF/plasma AA ratios were <1 in NON-AD but even lower in the AD population. Conclusions: Compared to CTRL, ADs had decreased CSF AA Levels and CSF/plasma AA ratios, the degree of which depended on nutritional state.
Collapse
|
5
|
Zhang IW, López-Vicario C, Duran-Güell M, Clària J. Mitochondrial Dysfunction in Advanced Liver Disease: Emerging Concepts. Front Mol Biosci 2021; 8:772174. [PMID: 34888354 PMCID: PMC8650317 DOI: 10.3389/fmolb.2021.772174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are entrusted with the challenging task of providing energy through the generation of ATP, the universal cellular currency, thereby being highly flexible to different acute and chronic nutrient demands of the cell. The fact that mitochondrial diseases (genetic disorders caused by mutations in the nuclear or mitochondrial genome) manifest through a remarkable clinical variation of symptoms in affected individuals underlines the far-reaching implications of mitochondrial dysfunction. The study of mitochondrial function in genetic or non-genetic diseases therefore requires a multi-angled approach. Taking into account that the liver is among the organs richest in mitochondria, it stands to reason that in the process of unravelling the pathogenesis of liver-related diseases, researchers give special focus to characterizing mitochondrial function. However, mitochondrial dysfunction is not a uniformly defined term. It can refer to a decline in energy production, increase in reactive oxygen species and so forth. Therefore, any study on mitochondrial dysfunction first needs to define the dysfunction to be investigated. Here, we review the alterations of mitochondrial function in liver cirrhosis with emphasis on acutely decompensated liver cirrhosis and acute-on-chronic liver failure (ACLF), the latter being a form of acute decompensation characterized by a generalized state of systemic hyperinflammation/immunosuppression and high mortality rate. The studies that we discuss were either carried out in liver tissue itself of these patients, or in circulating leukocytes, whose mitochondrial alterations might reflect tissue and organ mitochondrial dysfunction. In addition, we present different methodological approaches that can be of utility to address the diverse aspects of hepatocyte and leukocyte mitochondrial function in liver disease. They include assays to measure metabolic fluxes using the comparatively novel Biolog’s MitoPlates in a 96-well format as well as assessment of mitochondrial respiration by high-resolution respirometry using Oroboros’ O2k-technology and Agilent Seahorse XF technology.
Collapse
Affiliation(s)
- Ingrid W Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain.,European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain.,CIBERehd, Barcelona, Spain.,Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Vincenzi KL, Maia TP, Delmônego L, Lima AB, Pscheidt LC, Delwing-Dal Magro D, Delwing-de Lima D. Effects of resveratrol on alterations in cerebrum energy metabolism caused by metabolites accumulated in type I citrullinemia in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:873-884. [PMID: 33205249 DOI: 10.1007/s00210-020-02017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
We investigated the in vitro effects of citrulline (0.1, 2.5 and 5.0 mM) and ammonia (0.01, 0.1 and 1.0 mM), and the influence of resveratrol (0.01 mM, 0.1 mM and 0.5 mM) on pyruvate kinase, citrate synthase, succinate dehydrogenase (SDH), complex II, and cytochrome c oxidase activities in cerebral cortex, cerebellum and hippocampus homogenates of 60-day-old male Wistar rats. Results showed that 2.5 and 5.0 mM citrulline decreased pyruvate kinase activity in cerebral cortex and, at a concentration of 5.0 mM, increased its activity in hippocampus. Additionally, 5.0 mM citrulline increased citrate synthase activity in the cerebellum of rats. Citrulline (5.0 mM) reduced complex II and cytochrome c oxidase activities in cerebral cortex and hippocampus. With regard to ammonia, at 0.1 and 1.0 mM, decreased complex II activity in cerebral cortex and at 1.0 mM decreased its activity in cerebellum and hippocampus. Ammonia (1.0 mM) also decreased cytochrome c oxidase activity in cerebral cortex and cerebellum of rats. Resveratrol was able to prevent most of the alterations caused by these metabolites in the biomarkers of energy metabolism measured in the cerebrum of rats. Data suggest that these alterations in energy metabolism, caused by citrulline and ammonia, are probably mediated by the generation of free radicals, which can in turn be scavenged by resveratrol.
Collapse
Affiliation(s)
- Karine Louize Vincenzi
- Programa de Pós Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki,10- Zona Industrial Norte, Joinville, SC, 89201-972, Brazil
| | - Thayna Patachini Maia
- Departamento de Medicina, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10- Zona Industrial Norte, Joinville, SC, 89201-972, Brazil
| | - Larissa Delmônego
- Programa de Pós Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki,10- Zona Industrial Norte, Joinville, SC, 89201-972, Brazil
| | - Aline Barbosa Lima
- Programa de Pós Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki,10- Zona Industrial Norte, Joinville, SC, 89201-972, Brazil
| | - Luana Carla Pscheidt
- Departamento de Farmácia, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10- Zona Industrial Norte, Joinville, SC, 89201-972, Brazil
| | - Débora Delwing-Dal Magro
- Departamento de Ciências Naturais, Centro de Ciências Exatas e Naturais, Universidade Regional de Blumenau, Rua Antônio daVeiga,140, Blumenau, SC, 89012-900, Brazil
| | - Daniela Delwing-de Lima
- Programa de Pós Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki,10- Zona Industrial Norte, Joinville, SC, 89201-972, Brazil. .,Departamento de Medicina, Universidade da Região de Joinville - UNIVILLE, Rua Paulo Malschitzki, 10- Zona Industrial Norte, Joinville, SC, 89201-972, Brazil.
| |
Collapse
|
7
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. A Look into Liver Mitochondrial Dysfunction as a Hallmark in Progression of Brain Energy Crisis and Development of Neurologic Symptoms in Hepatic Encephalopathy. J Clin Med 2020; 9:E2259. [PMID: 32708652 PMCID: PMC7408643 DOI: 10.3390/jcm9072259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The relationship between liver disease and neuropathology in hepatic encephalopathy is well known, but the genesis of encephalopathy in liver failure is yet to be elucidated. Conceptually, the main cause of hepatic encephalopathy is the accumulation of brain ammonia due to impaired liver detoxification function or occurrence of portosystemic shunt. Yet, as well as taking up toxic ammonia, the liver also produces vital metabolites that ensure normal cerebral function. Given this, for insight into how perturbations in the metabolic capacity of the liver may be related to brain pathology, it is crucial to understand the extent of ammonia-related changes in the hepatic metabolism that provides respiratory fuel for the brain, a deficiency of which can give rise to encephalopathy. METHODS Hepatic encephalopathy was induced in starved rats by injection of ammonium acetate. Ammonia-induced toxicity was evaluated by plasma and freeze-clamped liver and brain energy metabolites, and mitochondrial, cytoplasmic, and microsomal gluconeogenic enzymes, including mitochondrial ketogenic enzymes. Parameters of oxidative phosphorylation were recorded polarographically with a Clark-type electrode, while other measures were determined with standard fluorometric enzymatic methods. RESULTS Progressive impairment of liver mitochondrial respiration in the initial stage of ammonia-induced hepatotoxicity and the subsequent energy crisis due to decreased ATP synthesis lead to cessation of gluconeogenesis and ketogenesis. Reduction in glucose and ketone body supply to the brain is a terminal event in liver toxicity, preceding the development of coma. CONCLUSIONS Our study provides a framework to further explore the relationship between hepatic dysfunction and progression of brain energy crisis in hepatic encephalopathy.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia; (L.T.); (G.A.)
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia; (L.T.); (G.A.)
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia; (L.T.); (G.A.)
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain;
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
8
|
Mohammadi H, Sayad A, Mohammadi M, Niknahad H, Heidari R. N-acetyl cysteine treatment preserves mitochondrial indices of functionality in the brain of hyperammonemic mice. Clin Exp Hepatol 2020; 6:106-115. [PMID: 32728627 PMCID: PMC7380475 DOI: 10.5114/ceh.2020.95814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
AIM OF THE STUDY Acute or chronic live failure could result in hyperammonemia and hepatic encephalopathy (HE). HE is a clinical complication characterized by severe cognitive dysfunction and coma. The ammonium ion (NH4 +) is the most suspected toxic molecule involved in the pathogenesis of HE. NH4 + is a neurotoxic agent. Different mechanisms, including oxidative/nitrosative stress, inflammatory response, excitotoxicity, and mitochondrial impairment, are proposed for NH4 +-induced neurotoxicity. N-acetyl cysteine (NAC) is a well-known thiol-reductant and antioxidant agent. Several investigations also mentioned the positive effects of NAC on mitochondrial function. In the current study, the effect of NAC treatment on brain mitochondrial indices and energy status was investigated in an animal model of HE. MATERIAL AND METHODS Acetaminophen (APAP)-induced acute liver failure was induced by a single dose of the drug (800 mg/kg, i.p.) to C57BL/6J mice. Plasma and brain levels of NH4 + were measured. Then, brain mitochondria were isolated, and several indices, including mitochondrial depolarization, ATP level, lipid peroxidation, glutathione content, mitochondrial permeabilization, and dehydrogenase activity, were assessed. RESULTS A significant increase in plasma and brain NH4 + was evident in APAP-treated animals. Moreover, mitochondrial indices of functionality were impaired, and mitochondrial oxidative stress biomarkers were significantly increased in APAP-treated mice. It was found that NAC treatment (100, 200, and 400 mg/kg, i.p.) significantly mitigated mitochondrial impairment in the brain of APAP-treated animals. CONCLUSIONS These data suggest the effects of NAC on brain mitochondrial function and energy status as a pivotal mechanism involved in its neuroprotective properties during HE.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Sayad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mohammadi
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Kerbert AJC, Jalan R. Recent advances in understanding and managing hepatic encephalopathy in chronic liver disease. F1000Res 2020; 9. [PMID: 32399191 PMCID: PMC7194462 DOI: 10.12688/f1000research.22183.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a common, severe complication of advanced chronic liver disease (CLD) and has a devastating impact on the patient’s quality of life and prognosis. The neurotoxin ammonia and the presence of systemic and neurological inflammation are considered the key drivers of this neuropsychiatric syndrome. Treatment options available in routine clinical practice are limited, and the development of novel therapies is hampered owing to the complexity and heterogeneity of HE. This review article aims to outline the current understanding of the pathomechanisms of HE and the recent advances in the identification and development of novel therapeutic targets.
Collapse
Affiliation(s)
- Annarein J C Kerbert
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
10
|
Effects of histidine load on ammonia, amino acid, and adenine nucleotide concentrations in rats. Amino Acids 2019; 51:1667-1680. [PMID: 31712921 DOI: 10.1007/s00726-019-02803-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
Abstract
The unique capability of proton buffering is the rationale for using histidine (HIS) as a component of solutions for induction of cardiac arrest and myocardial protection in cardiac surgery. In humans, infusion of cardioplegic solution may increase blood plasma HIS from ~ 70 to ~ 21,000 µM. We examined the effects of a large intravenous dose of HIS on ammonia and amino acid concentrations and energy status of the body. Rats received 198 mM HIS intravenously (20 ml/kg) or vehicle. Samples of blood plasma, urine, liver, and soleus (SOL) and extensor digitorum longus (EDL) muscles were analysed at 2 or 24 h after treatment. At 2 h after HIS load, we found higher HIS concentration in all examined tissues, higher urea and ammonia concentrations in blood and urine, lower ATP content and higher AMP/ATP ratio in the liver and muscles, higher concentrations of almost all examined amino acids in urine, and lower glycine concentration in blood plasma, liver, and muscles when compared with controls. Changes in other amino acids were tissue dependent, markedly increased alanine and glutamate in the blood and the liver. At 24 h, the main findings were lower ATP concentrations in muscles, lower concentrations of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in blood plasma and muscles, and higher carnosine content in SOL when compared with controls. It is concluded that a load of large HIS dose results in increased ammonia levels and marked alterations in amino acid and energy metabolism. Pathogenesis is discussed in the article.
Collapse
|
11
|
Heidari R. Brain mitochondria as potential therapeutic targets for managing hepatic encephalopathy. Life Sci 2019; 218:65-80. [PMID: 30578865 DOI: 10.1016/j.lfs.2018.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/08/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) is a critical clinical complication. There is a consensus that ammonia plays a pivotal role in the pathogenesis of HE. Ammonia is a neurotoxin which induces a wide range of functional disturbances in the central nervous system (CNS). On the other hand, HE is associated with the increased free radical formation, tissue inflammation, disturbed neurotransmission, astrocytes swelling, brain edema, and brain herniation. In view of the severe CNS complications ensued HE, potential therapeutic points of intervention need to be vigorously investigated. A role for CNS mitochondrial damage and energy crisis has been considered in HE. It has been found that ammonia induces mitochondrial impairment as a result of a multifaceted interaction of different signaling molecules. Hence, ammonia-induced mitochondrial injury and compromised brain energy metabolism might play a vital role in the pathogenesis of ammonia neurotoxicity. This review focuses on the concept that mitochondrial dysfunction and cellular energy crisis indeed plays a critical role in the pathogenesis of hyperammonemia-induced brain injury. Further, it will highlight the potential therapeutic value of mitochondrial protecting agents and energy providers in the management of HE. The data collected in this review might provide clues to new therapeutic interventions aimed at minimizing HE-associated complications.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Zielonka M, Probst J, Carl M, Hoffmann GF, Kölker S, Okun JG. Bioenergetic dysfunction in a zebrafish model of acute hyperammonemic decompensation. Exp Neurol 2019; 314:91-99. [PMID: 30653968 DOI: 10.1016/j.expneurol.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 12/30/2022]
Abstract
Acute hyperammonemic encephalopathy is a life-threatening manifestation of individuals with urea cycle disorders, which is associated with high mortality rates and severe neurological sequelae in survivors. Cerebral bioenergetic failure has been proposed as one of the key mechanisms underlying hyperammonemia-induced brain damage, but data supporting this hypothesis remain inconclusive and partially contradictory. Using a previously established zebrafish model of acute hyperammonemic decompensation, we unraveled that acute hyperammonemia leads to a transamination-dependent withdrawal of 2-oxoglutarate (alpha-ketoglutarate) from the tricarboxylic acid (TCA) cycle with consecutive TCA cycle dysfunction, ultimately causing impaired oxidative phosphorylation with ATP shortage, decreased ATP/ADP-ratio and elevated lactate concentrations. Thus, our study supports and extends the hypothesis that cerebral bioenergetic dysfunction is an important pathophysiological hallmark of hyperammonemia-induced neurotoxicity.
Collapse
Affiliation(s)
- Matthias Zielonka
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany.
| | - Joris Probst
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Carl
- Center for Integrative Biology (CIBIO), Laboratory of Translational Neurogenetics, University of Trento, Trento, Italy
| | - Georg Friedrich Hoffmann
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Günther Okun
- Center for Child and Adolescent Medicine, Division for Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpira N, Vazin A. The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother 2019; 109:103-111. [DOI: 10.1016/j.biopha.2018.10.093] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
|
14
|
Pereira C, Chavarria V, Vian J, Ashton MM, Berk M, Marx W, Dean OM. Mitochondrial Agents for Bipolar Disorder. Int J Neuropsychopharmacol 2018; 21:550-569. [PMID: 29596661 PMCID: PMC6007750 DOI: 10.1093/ijnp/pyy018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Bipolar disorder is a chronic and often debilitating illness. Current treatment options (both pharmaco- and psychotherapy) have shown efficacy, but for many leave a shortfall in recovery. Advances in the understanding of the pathophysiology of bipolar disorder suggest that interventions that target mitochondrial dysfunction may provide a therapeutic benefit. Methods This review explores the current and growing theoretical rationale as well as existing preclinical and clinical data for those therapies aiming to target the mitochondrion in bipolar disorder. A Clinicaltrials.gov and ANZCTR search was conducted for complete and ongoing trials on mitochondrial agents used in psychiatric disorders. A PubMed search was also conducted for literature published between January 1981 and July 2017. Systematic reviews, randomized controlled trials, observational studies, case series, and animal studies with an emphasis on agents affecting mitochondrial function and its role in bipolar disorder were included. The search was augmented by manually searching the references of key papers and related literature. The results were presented as a narrative review. Results Mitochondrial agents offer new horizons in mood disorder treatment. While some negative effects have been reported, most compounds are overall well tolerated and have generally benign side-effect profiles. Conclusions The study of neuroinflammation, neurodegeneration, and mitochondrial function has contributed the understanding of bipolar disorder's pathophysiology. Agents targeting these pathways could be a potential therapeutic strategy. Future directions include identification of novel candidate mitochondrial modulators as well as rigorous and well-powered clinical trials.
Collapse
Affiliation(s)
- Círia Pereira
- Psychiatry and Mental Health Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | - João Vian
- Psychiatry and Mental Health Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Melanie Maree Ashton
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Wolfgang Marx
- Deakin University, Food & Mood Centre, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
| | - Olivia May Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia
- University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
15
|
Dhanda S, Sunkaria A, Halder A, Sandhir R. Mitochondrial dysfunctions contribute to energy deficits in rodent model of hepatic encephalopathy. Metab Brain Dis 2018; 33:209-223. [PMID: 29138968 DOI: 10.1007/s11011-017-0136-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Perturbations in the cerebral energy metabolism are anticipated to be an important factor by which ammonia may exert its toxic effects on the central nervous system. The present study was designed to investigate the role of impaired mitochondrial functions and cerebral energy metabolism in the development hepatic encephalopathy (HE) induced by of bile duct ligation (BDL). After four weeks of BDL, a significant increase in hepatic hydroxyproline and collagen content was observed which confirmed biliary fibrosis. Brain regions viz. cortex, hippocampus, striatum and cerebellum of BDL rats had impaired activity of mitochondrial respiratory chain enzymes. This was accompanied by increase in mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl levels in the brain. Mitochondrial redox ratio was significantly reduced in the brain of BDL rats. In addition, mitochondria from brain of BDL rats were depolarized and swollen compared to the sham controls. Ultrastructure analysis of mitochondria from cortex and hippocampus of BDL animals revealed aberrant cristae, ruptured membranes and non-dense matrix. Further, a significant decrease was observed in creatine kinase activity, glucose uptake and CO2 production in the brain regions of BDL rats. ATP/ADP ratio, a critical parameter of cellular energy status, was also significantly reduced in brain regions of rats with HE. Overall, the findings clearly demonstrate that BDL induced HE involves mitochondrial respiratory chain dysfunctions, mitochondrial depolarization and swelling that accentuates oxidative stress which in turn leads to compromise in cerebral energy metabolism thereby contributing to the pathophysiology of chronic HE.
Collapse
Affiliation(s)
- Saurabh Dhanda
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Aditya Sunkaria
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Avishek Halder
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Basic Medical Science Block-II, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Maines E, Piccoli G, Pascarella A, Colucci F, Burlina AB. Inherited hyperammonemias: a Contemporary view on pathogenesis and diagnosis. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2018.1409108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Evelina Maines
- Pediatric Unit, Provincial Centre for Rare Diseases, Department of Women’s and Children’s Health, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Giovanni Piccoli
- CIBIO - Centre for integrative biology, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Antonia Pascarella
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| | - Francesca Colucci
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, Department of Women’s and Children’s Health, University Hospital, Padova, Italy
| |
Collapse
|
17
|
Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5472792. [PMID: 28261376 PMCID: PMC5316456 DOI: 10.1155/2017/5472792] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.
Collapse
|
18
|
A placebo-controlled trial of acetyl-L-carnitine and α-lipoic acid in the treatment of bipolar depression. J Clin Psychopharmacol 2013; 33:627-35. [PMID: 23948785 PMCID: PMC4699308 DOI: 10.1097/jcp.0b013e31829a83f5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Bipolar disorder may be associated with mitochondrial dysfunction. Therefore, agents that enhance mitochondrial functioning may be efficacious in bipolar disorder. We performed a randomized placebo-controlled trial of the mitochondrial enhancers acetyl-L-carnitine (ALCAR) and α-lipoic acid (ALA) in patients with bipolar depression, and assessed markers of cerebral energy metabolism using phosphorus magnetic resonance spectroscopy. METHODS We administered ALCAR (1000-3000 mg daily) plus ALA (600-1800 mg daily) or placebo for 12 weeks to 40 patients with bipolar depression and obtained imaging data at baseline, week 1, and week 12 of treatment in 20 patients using phosphorus 3-dimensional chemical-shift imaging at 4 T. Statistical analysis used random effects mixed models. RESULTS We found no significant difference between ALCAR/ALA and placebo on change from baseline in the Montgomery-Asberg Depression Rating Scale in both the longitudinal (mean difference [95% confidence interval], -1.4 [-6.2 to 3.4], P = 0.58) and last-observation-carried-forward (-3.2 [-7.2 to 0.9], P = 0.12) analyses. ALCAR/ALA treatment significantly reduced phosphocreatine levels in the parieto-occipital cortex at week 12 (P = 0.002). Reduction in whole brain total nucleoside triphosphate levels from baseline to week 1 was associated with reduction in Montgomery-Asberg Depression Rating Scale scores (P = 0.02) in patients treated with ALCAR/ALA. However, this was likely a chance finding attributable to multiple statistical comparisons. CONCLUSIONS Treatment with ALCAR and ALA at the dose and duration used in this study does not have antidepressant effects in depressed bipolar patients and does not significantly enhance mitochondrial functioning in this patient group.
Collapse
|
19
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
20
|
Maruoka N, Murata T, Omata N, Mitsuya H, Kiyono Y, Okazawa H, Wada Y. Region-specific causal mechanism in the effects of ammonia on cerebral glucose metabolism in the rat brain. J Neural Transm (Vienna) 2012; 120:375-82. [PMID: 23124771 DOI: 10.1007/s00702-012-0906-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/16/2012] [Indexed: 11/24/2022]
Abstract
Ammonia, which is considered to be the main agent responsible for hepatic encephalopathy, inhibits oxidative glucose metabolism in the brain. However, the effects of ammonia on cerebral glucose metabolism in different brain regions remains unclear. To clarify this issue, we added ammonia directly to fresh rat brain slices and measured its effects on glucose metabolism. Dynamic positron autoradiography with [(18)F]2-fluoro-2-deoxy-D-glucose and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) colorimetric assay revealed that ammonia significantly increased the cerebral glucose metabolic rate and depressed mitochondrial function, as compared to the unloaded control in each of the brain regions examined (cerebral cortex, striatum, and cerebellum), reflecting increased glycolysis that compensates for the decrease in aerobic metabolism. Pre-treatment with (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), a N-methyl-D-aspartate (NMDA) receptor antagonist, significantly attenuated these changes induced by ammonia in cerebellum, but not in cerebral cortex or striatum. The addition of ammonia induced an increase in cyclic guanosine monophosphate (cGMP) levels in cerebellum, but not in cerebral cortex or striatum, reflecting the activation of the NMDA receptor-nitric oxide-cGMP pathway. These results suggested that NMDA receptor activation is responsible for the impairment of glucose metabolism induced by ammonia specifically in cerebellum.
Collapse
Affiliation(s)
- Nobuyuki Maruoka
- Department of Neuropsychiatry, University of Fukui, Fukui, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Glutamine in the pathogenesis of acute hepatic encephalopathy. Neurochem Int 2012; 61:575-80. [DOI: 10.1016/j.neuint.2012.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/28/2023]
|
22
|
Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol 2012; 27:207-22. [PMID: 21431427 DOI: 10.1007/s00467-011-1838-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/09/2011] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
Ammonia is an important source of nitrogen and is required for amino acid synthesis. It is also necessary for normal acid-base balance. When present in high concentrations, ammonia is toxic. Endogenous ammonia intoxication can occur when there is impaired capacity of the body to excrete nitrogenous waste, as seen with congenital enzymatic deficiencies. A variety of environmental causes and medications may also lead to ammonia toxicity. Hyperammonemia refers to a clinical condition associated with elevated ammonia levels manifested by a variety of symptoms and signs, including significant central nervous system (CNS) abnormalities. Appropriate and timely management requires a solid understanding of the fundamental pathophysiology, differential diagnosis, and treatment approaches available. The following review discusses the etiology, pathogenesis, differential diagnosis, and treatment of hyperammonemia.
Collapse
|
23
|
Malaguarnera M, Vacante M, Motta M, Giordano M, Malaguarnera G, Bella R, Nunnari G, Rampello L, Pennisi G. Acetyl-L-carnitine improves cognitive functions in severe hepatic encephalopathy: a randomized and controlled clinical trial. Metab Brain Dis 2011; 26:281-9. [PMID: 21870121 DOI: 10.1007/s11011-011-9260-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 08/11/2011] [Indexed: 12/18/2022]
Abstract
The aim of this study was to investigate the effects of ALC treatment on cognitive functions in patients with severe hepatic encephalopathy. This was a randomized, double-blind, placebo-controlled study. 61 patients with severe hepatic encephalopathy were recruited to the study. The 2 groups received either 2 g ALC twice a day (n = 30) or placebo (n = 30) for 90 days. Clinical and laboratory assessment, psychometric tests and automated electroencephalogram (EEG) analysis were performed for all patients. At the end of the study period, between the 2 groups we observed a significant difference in Everyday Memory Questionnaire -23.9 vs 4.4 (p < 0.001), Logical Memory (Paragraph recall) test 22.3 vs 0.7 (p < 0.001), Trail Making Test A -7.5 vs -2.6 (p < 0.001), Trail Making Test B -10.5 vs -3.1 (p < 0.001), Controlled Oral Word Association Test 4.2 vs 0.5 (p < 0.001), Hooper test 2.6 vs 0.1 (p < 0.05), Judgement of line orientation 2.8 vs 0.3 (p < 0.001), Digit Cancellation time -24.5 vs -2.4 (p < 0.001), NH₄⁺ 30.5 vs 13.5 (p < 0.001), prothrombin time 2 vs 2.4 (p < 0.05), alanine transaminase -10.7 vs -13.6 (p < 0.001). 88% of patients treated with ALC vs 72% of patients treated with placebo showed a significant improvement in EEG. The improvement of cognitive deficits, the reduction of ammonia, and the modification of EEG in patients treated with ALC suggest that ALC could represent a new tool in the treatment of severe hepatic encephalopathy.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Research Center "The Great Senescence", University of Catania, Ospedale Cannizzaro, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rama Rao KV, Norenberg MD. Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem Int 2011; 60:697-706. [PMID: 21989389 DOI: 10.1016/j.neuint.2011.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/22/2022]
Abstract
One proposed mechanism for acute and chronic hepatic encephalopathy (HE) is a disturbance in cerebral energy metabolism. It also reviews the current status of this mechanism in both acute and chronic HE, as well as in other hyperammonemic disorders. It also reviews abnormalities in glycolysis, lactate metabolism, citric acid cycle, and oxidative phosphorylation as well as associated energy impairment. Additionally, the role of mitochondrial permeability transition (mPT), a recently established factor in the pathogenesis of HE and hyperammonemia, is emphasized. Energy failure appears to be an important pathogenetic component of both acute and chronic HE and a potential target for therapy.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33125, United States
| | | |
Collapse
|
25
|
Malaguarnera M, Vacante M, Giordano M, Pennisi G, Bella R, Rampello L, Malaguarnera M, Li Volti G, Galvano F. Oral acetyl-L-carnitine therapy reduces fatigue in overt hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr 2011; 93:799-808. [PMID: 21310833 DOI: 10.3945/ajcn.110.007393] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Fatigue is frequently reported in hepatic encephalopathy (HE) and may be related to hyperammonemia. Acetyl-L-carnitine (ALC) offers neuroprotective benefits and improves mitochondrial energetics and function. OBJECTIVE This study evaluated the effect of exogenous ALC on physical and mental fatigue, fatigue severity, and physical activity in patients with mild and moderate hepatoencephalopathy (HE1 and HE2, respectively). DESIGN A total of 121 patients with overt HE were recruited to the study and were subdivided into 2 groups according to their initial HE grade [HE1 (n = 61) or HE2 (n = 60)]. Thirty-one patients with HE1 and 30 with HE2 received 2 g ALC, and 30 patients with HE1 and 30 patients with HE2 received placebo twice a day for 90 d. All patients underwent clinical and laboratory assessments and automated electroencephalogram analysis. RESULTS At the end of the study period, the ALC-treated patients in the HE1 group showed significantly better improvement than did the placebo group in mental fatigue score (-1.7 compared with -0.3; P < 0.05), the fatigue severity scale (-6.4 compared with 2.3; P < 0.001), 7-d Physical Activity Recall questionnaire score (17.1 compared with -2.5; P < 0.001), and Short Physical Performance Battery (2.1 compared with 0.2; P < 0.001); the HE2 group showed significantly better improvement in the fatigue severity scale (-8.1 compared with -5.1; P < 0.001) and 6-min walk test (19.9 compared with 2.3; P < 0.05). Significant decreases in NH(4)(+) were observed in both groups (P < 0.001). CONCLUSION Patients with HE treated with ALC showed a decrease in the severity of both mental and physical fatigue and an increase in physical activity. This trial was registered at clinicaltrials.gov as NCT01223742.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Department of Biological Chemistry, Medical Chemistry, and Molecular Biology, University of Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Panatto JP, Jeremias IC, Ferreira GK, Ramos AC, Rochi N, Gonçalves CL, Daufenbach JF, Jeremias GC, Carvalho-Silva M, Rezin GT, Scaini G, Streck EL. Inhibition of mitochondrial respiratory chain in the brain of rats after hepatic failure induced by acetaminophen. Mol Cell Biochem 2011; 350:149-54. [PMID: 21203802 DOI: 10.1007/s11010-010-0689-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/02/2010] [Indexed: 12/13/2022]
Abstract
Hepatic encephalopathy is an important cause of morbidity and mortality in patients with severe hepatic failure. This disease is clinically characterized by a large variety of symptoms including motor symptoms, cognitive deficits, as well as changes in the level of alertness up to hepatic coma. Acetaminophen is frequently used in animals to produce an experimental model to study the mechanisms involved in the progression of hepatic disease. The brain is highly dependent on ATP and most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane. In this context, the authors evaluated the activities of mitochondrial respiratory chain complexes in the brain of rats submitted to acute administration of acetaminophen and treated with the combination of N-acetylcysteine (NAC) plus deferoxamine (DFX) or taurine. These results showed that acetaminophen administration inhibited the activities of complexes I and IV in cerebral cortex and that the treatment with NAC plus DFX or taurine was not able to reverse this inhibition. The authors did not observe any effect of acetaminophen administration on complexes II and III activities in any of the structures studied. The participation of oxidative stress has been postulated in the hepatic encephalopathy and it is well known that the electron transport chain itself is vulnerable to damage by reactive oxygen species. Since there was no effect of NAC + DFX, the effect of acetaminophen was likely to be due to something else than oxidative stress.
Collapse
Affiliation(s)
- Jordana P Panatto
- Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Calabrese V, Cornelius C, Mancuso C, Lentile R, Stella AMG, Butterfield DA. Redox homeostasis and cellular stress response in aging and neurodegeneration. Methods Mol Biol 2010; 610:285-308. [PMID: 20013185 DOI: 10.1007/978-1-60327-029-8_17] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Decreased expression and/or activity of antioxidant proteins leads to oxidative stress, accelerated aging, and neurodegeneration. While overwhelming levels and uncontrolled/dysregulated actions of reactive oxygen species (ROS) lead to deleterious effects, tighter regulation of those plays an important role in cell signaling. Mutations causing protein misfolding and the overload of toxic products derived from the free radical oxidation of polyunsaturated fatty acids, cholesterol, and glucose contribute to the disruption of the cellular redox homeostasis. Collectively or individually, these effects create pro-oxidant conditions in cells. Oxidative stress can induce neuronal damage, modulate intracellular signaling, and can ultimately lead to neuronal death by apoptosis or necrosis. Emerging evidence indicates that homocysteine (Hcy), a non-protein amino acid naturally present in the plasma, is implicated as a risk factor for numerous diseases. In particular, increased levels of circulating Hcy have been recognized as an independent risk factor for the development of vascular disease(s). Recent findings emphasize a relationship between elevated Hcy levels and neurodegeneration, which can be observed in Alzheimer's and Parkinson's diseases. An integrated response exists in the brain to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are controlled by several genes termed "vitagenes." Among these, the heat-shock proteins (HSPs) form a highly conserved system that is responsible for the preservation and repair of the correct protein conformation. Recent studies have shown that the heat-shock response (HSR) contributes to cytoprotection in a number of human diseases including inflammation, cancer, aging, and neurodegenerative disorders. Given the broad cytoprotective properties of the HSR, interest mounts currently among investigators toward discovering and developing pharmacological agents capable of inducing HSR. L: -Acetylcarnitine (LAC) is proposed as a therapeutic agent for several neurodegenerative disorders and also current evidence suggests that the compound may play a critical role in the modulation of cellular stress response in health and disease conditions. Here, we review the emerging salient concepts highlighting the pathways of neurodegeneration and the role of LAC in modulating the redox-dependent mechanisms responsible for the upregulation of vitagenes in brain that leads to the enhancement of stress tolerance in brain.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry & Molecular Biology Section, Faculty of Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Braissant O. Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 2010; 100 Suppl 1:S3-S12. [PMID: 20227314 DOI: 10.1016/j.ymgme.2010.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 02/08/2010] [Indexed: 12/14/2022]
Abstract
The common feature of urea cycle diseases (UCD) is a defect in ammonium elimination in liver, leading to hyperammonemia. This excess of circulating ammonium eventually reaches the central nervous system, where the main toxic effects of ammonium occur. These are reversible or irreversible, depending on the age of onset as well as the duration and the level of ammonium exposure. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood, and surviving UCD patients may develop cortical and basal ganglia hypodensities, cortical atrophy, white matter atrophy or hypomyelination and ventricular dilatation. While for a long time, the mechanisms leading to these irreversible effects of ammonium exposure on the brain remained poorly understood, these last few years have brought new data showing in particular that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy, nitric oxide synthesis, axonal and dendritic growth, signal transduction pathways, as well as K(+) and water channels. All these effects of ammonium on CNS may eventually lead to energy deficit, oxidative stress and cell death. Recent work also proposed neuroprotective strategies, such as the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine, to counteract the toxic effects of ammonium. Better understanding the pathophysiology of ammonium toxicity to the brain under UCD will allow the development of new strategies for neuroprotection.
Collapse
Affiliation(s)
- Olivier Braissant
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Lausanne, Switzerland.
| |
Collapse
|
29
|
Norenberg MD, Rama Rao KV, Jayakumar AR. Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis 2009; 24:103-17. [PMID: 19104923 DOI: 10.1007/s11011-008-9113-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/28/2008] [Indexed: 02/08/2023]
Abstract
Mechanisms involved in hepatic encephalopathy (HE) still remain poorly understood. It is generally accepted that ammonia plays a major role in this disorder, and that astrocytes represent the principal target of ammonia neurotoxicity. In recent years, studies from several laboratories have uncovered a number of factors and pathways that appear to be critically involved in the pathogenesis of this disorder. Foremost is oxidative and nitrosative stress (ONS), which is largely initiated by an ammonia-induced increase in intracellular Ca(2+). Such increase in Ca(2+) activates a number of enzymes that promote the synthesis of reactive oxygen-nitrogen species, including constitutive nitric oxide synthase, NADPH oxidase and phospholipase A2. ONS subsequently induces the mitochondrial permeability transition, and activates mitogen-activated protein kinases and the transcription factor, nuclear factor-kappaB (NF-kappaB). These factors act to generate additional reactive oxygen-nitrogen species, to phosphorylate various proteins and transcription factors, and to cause mitochondrial dysfunction. This article reviews the role of these factors in the mechanism of HE and ammonia toxicity with a focus on astrocyte swelling and glutamate uptake, which are important consequences of ammonia neurotoxicity. These pathways and factors provide attractive targets for identifying agents potentially useful in the therapy of HE and other hyperammonemic disorders.
Collapse
Affiliation(s)
- M D Norenberg
- Department of Pathology (D-33), University of Miami School of Medicine, P.O. Box 016960, Miami, FL 33101, USA.
| | | | | |
Collapse
|
30
|
Basal and learning task-related brain oxidative metabolism in cirrhotic rats. Brain Res Bull 2008; 78:195-201. [PMID: 19015011 DOI: 10.1016/j.brainresbull.2008.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/19/2008] [Accepted: 10/17/2008] [Indexed: 11/24/2022]
Abstract
Hepatic encephalopathy is a neurological complication observed in patients with liver disease. Subjects with hepatic encephalopathy can develop memory alterations. In order to investigate brain oxidative metabolism in an animal model of chronic cirrhosis and its modification after spatial working memory task, we determined the neural metabolic activity of several brain limbic system regions by cytochrome oxidase (COx) histochemistry and assessed the spatial working memory in the Morris water maze of rats with cirrhosis by administration of thioacetamide. This COx histochemistry was done in cirrhotic and control rats under basal conditions and after the spatial working memory task. The histochemical results showed differences in basal COx activity between control and cirrhotic rats in hippocampal and thalamic regions. In cirrhotic rats basal COx activity was increased in the CA1 and CA3 areas of the hippocampus and reduced in the anterodorsal and anteroventral thalamic nuclei. We found impaired spatial working memory in animals with cirrhosis. These animals showed absence of metabolic activation of the CA3 hippocampal subfield and the lateral mammillary nucleus and disturbance of COx activity in the medial mammillary nucleus and the anteroventral thalamus. These findings suggest that cirrhotic rats show spatial working memory deficits that could be related to the alteration of metabolic activity of neural regions thought to be involved in the processing of spatial memories.
Collapse
|
31
|
Rose C, Ytrebø LM, Davies NA, Sen S, Nedredal GI, Belanger M, Revhaug A, Jalan R. Association of reduced extracellular brain ammonia, lactate, and intracranial pressure in pigs with acute liver failure. Hepatology 2007; 46:1883-92. [PMID: 17705298 DOI: 10.1002/hep.21877] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED We previously demonstrated in pigs with acute liver failure (ALF) that albumin dialysis using the molecular adsorbents recirculating system (MARS) attenuated a rise in intracranial pressure (ICP). This was independent of changes in arterial ammonia, cerebral blood flow and inflammation, allowing alternative hypotheses to be tested. The aims of the present study were to determine whether changes in cerebral extracellular ammonia, lactate, glutamine, glutamate, and energy metabolites were associated with the beneficial effects of MARS on ICP. Three randomized groups [sham, ALF (induced by portacaval anastomosis and hepatic artery ligation), and ALF+MARS] were studied over a 6-hour period with a 4-hour MARS treatment given beginning 2 hours after devascularization. Using cerebral microdialysis, the ALF-induced increase in extracellular brain ammonia, lactate, and glutamate was significantly attenuated in the ALF+MARS group as well as the increases in extracellular lactate/pyruvate and lactate/glucose ratios. The percent change in extracellular brain ammonia correlated with the percent change in ICP (r(2) = 0.511). Increases in brain lactate dehydrogenase activity and mitochondrial complex activity for complex IV were found in ALF compared with those in the sham, which was unaffected by MARS treatment. Brain oxygen consumption did not differ among the study groups. CONCLUSION The observation that brain oxygen consumption and mitochondrial complex enzyme activity changed in parallel in both ALF- and MARS-treated animals indicates that the attenuation of increased extracellular brain ammonia (and extracellular brain glutamate) in the MARS-treated animals reduces energy demand and increases supply, resulting in attenuation of increased extracellular brain lactate. The mechanism of how MARS reduces extracellular brain ammonia requires further investigation.
Collapse
Affiliation(s)
- Christopher Rose
- Department of Cellular Neuroscience, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cagnon L, Braissant O. Hyperammonemia-induced toxicity for the developing central nervous system. ACTA ACUST UNITED AC 2007; 56:183-97. [PMID: 17881060 DOI: 10.1016/j.brainresrev.2007.06.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/12/2022]
Abstract
In pediatric patients, hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle deficiencies or organic acidemias. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood. Hyperammonemia can provoke irreversible damages to the developing central nervous system that lead to cortical atrophy, ventricular enlargement and demyelination, responsible for cognitive impairment, seizures and cerebral palsy. Until recently, the mechanisms leading to these irreversible cerebral damages were poorly understood. Using experimental models allowing the analysis of the neurotoxic effects of ammonium on the developing brain, these last years have seen the emergence of new clues showing that ammonium exposure alters several amino acid pathways and neurotransmitter systems, as well as cerebral energy metabolism, nitric oxide synthesis, oxidative stress, mitochondrial permeability transition and signal transduction pathways. Those alterations may explain neuronal loss and impairment of axonal and dendritic growth observed in the different models of congenital hyperammonemia. Some neuroprotective strategies such as the potential use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine have been suggested to counteract these toxic effects. Unraveling the molecular mechanisms involved in the chain of events leading to neuronal dysfunction under hyperammonemia may be useful to develop new potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Laurène Cagnon
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Avenue Pierre-Decker 2, CH-1011 Lausanne, Switzerland
| | | |
Collapse
|
33
|
Kaminsky YG, Kosenko EA, Venediktova NI, Felipo V, Montoliu C. Apoptotic markers in the mitochondria, cytosol, and nuclei of brain cells during ammonia toxicity. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Chepkova AN, Sergeeva OA, Haas HL. Taurine rescues hippocampal long-term potentiation from ammonia-induced impairment. Neurobiol Dis 2006; 23:512-21. [PMID: 16766203 DOI: 10.1016/j.nbd.2006.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/19/2022] Open
Abstract
Hyperammonemia, a major pathophysiological factor in hepatic encephalopathy, impairs long-term potentiation (LTP) of synaptic transmission, a cellular model of learning and memory, in the hippocampus. We have now studied the protective action of taurine on this paradigm by analyzing LTP characteristics in mouse hippocampal slices treated with ammonium chloride (1 mM) in the presence of taurine (1 mM), an ubiquitous osmolyte, antioxidant, and neuromodulator, as well as other substances with such properties. Ammonia-treated slices displayed a significant impairment of LTP maintenance. Taurine and the mitochondrial enhancer l-carnitine, but not the antioxidants (ascorbate, carnosine, and the novel compound GVS-111) or the osmolyte betaine prevented this impairment. The protective effect of taurine was preserved under the blockade of inhibitory GABA(A) and glycine receptors. It is suggested that taurine may rescue the mechanisms of hippocampal synaptic plasticity by improving mitochondrial function under hyperammonemic conditions.
Collapse
Affiliation(s)
- Aisa N Chepkova
- Department of Neurophysiology, Heinrich-Heine University, POB 101007, D-40001 Düsseldorf, Germany
| | | | | |
Collapse
|
35
|
Traina G, Valleggi S, Bernardi R, Rizzo M, Calvani M, Nicolai R, Mosconi L, Durante M, Brunelli M. Identification of differentially expressed genes induced in the rat brain by acetyl-L-carnitine as evidenced by suppression subtractive hybridisation. ACTA ACUST UNITED AC 2005; 132:57-63. [PMID: 15548429 DOI: 10.1016/j.molbrainres.2004.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2004] [Indexed: 11/26/2022]
Abstract
Acetyl-L-carnitine (ALC) is a molecule widely present in the central nervous system (CNS) formed by the reversible acetylation of carnitine. It acts by stimulating energy metabolism. Reported neurobiological effects of this substance include modulation of brain energy and phospholipid metabolism; cellular macromolecules (including neurotrophic factors and neurohormones); synaptic transmission of multiple neurotransmitters. ALC is of considerable interest for its clinical application in Alzheimer's disease and in the treatment of painful neuropathies. There are experimental data that it affects attention and antagonizes deterioration of ability to learn, improving long-term memory. Moreover, ALC influences nonassociative learning of sensitization type in Hirudo medicinalis. These findings are suggesting that ALC might exert its effects by means of new protein synthesis. ALC or saline solution was injected intraperitoneally each day for 21 days in rats. Poly(A)+ RNAs were isolated from control and treated rat brain. Suppression subtractive hybridisation (SSH) method was applied for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts after treatments. The technique generates an equalized representation of differentially expressed genes irrespective of their relative abundance, and it is based on the construction of forward and reverse cDNA libraries that allow the identification of the genes that are regulated or switched off/on after ALC treatment. We identified two modulated genes, the isoform gamma of 14-3-3 protein and a precursor of ATP synthase lipid-binding protein, and one gene switched on by the treatment, the heat shock protein hsp72.
Collapse
Affiliation(s)
- Giovanna Traina
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, Via S. Zeno, 31, 56127 Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rama Rao KV, Chen M, Simard JM, Norenberg MD. Suppression of ammonia-induced astrocyte swelling by cyclosporin A. J Neurosci Res 2004; 74:891-7. [PMID: 14648594 DOI: 10.1002/jnr.10755] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain edema is a serious complication of hepatic encephalopathy associated with fulminant hepatic failure (FHF). A major component of the edema seems to be cytotoxic, involving astrocyte swelling. Although the mechanism of brain edema in FHF is incompletely understood, it is generally believed that ammonia is involved critically in this process. Recent studies have shown that exposure of cultured astrocytes to ammonia results in the mitochondrial permeability transition (MPT), a phenomenon associated with mitochondrial failure and subsequent cellular dysfunction. The present study examined the potential role of the MPT in the astrocyte swelling associated with ammonia toxicity. Treatment of cultured astrocytes with ammonia (5 mM) caused a time-dependent increase in astrocyte cell volume (swelling), which was completely inhibited by the MPT inhibitor cyclosporin A (CsA). In this study, CsA also inhibited the ammonia-induced aquaporin 4 (AQP4) upregulation, which had been shown previously to be increased in cultured astrocytes by ammonia treatment. These findings suggest that the MPT plays a significant role in the ammonia-induced astrocyte swelling and may contribute to the brain edema associated with FHF.
Collapse
Affiliation(s)
- K V Rama Rao
- Department of Pathology, University of Miami School of Medicine and Veterans Affairs Medical Center, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
37
|
Rama Rao KV, Jayakumar AR, Norenberg MD. Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem Int 2003; 43:517-23. [PMID: 12742099 DOI: 10.1016/s0197-0186(03)00042-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and astrocytes appear to be the principal target of ammonia toxicity. Glutamine, a byproduct of ammonia metabolism, has been implicated in some of the deleterious effects of ammonia on the CNS. We have recently shown that ammonia induces the mitochondrial permeability transition (MPT) in cultured astrocytes, but not in neurons. We therefore determined whether glutamine is also capable of inducing the MPT in cultured astrocytes. Astrocytes were treated with glutamine (4.5 mM) for various time periods and the MPT was assessed by changes in 2-deoxyglucose (2-DG) mitochondrial permeability, calcein fluorescence assay, and by changes in cyclosporin A (CsA)-sensitive inner mitochondrial membrane potential (deltapsi(m)) using the potentiometric dye, JC-1. Astrocytes treated with glutamine significantly increased 2-DG permeability (120%, P<0.01), decreased mitochondrial calcein fluorescence, and concomitantly dissipated the deltapsi(m). All of these effects were blocked by CsA. These data indicate that glutamine induces the MPT in cultured astrocytes. The induction of the MPT by glutamine in astrocytes, and the subsequent development of mitochondrial dysfunction, may partially explain the deleterious affects of glutamine on the CNS in the setting of hyperammonemia.
Collapse
Affiliation(s)
- K V Rama Rao
- Veterans Affairs Medical Center and Department of Pathology (D-33), P.O. Box 016960, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
38
|
Rama Rao KV, Jayakumar AR, Norenberg DM. Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab Brain Dis 2003; 18:113-27. [PMID: 12822830 DOI: 10.1023/a:1023858902184] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatic encephalopathy (HE) is an important cause of morbidity and mortality in patients with severe liver disease. Although the mechanisms responsible for HE remain elusive, ammonia is generally considered to be involved in its pathogenesis, and astrocytes are thought to be the principal target of ammonia neurotoxicity. Altered bioenergetics and oxidative stress are also thought to play a major role in this disorder. In this paper, we present data invoking the mitochondrial permeability transition (MPT) as a factor in the pathogenesis of HE/hyperammonemia. The MPT is a Ca2+-dependent, cyclosporin A (CsA) sensitive process due to the opening of a pore in the inner mitochondrial membrane that leads to a collapse of ionic gradients and ultimately to mitochondrial dysfunction. Many of the factors that facilitate the induction of the MPT are also known to be implicated in the mechanism of HE, including free radicals, Ca2+, nitric oxide, alkaline pH, and glutamine. We have recently shown that treatment of cultured astrocytes with 5 mM NH4Cl resulted in a dissipation of the mitochondrial membrane potential (delta(psi)m), which was sensitive to CsA. Similarly treated cultured neurons failed to show a loss of the delta(psi)m. Further support for the ammonia induction of the MPT was obtained by observing an increase in mitochondrial permeability to 2-deoxyglucose-6-phosphate, and a decrease in calcein fluorescence in astrocytes after ammonia treatment, both of which were also blocked by CsA. CsA was likewise capable of exerting a protective effect against hyperammonemia in mice. Taken together, our data suggest that the MPT represents an important component of the pathogenesis of HE and other hyperammonemic states.
Collapse
Affiliation(s)
- K V Rama Rao
- Department of Pathology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|
39
|
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Behavioural, cognitive and memory dysfunctions are characteristic symptoms of AD. The formation of amyloid plaques is currently considered as the key event of AD. Other histological hallmarks of the disease are the formation of fibrillary tangles, astrocytosis, and loss of certain neuronal systems in cortical areas of the brain. A great number of possible aetiologic and pathogenetic factors of AD have been published in the course of the last two decades. Among the toxic factors, which have been considered to contribute to the symptoms and progression of AD, ammonia deserves special interest for the following reasons: (a) Ammonia is formed in nearly all tissues and organs of the vertebrate organism; it is the most common endogenous neurotoxic compounds. Its effects on glutamatergic and GABAergic neuronal systems, the two prevailing neuronal systems of the cortical structures, are known for many years. (b) The impairment of ammonia detoxification invariably leads to severe pathology. Several symptoms and histologic aberrations of hepatic encephalopathy (HE), of which ammonia has been recognised as a pathogenetic factor, resemble those of AD. (c) The excessive formation of ammonia in the brains of AD patients has been demonstrated, and it has been shown that some AD patients exhibit elevated blood ammonia concentrations. (d) There is evidence for the involvement of aberrant lysosomal processing of beta-amyloid precursor protein (beta-APP) in the formation of amyloid deposits. Ammonia is the most important natural modulator of lysosomal protein processing. (e) Inflammatory processes and activation of microglia are widely believed to be implicated in the pathology of AD. Ammonia is able to affect the characteristic functions of microglia, such as endocytosis, and cytokine production. Based on these facts, an ammonia hypothesis of AD has first been suggested in 1993. In the present review old and new observations are discussed, which are in support of the notion that ammonia is a factor able to produce symptoms of AD and to affect the progression of the disease.
Collapse
Affiliation(s)
- Nikolaus Seiler
- Laboratory of Nutritional Oncology, Institut de Recherche Contre les Cancers de l'Appareil Digestif, Strasbourg, France.
| |
Collapse
|
40
|
Bai G, Rama Rao KV, Murthy CR, Panickar KS, Jayakumar AR, Norenberg MD. Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res 2001; 66:981-91. [PMID: 11746427 DOI: 10.1002/jnr.10056] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and the astrocyte appears to be the principal target of ammonia toxicity. The specific neurochemical mechanisms underlying HE, however, remain elusive. One of the suggested mechanisms for ammonia toxicity is impaired cellular bioenergetics. Because there is evidence that the mitochondrial permeability transition (MPT) is associated with mitochondrial dysfunction, we determined whether the MPT might be involved in the bioenergetic alterations related to ammonia toxicity. Accordingly, we examined the mitochondrial membrane potential (Deltapsi(m)) in cultured astrocytes and neurons using laser-scanning confocal microscopy after loading the cells with the voltage-sensitive dye JC-1. We found that ammonia induced a dissipation of the Deltapsi(m) in a time- and concentration-dependent manner. These findings were supported by flow cytometry using the voltage-sensitive dye tetramethylrhodamine ethyl ester (TMRE). Cyclosporin A, a specific inhibitor of the MPT, completely blocked the ammonia-induced dissipation of the Deltapsi(m). We also found an increase in the mitochondrial permeability to 2-deoxyglucose in astrocytes that had been exposed to 5 mM NH(4)Cl, further supporting the concept that ammonia induces the MPT in these cells. Pretreatment with methionine sulfoximine, an inhibitor of glutamine synthetase, blocked the ammonia-induced collapse of Deltapsi(m), suggesting a role of glutamine in this process. Over a 24-hr period, ammonia had no effect on the Deltapsi(m) in cultured neurons. Collectively, our data indicate that ammonia induces the MPT in cultured astrocytes, which may be a factor in the mitochondrial dysfunction associated with HE and other hyperammonemic states.
Collapse
Affiliation(s)
- G Bai
- Department of Pathology, Veterans Affairs Medical Center, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
41
|
Murthy CR, Rama Rao KV, Bai G, Norenberg MD. Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 2001; 66:282-8. [PMID: 11592125 DOI: 10.1002/jnr.1222] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Elevated levels of ammonia in blood and brain result in derangement of cerebral function. Recently, lipid peroxidation and oxidative stress have been implicated in ammonia neurotoxicity. Because ammonia is primarily detoxified in astrocytes, we postulated that pathophysiological concentrations of ammonia might induce free radical formation in these cells. To test this hypothesis, we examined the extent of free radical production in primary cultures of astrocytes that had been preloaded with the fluorescent dye 5- (and 6-)carboxy-2',7'-dichlorodihydrofluorescein diacetate (DCFDA). DCFDA fluorescence was found to be increased in a dose-dependent manner when astrocytes were exposed to 1, 5, and 10 mM NH(4)Cl. This phenomenon was transitory; it peaked at 2.5 min after exposure and declined subsequently. By 2 hr after treatment, DCFDA fluorescence was below control level. Addition of catalase or superoxide dismutase to 5 mM NH(4)Cl-treated astrocytes reduced free radical formation. Pretreatment with 3 mM methionine sulfoximine, an inhibitor of glutamine synthetase, also suppressed free radical formation by 5 mM NH(4)Cl. The results of this study suggest that elevated concentrations of ammonia induce the formation of free radicals in astrocytes and that this process is associated with the synthesis of glutamine. We propose that astrocyte-derived free radicals may be responsible for some of the pathophysiological changes associated with hyperammonemic conditions.
Collapse
Affiliation(s)
- C R Murthy
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | |
Collapse
|
42
|
Abstract
Hepatic encephalopathy (HE) is an important cause of morbidity and mortality in patients with severe liver disease. Although the molecular basis for the neurological disorder in HE remains elusive, elevated ammonia and its chief metabolite glutamine are believed to be important factors responsible for altered cerebral functions, including multiple neurotransmitter system(s) failure, altered bioenergetics, and more recently oxidative stress. Accumulated evidence suggests that direct interference of ammonia at several points in cerebral energy metabolism, including glycolysis, TCA cycle, and the electron transport chain, could lead to energy depletion. Additionally, recent studies from our laboratory have invoked the possibility that ammonia and glutamine may induce the mitochondrial permeability transition in astrocytes, a process capable of causing mitochondrial dysfunction. Altered mitochondrial metabolism appears to be an important mechanism responsible for the cerebral abnormalities associated with HE and other hyperammonemic states.
Collapse
Affiliation(s)
- K V Rao
- Laboratory of Neuropathology, Veterans Administration Medical Center, University of Miami School of Medicine, Florida, USA
| | | |
Collapse
|
43
|
Pettegrew JW, Levine J, McClure RJ. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer's disease and geriatric depression. Mol Psychiatry 2000; 5:616-32. [PMID: 11126392 DOI: 10.1038/sj.mp.4000805] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetyl-L-carnitine (ALCAR) contains carnitine and acetyl moieties, both of which have neurobiological properties. Carnitine is important in the beta-oxidation of fatty acids and the acetyl moiety can be used to maintain acetyl-CoA levels. Other reported neurobiological effects of ALCAR include modulation of: (1) brain energy and phospholipid metabolism; (2) cellular macromolecules, including neurotrophic factors and neurohormones; (3) synaptic morphology; and (4) synaptic transmission of multiple neurotransmitters. Potential molecular mechanisms of ALCAR activity include: (1) acetylation of -NH2 and -OH functional groups in amino acids and N terminal amino acids in peptides and proteins resulting in modification of their structure, dynamics, function and turnover; and (2) acting as a molecular chaperone to larger molecules resulting in a change in the structure, molecular dynamics, and function of the larger molecule. ALCAR is reported in double-blind controlled studies to have beneficial effects in major depressive disorders and Alzheimer's disease (AD), both of which are highly prevalent in the geriatric population.
Collapse
Affiliation(s)
- J W Pettegrew
- Department of Psychiatry, School of Medicine, University of Pittsburgh, PA 15213, USA. pettegre+@pitt.edu
| | | | | |
Collapse
|
44
|
Rao KV, Qureshi IA. Reduction in the MK-801 binding sites of the NMDA sub-type of glutamate receptor in a mouse model of congenital hyperammonemia: prevention by acetyl-L-carnitine. Neuropharmacology 1999; 38:383-94. [PMID: 10219976 DOI: 10.1016/s0028-3908(98)00160-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our earlier studies on the pharmacotherapeutic effects of acetyl-L-carnitine (ALCAR), in sparse-fur (spf) mutant mice with X linked ornithine transcarbamylase deficiency, have shown a restoration of cerebral ATP, depleted by congenital hyperammonemia and hyperglutaminemia. The reduced cortical glutamate and increased quinolinate may cause a down-regulation of the N-methyl-D-aspartate (NMDA) receptors, observed by us in adult spf mice. We have now studied the kinetics of [3H]-MK-801 binding to NMDA receptors in spf mice of different ages to see the effect of chronic hyperammonemia on the glutamate neurotransmission. We have also studied the Ca2+-dependent and independent (4-aminopyridine (AP) and veratridine-mediated) release of glutamate and the uptake of [3H]-glutamate in synaptosomes isolated from mutant spf mice and normal CD-1 controls. All these studies were done with and without ALCAR treatment (4 mmol/kg wt i.p. daily for 2 weeks), to see if its effect on ATP repletion could correct the glutamate neurotransmitter abnormalities. Our results indicate a normal MK-801 binding in 12-day-old spf mice but a significant reduction immediately after weaning (21 day), continuing into the adult stage. The Ca2+-independent release of endogenous glutamate from synaptosomes was significantly elevated at 35 days, while the uptake of glutamate into synaptosomes was significantly reduced in spf mice. ALCAR treatment significantly enhanced the MK-801 binding, neutralized the increased glutamate release and restored the glutamate uptake into synaptosomes of spf mice. These studies point out that: (a) the developmental abnormalities of the NMDA sub-type of glutamate receptor in spf mice could be due to the effect of sustained hyperammonemia, causing a persistent release of excess glutamate and inhibition of the ATP-dependent glutamate transport, (b) the modulatory effects of ALCAR on the NMDA binding sites could be through a repletion of ATP, required by the transporters to efficiently remove extracellular glutamate.
Collapse
Affiliation(s)
- K V Rao
- Division of Medical Genetics, Sainte-Justine Hospital, Montreal, Que, Canada
| | | |
Collapse
|
45
|
Qureshi K, Rao KV, Qureshi IA. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem Res 1998; 23:855-61. [PMID: 9572674 DOI: 10.1023/a:1022406911604] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sparse-fur (spf) mouse is the ideal animal model to study the neuropathology of congenital ornithine transcarbamylase (OTC) deficiency. Our current hypothesis implies that an ammonia-induced depletion of energy metabolism in the spf mouse, could be due to a reduction in the activities of the enzymes of the electron transport chain and a treatment with acetyl-L-carnitine could normalize this abnormality. We also hypothesized that there might be a differential degree of inhibition in synaptosomal and non-synaptic mitochondria, for the enzymes of the electron transport chain, caused by congenital hyperammonemia. We have therefore measured the activities of NADH-cytochrome C oxidoreductase, succinate cytochrome C oxidoreductase and cytochrome C oxidase in synaptosomes and non-synaptic mitochondria, isolated from spf mice and CD-1 controls with and without acetyl-L-carnitine treatment. Our results indicate a significant reduction (19-34%) in the activities of these complexes in synaptosomes in untreated spf mice, whereas in non-synaptic mitochondria, there was a tendency for the activities to decrease. Acetyl-L-carnitine treatment enhanced these activities (15-64%) for all the three enzyme complexes and its effect was more prominent on succinate cytochrome C oxidoreductase activity (64%). These studies point out that: (a) ammonia-induced disturbances in the energy metabolism could be more pronounced in neuronal mitochondria, and (b) the effect of acetyl-L-carnitine on the restoration of cerebral ATP in hyperammonemia could be through an enhancement of the activities of various electron transport chain enzymes.
Collapse
Affiliation(s)
- K Qureshi
- Department of Pediatrics, University of Montreal, Hôpital Sainte-Justine, Quebec, Canada
| | | | | |
Collapse
|
46
|
Mawal YR, Rama Rao KV, Qureshi IA. Restoration of hepatic cytochrome c oxidase activity and expression with acetyl-L-carnitine treatment in spf mice with an ornithine transcarbamylase deficiency. Biochem Pharmacol 1998; 55:1853-60. [PMID: 9714304 DOI: 10.1016/s0006-2952(98)00051-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sparse fur (spf) mutant mouse, with an X-linked ornithine transcarbamylase deficiency, is a model of congenital hyperammonemia in children. Our earlier studies indicated a deficiency of hepatic carnitine, CoA-SH, acetyl CoA, and ATP in spf mice. We have now studied the effects of a 7-day treatment with acetyl-L-carnitine (ALCAR) in the spf/Y mice on the activity and expression of the respiratory chain enzyme cytochrome c oxidase (COX; EC 1.9.3.1). We found decreased hepatic activity and expression of COX in the untreated hyperammonemic spf/Y mice, which was restored upon ALCAR treatment. Because COX is a mitochondrial membrane protein, we also carried out studies to explain the mechanism of ALCAR through its effect on membrane stability. Our results indicate a decrease of the mitochondrial membrane cholesterol/phospholipid molar ratio (CHOL/PL ratio) with the activity and expression of COX in untreated spf/Y mice. While ALCAR treatment normalized the ratios, it also restored the hepatic ATP production to normal. To study further if there was any effect of ALCAR on the mitochondrial matrix urea cycle enzymes, we measured the activity and expression of mutant ornithine transcarbamylase (OTC; EC 2.1.3.3) and normal carbamyl phosphate synthase-I (CPS-I; EC 6.3.4.16) in spf/Y mice. There was no general effect on the specific activities of the matrix enzymes upon ALCAR treatment, although their mRNA levels were enhanced. Our studies point towards the feasibility of an ALCAR treatment in conjunction with other treatment modalities, e.g. sodium benzoate and/or arginine, to improve the availability of cellular ATP and to counteract the effects of hereditary hyperammonemic syndromes in children.
Collapse
Affiliation(s)
- Y R Mawal
- Division of Medical Genetics, Sainte-Justine Hospital and University of Montréal, Québec, Canada
| | | | | |
Collapse
|