1
|
Terletsky A, Akhmerova LG. Malignant human thyroid neoplasms associated with blood parasitic (haemosporidian) infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-mht-1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Investigation of archival cytological material obtained by cytologists during fine-needle aspiration biopsy in follicular, papillary, and medullary human thyroid cancers revealed haemosporidian (blood parasitic) infection. Haemosporidian infection was detected as exo- and intraerythrocytic stages of development in thyrocytes schizogony. The exoerythrocytic stage of development is represented as microschizonts in a thyroid needle biopsy specimen. Probably, blood parasitic infection is the common etiology for these pathologies. All biopsy material in medical laboratories was stained with RomanowskyGiemsa stain. To clarify the localization of nuclei (DNA) of thyrocytes and nuclei (DNA) of haemosporidian infection in cytological material following investigation of the entire set of smears, a selective series of original archival smears was stained (restained) with a Feulgen/Schiff reagent. Staining of smears with RomanowskyGiemsa stain is an adsorption method that enables re-use of the same smears for staining with a Feulgen/Schiff reagent where the fuchsin dye, after DNA hydrolysis by hydrochloric acid, is incorporated into DNA and stains it in redviolet (crimsonlilac) color. An intentionally unstained protoplasm of blood parasitic infection was present as a light band around erythrocyte nuclei. In follicular thyroid cancer, Feulgen staining of thyrocytes revealed nuclear DNA and parasitic DNA (haemosporidium nuclei) as point inclusions and rings and diffusely distributed in the thyrocyte cytoplasm. The thyrocyte cytoplasm and nuclei were vacuolated, with thyrocyte nuclei being deformed, flattened, and displaced to the cell periphery. The erythrocytes, which were initially stained with eosin (orange color), contained haemosporidian nuclei (DNA). In some cases, endoglobular inclusions in thyrocytes and erythrocytes were of the same size. In papillary thyroid cancer, we were able to localize the nuclear DNA of thyrocytes and the parasitic DNA as point inclusions and diffusely distributed in the thyrocyte cytoplasm. Two or more polymorphic nuclei may eccentrically occur in the hyperplastic cytoplasm. Haemosporidian microschizonts occurred circumnuclearly in thyrocytes and as an exoerythrocytic stage in the blood. The erythrocyte cytoplasm contained redviolet polymorphic haemosporidian nuclei (DNA). In medullary thyroid cancer, the hyperplastic cytoplasm of thyrocytes contained eccentrically located nuclei (DNA) of thyrocytes and small haemosporidian nuclei (DNA), which may occupy the whole thyrocyte. There were thyrocytes with vacuolated cytoplasm and pronounced nuclear polymorphism. The size of hyperplastic nuclei was several times larger than that of normal thyrocyte nuclei. The color of stained cytoplasmic and nuclear vacuoles of thyrocytes was less redviolet compared with that of surrounding tissues, which probably indicates the presence of parasitic DNA in them. The haemosporidian nuclear material in erythrocytes is represented by polymorphic nuclei, which may indicate the simultaneous presence of different pathogen species and/or generations in the blood. Intracellular parasitism of haemosporidian infection in thyrocytes (schizogony) associated with three thyroid cancers leads to pronounced cytoplasmic hyperplasia, cytoplasmic vacuolization, and nuclear vacuolization of the thyrocyte, followed by impaired secretory function. Multinucleated thyrocytes with incomplete cytokinesis appear. The absence of lytic death of the affected thyrocytes indicates that the contagium is able to control apoptosis and influence physiological functions of the cell. There is deformation of the nuclei, which leads to a decrease in their size, their flattening and displacement to the cell periphery, with high risk of DNA mutations and deletions in affected cells, reaching a neoplastic level.
Collapse
|
2
|
Rittipornlertrak A, Nambooppha B, Muenthaisong A, Apinda N, Koonyosying P, Srisawat W, Chomjit P, Sangkakam K, Punyapornwithaya V, Tiwananthagorn S, Yokoyama N, Sthitmatee N. Immunization of Cattle With Recombinant Structural Ectodomains I and II of Babesia bovis Apical Membrane Antigen 1 [BbAMA-1(I/II)] Induces Strong Th1 Immune Response. Front Vet Sci 2022; 9:917389. [PMID: 35812841 PMCID: PMC9260583 DOI: 10.3389/fvets.2022.917389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Both strong innate and adaptive immune responses are an important component of protection against intraerythrocytic protozoan parasites. Resistance to bovine babesiosis is associated with interferon (IFN)-γ mediated responses. CD4+ T cells and macrophages have been identified as major effector cells mediating the clearance of pathogens. Previously, the apical membrane antigen 1 (AMA-1) was found to significantly induce the immune response inhibiting B. bovis merozoite growth and invasion. However, a detailed characterization of both humoral and cellular immune responses against the structure of B. bovis AMA-1 (BbAMA-1) has not yet been established. Herein, the present study aimed to express the recombinant BbAMA-1 domain I+II protein [rBbAMA-1(I/II)], which is the most predominant immune response region, and to characterize its immune response. As a result, cattle vaccinated with BbAMA-1(I/II) significantly developed high titters of total immunoglobulin (Ig) G antibodies and a high ratio of IgG2/IgG1 when compared to control groups. Interestingly, the BbAMA-1(I/II)-based formulations produced in our study could elicit CD4+ T cells and CD8+ T cells producing IFN-γ and tumor necrosis factor (TNF)-α. Collectively, the results indicate that immunization of cattle with BbAMA-1(I/II) could induce strong Th1 cell responses. In support of this, we observed the up-regulation of Th1 cytokine mRNA transcripts, including IFN-γ, TNF-α, Interleukin (IL)-2 and IL-12, in contrast to down regulation of IL-4, IL-6 and IL-10, which would be indicative of a Th2 cytokine response. Moreover, the up-regulation of inducible nitric oxide synthase (iNOS) was observed. In conclusion, this is the first report on the in-depth immunological characterization of the response to BbAMA-1. According to our results, BbAMA-1 is recognized as a potential candidate vaccine against B. bovis infection. As evidenced by the Th1 cell response, it could potentially provide protective immunity. However, further challenge-exposure with virulent B. bovis strain in immunized cattle would be needed to determine its protective efficacy.
Collapse
Affiliation(s)
- Amarin Rittipornlertrak
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anucha Muenthaisong
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nisachon Apinda
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwisa Srisawat
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Paweena Chomjit
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Sangkakam
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Ruminant Clinic, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saruda Tiwananthagorn
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellent Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Nattawooti Sthitmatee ;
| |
Collapse
|
3
|
Santos AC, Nogueira CEW, Dos Santos Suñe Moraes B, Müller V, Mousquer MA, Leite FPL. Immune response of adult horses, pregnant mares and foals to an experimental vaccine with recombinant EMA-2 protein of Theileria equi. Res Vet Sci 2021; 139:186-192. [PMID: 34343932 DOI: 10.1016/j.rvsc.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Equine theileriosis, caused by the Theileria equi protozoan, is a disease of worldwide importance. T. equi expresses surface proteins, of which the EMA-2 protein is a promising antigen for vaccine use. The aim of this study was to evaluate the immune response of adult horses, pregnant mares, and foals to an experimental EMA-2 protein of recombinant T. equi vaccine. A total of 46 horses were used in this study for vaccine trials and challenges. Twelve geldings, 14 pregnant mares, and 14 foals were divided into vaccinated and control groups. Total serum specific anti-rEMA-2 IgG, IgG subclasses, and transcription of cytokines related to the immune response were evaluated. For the vaccine challenge, six six-month-old foals were divided into vaccinated and control groups. For the challenge, blood from a horse with theileriosis was transfused to the foals. Geldings and pregnant mares maintained anti-rEMA-2 IgG levels at 130 and 140 days after vaccination, respectively. The most-detected IgG subclasses in vaccinated were IgG3/5, IgG4/7, and IgG1. IL2, IL10, IL12, IL17, IFN-γ, and TNF-α were the most-transcribed cytokines in PBMCs of vaccinated horses stimulated with rEMA-2. Challenge with T. equi demonstrated that vaccinated foals had an increase of 33% in total IgG four days after blood transfusion, while control foals had no significant response, suggesting that vaccine antibodies may have recognized EMA-2 protein of the native T. equi antigen. T. equi recombinant EMA-2 was shown to be a promising vaccine antigen by inducing humoral and cellular immunity similar to that observed in natural parasite infections.
Collapse
Affiliation(s)
- Alice Corrêa Santos
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Wayne Nogueira
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna Dos Santos Suñe Moraes
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Vitória Müller
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, Rio Grande do Sul, Brazil
| | - Mariana Andrade Mousquer
- Departamento de Clínicas Veterinária, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | |
Collapse
|
4
|
de la Fournière S, Paoletta MS, Guillemi EC, Sarmiento NF, Donati PA, Wilkowsky SE, Farber MD. Development of highly sensitive one step-PCR tests for improved detection of B. bigemina and B. bovis. Vet Parasitol 2021; 296:109493. [PMID: 34130095 DOI: 10.1016/j.vetpar.2021.109493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/18/2022]
Abstract
Bovine babesiosis caused by Babesia bigemina and B. bovis is an economically relevant tick-borne disease distributed over tropical and subtropical world regions. Animals that recover from the clinical disease can remain persistently infected, and those carriers are epidemiologically relevant since they can act as a source of infection to other animals through the tick bite. According to the manual of the World Organisation for Animal Health (OIE), the recommended molecular diagnosis test for both parasites is a nested polymerase chain reaction (nPCR) based on an amplification of a fragment of the rap-1 gene. Since nPCRs are time consuming, have a higher cost and risk of contamination, we propose a single step PCR for B. bigemina (BbiVESA) and B. bovis (BboVESA) based on the amplification of the multi-copy ves-1α gene. We developed these methods and we achieved a detection limit of 1 × 10-12 % parasitemia for B. bigemina and of 1 × 10-6 % for B. bovis using reference strains, which compared to the reference OIE tests, results in an improvement in sensitivity of six orders for B. bigemina. Finally, we tested 48 field samples from a babesiosis enzootic region where we were able to detect a higher proportion of positive animals with both VESA methods than with the reference rap-1 nPCRs. This difference was statistically significant for each Babesia species. Concordance between both diagnostic schemes based on Cohen's kappa coefficient showed minimal to non-agreement (κ = 0.32) for B. bigemina and non-agreement (κ = 0.16) for B. bovis since BbiVESA and BboVESA PCR tests showed a significantly higher detection capacity. In conclusion, the high sensitivity of the assay, together with the lower demand of time and reagents make the VESA PCR methods developed here a valuable diagnostic tool for the molecular detection and epidemiological survey of both Babesia pathogens.
Collapse
Affiliation(s)
- Sofía de la Fournière
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, de Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Martina Soledad Paoletta
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, de Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Eliana Carolina Guillemi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, de Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina.
| | - Néstor Fabián Sarmiento
- Estación Experimental Agropecuaria Mercedes, Instituto Nacional de Tecnología Agropecuaria, Juan Pujol al Este s/n, 3470, Mercedes, Corrientes, Argentina
| | - Pablo Alejandro Donati
- Departamento de Anestesiología y manejo del dolor, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarin 280, (C1427CWO), Buenos Aires, Argentina
| | - Silvina Elizabeth Wilkowsky
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, de Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | - Marisa Diana Farber
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA - CONICET, de Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Castelar, Buenos Aires, Argentina
| |
Collapse
|
5
|
Cavani L, Braz CU, Giglioti R, Okino CH, Gulias-Gomes CC, Caetano AR, Oliveira MCDS, Cardoso FF, de Oliveira HN. Genomic Study of Babesia bovis Infection Level and Its Association With Tick Count in Hereford and Braford Cattle. Front Immunol 2020; 11:1905. [PMID: 33013839 PMCID: PMC7493685 DOI: 10.3389/fimmu.2020.01905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Bovine babesiosis is a tick-borne disease caused by intraerythrocytic protozoa and leads to substantial economic losses for the livestock industry throughout the world. Babesia bovis is considered the most pathogenic species, which causes bovine babesiosis in Brazil. Genomic data could be used to evaluate the viability of improving resistance against B. bovis infection level (IB) through genomic selection, and, for that, knowledge of genetic parameters is needed. Furthermore, genome-wide association studies (GWAS) could be conducted to provide a better understanding of the genetic basis of the host response to B. bovis infection. No previous work in quantitative genetics of B. bovis infection was found. Thus, the objective of this study was to estimate the genetic correlation between IB and tick count (TC), evaluate predictive ability and applicability of genomic selection, and perform GWAS in Hereford and Braford cattle. The single-step genomic best linear unbiased prediction method was used, which allows the estimation of both breeding values and marker effects. Standard phenotyping was conducted for both traits. IB quantifications from the blood of 1,858 animals were carried using quantitative PCR assays. For TC, one to three subsequent tick counts were performed by manually counting adult female ticks on one side of each animal's body that was naturally exposed to ticks. Animals were genotyped using the Illumina BovineSNP50 panel. The posterior mean of IB heritability, estimated by the Bayesian animal model in a bivariate analysis, was low (0.10), and the estimations of genetic correlation between IB and TC were also low (0.15). The cross-validation genomic prediction accuracy for IB ranged from 0.18 to 0.35 and from 0.29 to 0.32 using k-means and random clustering, respectively, suggesting that genomic predictions could be used as a tool to improve genetics for IB, especially if a larger training population is developed. The top 10 single nucleotide polymorphisms from the GWAS explained 5.04% of total genetic variance for IB, which were located on chromosomes 1, 2, 5, 6, 12, 17, 18, 16, 24, and 26. Some candidate genes participate in immunity system pathways indicating that those genes are involved in resistance to B. bovis in cattle. Although the genetic correlation between IB and TC was weak, some candidate genes for IB were also reported in tick infestation studies, and they were also involved in biological resistance processes. This study contributes to improving genetic knowledge regarding infection by B. bovis in cattle.
Collapse
Affiliation(s)
- Ligia Cavani
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Camila Urbano Braz
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Rodrigo Giglioti
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, Brazil
| | - Cintia Hiromi Okino
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Vianna AM, Santos AC, Cunha RC, de Souza Stori de Lara AP, Weege GB, Leivas Leite FP. Antigenicity assessment of the Theileria equi merozoite antigen (EMA-2) expressed in Pichia pastoris in mice and horses. Exp Parasitol 2019; 206:107757. [PMID: 31494216 DOI: 10.1016/j.exppara.2019.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 11/18/2022]
Abstract
Equine theileriosis is a severe equine disease caused by the protozoan Theileria equi, which is prevalent in tropical and subtropical areas. In this study, a recombinant equi merozoite antigen-2 (rEMA-2) of T. equi was used as an immunogen. Two groups of 10 mice each were divided into control and vaccinated groups. Sixty mares seronegative for theileriosis were divided in two groups, one vaccinated and another group as a control animal. Mice and mares of the vaccinated groups were inoculated with 150 μL of the vaccine containing 50 μg of rEMA-2 and 2 mL of the vaccine containing 200 μg of rEMA-2, respectively, at days 0 and 21. The immunogenicity of rEMA-2 was evaluated by ELISA and fluorescent antibody test (IFAT) using serum from vaccinated mice, mares and antigenicity in naturally infected horse. At every point throughout the ELISA study, there were significant differences between the vaccinated and control groups (p < 0.05). The vaccine induced 3- and 4-fold IgG increases in mice at the 14th and 28th day, respectively, compared to the control group. The horses' IgG dynamics showed a significant (p < 0.05) increase in the total IgG titer as early as day 7, which increased until day 28 at which time a more significant (p < 0.001) IgG titer was observed. In evaluating the isotypes, we observed a trend similar to that of total IgG, where IgG(T) (IgG3-5) were significantly (p < 0.05) more elevated than the other isotypes analyzed, followed by IgGb (IgG4-7) and IgGa (IgG1). Positive fluorescence was detected by IFAT, suggesting that the protein is immunogenic and conserves some epitopes identical to the native T. equi antigens present in the equine blood smear. Thus, our results suggest that rEMA-2 can be a promising vaccinal antigen.
Collapse
Affiliation(s)
- Ana Muñoz Vianna
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-900, Brazil.
| | - Alice Correa Santos
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-900, Brazil.
| | - Rodrigo Casquero Cunha
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-900, Brazil.
| | | | - Guilherme Borges Weege
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 96010-900, Brazil; Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
7
|
Interplay between Attenuation- and Virulence-Factors of Babesia bovis and Their Contribution to the Establishment of Persistent Infections in Cattle. Pathogens 2019; 8:pathogens8030097. [PMID: 31277392 PMCID: PMC6789890 DOI: 10.3390/pathogens8030097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine babesiosis is an acute and persistent tick-borne global disease caused mainly by the intraerythrocytic apicomplexan parasites Babesia bovis and B. bigemina. B. bovis infected erythrocytes sequester in blood capillaries of the host (cytoadhesion), causing malaria-like neurological signs. Cytoadhesion and antigenic variation in B. bovis are linked to the expression of members of the Variant Erythrocyte Surface Antigen (VESA) gene family. Animals that survive acute B. bovis infection and those vaccinated with attenuated strains remain persistently infected, suggesting that B. bovis parasites use immune escape mechanisms. However, attenuated B. bovis parasites do not cause neurological signs in vaccinated animals, indicating that virulence or attenuation factors play roles in modulating parasite virulence phenotypes. Artificial overexpression of the SBP2t11 protein, a defined attenuation factor, was associated with reduced cytoadhesion, suggesting a role for this protein as a key modulator of virulence in the parasite. Hereby, we propose a model that might be functional in the modulation of B. bovis virulence and persistence that relies on the interplay among SBP2t, VESA proteins, cytoadhesion, and the immune responses of the host. Elucidation of mechanisms used by the parasite to establish persistent infection will likely contribute to the design of new methods for the control of bovine babesiosis.
Collapse
|
8
|
Suarez CE, Alzan HF, Silva MG, Rathinasamy V, Poole WA, Cooke BM. Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit? Int J Parasitol 2019; 49:183-197. [PMID: 30690089 PMCID: PMC6988112 DOI: 10.1016/j.ijpara.2018.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The global impact of bovine babesiosis caused by the tick-borne apicomplexan parasites Babesia bovis, Babesia bigemina and Babesia divergens is vastly underappreciated. These parasites invade and multiply asexually in bovine red blood cells (RBCs), undergo sexual reproduction in their tick vectors (Rhipicephalus spp. for B. bovis and B. bigemina, and Ixodes ricinus for B. divergens) and have a trans-ovarial mode of transmission. Babesia parasites can cause acute and persistent infections to adult naïve cattle that can occur without evident clinical signs, but infections caused by B. bovis are associated with more severe disease and increased mortality, and are considered to be the most virulent agent of bovine babesiosis. In addition, babesiosis caused by B. divergens has an important zoonotic potential. The disease caused by B. bovis and B. bigemina can be controlled, at least in part, using therapeutic agents or vaccines comprising live-attenuated parasites, but these methods are limited in terms of their safety, ease of deployability and long-term efficacy, and improved control measures are urgently needed. In addition, expansion of tick habitats due to climate change and other rapidly changing environmental factors complicate efficient control of these parasites. While the ability to cause persistent infections facilitates transmission and persistence of the parasite in endemic regions, it also highlights their capacity to evade the host immune responses. Currently, the mechanisms of immune responses used by infected bovines to survive acute and chronic infections remain poorly understood, warranting further research. Similarly, molecular details on the processes leading to sexual reproduction and the development of tick-stage parasites are lacking, and such tick-specific molecules can be targets for control using alternative transmission blocking vaccines. In this review, we identify and examine key phases in the life-cycle of Babesia parasites, including dependence on a tick vector for transmission, sexual reproduction of the parasite in the midgut of the tick, parasite-dependent invasion and egression of bovine RBCs, the role of the spleen in the clearance of infected RBCs (IRBCs), and age-related disease resistance in cattle, as opportunities for developing improved control measures. The availability of integrated novel research approaches including "omics" (such as genomics, transcriptomics, and proteomics), gene modification, cytoadhesion assays, RBC invasion assays and methods for in vitro induction of sexual-stage parasites will accelerate our understanding of parasite vulnerabilities. Further, producing new knowledge on these vulnerabilities, as well as taking full advantage of existing knowledge, by filling important research gaps should result in the development of next-generation vaccines to control acute disease and parasite transmission. Creative and effective use of current and future technical and computational resources are needed, in the face of the numerous challenges imposed by these highly evolved parasites, for improving the control of this disease. Overall, bovine babesiosis is recognised as a global disease that imposes a serious burden on livestock production and human livelihood, but it largely remains a poorly controlled disease in many areas of the world. Recently, important progress has been made in our understanding of the basic biology and host-parasite interactions of Babesia parasites, yet a good deal of basic and translational research is still needed to achieve effective control of this important disease and to improve animal and human health.
Collapse
Affiliation(s)
- Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States.
| | - Heba F Alzan
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States; Animal Disease Research Unit, Agricultural Research Service, USDA, WSU, Pullman, WA, United States
| | - Vignesh Rathinasamy
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - William A Poole
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Brian M Cooke
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
9
|
Ranaivoson HC, Héraud JM, Goethert HK, Telford SR, Rabetafika L, Brook CE. Babesial infection in the Madagascan flying fox, Pteropus rufus É. Geoffroy, 1803. Parasit Vectors 2019; 12:51. [PMID: 30674343 PMCID: PMC6343336 DOI: 10.1186/s13071-019-3300-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Background Babesiae are erythrocytic protozoans, which infect the red blood cells of vertebrate hosts to cause disease. Previous studies have described potentially pathogenic infections of Babesia vesperuginis in insectivorous bats in Europe, the Americas and Asia. To date, no babesial infections have been documented in the bats of Madagascar, or in any frugivorous bat species worldwide. Results We used standard microscopy and conventional PCR to identify babesiae in blood from the endemic Madagascan flying fox (Pteropus rufus). Out of 203 P. rufus individuals captured between November 2013 and January 2016 and screened for erythrocytic parasites, nine adult males (4.43%) were infected with babesiae. Phylogenetic analysis of sequences obtained from positive samples indicates that they cluster in the Babesia microti clade, which typically infect felids, rodents, primates, and canids, but are distinct from B. vesperuginis previously described in bats. Statistical analysis of ecological trends in the data suggests that infections were most commonly observed in the rainy season and in older-age individuals. No pathological effects of infection on the host were documented; age-prevalence patterns indicated susceptible-infectious (SI) transmission dynamics characteristic of a non-immunizing persistent infection. Conclusions To our knowledge, this study is the first report of any erythrocytic protozoan infecting Madagascan fruit bats and the first record of a babesial infection in a pteropodid fruit bat globally. Given the extent to which fruit bats have been implicated as reservoirs for emerging human pathogens, any new record of their parasite repertoire and transmission dynamics offers notable insights into our understanding of the ecology of emerging pathogens. Electronic supplementary material The online version of this article (10.1186/s13071-019-3300-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hafaliana C Ranaivoson
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar.,Zoology and Animal Biodiversity, Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar
| | | | - Heidi K Goethert
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Sam R Telford
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Lydia Rabetafika
- Zoology and Animal Biodiversity, Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar
| | - Cara E Brook
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA. .,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Rautenbach Y, Goddard A, Thompson PN, Mellanby RJ, Leisewitz AL. A flow cytometric assessment of the lymphocyte immunophenotypes in dogs naturally infected with Babesia rossi. Vet Parasitol 2017; 241:26-34. [PMID: 28579026 DOI: 10.1016/j.vetpar.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/20/2017] [Accepted: 05/06/2017] [Indexed: 11/28/2022]
Abstract
Immunity to Babesia infection requires both innate and acquired responses, including cell mediated- and humoral responses. The aims of this study were to investigate the variation in selected peripheral blood lymphocyte phenotypes in dogs with virulent babesiosis at presentation and over time after treatment, and to determine whether these were correlated with the severity of clinical signs. Forty-four dogs naturally infected with B. rossi were studied and 5 healthy dogs were included as controls. Blood samples were collected from the jugular vein at admission, prior to any treatment, and at 24h and 48-72h. Leukocytes were incubated with canine specific, fluorochrome conjugated anti-CD3, anti-CD4, anti-CD8, and anti-B cell markers. Babesia-infected dogs were divided into complicated or uncomplicated groups on clinical grounds and in-house laboratory assays. The percentage CD3+ lymphocytes in the complicated group was lower compared to the controls (P=0.014) and uncomplicated group (P=0.007). The percentage CD4+ T lymphocytes in the complicated group was lower compared to the controls (P=0.027) and uncomplicated group (P=0.014). Both the complicated as well as the uncomplicated groups expressed a lower percentage CD8+ T lymphocytes compared to the control group (P<0.001 and P=0.005, respectively). The percentage B lymphocytes was higher in the complicated group at 48-72h. These findings could indicate the presence of a functional immune suppression secondary to increased apoptosis or redistribution of effector lymphocytes and/or a combination of other immune modulatory mechanisms induced by B. rossi infection.
Collapse
Affiliation(s)
- Yolandi Rautenbach
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Peter N Thompson
- Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Department of Veterinary Clinical Sciences, University of Edinburgh, Roslin, Midlothian, Scotland, United Kingdom
| | - Andrew L Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Wang G, Efstratiou A, Adjou Moumouni PF, Liu M, Jirapattharasate C, Guo H, Gao Y, Cao S, Zhou M, Suzuki H, Igarashi I, Xuan X. Primary Babesia rodhaini infection followed by recovery confers protective immunity against B. rodhaini reinfection and Babesia microti challenge infection in mice. Exp Parasitol 2016; 169:6-12. [PMID: 27423972 DOI: 10.1016/j.exppara.2016.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 11/19/2022]
Abstract
In the present study, we investigated the protective immunity against challenge infections with Babesia rodhaini and Babesia microti in the mice recovered from B. rodhaini infection. Six groups with 5 test mice in each group were used in this study, and were intraperitoneally immunized with alive and dead B. rodhaini. The challenge infections with B. rodhaini or B. microti were performed using different time courses. Our results showed that the mice recovered from primary B. rodhaini infection exhibited low parasitemia and no mortalities after the challenge infections, whereas mock mice which had received no primary infection showed a rapid increase of parasitemia and died within 7 days after the challenge with B. rodhaini. Mice immunized with dead B. rodhaini were not protected against either B. rodhaini or B. microti challenge infections, although high titers of antibody response were induced. These results indicate that only mice immunized with alive B. rodhaini could acquire protective immunity against B. rodhaini or B. microti challenge infection. Moreover, the test mice produced high levels of antibody response and low levels of cytokines (INF-γ, IL-4, IL-12, IL-10) against B. rodhaini or B. microti after challenge infection. Mock mice, however, showed rapid increases of these cytokines, which means disordered cytokines secretion occurred during the acute stage of challenge infection. The above results proved that mice immunized with alive B. rodhaini could acquire protective immunity against B. rodhaini and B. microti infections.
Collapse
Affiliation(s)
- Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Artemis Efstratiou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Charoonluk Jirapattharasate
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, China
| | - Mo Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, China
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
12
|
Gimenez G, Belaunzarán ML, Magalhães KG, Poncini CV, Lammel EM, González Cappa SM, Bozza PT, Isola ELD. Involvement of TLR6 in the induction of COX-2, PGE2 and IL-10 in macrophages by lipids from virulent S2P and attenuated R1A Babesia bovis strains. Vet Parasitol 2016; 223:127-32. [PMID: 27198789 DOI: 10.1016/j.vetpar.2016.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/28/2023]
Abstract
Toll like receptors (TLRs) are involved in the modulation of diverse host genes expression through a complex network of signalling events that allow for an appropriate response to a microbial pathogen. In the present work we used TLR6KO mice in order to study the role of TLR6 in the immune discrimination of lipids from two Babesia bovis strains, attenuated R1A (LA) and virulent S2P (LV), and the consequent macrophage activation. We demonstrated that TLR6 is required for lipid body induction in murine peritoneal macrophages by both LA and LV. Interestingly, as regards IL-10 and COX-2/PGE2 pathway induction by LA and LV, we observed differences in the biological effects produced by these lipid extracts. Our results indicate a role of TLR6 in the down-modulation of these immunoregulators only in the case of LA, whereas this receptor was not implicated in pro-inflammatory TNFα, IL-6 and KC release induced by LA. Remarkably, LV did not exert the down-modulatory effect observed for LA, supporting the notion that LA and LV possess different lipid composition that could correlate with the polar pathogenic effect of both B. bovis strains.
Collapse
Affiliation(s)
- G Gimenez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, UBA, CONICET, Facultad de Medicina, Paraguay 2155 piso 13, C1121ABG Buenos Aires, Argentina.
| | - M L Belaunzarán
- Instituto de Investigaciones en Microbiología y Parasitología Médica, UBA, CONICET, Facultad de Medicina, Paraguay 2155 piso 13, C1121ABG Buenos Aires, Argentina
| | - K G Magalhães
- Laboratório de Imunologia e Inflamação, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Distrito Federal, Brazil
| | - C V Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médica, UBA, CONICET, Facultad de Medicina, Paraguay 2155 piso 13, C1121ABG Buenos Aires, Argentina
| | - E M Lammel
- Instituto de Investigaciones en Microbiología y Parasitología Médica, UBA, CONICET, Facultad de Medicina, Paraguay 2155 piso 13, C1121ABG Buenos Aires, Argentina
| | - S M González Cappa
- Instituto de Investigaciones en Microbiología y Parasitología Médica, UBA, CONICET, Facultad de Medicina, Paraguay 2155 piso 13, C1121ABG Buenos Aires, Argentina
| | - P T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz-Fundaçao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - E L D Isola
- Instituto de Investigaciones en Microbiología y Parasitología Médica, UBA, CONICET, Facultad de Medicina, Paraguay 2155 piso 13, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
13
|
Co-immunization of cattle with a vaccine against babesiosis and Lactobacillus casei increases specific IgG1 levels to Babesia bovis and B. bigemina. Parasitol Int 2015; 64:319-23. [PMID: 25936971 DOI: 10.1016/j.parint.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/04/2015] [Accepted: 04/22/2015] [Indexed: 11/23/2022]
Abstract
The effect of Lactobacillus casei administered along with a live attenuated vaccine vs. bovine babesiosis (VAC) on induction of IgG1 and IgG2 antibodies to Babesia bovis and Babesia bigemina was assessed by the indirect fluorescent antibody test (IFAT) in bovines of an endemic babesiosis area before (day 0) and after vaccination (days 15 and 30). We previously reported that L. casei increases the efficiency of VAC under controlled conditions and under extreme conditions in the field; however, the levels of IgG1 and IgG2 antibodies to B. bovis and B. bigemina are not known in vaccinated animals. Twenty-one dairy cows were allocated into three groups (seven animals per group): unvaccinated, vaccinated with VAC and vaccinated simultaneously with VAC and L. casei (VAC-LC). All animals were kept in a babesiosis endemic area at Tlalixcoyan, Veracruz. At days 15 and 30 after vaccination, the average levels of IgG1 to B. bovis and to B. bigemina were significantly higher in VAC-LC group than levels observed in VAC and control groups (P<0.01). Levels of IgG2 were similar in VAC and VAC-LC groups but higher than in the control group (P<0.01). When tested in in vitro cultures of B. bovis, sera from VAC-LC group significantly inhibited parasite growth as compared with the sera of the other two groups. It is suggested that the efficiency improvement of VAC, in part, is due to the L. casei boost of IgG1 over IgG2 antibodies to B. bovis and B. bigemina when the bacteria is co-inoculated with this vaccine.
Collapse
|
14
|
Ríos-Tobón S, Gutiérrez-Builes LA, Ríos-Osorio LA. Assessing bovine babesiosis in Rhipicephalus (Boophilus) microplus ticks and 3 to 9-month-old cattle in the middle Magdalena region, Colombia. PESQUISA VETERINARIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014000400002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
|
16
|
Macrophages are critical for cross-protective immunity conferred by Babesia microti against Babesia rodhaini infection in mice. Infect Immun 2011; 80:311-20. [PMID: 22064713 DOI: 10.1128/iai.05900-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although primary infection of mice with Babesia microti has been shown to protect mice against subsequent lethal infection by Babesia rodhaini, the mechanism behind the cross-protection is unknown. To unravel this mechanism, we investigated the influence of primary infection of mice with nonlethal B. microti using different time courses on the outcome of subsequent lethal B. rodhaini infection. Simultaneous infections of mice with these parasites resulted in rapid increases in parasitemia, with 100% mortality in BALB/c mice, as observed with control mice infected with B. rodhaini alone. In contrast, mice with acute, resolving, and chronic-phase B. microti infections were completely protected against B. rodhaini, resulting in low parasitemia and no mortalities. Mice immunized with dead B. microti were not protected from B. rodhaini infection, although high antibody responses were induced. Interestingly, the protected mice had significantly decreased levels of antibody response, cytokines (including gamma interferon [IFN-γ], interleukin-2 [IL-2], IL-8, IL-10, and IL-12), and nitric oxide levels after infection with B. rodhaini. SCID mice and IFN-γ-deficient mice with chronic B. microti infections demonstrated protective responses comparable to those of immunocompetent mice. Likewise, in vivo NK cell depletion did not significantly impair the protective responses. Conversely, macrophage depletion resulted in increased susceptibility to B. rodhaini infection associated with changes in their antibody and cytokines profiles, indicating that macrophages contribute to the protection against this challenge infection. We conclude that future development of vaccines against Babesia should include a strategy that enhances the appropriate activation of macrophages.
Collapse
|
17
|
Suppression of Plasmodium cynomolgi in rhesus macaques by coinfection with Babesia microti. Infect Immun 2010; 78:1032-9. [PMID: 20048045 DOI: 10.1128/iai.00921-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Both Plasmodium and Babesia species are intraerythrocytic protozoans that infect a wide range of hosts, including humans, and they elicit similar inflammatory responses and clinical manifestations that differ markedly in severity. We recently reported that a rhesus macaque that was chronically infected with Babesia microti was able to control infection with Plasmodium cynomolgi (a parasite of macaques with characteristics very similar to those of Plasmodium vivax) better than naïve monkeys. To confirm this and to investigate the underlying immunopathology, six naïve rhesus monkeys were infected with B. microti. After 24 days, four of these monkeys and four naïve rhesus monkeys were challenged with P. cynomolgi blood-stage parasites. B. microti persisted at low levels in all monkeys, and the clinical parameters were comparable to those of noninfected controls. There was a significant decrease in P. cynomolgi parasitemia in animals coinfected with B. microti compared to the parasitemia in animals infected with P. cynomolgi alone. This decrease in P. cynomolgi parasitemia correlated with increases in the levels of proinflammatory monocytes at the time of P. cynomolgi infection and with higher C-reactive protein (CRP) serum levels 1 week after malaria infection. Therefore, we conclude that ongoing infection with B. microti parasites leads to suppression of malaria infection.
Collapse
|
18
|
TERKAWI MALAA, ABOGE G, JIA H, GOO YK, OOKA H, YAMAGISHI J, NISHIKAWA Y, YOKOYAMA N, IGARASHI I, KAWAZU SI, FUJISAKI K, XUAN X. Molecular and immunological characterization ofBabesia gibsoniandBabesia microtiheat shock protein-70. Parasite Immunol 2009; 31:328-40. [DOI: 10.1111/j.1365-3024.2009.01109.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res 2009; 40:37. [PMID: 19379662 PMCID: PMC2695028 DOI: 10.1051/vetres/2009020] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/16/2009] [Indexed: 12/24/2022] Open
Abstract
Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated.
Collapse
Affiliation(s)
- Alain Chauvin
- Ecole nationale vétérinaire, UMR 1300 BIOEPAR, ENVN, Atlanpôle - La Chantrerie, BP 40706, F-44307 Nantes Cedex 03, France.
| | | | | | | | | |
Collapse
|
20
|
Fish L, Leibovich B, Krigel Y, McElwain T, Shkap V. Vaccination of cattle against B. bovis infection with live attenuated parasites and non-viable immunogens. Vaccine 2008; 26 Suppl 6:G29-33. [DOI: 10.1016/j.vaccine.2008.09.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Terkawi MA, Zhang G, Jia H, Aboge G, Goo YK, Nishikawa Y, Yokoyama N, Igarashi I, Kawazu SI, Fujisaki K, Xuan X. C3 contributes to the cross-protective immunity induced by Babesia gibsoni phosphoriboprotein P0 against a lethal B. rodhaini infection. Parasite Immunol 2008; 30:365-70. [PMID: 18533933 DOI: 10.1111/j.1365-3024.2008.01026.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the impact of complement component 3 (C3) deficiency on the progression of lethal Babesia rodhaini infection in immune mice. A B. gibsoni ribosomal phosphoprotein P0 (BgP0) previously reported to be a cross-protective antigen against Babesia infection was used to immunize C57BL/6 wild-type (WT) and C3-deficient (C3-/-) mice. Test mice were immunized intraperitoneally (i.p.) with recombinant BgP0 (rBgP0), while controls either were immunized with PBS or did not receive any immunization. Following the immunization regime, test WT mice induced a specifically strong humoral response consisting of mixed immunoglobulins IgG1 and IgG2 associated with high production of IFN-gamma in the supernatant of splenocytes. While test C3-/- mice had significantly decreased total IgG, IgG1 and IgG2b responses, the secretions of IL-12 and IFN-gamma tended to be lower than those in WT mice. Furthermore, partial protection was only observed in rBgP0-immunized WT mice but not in C3-/- mice or controls. Indeed, rBgP0-immunized WT mice showed significant reductions in the initiation of parasitaemia correlated with delayed mortalities and considerable survival rates. Taken together, our results indicate that cross-protection was impaired in C3-/- mice in view of the decrease in the antibody responses and cytokine production and the high susceptibility to infection.
Collapse
Affiliation(s)
- M A Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Benavides MV, Sacco AMS. Differential Bos taurus cattle response to Babesia bovis infection. Vet Parasitol 2007; 150:54-64. [DOI: 10.1016/j.vetpar.2007.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/15/2007] [Accepted: 08/21/2007] [Indexed: 11/27/2022]
|
23
|
Abstract
AbstractDisease is a major source of economic loss to the livestock industry. Understanding the role of genetic factors in immune responsiveness and disease resistance should provide new approaches to the control of disease through development of safe synthetic subunit vaccines and breeding for disease resistance. The major histocompatibility complex (MHC) has been an important candidate locus for immune responsiveness studies. However, it is clear that other loci play an important role. Identifying these and quantifying the relative importance of MHC and non-MHC genes should result in new insights into host–pathogen interactions, and information that can be exploited by vaccine designers. The rapidly increasing information available about the bovine genome and the identification of polymorphisms in immune-related genes will offer potential candidates that control immune responses to vaccines. The bovine MHC,BoLA, encodes two distinct isotypes of class II molecules, DR and DQ, and in about half the common haplotypes theDQgenes are duplicated and expressed. DQ molecules are composed of two polymorphic chains whereas DR consists of one polymorphic and one non-polymorphic chain. Although, it is clear that MHC polymorphism is related to immune responsiveness, it is less clear how different allelic and locus products influence the outcome of an immune response in terms of generating protective immunity in outbred animals. A peptide derived from foot-and-mouth disease virus (FMDV) was used as a probe for BoLA class II function. Both DR and DQ are involved in antigen presentation. In an analysis of T-cell clones specific for the peptide, distinct biases to particular restriction elements were observed. In addition inter-haplotype pairings of DQA and DQB molecules produced functional molecules, which greatly increases the numbers of possible restriction elements, compared with the number of genes, particularly in cattle with duplicatedDQgenes. In a vaccine trial with several peptides derived from FMDV,BoLAclass IIDRB3polymorphisms were correlated with both protection and non-protection. Although variation in immune responsiveness to the FMDV peptide between different individuals is partly explainable byBoLAclass II alleles, other genetic factors play an important role. In a quantitative trait locus project, employing a second-generation cross between Charolais and Holstein cattle, significant sire and breed effects were also observed in T-cell, cytokine and antibody responses to the FMDV peptide. These results suggest that both MHC and non-MHC genes play a role in regulating bovine immune traits of relevance to vaccine design. Identifying these genes and quantifying their relative contributions is the subject of further studies.
Collapse
|
24
|
Brown WC, Norimine J, Goff WL, Suarez CE, McElwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol 2006; 28:315-27. [PMID: 16842268 DOI: 10.1111/j.1365-3024.2006.00849.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Babesial parasites infect cattle in tropical and temperate regions of the world and cause significant morbidity and mortality. Discovery of protective antigens that could be used in a killed vaccine has been slow and to date there are few promising vaccine candidates for cattle Babesia. This review describes mechanisms of protective innate and adaptive immune responses to babesial parasites and different strategies to identify potentially protective protein antigens of B. bovis, B. bigemina, and B. divergens. Successful parasites often cause persistent infection, and this paper also discusses how B. bovis evades and regulates the immune response to promote survival of parasite and host. Development of successful non-living recombinant vaccines will depend on increased understanding of protective immune mechanisms and availability of parasite genomes.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
25
|
Cunha CW, McGuire TC, Kappmeyer LS, Hines SA, Lopez AM, Dellagostin OA, Knowles DP. Development of specific immunoglobulin Ga (IgGa) and IgGb antibodies correlates with control of parasitemia in Babesia equi Infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:297-300. [PMID: 16467341 PMCID: PMC1391941 DOI: 10.1128/cvi.13.2.297-300.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, the kinetics of specific immunoglobulin G (IgG) isotypes were characterized in Babesia equi (Theileria equi)-infected horses. IgGa and IgGb developed during acute infection, whereas IgG(T) was detected only after resolution of acute parasitemia. The same IgG isotype profile induced during acute infection was obtained by equi merozoite antigen 1/saponin immunization.
Collapse
Affiliation(s)
- Cristina W Cunha
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Babesia bovis causes an acute and often fatal infection in adult cattle, which if resolved, leads to a state of persistent infection in otherwise clinically healthy cattle. Persistently infected cattle are generally resistant to reinfection with related parasite strains, and this resistance in the face of infection is termed concomitant immunity. Young animals are generally more resistant than adults to B. bovis infection, which is dependent on the spleen. Despite the discovery of B. bovis over a century ago, there are still no safe and effective vaccines that protect cattle against this most virulent of babesial pathogens. Immunodominant antigens identified by serological reactivity and dominant T-cell antigens have failed to protect cattle against challenge. This review describes the innate and acquired immune mechanisms that define resistance in young calves and correlate with the development of concomitant immunity in older cattle following recovery from clinical disease. The first sections will discuss the innate immune responses by peripheral blood- and spleen-derived macrophages in cattle induced by B. bovis merozoites and their products that limit parasite replication, and comparison of natural killer cell responses in the spleens of young (resistant) and adult (susceptible) cattle. Later sections will describe a proteomic approach to discover novel antigens, especially those recognized by immune CD4+ T lymphocytes. Because immunodominant antigens have failed to stimulate protective immunity, identification of subdominant antigens may prove to be important for effective vaccines. Identification of CD4+ T-cell immunogenic proteins and their epitopes, together with the MHC class II restricting elements, now makes possible the development of MHC class II tetramers and application of this technology to both quantify antigen-specific lymphocytes during infection and discover novel antigenic epitopes. Finally, with the imminent completion of the B. bovis genome-sequencing project, strategies using combined genomic and proteomic approaches to identify novel vaccine candidates will be reviewed. The availability of an annotated B. bovis genome will, for the first time, enable identification of non-immunodominant proteins that may stimulate protective immunity.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | |
Collapse
|
27
|
Zintl A, Gray JS, Skerrett HE, Mulcahy G. Possible mechanisms underlying age-related resistance to bovine babesiosis. Parasite Immunol 2005; 27:115-20. [PMID: 15910419 DOI: 10.1111/j.1365-3024.2005.00748.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calves infected with the tick-borne parasites Babesia spp. do not develop severe clinical babesiosis. Instead they display persistent low parasitaemias without any apparent ill-effects. This age-related resistance not only benefits the host, but also furthers parasite transmission. Both calves and adult animals respond with a Th I immune response to primary infection. Here we hypothesize that the difference in the outcome of infection may at least partly be explained by the localization and timing of the inflammatory response: in calves NO production occurs early and appears to be concentrated in the spleen. On the other hand, there is evidence that a delayed and systemic inflammatory response occurs in adult animals that is ineffectual and probably contributes to the pathogenesis. An improved understanding of the possible mechanisms that underlie this phenomenon may lead to new approaches for the treatment and immune prophylaxis of the disease.
Collapse
Affiliation(s)
- Annetta Zintl
- Department of Veterinary Microbiology & Parasitology and Conway Institute of Biomedical & Biomolecular Research, University College Dublin, Ireland.
| | | | | | | |
Collapse
|
28
|
Shkap V, Leibovitz B, Krigel Y, Hammerschlag J, Marcovics A, Fish L, Molad T, Savitsky I, Mazuz M. Vaccination of older Bos taurus bulls against bovine babesiosis. Vet Parasitol 2005; 129:235-42. [PMID: 15845278 DOI: 10.1016/j.vetpar.2005.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 01/11/2005] [Accepted: 01/16/2005] [Indexed: 11/23/2022]
Abstract
Two separate groups of Bos taurus bulls, one of 106 and the second of 27 animals, imported to Israel from areas free of Babesia bovis and Babesia bigemina, were vaccinated against babesiosis with a bivalent live attenuated vaccine. In light of the fact that routine vaccination is recommended at the weaning age, these bulls--of highly susceptible breeds--were kept under close surveillance to prevent losses that might be caused by severe clinical reactions to their vaccination at the age of 16-18 months. Seven days after vaccination, about one-third of the 106 bulls in the first group developed clinical signs of B. bigemina infection, which peaked at day 9, and then diminished from day 11, when the patent period known for B. bovis infection was observed. Because of the severe clinical responses a total of 36% of the bulls required babesicidal treatment. Despite the treatment Babesia were not sterilized: 33 and 68% of the animals remained PCR positive for B. bigemina and B. bovis, respectively. To mitigate the severe responses to vaccination, the 27 bulls of the second group were vaccinated in two-steps: they were inoculated initially with avirulent culture-derived parasites and then vaccinated with the conventional donor-derived vaccine a month later. None of the bulls in the latter group developed clinical babesiosis, all were serologically positive to B. bigemina, and 67% showed seroconversion to B. bovis. In light of the experience described here, it is suggested that sensitive older cattle be vaccinated against babesiosis by priming them with avirulent in vitro-cultured parasites and then inoculating them with the conventional donor-derived vaccines.
Collapse
Affiliation(s)
- Varda Shkap
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Palmer GH, Abbott JR, Howard CJ, Hope JC, Brown WC. CpG ODN 2006 and IL-12 are comparable for priming Th1 lymphocyte and IgG responses in cattle immunized with a rickettsial outer membrane protein in alum. Vaccine 2003; 21:3307-18. [PMID: 12804862 DOI: 10.1016/s0264-410x(03)00176-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunostimulatory oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN) stimulate IL-12-dependent Th1 dominated cytokine and enhanced IgG responses when co-delivered with antigen to mice. However, the CpG ODN sequences that are optimal for each mammalian species may differ. Previously, we demonstrated that a CpG ODN containing the GTCGTT motif was optimal for stimulating bovine B cell proliferation, and induced IL-6, IL-12 and IFN-gamma production by peripheral blood mononuclear cells (PBMC). The current study was designed to test the hypothesis that the nuclease resistant phosphorothioate modified ODN 2006 (TCGTCGTTTTGTCGTTTTGTCGTT) would induce antigen-specific type 1 cytokine and enhanced IgG responses similar to those induced by IL-12. To test this adjuvant effect, calves were immunized with Anaplasma marginale major surface protein 2 (MSP2) with alum alone or combined with CpG ODN 2006, non-CpG ODN R2006 or IL-12. MSP2-specific IgG1 and IgG2 responses developed more rapidly in calves given IL-12, ODN 2006 or ODN R2006, but the highest IgG1 titers were obtained in CpG ODN-immunized calves. Antigen-specific lymphocyte proliferation and frequency of IFN-gamma-secreting cells were significantly increased in CpG ODN 2006- or IL-12-treated calves, and antigen-stimulated PBMC from these calves also expressed higher levels of IFN-gamma transcripts and lower levels of IL-4 transcripts. No differences in IL-10 mRNA expression were detected among the groups. These results indicate that CpG ODN 2006 is an effective vaccine adjuvant for stimulating both antibody and IFN-gamma mediated cellular immune responses in cattle.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wilkowsky SE, Farber M, Echaide I, Torioni de Echaide S, Zamorano PI, Dominguez M, Suarez CE, Florin-Christensen M. Babesia bovis merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol Biochem Parasitol 2003; 127:133-41. [PMID: 12672522 DOI: 10.1016/s0166-6851(02)00329-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The search for vaccine candidates against bovine babesiosis caused by Babesia bovis is greatly focused on the identification of merozoite surface-exposed antigens that are widely conserved, functionally relevant and immunodominant in cattle protected against B. bovis infections. We have recently identified msa-2c, a member of the B. bovis variable merozoite surface antigen (VMSA) gene family, which in contrast to other members, appears to be highly conserved among geographically distant B. bovis strains. In this study, we further investigated the potential of the msa-2c gene product as diagnostic and vaccine candidate for bovine babesiosis. RT-PCR studies demonstrated that MSA-2c is transcribed in merozoites of the Argentine R1A strain. In addition, antibodies against R1A recombinant MSA-2c reacted in immunoblots with a single protein of approximately 30kDa in B. bovis merozoite extracts from both R1A and Australian "S" strains, demonstrating translation of this protein in these two strains and conservation of B-cell epitopes between them. These antibodies reacted with the cell surface of R1A merozoites in fixed immunofluorescence assays, indicating the surface localization of MSA-2c. This localization was confirmed by live immunofluorescence studies in two different strains, R1A and S2P. These results also demonstrate the conservation of MSA-2c surface-exposed B-cell epitopes between these two strains. Sera from cattle either naturally or experimentally infected with Argentine strains of B. bovis specifically recognized rMSA-2c in immunoblots, reinforcing the idea that B-cell epitopes in rMSA-2c are widely conserved among field strains of B. bovis. Furthermore, our results show that these B-cell epitopes are highly immunogenic, suggesting that MSA-2c may be a useful diagnostic tool for the detection of bovine babesiosis by B. bovis. Experimental vaccination of five bovines with rMSA-2c resulted in elicitation of high specific anti-rMSA-2c IgG titers, with similar amounts of IgG(1) and IgG(2) produced. Importantly, bovine anti-rMSA-2c antibodies were able to neutralize in vitro bovine erythrocyte invasion by R1A merozoites suggesting a significant functional role for MSA-2c. Taken together these results postulate MSA-2c as a candidate for the development of novel tools for improved control of bovine babesiosis.
Collapse
Affiliation(s)
- S E Wilkowsky
- CICVyA, INTA-Castelar, Los Reseros y Las Cabañas, 1712, Castelar, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wagner GG, Holman P, Waghela S. Babesiosis and heartwater: threats without boundaries. Vet Clin North Am Food Anim Pract 2002; 18:417-30, vi-vii. [PMID: 12442575 DOI: 10.1016/s0749-0720(02)00027-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Suppose one of your clients from southern Florida starts talking about cattle egrets while you are vaccinating her cat. It seems she found a nearly dead egret near the cattle pen a few days ago, picked it up, and noticed a number of what looked like small ticks on the legs. Or, suppose you are called out to a small dairy in central Texas to look at some cows that are feverish and anemic. The first animal you examine has a few brown ticks attached just under the tail. Finally, perhaps you are looking at a lame tortoise for a reptile fancier, a new client, and find a large, colorful tick on a hind leg, well up under the shell. Ring any bells? Egrets are great hosts for the immature stages of Amblyomma ticks and have been captured and marked in the eastern Caribbean, then recaptured in the Florida Keys. Those cattle ticks in Texas might be acaricide-resistant Boophilus ticks that originated in Mexico. The Amblyomma tick on the tortoise could well have "hitch-hiked" all the way from South Africa. By now you remember that both Amblyomma and Boophilus ticks are efficient vectors of two tickborne diseases in this hemisphere, heartwater (in the case of Amblyomma) and babesiosis (transmitted by Boophilus ticks). Both of these diseases are exotic to the United States, and because our livestock are considered to be totally susceptible, an introduced infection could result in high initial death losses (approximately 70%); thus, both the ticks and the diseases pose immediate threats to the health and economic security of United States animal industries. Most importantly, you, whether as a small animal or large animal practitioner, are the first line of defense against such exotic diseases and their vectors.
Collapse
Affiliation(s)
- G Gale Wagner
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University Drive and Agronomy Road, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|