1
|
Deng Q, Sun X, Gao D, Wang Y, Liu Y, Li N, Wang Z, Liu M, Wang J, Wang Q. Characterization of Two Novel Rumen-Derived Exo-Polygalacturonases: Catalysis and Molecular Simulations. Microorganisms 2023; 11:microorganisms11030760. [PMID: 36985333 PMCID: PMC10059216 DOI: 10.3390/microorganisms11030760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Pectinases are a series of enzymes that degrade pectin and have been used extensively in the food, feed, and textile industries. The ruminant animal microbiome is an excellent source for mining novel pectinases. Two polygalacturonase genes, IDSPga28-4 and IDSPga28-16, from rumen fluid cDNA, were cloned and heterologously expressed. Recombinant IDSPGA28-4 and IDSPGA28-16 were stable from pH 4.0 to 6.0, with activities of 31.2 ± 1.5 and 330.4 ± 12.4 U/mg, respectively, against polygalacturonic acid. Hydrolysis product analysis and molecular dynamics simulation revealed that IDSPGA28-4 was a typical processive exo-polygalacturonase and cleaved galacturonic acid monomers from polygalacturonic acid. IDSPGA28-16 cleaved galacturonic acid only from substrates with a degree of polymerization greater than two, suggesting a unique mode of action. IDSPGA28-4 increased the light transmittance of grape juice from 1.6 to 36.3%, and IDSPGA28-16 increased the light transmittance of apple juice from 1.9 to 60.6%, indicating potential application in the beverage industry, particularly for fruit juice clarification.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobao Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deying Gao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuting Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nuo Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhengguang Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqi Liu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jiakun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88982389
| |
Collapse
|
2
|
Rafique N, Bashir S, Khan MZ, Hayat I, Orts W, Wong DWS. Metabolic engineering of Bacillus subtilis with an endopolygalacturonase gene isolated from Pectobacterium. carotovorum; a plant pathogenic bacterial strain. PLoS One 2021; 16:e0256562. [PMID: 34936645 PMCID: PMC8694468 DOI: 10.1371/journal.pone.0256562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/20/2021] [Indexed: 12/02/2022] Open
Abstract
Pectinolytic enzymes or pectinases are synthesized naturally by numerous microbes and plants. These enzymes degrade various kinds of pectin which exist as the major component of the cell wall in plants. A pectinase gene encoding endo-polygalacturonase (endo-PGase) enzyme was isolated from Pectobacterium carotovorum a plant pathogenic strain of bacteria and successfully cloned into a secretion vector pHT43 having σA-dependent promoter for heterologous expression in Bacillus subtilis (WB800N).The desired PCR product was 1209bp which encoded an open reading frame of 402 amino acids. Recombinant proteins showed an estimated molecular weight of 48 kDa confirmed by sodium dodecyl sulphate-polyacrylamide-gel electrophoresis. Transformed B. subtilis competent cells harbouring the engineered pHT43 vector with the foreign endo-PGase gene were cultured in 2X-yeast extract tryptone medium and subsequently screened for enzyme activity at various temperatures and pH ranges. Optimal activity of recombinant endo-PGase was found at 40°C and pH 5.0. To assay the catalytic effect of metal ions, the recombinant enzyme was incubated with 1 mM concentration of various metal ions. Potassium chloride increased the enzyme activity while EDTA, Zn++ and Ca++, strongly inhibited the activity. The chromatographic analysis of enzymatic hydrolysates of polygalacturonic acid (PGA) and pectin substrates using HPLC and TLC revealed tri and tetra-galacturonates as the end products of recombinant endo-PGase hydrolysis. Conclusively, endo-PGase gene from the plant pathogenic strain was successfully expressed in Bacillus subtilis for the first time using pHT43 expression vector and could be assessed for enzyme production using a very simple medium with IPTG induction. These findings proposed that the Bacillus expression system might be safer to escape endotoxins for commercial enzyme production as compared to yeast and fungi. Additionally, the hydrolysis products generated by the recombinant endo-PGase activity offer their useful applications in food and beverage industry for quality products.
Collapse
Affiliation(s)
- Nagina Rafique
- Department of Food Science and Technology, Faculty of Agriculture, University of the Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
- Bioproducts Research Unit, Western Regional Research Centre, United States Department of Agriculture, Albany, California, United States of America
| | - Saiqa Bashir
- Department of Food Science and Technology, Faculty of Agriculture, University of the Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Zubair Khan
- Department of Plant Breeding and Molecular Genetics, Faculty of Agriculture, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Imran Hayat
- Department of Food Science and Technology, Faculty of Agriculture, University of the Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Willium Orts
- Bioproducts Research Unit, Western Regional Research Centre, United States Department of Agriculture, Albany, California, United States of America
| | - Dominic W. S. Wong
- Bioproducts Research Unit, Western Regional Research Centre, United States Department of Agriculture, Albany, California, United States of America
| |
Collapse
|
3
|
Stoller JR, Wagschal K, Lee CC, Jordan DB. A general correction to catalytic rates determined for nonprocessive exo-depolymerases acting on both substrate and product in the initial-rate measurement. Anal Biochem 2017; 523:46-49. [DOI: 10.1016/j.ab.2017.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
|
4
|
Expression and Characterization of Hyperthermostable Exo-polygalacturonase TtGH28 from Thermotoga thermophilus. Mol Biotechnol 2016; 58:509-19. [DOI: 10.1007/s12033-016-9948-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Yuan P, Meng K, Wang Y, Luo H, Shi P, Huang H, Bai Y, Yang P, Yao B. A protease-resistant exo-polygalacturonase from Klebsiella sp. Y1 with good activity and stability over a wide pH range in the digestive tract. BIORESOURCE TECHNOLOGY 2012; 123:171-176. [PMID: 22940315 DOI: 10.1016/j.biortech.2012.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/02/2012] [Accepted: 07/13/2012] [Indexed: 06/01/2023]
Abstract
Polygalacturonases are important feed and food additives. In the present study an exo-polygalacturonase gene (pgu B) was cloned from Klebsiella sp. Y1 CGMCC 4433 and expressed in Escherichia coli BL21 (DE3). pgu B encodes a 658-amino acid polypeptide belonging to Glycoside Hydrolase Family 28. The optimal pH and temperature of exo-PGU B activity were 6.0 and 40-50°C, respectively. The enzyme exhibited >35% of maximum activity within the pH range of 2.0-12.0. Exo-PGU B or an exo-PGU B/ endo-polygalacturonase mixture reduced the viscosity of polygalacturonic acid (1.0%, w/v) by 15.6 and 39.4%, respectively. Under simulated alimentary tract conditions, exo-PGU B was very stable (>25% activity from pH 1.5 to 6.8) and active, releasing 53.7 and 109.6μg of galacturonic acid from 400 to 800μg of polygalacturonic acid, respectively. These properties make exo-PGU B a potentially valuable additive for applications in feed and food.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yuan P, Meng K, Wang Y, Luo H, Huang H, Shi P, Bai Y, Yang P, Yao B. Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem. PLoS One 2012; 7:e40940. [PMID: 22815874 PMCID: PMC3398870 DOI: 10.1371/journal.pone.0040940] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/15/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Efficient degradation of pectin in the rumen is necessary for plant-based feed utilization. The objective of this study was to characterize the diversity, abundance, and functions of pectinases from microorganisms in the sheep rumen. METHODOLOGY/PRINCIPAL FINDINGS A total of 103 unique fragments of polygalacturonase (PF00295) and pectate lyase (PF00544 and PF09492) genes were retrieved from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of the sequences of these fragments had low identities (<65%) with known sequences. Phylogenetic tree building separated the PF00295, PF00544, and PF09492 sequences into five, three, and three clades, respectively. Cellulolytic and noncellulolytic Butyrivibrio, Prevotella, and Fibrobacter species were the major sources of the pectinases. The two most abundant pectate lyase genes were cloned, and their protein products, expressed in Escherichia coli, were characterized. Both enzymes probably act extracellularly as their nucleotide sequences contained signal sequences, and they had optimal activities at the ruminal physiological temperature and complementary pH-dependent activity profiles. CONCLUSION/SIGNIFICANCE This study reveals the specificity, diversity, and abundance of pectinases in the rumen ecosystem and provides two additional ruminal pectinases for potential industrial use under physiological conditions.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Kun Meng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Yasawong M, Areekit S, Pakpitchareon A, Santiwatanakul S, Chansiri K. Characterization of thermophilic halotolerant Aeribacillus pallidus TD1 from Tao Dam Hot Spring, Thailand. Int J Mol Sci 2011; 12:5294-303. [PMID: 21954359 PMCID: PMC3179166 DOI: 10.3390/ijms12085294] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/28/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022] Open
Abstract
The bacterial strain TD1 was isolated from Tao Dam hot spring in Thailand. Strain TD1 was Gram positive, rod-shaped, aerobic, motile, and endospore forming. The cell was 2.0–40 μm in length and about 0.4 μm in diameter. The optimum growth occurred at 55–60 °C and at pH 7–8. Strain TD1 was able to grow on medium containing up to 10% NaCl. The DNA G+C content was 38.9 mol%. The cellular fatty acid content was mainly C16:0, which comprised 25.04% of the total amount of cellular fatty acid. 16S rDNA showed 99% identity to Aeribacillus pallidus DSM 3670T. Bayesian tree analysis strongly supported the idea that strain TD1 is affiliated with genus Aeribacillus, as Aeribacillus pallidus strain TD1. Although the 16S rDNA of A. pallidus strain TD1 is similar to that of A. pallidus DSM 3670T, some physiological properties and the cellular fatty acid profiles differ significantly. A. pallidus strain TD1 can produce extracellular pectate lyase, which has not been reported elsewhere for other bacterial strains in the genus Aeribacillus. A. pallidus strain TD1 may be a good candidate as a pectate lyase producer, which may have useful industrial applications.
Collapse
Affiliation(s)
- Montri Yasawong
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mails: (M.Y.); (S.A.); (A.P.)
| | - Supatra Areekit
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mails: (M.Y.); (S.A.); (A.P.)
| | - Arda Pakpitchareon
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mails: (M.Y.); (S.A.); (A.P.)
| | - Somchai Santiwatanakul
- Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mail:
| | - Kosum Chansiri
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mails: (M.Y.); (S.A.); (A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +662-664-1000-4605; Fax: +662-664-1000-4618
| |
Collapse
|
8
|
Soriano M, Diaz P, Pastor FIJ. Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin. Curr Microbiol 2005; 50:114-8. [PMID: 15717229 DOI: 10.1007/s00284-004-4382-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 09/30/2004] [Indexed: 10/25/2022]
Abstract
Strains Paenibacillus sp. BP-23 and Bacillus sp. BP-7, previously isolated from soil from a rice field, secreted high levels of pectinase activity in media supplemented with pectin. Production of pectinases in strain Paenibacillus sp. BP-23 showed catabolite repression, while in Bacillus sp. BP-7 production of pectin degrading enzymes was not negatively affected by glucose. The two strains showed lyase activities as the predominant pectinases, while hydrolase activity was very low. Analysis of Paenibacillus sp. BP-23 in SDS-polyacrylamide gels and zymograms showed five pectinase activity bands. The strict requirement of Ca(2+) for lyase activity of the strain indicates that correspond to pectate lyases. For Bacillus sp. BP-7, zymograms showed four bands of different size. The strain showed a Ca(2+) requirement for lyase activity on pectate but not on pectin, indicating that the pectinolytic system of Bacillus sp. BP-7 is comprised of pectate lyases and pectin lyases. The results show differences in pectin degrading systems between the two aerobic sporogenous bacterial strains studied.
Collapse
Affiliation(s)
- Margarita Soriano
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
9
|
Tamburini E, León AG, Perito B, Mastromei G. Characterization of bacterial pectinolytic strains involved in the water retting process. Environ Microbiol 2003; 5:730-6. [PMID: 12919408 DOI: 10.1046/j.1462-2920.2003.00462.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pectinolytic microorganisms involved in the water retting process were characterized. Cultivable mesophilic anaerobic and aerobic bacteria were isolated from unretted and water-retted material. A total of 104 anaerobic and 23 aerobic pectinolytic strains were identified. Polygalacturonase activity was measured in the supernatant of cell cultures; 24 anaerobic and nine aerobic isolates showed an enzymatic activity higher than the reference strains Clostridium felsineum and Bacillus subtilis respectively. We performed the first genotypic characterization of the retting microflora by a 16S amplified ribosomal DNA restriction analysis (ARDRA). Anaerobic isolates were divided into five different groups, and the aerobic isolates were clustered into three groups. 84.6% of the anaerobic and 82.6% of the aerobic isolates consisted of two main haplotypes. Partial 16S rRNA gene sequences were determined for 12 strains, representative of each haplotype. All anaerobic strains were assigned to the Clostridium genus, whereas the aerobic isolates were assigned to either the Bacillus or the Paenibacillus genus. Anaerobic isolates with high polygalacturonase (PG) activity belong to two clearly distinct phylogenetic clusters related to C. acetobutylicum-C. felsineum and C. saccharobutylicum species. Aerobic isolates with high PG activity belong to two clearly distinct phylogenetic clusters related to B. subtilisT and B. pumilusT.
Collapse
MESH Headings
- Bacillus/isolation & purification
- Bacillus/metabolism
- Bacteria, Aerobic/classification
- Bacteria, Aerobic/enzymology
- Bacteria, Aerobic/isolation & purification
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/enzymology
- Bacteria, Anaerobic/isolation & purification
- Cannabis/metabolism
- Cannabis/microbiology
- Clostridium/isolation & purification
- Clostridium/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Flax/metabolism
- Flax/microbiology
- Haplotypes
- Pectins/metabolism
- Phylogeny
- Polygalacturonase/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Ribotyping
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Water Microbiology
Collapse
Affiliation(s)
- Elena Tamburini
- Dipartimento di Biologia Sperimentale, Sezione di Microbiologia, University of Cagliari, Cittadella universitaria, 09042 Monserrato, Italy
| | | | | | | |
Collapse
|
10
|
Parisot J, Langlois V, Sakanyan V, Rabiller C. Cloning expression and characterization of a thermostable exopolygalacturonase from Thermotoga maritima. Carbohydr Res 2003; 338:1333-7. [PMID: 12791288 DOI: 10.1016/s0008-6215(03)00165-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A gene encoding for a thermostable exopolygalacturonase (exo-PG) from hyperthermophilic Thermotoga maritima has been cloned into a T7 expression vector and expressed in Escherichia coli. The gene encoded a polypeptide of 454 residues with a molecular mass of 51,304 Da. The recombinant enzyme was purified to homogeneity by heat treatment and nickel affinity chromatography. The thermostable enzyme had maximum of hydrolytic activity for polygalacturonate at 95 degrees C, pH 6.0 and retains 90% of activity after heating at 90 degrees C for 5 h. Study of the catalytic activity of the exopolygalacturonase, investigated by means of 1H NMR spectroscopy revealed an inversion of configuration during hydrolysis of alpha-(1-->4)-galacturonic linkage.
Collapse
Affiliation(s)
- Judicaël Parisot
- Unité de Recherches en Biocatalyse (unité CNRS 2230), Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP, 92208 F-44322, Nantes, France
| | | | | | | |
Collapse
|