1
|
Argenta N, Clark KF. Shell bacterial community dynamics suggest that American lobster (Homarus americanus) impoundment shell disease is caused by a dysbiosis. J Invertebr Pathol 2025; 211:108355. [PMID: 40379204 DOI: 10.1016/j.jip.2025.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Impoundment shell disease (ISD) in the American lobster (Homarus americanus) is a distinct pathological condition from the more well-known epizootic shell disease. It is commonly observed at low prevalences in live American lobsters held overwinter in tidal pounds and significantly reduces their economic value. Impoundment shell disease was originally described in 1937; however, its etiology remains unclear. The main goal of this study was to characterize the bacterial community associated with ISD in Canadian lobsters. Lobsters were collected from a pound in southwest Nova Scotia, Canada, and the full 16S rRNA gene of bacterial communities from lesion and healthy shell areas of asymptomatic (As), moderately symptomatic (MS) and severely symptomatic (SS) animals was sequenced. Pielou evenness and Shannon diversity indexes of alpha-diversity were higher in healthy areas compared to lesion areas. Beta-diversity metrics indicate that the bacterial diversity differences are driven mainly by the relative abundance of a small number of bacteria, rather than the specific taxa present in the samples. Taxa were designated as being potentially involved with ISD based on their relative frequency, relative abundance or being core bacteriome in the lesion shell area. Among those found in this study, Tenacibaculum and Vibrio were previously described in ISD lesions; but others, such as Cellvibrionaceae, Polaribacter, Maribacter and Sulfitobacter were not. Altogether, the findings of this study indicate that ISD is driven by dysbiosis. Moreover, the inconsistency of taxa with previous studies may indicate that ISD consists of a combination of specific functional groups of bacteria, rather specific taxa.
Collapse
Affiliation(s)
- Nicolas Argenta
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada.
| | - K Fraser Clark
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| |
Collapse
|
2
|
Kaufmann H, Salvador C, Salazar VW, Cruz N, Dias GM, Tschoeke D, Campos L, Sawabe T, Miyazaki M, Maruyama F, Thompson F, Thompson C. Genomic Repertoire of Twenty-Two Novel Vibrionaceae Species Isolated from Marine Sediments. MICROBIAL ECOLOGY 2025; 88:36. [PMID: 40301151 PMCID: PMC12041005 DOI: 10.1007/s00248-025-02533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
The genomic repertoire of vibrios has been extensively studied, particularly regarding their metabolic plasticity, symbiotic interactions, and resistance mechanisms to environmental stressors. However, little is known about the genomic diversity and adaptations of vibrios inhabiting deep-sea marine sediments. In this study, we investigated the genomic diversity of vibrios isolated from deep-sea core sediments collected using a manned submersible off Japan. A total of 50 vibrio isolates were obtained and characterized phenotypically, and by genome sequencing. From this total, we disclosed 22 novel species examining genome-to-genome distance, average amino acid identity, and phenotypes (Alivibrio: 1; Enterovibrio: 1; Photobacterium: 8; Vibrio: 12). The novel species have fallen within known clades (e.g., Fisheri, Enterovibrio, Profundum, and Splendidus) and novel clades (JAMM0721, JAMM0388, JAMM0395). The 28 remainder isolates were identified as known species: Aliivibrio sifiae (2), A. salmonicida (1), Enterovibrio baiacu (1), E. norvegicus (1), Photobacterium profundum (3), P. angustum (1), P. chitiniliticum (1), P. frigidiphilum (1), Photobacterium indicum (1), P. sanguinicancri (1). P. swingsii (2), Vibrio alginolyticus (3), V. anguillarum (1), V. campbellii (1), V. fluvialis (1), V. gigantis (1), V. lentus (1), V. splendidus (4), and V. tasmaniensis (1). Genomic analyses revealed that all 50 vibrios harbored genes associated with high-pressure adaptation, including sensor kinases, chaperones, autoinducer-2 (AI-2) signaling, oxidative damage repair, polyunsaturated fatty acid biosynthesis, and stress response mechanisms related to periplasmic and outer membrane protein misfolding under heat shock and osmotic stress. Additionally, alternative sigma factors, trimethylamine oxide (TMAO) respiration, and osmoprotectant acquisition pathways were identified, further supporting their ability to thrive in deep-sea environments. Notably, the genomes exhibited a high prevalence of antibiotic resistance genes, with antibiotic efflux pumps being the most abundant group. The ugd gene expanded in number in some novel species (Photobacterium satsumensis sp. nov. JAMM1754: 4 copies; Vibrio makurazakiensis sp. nov. JAMM1826: 3 copies). This gene may confer antibiotic (polymyxin) resistance to these vibrios.
Collapse
Affiliation(s)
- Hannah Kaufmann
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Carolina Salvador
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Vinicius W Salazar
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Natália Cruz
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Graciela Maria Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
- Instituto Alberto Luiz Coimbra de Pós-Graduação E Pesquisa de Engenharia (COPPE), Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucia Campos
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil
| | - Tomoo Sawabe
- Laboratory of Microbiology, Fisheries Sciences School, Hokkaido University, Hakodate, Japan
| | - Masayuki Miyazaki
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Yokosuka, Japan
- Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Fumito Maruyama
- Microbial Genomics and Ecology Laboratory, Hiroshima University, Hiroshima, Japan
| | - Fabiano Thompson
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil.
| | - Cristiane Thompson
- Laboratory of Microbiology, Institute of Biology, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Meunier L, Costa R, Keller-Costa T, Cannella D, Dechamps E, George IF. Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiol Spectr 2024; 12:e0088624. [PMID: 39315806 PMCID: PMC11537107 DOI: 10.1128/spectrum.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chitin degradation is a keystone process in the oceans, mediated by marine microorganisms with the help of several enzymes, mostly chitinases. Sediment, seawater, and filter-feeding marine invertebrates, such as sponges, are known to harbor chitin-degrading bacteria and are presumably hotspots for chitin turnover. Here, we employed an artificial selection process involving enrichment cultures derived from microbial communities associated with the marine sponge Hymeniacidon perlevis, its surrounding seawater and sediment, to select bacterial consortia capable of degrading raw chitin. Throughout the artificial selection process, chitin degradation rates and the taxonomic composition of the four successive enrichment cultures were followed. To the best of our knowledge, chitin degradation was characterized for the first time using size exclusion chromatography, which revealed significant shifts in the numbered average chitin molecular weight, strongly suggesting the involvement of endo-chitinases in the breakdown of the chitin polymer during the enrichment process. Concomitantly with chitin degradation, the enrichment cultures exhibited a decrease in alpha diversity compared with the environmental samples. Notably, some of the dominant taxa in the enriched communities, such as Motilimonas, Arcobacter, and Halarcobacter, were previously unknown to be involved in chitin degradation. In particular, the analysis of published genomes of these genera suggests a pivotal role of Motilimonas in the hydrolytic cleavage of chitin. This study provides context to the microbiome of the marine sponge Hymeniacidon perlevis in light of its environmental surroundings and opens new ground to the future discovery and characterization of novel enzymes of marine origin involved in chitin degradation processes.IMPORTANCEChitin is the second most abundant biopolymer on Earth after cellulose, and the most abundant in the marine environment. At present, industrial processes for the conversion of seafood waste into chitin, chitosan, and chitooligosaccharide (COS) rely on the use of high amounts of concentrated acids or strong alkali at high temperature. Developing bio-based methods to transform available chitin into valuable compounds, such as chitosan and COS, holds promise in promoting a more sustainable, circular bioeconomy. By employing an artificial selection procedure based on chitin as a sole C and N source, we discovered microorganisms so-far unknown to metabolize chitin in the rare microbial biosphere of several marine biotopes. This finding represents a first important step on the path towards characterizing and exploiting potentially novel enzymes of marine origin with biotechnological interest, since products of chitin degradation may find applications across several sectors, such as agriculture, pharmacy, and waste management.
Collapse
Affiliation(s)
- Laurence Meunier
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - David Cannella
- PhotoBioCatalysis Unit, Crop Nutrition and Biostimulation Lab (CPBL) and Biomass Transformation Lab (BTL), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels, Belgium
| | - Etienne Dechamps
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle F. George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
4
|
Leunda-Esnaola A, Bunin E, Arrufat P, Pearman PB, Kaberdin VR. Harnessing the intragenomic variability of rRNA operons to improve differentiation of Vibrio species. Sci Rep 2024; 14:9908. [PMID: 38688963 PMCID: PMC11061105 DOI: 10.1038/s41598-024-60505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Although the 16S rRNA gene is frequently used as a phylogenetic marker in analysis of environmental DNA, this marker often fails to distinguish closely related species, including those in the genus Vibrio. Here, we investigate whether inclusion and analysis of 23S rRNA sequence can help overcome the intrinsic weaknesses of 16S rRNA analyses for the differentiation of Vibrio species. We construct a maximum likelihood 16S rRNA gene tree to assess the use of this gene to identify clades of Vibrio species. Within the 16S rRNA tree, we identify the putative informative bases responsible for polyphyly, and demonstrate the association of these positions with tree topology. We demonstrate that concatenation of 16S and 23S rRNA genes increases the number of informative nucleotide positions, thereby overcoming ambiguities in 16S rRNA-based phylogenetic reconstructions. Finally, we experimentally demonstrate that this approach considerably improves the differentiation and identification of Vibrio species in environmental samples.
Collapse
Affiliation(s)
- Amaia Leunda-Esnaola
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Evgeni Bunin
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Pablo Arrufat
- Department of Plant Biology and Ecology, Faculty of Sciences and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Peter B Pearman
- Department of Plant Biology and Ecology, Faculty of Sciences and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
- BC3 Basque Center for Climate Change, Scientific Campus of the University of the Basque Country, 48940, Leioa, Spain.
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| |
Collapse
|
5
|
Schwob G, Cabrol L, Saucède T, Gérard K, Poulin E, Orlando J. Unveiling the co-phylogeny signal between plunderfish Harpagifer spp. and their gut microbiomes across the Southern Ocean. Microbiol Spectr 2024; 12:e0383023. [PMID: 38441978 PMCID: PMC10986581 DOI: 10.1128/spectrum.03830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Understanding the factors that sculpt fish gut microbiome is challenging, especially in natural populations characterized by high environmental and host genomic complexity. However, closely related hosts are valuable models for deciphering the contribution of host evolutionary history to microbiome assembly, through the underscoring of phylosymbiosis and co-phylogeny patterns. Here, we propose that the recent diversification of several Harpagifer species across the Southern Ocean would allow the detection of robust phylogenetic congruence between the host and its microbiome. We characterized the gut mucosa microbiome of 77 individuals from four field-collected species of the plunderfish Harpagifer (Teleostei, Notothenioidei), distributed across three biogeographic regions of the Southern Ocean. We found that seawater physicochemical properties, host phylogeny, and geography collectively explained 35% of the variation in bacterial community composition in Harpagifer gut mucosa. The core microbiome of Harpagifer spp. gut mucosa was characterized by a low diversity, mostly driven by selective processes, and dominated by a single Aliivibrio Operational Taxonomic Unit (OTU) detected in more than 80% of the individuals. Nearly half of the core microbiome taxa, including Aliivibrio, harbored co-phylogeny signal at microdiversity resolution with host phylogeny, indicating an intimate symbiotic relationship and a shared evolutionary history with Harpagifer. The clear phylosymbiosis and co-phylogeny signals underscore the relevance of the Harpagifer model in understanding the role of fish evolutionary history in shaping the gut microbiome assembly. We propose that the recent diversification of Harpagifer may have led to the diversification of Aliivibrio, exhibiting patterns that mirror the host phylogeny. IMPORTANCE Although challenging to detect in wild populations, phylogenetic congruence between marine fish and its microbiome is critical, as it highlights intimate associations between hosts and ecologically relevant microbial symbionts. Our study leverages a natural system of closely related fish species in the Southern Ocean to unveil new insights into the contribution of host evolutionary trajectory on gut microbiome assembly, an underappreciated driver of the global marine fish holobiont. Notably, we unveiled striking evidence of co-diversification between Harpagifer and its microbiome, demonstrating both phylosymbiosis of gut bacterial communities and co-phylogeny of some specific bacterial symbionts, mirroring the host diversification patterns. Given Harpagifer's significance as a trophic resource in coastal areas and its vulnerability to climatic and anthropic pressures, understanding the potential evolutionary interdependence between the hosts and its microbiome provides valuable microbial candidates for future monitoring, as they may play a pivotal role in host species acclimatization to a rapidly changing environment.
Collapse
Affiliation(s)
- Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
| | - Léa Cabrol
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France, Marseille, France
| | - Thomas Saucède
- UMR 6282 Biogeosciences, University Bourgogne Franche-Comté, CNRS, EPHE, Dijon, France
| | - Karin Gérard
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Laboratory of Antarctic and Subantarctic Marine Ecosystems, Faculty of Sciences, University of Magallanes, Punta Arenas, Chile
- Cape Horn International Center, Puerto Williams, Chile
| | - Elie Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
6
|
Lau NS, Furusawa G. Polysaccharide degradation in Cellvibrionaceae: Genomic insights of the novel chitin-degrading marine bacterium, strain KSP-S5-2, and its chitinolytic activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169134. [PMID: 38070563 DOI: 10.1016/j.scitotenv.2023.169134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
In this study, we present the genome characterization of a novel chitin-degrading strain, KSP-S5-2, and comparative genomics of 33 strains of Cellvibrionaceae. Strain KSP-S5-2 was isolated from mangrove sediment collected in Balik Pulau, Penang, Malaysia, and its 16S rRNA gene sequence showed the highest similarity (95.09%) to Teredinibacter franksiae. Genome-wide analyses including 16S rRNA gene sequence similarity, average nucleotide identity, digital DNA-DNA hybridization, and phylogenomics, suggested that KSP-S5-2 represents a novel species in the family Cellvibrionaceae. The Cellvibrionaceae pan-genome exhibited high genomic variability, with only 1.7% representing the core genome, while the flexible genome showed a notable enrichment of genes related to carbohydrate metabolism and transport pathway. This observation sheds light on the genetic plasticity of the Cellvibrionaceae family and the gene pools that form the basis for the evolution of polysaccharide-degrading capabilities. Comparative analysis of the carbohydrate-active enzymes across Cellvibrionaceae strains revealed that the chitinolytic system is not universally present within the family, as only 18 of the 33 genomes encoded chitinases. Strain KSP-S5-2 displayed an expanded repertoire of chitinolytic enzymes (25 GH18, two GH19 chitinases, and five GH20 β-N-acetylhexosaminidases) but lacked genes for agar, xylan, and pectin degradation, indicating specialized enzymatic machinery focused primarily on chitin degradation. Further, the strain degraded 90% of chitin after 10 days of incubation. In summary, our findings provided insights into strain KSP-S5-2's genomic potential, the genetics of its chitinolytic system, genomic diversity within the Cellvibrionaceae family in terms of polysaccharide degradation, and its application for chitin degradation.
Collapse
Affiliation(s)
- Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
7
|
Yang J, Zhang L, Lin S, Li W, Liu C, Yan J, Li S, Long L. Structural insights of a SusD-like protein in marine Bacteroidetes bacteria reveal the molecular basis for chitin recognition and acquisition. FEBS J 2024; 291:584-595. [PMID: 37845429 DOI: 10.1111/febs.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Efficient recognition and transportation of chitin oligosaccharides are crucial steps for the utilization of chitin by heterotrophic bacteria. In this study, we employed structural biological and biochemical approaches to investigate the substrate recognition and acquisition mechanism of a novel chitin-binding SusD-like protein, AqSusD, which is derived from the chitin utilization gene cluster of a marine Bacteroides strain (Aquimarina sp. SCSIO 21287). We resolved the crystal structures of the AqSusD apo-protein and its complex with chitin oligosaccharides. Our results revealed that some crucial residues (Gln67, Phe87, and Asp276) underwent significant conformational changes to form tighter substrate binding sites for ligand binding. Moreover, we identified the functions of key amino acid residues and discovered that π-π stacking and hydrogen bonding between AqSusD and the ligand played significant roles in recognition of the protein for chitin oligosaccharide binding. Based on our findings and previous investigations, we put forward a model for the mechanism of chitin oligosaccharide recognition, capture, and transport by AqSusD, in collaboration with the membrane protein AqSusC. Our study deepens the understanding of the molecular-level "selfish" use of polysaccharides such as chitin by Bacteroides.
Collapse
Affiliation(s)
- Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shanshan Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chen Liu
- Guangzhou Quality Supervision and Testing Institute, China
| | - Jingheng Yan
- Guangzhou Quality Supervision and Testing Institute, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Liang B, Song W, Xing R, Liu S, Yu H, Li P. The source, activity influencing factors and biological activities for future development of chitin deacetylase. Carbohydr Polym 2023; 321:121335. [PMID: 37739548 DOI: 10.1016/j.carbpol.2023.121335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Chitin deacetylase (CDA), a prominent member of the carbohydrate esterase enzyme family 4 (CE4), is found ubiquitously in bacteria, fungi, insects, and crustaceans. This metalloenzyme plays a pivotal role in recognizing and selectively removing acetyl groups from chitin, thus offering an environmentally friendly and biologically-driven preparation method for chitosan with immense industrial potential. Due to its diverse origins, CDAs sourced from different organisms exhibit unique functions, optimal pH ranges, and temperature preferences. Furthermore, certain organic reagents can induce structural changes in CDAs, influencing their catalytic activity. Leveraging CDA's capabilities extends beyond chitosan biocatalysis, as it demonstrates promising application value in agricultural pest control. In this paper, the source, reaction mechanism, influencing factors, the fermentation methods and applications of CDA are reviewed, which provides theoretical help for the research and application of CDA.
Collapse
Affiliation(s)
- Bicheng Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
9
|
Cardozo FA, Feitosa V, Mendonça CMN, da Silva FVS, Converti A, de Souza Oliveira RP, Pessoa A. Enhanced production of N-acetyl-glucosaminidase by marine Aeromonas caviae CHZ306 in bioreactor. Braz J Microbiol 2023; 54:1533-1545. [PMID: 37610567 PMCID: PMC10485184 DOI: 10.1007/s42770-023-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
N-Acetyl-glucosaminidases (GlcNAcases) are exoenzymes found in a wide range of living organisms, which have gained great attention in the treatment of disorders related to diabetes, Alzheimer's, Tay-Sachs', and Sandhoff's diseases; the control of phytopathogens; and the synthesis of bioactive GlcNAc-containing products. Aiming at future industrial applications, in this study, GlcNAcase production by marine Aeromonas caviae CHZ306 was enhanced first in shake flasks in terms of medium composition and then in bench-scale stirred-tank bioreactor in terms of physicochemical conditions. Stoichiometric balance between the bioavailability of carbon and nitrogen in the formulated culture medium, as well as the use of additional carbon and nitrogen sources, played a central role in improving the bioprocess, considerably increasing the enzyme productivity. The optimal cultivation medium was composed of colloidal α-chitin, corn steep liquor, peptone A, and mineral salts, in a 5.2 C:N ratio. Optimization of pH, temperature, colloidal α-chitin concentration, and kLa conditions further increased GlcNAcase productivity. Under optimized conditions in bioreactor (i.e., 34 °C, pH 8 and kLa 55.2 h-1), GlcNAcase activity achieved 173.4 U.L-1 after 12 h of cultivation, and productivity no less than 14.45 U.L-1.h-1 corresponding to a 370-fold enhancement compared to basal conditions.
Collapse
Affiliation(s)
- Flávio Augusto Cardozo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil.
| | - Valker Feitosa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
- Departamento de Medicina e Enfermagem, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, Brasil
| | - Carlos Miguel Nóbrega Mendonça
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
- CICECO - Instituto de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Francisco Vitor Santos da Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
| | - Attilio Converti
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università di Genova, Genova, Italia
| | | | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
10
|
Arnold ND, Garbe D, Brück TB. Proteomic and Transcriptomic Analyses to Decipher the Chitinolytic Response of Jeongeupia spp. Mar Drugs 2023; 21:448. [PMID: 37623729 PMCID: PMC10455584 DOI: 10.3390/md21080448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
In nature, chitin, the most abundant marine biopolymer, does not accumulate due to the action of chitinolytic organisms, whose saccharification systems provide instructional blueprints for effective chitin conversion. Therefore, discovery and deconstruction of chitinolytic machineries and associated enzyme systems are essential for the advancement of biotechnological chitin valorization. Through combined investigation of the chitin-induced secretome with differential proteomic and transcriptomic analyses, a holistic system biology approach has been applied to unravel the chitin response mechanisms in the Gram-negative Jeongeupia wiesaeckerbachi. Hereby, the majority of the genome-encoded chitinolytic machinery, consisting of various glycoside hydrolases and a lytic polysaccharide monooxygenase, could be detected extracellularly. Intracellular proteomics revealed a distinct translation pattern with significant upregulation of glucosamine transport, metabolism, and chemotaxis-associated proteins. While the differential transcriptomic results suggested the overall recruitment of more genes during chitin metabolism compared to that of glucose, the detected protein-mRNA correlation was low. As one of the first studies of its kind, the involvement of over 350 unique enzymes and 570 unique genes in the catabolic chitin response of a Gram-negative bacterium could be identified through a three-way systems biology approach. Based on the cumulative data, a holistic model for the chitinolytic machinery of Jeongeupia spp. is proposed.
Collapse
Affiliation(s)
| | | | - Thomas B. Brück
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Werner-Siemens Chair for Synthetic Biotechnology (WSSB), Lichtenbergstr. 4, 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
11
|
Kumar R, Huang MY, Chen CL, Wang HC, Lu HP. Resilience and probiotic interventions to prevent and recover from shrimp gut dysbiosis. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108886. [PMID: 37290613 DOI: 10.1016/j.fsi.2023.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
To counter the recurrent outbreaks of bacterial (acute hepatopancreatic necrosis disease; AHPND) and viral (white spot disease; WSD) shrimp diseases, which still remain a threat to the global industry, shrimp gut microbiota research has been gaining more attention in recent years, and the use of probiotics in aquaculture has had promising results in improving shrimp gut health and immunity. In this review based on our studies on AHPND and WSD, we summarize our current understanding of the shrimp gastrointestinal tract and the role of the microbiota in disease, as well as effects of probiotics. We focus particularly on the concept of microbiota resilience, and consider strategies that can be used to restore shrimp gut health by probiotic intervention at a crucial time during gut microbiota dysbiosis. Based on the available scientific evidence, we argue that the use of probiotics potentially has an important role in controlling disease in shrimp aquaculture.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Ying Huang
- Division of Aquaculture, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Chih-Ling Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| | - Hsiao-Pei Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Ran L, Wang X, He X, Guo R, Wu Y, Zhang P, Zhang XH. Genomic analysis and chitinase characterization of Vibrio harveyi WXL538: insight into its adaptation to the marine environment. Front Microbiol 2023; 14:1121720. [PMID: 37465025 PMCID: PMC10350509 DOI: 10.3389/fmicb.2023.1121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023] Open
Abstract
Chitin, the most abundant bio-polymer in seawater, may be utilized by various microorganisms as a carbon source. Vibrios have been regarded as one of the main groups of chitin consumers in the marine carbon cycle and chitinase producers. The organisms are widely distributed in the aquatic environment. However, the co-working mechanism between their chitinases, and whether the chitinase's diversity contributes to their adaption to the environment, needs to be further elucidated. Here, we obtained a chitinolytic strain, Vibrio harveyi WXL538 with eight putative chitinase-coding genes. Five of the genes, i.e., Chi4733, Chi540, Chi4668, Chi5174, and Chi4963, were overexpressed and validated, in which Chi4668, Chi4733 and Chi540 were purified and characterized. The result of Chi4668 was described in our previous study. Endo-chitinase Chi4733 degraded colloidal chitin to produce (GlcNAc)2 and minor (GlcNAc)3. The enzymatic activity of Chi4733 was 175.5 U mg-1 and Kcat/Km was 54.9 s-1 M-1. Chi4733 had its maximum activity at 50°C and pH 4-6, activated by Sr2+, Co2+, Ca2+, and Mg2+ and inhibited by Al3+, Zn2+, Cu2+, Ni2+, and SDS. Exo-chitinase Chi540 degraded colloidal chitin to (GlcNAc)2. The enzymatic activity of Chi540 was 134.5 U mg-1 and Kcat/Km was 54.9 s-1 M-1. Chi540 had its maximum activity at 60°C and pH 6-8, was activated by Sr2+, Ca2+, and Mg2+ but inhibited by K+, Ba2+, Zn2+, Cu2+, Ni2+, SDS and urea. Whole genome analysis of V. harveyi WXL538 and characterization of its chitinase can provide a better understanding of its adaptability to the changing marine environment.
Collapse
Affiliation(s)
- Lingman Ran
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinxin He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruihong Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yanhong Wu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pingping Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
13
|
Rowley AF, Coates CJ. Shell disease syndromes of decapod crustaceans. Environ Microbiol 2023; 25:931-947. [PMID: 36708190 PMCID: PMC10946978 DOI: 10.1111/1462-2920.16344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The term shell disease subsumes a number of debilitating conditions affecting the outer integument (the carapace) of decapod crustaceans, such as lobsters and crabs. Herein, we seek to find commonality in the aetiology and pathology of such conditions, and those cases that result in the progressive erosion of the cuticle through to the visceral tissues by a cocktail of microbial-derived enzymes including lipases, proteases and chitinases. Aquimarina spp. are involved in shell disease in many different crustaceans across a wide geographical area, but the overall view is that the condition is polymicrobial in nature leading to dysbiosis within the microbial consortium of the damaged cuticle. The role of environment, decapod behaviour and physiology in triggering this disease is also reviewed. Finally, we provide a conceptual model for disease aetiology and suggest several avenues for future research that could improve our understanding of how such factors trigger, or exacerbate, this condition.
Collapse
Affiliation(s)
- Andrew F. Rowley
- Department of Biosciences, Faculty of Science and EngineeringSwansea UniversitySwanseaUK
| | - Christopher J. Coates
- Department of Zoology, School of Natural SciencesZoology, Ryan InstituteSchool of Natural Sciences, University of GalwayGalwayIreland
| |
Collapse
|
14
|
Synergic chitin degradation by Streptomyces sp. SCUT-3 chitinases and their applications in chitinous waste recycling and pathogenic fungi biocontrol. Int J Biol Macromol 2023; 225:987-996. [PMID: 36403764 DOI: 10.1016/j.ijbiomac.2022.11.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
The genus Streptomyces comprises the most important chitin decomposers in soil and revealing their chitinolytic machinery is beneficial for the conversion of chitinous wastes. Streptomyces sp. SCUT-3, a chitin-hydrolyzing and a robust feather-degrading bacterium, was isolated previously. The potential chitin-degrading enzymes produced by SCUT-3 were analyzed in the present study. Among these enzymes, three chitinases were successfully expressed in Pichia pastoris at comparatively high yields of 4.8 U/mL (SsExoChi18A), 11.2 U/mL (SsExoChi18B), and 17.8 U/mL (SsEndoChi19). Conserved motifs and constructive 3D structures of these three exo- and endochitinases were also analyzed. These chitinases hydrolyzed colloidal chitin to chitin oligomers. SsExoChi18A showed apparent synergic effects with SsEndoChi19 in colloidal chitin and shrimp shell hydrolysis, with an improvement of 29.3 % and 124.9 %, respectively. Compared with SsExoChi18B and SsEndoChi19, SsExoChi18A exhibited the strongest antifungal effects against four plant pathogens by inhibiting mycelial growth and spore germination. This study provided good candidates for chitinous waste-processing enzymes and antifungal biocontrol agents. These synergic chitin-degrading enzymes of SCUT-3 are good targets for its further genetical modification to construct super chitinous waste-degrading bacteria with strong abilities to hydrolyze both protein and chitin, thereby providing a direction for the future path of the chitinous waste recycling industry.
Collapse
|
15
|
Mori T. Microbial nutrient limitation in tropical forest soils determined using the V-T model contradicts the traditional view that C is the major limiting element. TROPICS 2022. [DOI: 10.3759/tropics.ms22-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Taiki Mori
- Kyushu Research Center, Forestry and Forest Products Research Institute
| |
Collapse
|
16
|
Perera IU, Fujiyoshi S, Nishiuchi Y, Nakai T, Maruyama F. Zooplankton act as cruise ships promoting the survival and pathogenicity of pathogenic bacteria. Microbiol Immunol 2022; 66:564-578. [PMID: 36128640 PMCID: PMC10091822 DOI: 10.1111/1348-0421.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Bacteria in general interact with zooplankton in aquatic ecosystems. These zooplankton-bacterial interactions help to shape the bacterial community by regulating bacterial abundances. Such interactions are even more significant and crucially in need of investigation in the case of pathogenic bacteria, which cause severe diseases in humans and animals. Among the many associations between a host metazoan and pathogenic bacteria, zooplankton provide nutrition and protection from stressful conditions, promote the horizontal transfer of virulence genes, and act as a mode of pathogen transport. These interactions allow the pathogen to survive and proliferate in aquatic environments and to endure water treatment processes, thereby creating a potential risk to human health. This review highlights current knowledge on the contributions of zooplankton to the survival and pathogenicity of pathogenic bacteria. We also discuss the need to consider these interactions as a risk factor in water treatment processes.
Collapse
Affiliation(s)
- Ishara U Perera
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - So Fujiyoshi
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Yukiko Nishiuchi
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Toshihiro Nakai
- Takehara Marine Science Station, Graduate School of Integrated Science for Life, Hiroshima University, Takehara City, Hiroshima, Japan
| | - Fumito Maruyama
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| |
Collapse
|
17
|
Montroni D, Di Giosia M, Calvaresi M, Falini G. Supramolecular Binding with Lectins: A New Route for Non-Covalent Functionalization of Polysaccharide Matrices. Molecules 2022; 27:molecules27175633. [PMID: 36080399 PMCID: PMC9457544 DOI: 10.3390/molecules27175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The chemical functionalization of polysaccharides to obtain functional materials has been of great interest in the last decades. This traditional synthetic approach has drawbacks, such as changing the crystallinity of the material or altering its morphology or texture. These modifications are crucial when a biogenic matrix is exploited for its hierarchical structure. In this work, the use of lectins and carbohydrate-binding proteins as supramolecular linkers for polysaccharide functionalization is proposed. As proof of concept, a deproteinized squid pen, a hierarchically-organized β-chitin matrix, was functionalized using a dye (FITC) labeled lectin; the lectin used was the wheat germ agglutinin (WGA). It has been observed that the binding of this functionalized protein homogenously introduces a new property (fluorescence) into the β-chitin matrix without altering its crystallographic and hierarchical structure. The supramolecular functionalization of polysaccharides with protein/lectin molecules opens up new routes for the chemical modification of polysaccharides. This novel approach can be of interest in various scientific fields, overcoming the synthetic limits that have hitherto hindered the technological exploitation of polysaccharides-based materials.
Collapse
|
18
|
Thomas R, Fukamizo T, Suginta W. Bioeconomic production of high-quality chitobiose from chitin food wastes using an in-house chitinase from Vibrio campbellii. BIORESOUR BIOPROCESS 2022; 9:86. [PMID: 38647850 PMCID: PMC10991452 DOI: 10.1186/s40643-022-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Marine Vibrio species are natural degraders of chitin and usually secrete high levels of chitinolytic enzymes to digest recalcitrant chitin to chitooligosaccharides. This study used an endochitinase (VhChiA) from Vibrio campbellii to produce high-quality chitobiose from crustacean chitins. The enzyme was shown to be fully active and stable over 24 h when BSA was used as an additive. When different chitin sources were tested, VhChiA preferentially digested shrimp and squid (α) chitins compared to crab (β) chitin and did not utilize non-chitin substrates. The overall yields of chitobiose obtained from small-scale production using a single-step reaction was 96% from shrimp, and 91% from squid pen and crab-shell chitins. Larger-scale production yielded 200 mg of chitobiose, with > 99% purity after a desalting and purification step using preparative HPLC. In conclusion, we report the employment of an in-house produced chitinase as an effective biocatalyst to rapidly convert chitin food wastes to chitobiose, in a quantity and quality suitable for use in research and commercial purposes. Chitobiose production by this economical and eco-friendly approach can be easily scaled up to obtain multi-gram quantities of chitobiose for chemo-enzymic synthesis of rare chitooligosaccharide derivatives and long chain chitooligosaccharides, as well as preparation of sugar-based functionalized nanomaterials.
Collapse
Affiliation(s)
- Reeba Thomas
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan District, Rayong, 21210, Thailand.
| |
Collapse
|
19
|
Chen YL, Kumar R, Liu CH, Wang HC. Litopenaeus vannamei peritrophin interacts with WSSV and AHPND-causing V. parahaemolyticus to regulate disease pathogenesis. FISH & SHELLFISH IMMUNOLOGY 2022; 126:271-282. [PMID: 35609762 DOI: 10.1016/j.fsi.2022.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Peritrophins are peritrophic membrane (PM) proteins that can interact with chitin fibers via chitin-binding domains. Peritrophins have essential roles in providing porosity and strength to the PM that lines the shrimp midgut. Acute hepatopancreatic necrosis disease (AHPND), caused by strains of V. parahaemolyticus, is known to initially colonize the shrimp stomach and simultaneously disrupt its structural barriers (e.g., cuticle or epithelial tissues) to reach the hepatopancreas. Although stomach and hepatopancreas were identified as target tissues involved in AHPND pathogenesis, our results indicated that peritrophin in peritrophic membrane has a crucial role in determining not only colonization of AHPND-causing bacteria but also their tissue distribution. As the interaction between LvPeritrophin (LvPT) and WSSV (white spot syndrome virus) is not well understood, we noted that LvPT expression was upregulated in shrimp stomach challenged with either WSSV or AHPND. In an in vitro pathogen binding assay, there was strong binding of recombinant LvPT WSSV and AHPND-causing V. parahaemolyticus, and various bacteria. Furthermore, dsRNA-mediated LvPT silencing inhibited WSSV gene expression and viral genome replication. However, downregulation of LvPT gene expression increased copies of AHPND-causing bacteria in shrimp digestive tract, and facilitated bacterial colonization in stomach. In conclusion, we speculated that LvPT might regulate bacterial colonization during AHPND, whereas in WSSV infection, LvPT silencing favored the host. Although recombinant LvPT had strong binding with WSSV, the precise role of LvPT in WSSV infection needs further investigation. These findings increased our understanding of host-pathogen interactions in AHPND and WSSV infection that can be applied in shrimp aquaculture for developing effective antibacterial and antiviral strategies.
Collapse
Affiliation(s)
- Yi-Lun Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
20
|
Debnath A, Miyoshi SI. Chitin degradation and its effect on natural transformation: A systematic genetic study in Vibrio parahaemolyticus. Can J Microbiol 2022; 68:521-530. [PMID: 35623097 DOI: 10.1139/cjm-2021-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The degradation of polymeric chitin by chitinase liberates soluble N-acetyl glucosamine oligosaccharides (GlcNAcn≥2), a source of nutrition that can also induce state of natural genetic competence in Vibrio parahaemolyticus. This analysis revealed that among 7 predicted chitinases, the synergistic action of VPA0055 (ChiA2), VP0619 (ChiB) and VPA0832 (Cdx) were essential for the robust growth and high transformation frequency on chitin. The endo-chitinase, ChiA2 and periplasmic chitinase, Cdx were indispensable for chitin degradation. ChiB was not essential for growth on chitin but did have an effect on the rate of chitin degradation. Interestingly, the loss of Cdx drastically reduced growth on insoluble chitin, but growth on soluble GlcNAc5/6 remained same. The utilization of GlcNAc5/6 was only inhibited when there was mutation of Cdx with the other periplasmic chitinases VP0755 and VP2486. This suggests that Cdx might also be involved in extracellular degradation of chitin, in addition to its role as a periplasmic chitinase. Moreover, the periplasmic chitin oligosaccharide binding protein (CBP) was found to be essential for the efficient utilization of chitin. The CBP was specifically needed for the processing of GlcNAc4-6 during growth on chitin. Overall, this study provides detailed analysis of the machinery behind chitin degradation in V. parahaemolyticus. .
Collapse
|
21
|
Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. DIVERSITY 2022. [DOI: 10.3390/d14020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrios are ubiquitous bacteria in aquatic systems, especially marine ones, and belong to the Gammaproteobacteria class, the most diverse class of Gram-negative bacteria. The main objective of this review is to update the information regarding the ecology of Vibrio species, and contribute to the discussion of their potential risk in a changing environment. As heterotrophic organisms, Vibrio spp. live freely in aquatic environments, from marine depths to the surface of the water column, and frequently may be associated with micro- and macroalgae, invertebrates, and vertebrates such as fish, or live in symbiosis. Some Vibrio spp. are pathogenic to humans and animals, and there is evidence that infections caused by vibrios are increasing in the world. This rise may be related to global changes in human behavior (increases in tourism, maritime traffic, consumption of seafood, aquaculture production, water demand, pollution), and temperature. Most likely in the future, Vibrio spp. in water and in seafood will be monitored in order to safeguard human and animal health. Regulators of the microbiological quality of water (marine and freshwater) and food for human and animal consumption, professionals involved in marine and freshwater production chains, consumers and users of aquatic resources, and health professionals will be challenged to anticipate and mitigate new risks.
Collapse
|
22
|
Jiang G, Li Y, Li Y, Zhang W, Li C. Selection of the Amino Acid and Saccharide That Increase the Tetracycline Susceptibility of Vibrio splendidus. Front Vet Sci 2022; 8:823332. [PMID: 35155654 PMCID: PMC8831740 DOI: 10.3389/fvets.2021.823332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Bacterial persister cells are a subpopulation of isogenic bacteria with characteristics of reduced metabolic activity and multidrug antibiotic resistance. Our lab had previously proved that Vibrio splendidus could form persister cells both naturally and after stimulation. However, the conditions for the waking up of V. splendidus persister cells remain marginal. In this study, the carbon sources that could wake up V. splendidus persister cells were selected from 20 amino acids and eight saccharides. The result showed that L-glutamic acid, L-aspartic acid, L-arginine, L-phenylalanine, L-leucine, maltose, D-galactose, sorbitol, mannose, N-acetyl-D-glucosamine, D-glucose, and D-fructose could wake up the V. splendidus persister cells. The chemotaxis activity of both exponential cells and regrown persister cells on plate containing each of the selected carbon source are also high. The existence of the selected carbon source can affect the antibiotic susceptibility of V. splendidus. When L-glutamic acid, L-aspartic acid, L-phenylalanine, and D-glucose were separately added into the cultured V. splendidus simultaneously with tetracycline, V. splendidus could be completely eliminated, while the addition of L-alanine and D-galactose could not. Our study suggested that V. splendidus persister cells could revive in the presence of specific carbon sources, and the addition of these exogenous nutrients could increase the tetracycline susceptibility of V. splendidus.
Collapse
Affiliation(s)
- Guohua Jiang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Yanan Li
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Ya Li
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- *Correspondence: Weiwei Zhang
| | - Chenghua Li
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Chenghua Li
| |
Collapse
|
23
|
Polyextremophilic Chitinolytic Activity by a Marine Strain (IG119) of Clonostachys rosea. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030688. [PMID: 35163952 PMCID: PMC8838608 DOI: 10.3390/molecules27030688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
The investigation for novel unique extremozymes is a valuable business for which the marine environment has been overlooked. The marine fungus Clonostachys rosea IG119 was tested for growth and chitinolytic enzyme production at different combinations of salinity and pH using response surface methodology. RSM modelling predicted best growth in-between pH 3.0 and 9.0 and at salinity of 0-40‱, and maximum enzyme activity (411.137 IU/L) at pH 6.4 and salinity 0‱; however, quite high production (>390 IU/L) was still predicted at pH 4.5-8.5. The highest growth and activity were obtained, respectively, at pH 4.0 and 8.0, in absence of salt. The crude enzyme was tested at different salinities (0-120‱) and pHs (2.0-13.0). The best activity was achieved at pH 4.0, but it was still high (in-between 3.0 and 12.0) at pH 2.0 and 13.0. Salinity did not affect the activity in all tested conditions. Overall, C. rosea IG119 was able to grow and produce chitinolytic enzymes under polyextremophilic conditions, and its crude enzyme solution showed more evident polyextremophilic features. The promising chitinolytic activity of IG119 and the peculiar characteristics of its chitinolytic enzymes could be suitable for several biotechnological applications (i.e., degradation of salty chitin-rich materials and biocontrol of spoiling organisms, possibly solving some relevant environmental issues).
Collapse
|
24
|
Suginta W, Sanram S, Aunkham A, Winterhalter M, Schulte A. The C2 entity of chitosugars is crucial in molecular selectivity of the Vibrio campbellii chitoporin. J Biol Chem 2021; 297:101350. [PMID: 34715124 PMCID: PMC8608610 DOI: 10.1016/j.jbc.2021.101350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The marine bacterium Vibrio campbellii expresses a chitooligosaccharide-specific outer-membrane channel (chitoporin) for the efficient uptake of nutritional chitosugars that are externally produced through enzymic degradation of environmental host shell chitin. However, the principles behind the distinct substrate selectivity of chitoporins are unclear. Here, we employed black lipid membrane (BLM) electrophysiology, which handles the measurement of the flow of ionic current through porins in phospholipid bilayers for the assessment of porin conductivities, to investigate the pH dependency of chitosugar-chitoporin interactions for the bacterium's natural substrate chitohexaose and its deacetylated form, chitosan hexaose. We show that efficient passage of the N-acetylated chitohexaose through the chitoporin is facilitated by its strong affinity for the pore. In contrast, the deacetylated chitosan hexaose is impermeant; however, protonation of the C2 amino entities of chitosan hexaose allows it to be pulled through the channel in the presence of a transmembrane electric field. We concluded from this the crucial role of C2-substitution as the determining factor for chitoporin entry. A change from N-acetylamino- to amino-substitution effectively abolished the ability of approaching molecules to enter the chitoporin, with deacetylation leading to loss of the distinctive structural features of nanopore opening and pore access of chitosugars. These findings provide further understanding of the multistep pathway of chitin utilization by marine Vibrio bacteria and may guide the development of solid-state or genetically engineered biological nanopores for relevant technological applications.
Collapse
Affiliation(s)
- Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| | - Surapoj Sanram
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
25
|
Multifunctional fluorescent probes for high-throughput characterization of hexosaminidase enzyme activity. Bioorg Chem 2021; 119:105532. [PMID: 34883361 DOI: 10.1016/j.bioorg.2021.105532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022]
Abstract
Microbial polysaccharides composed of N-acetylglucosamine (GlcNAc), such as chitin, peptidoglycan and poly-β-(1 → 6)-GlcNAc (dPNAG), play a critical role in maintaining cell integrity or in facilitating biofilm formation in numerous fungal and bacterial pathogens. Glycosyl hydrolase enzymes that catalyze the degradation of these β-GlcNAc containing polysaccharides play important roles in normal microbial cell physiology and can also be exploited as biocatalysts with applications as anti-fungal, anti-bacterial, or biofilm dispersal agents. Assays to rapidly detect and characterize the activity of such glycosyl hydrolase enzymes can facilitate their development as biocatalyst, however, currently available probes such as 4-methylumbelliferyl-β-GlcNAc (4MU-GlcNAc) are not universally accepted as substrates, and their fluorescent signal is sensitive to changes in pH. Here, we present the development of a new multifunctional fluorescent substrate analog for the detection and characterization of hexosaminidase enzyme activity containing a 7-amino-4-methyl coumarin (AMC) carbamate aglycone. This probe is widely tolerated as a substrate for exo-acting β-hexosaminidase, family 19 endo-chitinase, and the dPNAG hydrolase enzyme Dispersin B (DspB) and enables detection of hexosaminidase enzyme activity via either single wavelength fluorescent measurements or ratiometric fluorescent detection. We demonstrate the utility of this probe to screen for recombinant DspB activity in Escherichia coli cell lysates, and for the development of a high-throughput assay to screen for DspB inhibitors.
Collapse
|
26
|
Homma M, Nishikino T, Kojima S. Achievements in bacterial flagellar research with focus on Vibrio species. Microbiol Immunol 2021; 66:75-95. [PMID: 34842307 DOI: 10.1111/1348-0421.12954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
In 1980's, the most genes involved in the bacterial flagellar function and formation had been isolated though many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such the high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
27
|
Itoh T. Structures and functions of carbohydrate-active enzymes of chitinolytic bacteria Paenibacillus sp. str. FPU-7. Biosci Biotechnol Biochem 2021; 85:1314-1323. [PMID: 33792636 DOI: 10.1093/bbb/zbab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022]
Abstract
Chitin and its derivatives have valuable potential applications in various fields that include medicine, agriculture, and food industries. Paenibacillus sp. str. FPU-7 is one of the most potent chitin-degrading bacteria identified. This review introduces the chitin degradation system of P. str. FPU-7. In addition to extracellular chitinases, P. str. FPU-7 uses a unique multimodular chitinase (ChiW) to hydrolyze chitin to oligosaccharides on the cell surface. Chitin oligosaccharides are converted to N-acetyl-d-glucosamine by β-N-acetylhexosaminidase (PsNagA) in the cytosol. The functions and structures of ChiW and PsNagA are also summarized. The genome sequence of P. str. FPU-7 provides opportunities to acquire novel enzymes. Genome mining has identified a novel alginate lyase, PsAly. The functions and structure of PsAly are reviewed. These findings will inform further improvement of the sustainable conversion of polysaccharides to functional materials.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| |
Collapse
|
28
|
The fish pathogen Aliivibrio salmonicida LFI1238 can degrade and metabolize chitin despite major gene loss in the chitinolytic pathway. Appl Environ Microbiol 2021; 87:e0052921. [PMID: 34319813 DOI: 10.1128/aem.00529-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fish pathogen Aliivibrio (Vibrio) salmonicida LFI1238 is thought to be incapable of utilizing chitin as a nutrient source since approximately half of the genes representing the chitinolytic pathway are disrupted by insertion sequences. In the present study, we combined a broad set of analytical methods to investigate this hypothesis. Cultivation studies revealed that Al. salmonicida grew efficiently on N-acetylglucosamine (GlcNAc) and chitobiose ((GlcNAc)2), the primary soluble products resulting from enzymatic chitin hydrolysis. The bacterium was also able to grow on chitin particles, albeit at a lower rate compared to the soluble substrates. The genome of the bacterium contains five disrupted chitinase genes (pseudogenes) and three intact genes encoding a glycoside hydrolase family 18 (GH18) chitinase and two auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenases (LPMOs). Biochemical characterization showed that the chitinase and LPMOs were able to depolymerize both α- and β-chitin to (GlcNAc)2 and oxidized chitooligosaccharides, respectively. Notably, the chitinase displayed up to 50-fold lower activity compared to other well-studied chitinases. Deletion of the genes encoding the intact chitinolytic enzymes showed that the chitinase was important for growth on β-chitin, whereas the LPMO gene-deletion variants only showed minor growth defects on this substrate. Finally, proteomic analysis of Al. salmonicida LFI1238 growth on β-chitin showed expression of all three chitinolytic enzymes, and intriguingly also three of the disrupted chitinases. In conclusion, our results show that Al. salmonicida LFI1238 can utilize chitin as a nutrient source and that the GH18 chitinase and the two LPMOs are needed for this ability. IMPORTANCE The ability to utilize chitin as a source of nutrients is important for the survival and spread of marine microbial pathogens in the environment. One such pathogen is Aliivibrio (Vibrio) salmonicida, the causative agent of cold water vibriosis. Due to extensive gene decay, many key enzymes in the chitinolytic pathway have been disrupted, putatively rendering this bacterium incapable of chitin degradation and utilization. In the present study we demonstrate that Al. salmonicida can degrade and metabolize chitin, the most abundant biopolymer in the ocean. Our findings shed new light on the environmental adaption of this fish pathogen.
Collapse
|
29
|
Jensen S, Frank JA, Arntzen MØ, Duperron S, Vaaje-Kolstad G, Hovland M. Endozoicomonadaceae symbiont in gills of Acesta clam encodes genes for essential nutrients and polysaccharide degradation. FEMS Microbiol Ecol 2021; 97:6275716. [PMID: 33988698 PMCID: PMC8755941 DOI: 10.1093/femsec/fiab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/12/2021] [Indexed: 01/29/2023] Open
Abstract
Gammaproteobacteria from the family Endozoicomonadaceae have emerged as widespread associates of dense marine animal communities. Their abundance in coral reefs involves symbiotic relationships and possibly host nutrition. We explored functions encoded in the genome of an uncultured Endozoicomonadaceae 'Candidatus Acestibacter aggregatus' that lives inside gill cells of large Acesta excavata clams in deep-water coral reefs off mid-Norway. The dominance and deep branching lineage of this symbiont was confirmed using 16S rRNA gene sequencing and phylogenomic analysis from shotgun sequencing data. The 4.5 Mb genome binned in this study has a low GC content of 35% and is enriched in transposon and chaperone gene annotations indicating ongoing adaptation. Genes encoding functions potentially involved with the symbiosis include ankyrins, repeat in toxins, secretion and nutritional systems. Complete pathways were identified for the synthesis of eleven amino acids and six B-vitamins. A minimal chitinolytic machinery was indicated from a glycosyl hydrolase GH18 and a lytic polysaccharide monooxygenase LPMO10. Expression of the latter was confirmed using proteomics. Signal peptides for secretion were identified for six polysaccharide degrading enzymes, ten proteases and three lipases. Our results suggest a nutritional symbiosis fuelled by enzymatic products from extracellular degradation processes.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Jeremy A Frank
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Sébastien Duperron
- UMR 7245 Muséum National d'Histoire Naturelle/CNRS Molécules de Communication et Adaptation des Micro-organismes and Institut Universitaire de France, CP39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Martin Hovland
- Department of Biology, University of Bergen, PO Box 7803, 5020 Bergen, Norway.,Centre for Geobiology, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| |
Collapse
|
30
|
Chen YL, Kumar R, Liu CH, Wang HC. In Litopenaeus vannamei, the cuticular chitin-binding proteins LvDD9A and LvDD9B retard AHPND pathogenesis but facilitate WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:103999. [PMID: 33444644 DOI: 10.1016/j.dci.2021.103999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a serious bacterial disease caused by V. parahaemolyticus strains which contain a virulent plasmid that encodes a binary pore-forming Pir toxin. Typically, these AHPND-causing bacteria first colonize in the shrimp stomach and then later cross to the hepatopancreas. To do this, they must pass through structural barriers which include the pliant cuticular lining of the stomach lumen. A previous transcriptomic study of shrimp challenged with the virulent 5HP strain of V. parahaemolyticus found significant upregulation of a contig associated with the cuticular proteins LvDD9A and LvDD9B. Here, we confirmed that the mRNA levels of these two genes were significantly upregulated not only in 5HP-infected shrimp, but also in the stomach of shrimp challenged with the white spot syndrome virus (WSSV). Using dsRNA-mediated gene silencing, we found that AHPND-causing bacteria migrated to the hepatopancreas within 3 h of AHPND infection in LvDD9A/B-silenced shrimp. Shrimp shell hardness of LvDD9A/B-silenced shrimp was also significantly decreased. Conversely, we found that silencing of LvDD9A/B significantly inhibited both WSSV gene expression and genome replication. Taken together, our data suggests that LvDD9A and LvDD9B are involved in both AHPND and WSSV infection. However, in AHPND, these cuticular proteins help to prevent bacterial migration from the stomach to the hepatopancreas, whereas in WSSV infection, they facilitate viral gene expression and genome replication.
Collapse
Affiliation(s)
- Yi-Lun Chen
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
31
|
Fennell TG, Blackwell GA, Thomson NR, Dorman MJ. gbpA and chiA genes are not uniformly distributed amongst diverse Vibrio cholerae. Microb Genom 2021; 7:000594. [PMID: 34100695 PMCID: PMC8461464 DOI: 10.1099/mgen.0.000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Members of the bacterial genus Vibrio utilize chitin both as a metabolic substrate and a signal to activate natural competence. Vibrio cholerae is a bacterial enteric pathogen, sub-lineages of which can cause pandemic cholera. However, the chitin metabolic pathway in V. cholerae has been dissected using only a limited number of laboratory strains of this species. Here, we survey the complement of key chitin metabolism genes amongst 195 diverse V. cholerae. We show that the gene encoding GbpA, known to be an important colonization and virulence factor in pandemic isolates, is not ubiquitous amongst V. cholerae. We also identify a putatively novel chitinase, and present experimental evidence in support of its functionality. Our data indicate that the chitin metabolic pathway within V. cholerae is more complex than previously thought, and emphasize the importance of considering genes and functions in the context of a species in its entirety, rather than simply relying on traditional reference strains.
Collapse
Affiliation(s)
- Thea G. Fennell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, Storey’s Way, Cambridge, CB3 0DS, UK
- Present address: Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, UK
| | - Grace A. Blackwell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, Keppel St., Bloomsbury, London, WC1E 7HT, UK
| | - Matthew J. Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Churchill College, Storey’s Way, Cambridge, CB3 0DS, UK
| |
Collapse
|
32
|
Meekrathok P, Bürger M, Porfetye AT, Kumsaoad S, Aunkham A, Vetter IR, Suginta W. Structural basis of chitin utilization by a GH20 β-N-acetylglucosaminidase from Vibrio campbellii strain ATCC BAA-1116. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:674-689. [PMID: 33950022 PMCID: PMC8098473 DOI: 10.1107/s2059798321002771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/15/2021] [Indexed: 12/03/2022]
Abstract
Crystal structures of a GH20 β-N-acetylglucosaminidase from V. campbellii reveal substrate specificity in chitin utilization. Vibrio species play a crucial role in maintaining the carbon and nitrogen balance between the oceans and the land through their ability to employ chitin as a sole source of energy. This study describes the structural basis for the action of the GH20 β-N-acetylglucosaminidase (VhGlcNAcase) in chitin metabolism by Vibrio campbellii (formerly V. harveyi) strain ATCC BAA-1116. Crystal structures of wild-type VhGlcNAcase in the absence and presence of the sugar ligand, and of the unliganded D437A mutant, were determined. VhGlcNAcase contains three distinct domains: an N-terminal carbohydrate-binding domain linked to a small α+β domain and a C-terminal (β/α)8 catalytic domain. The active site of VhGlcNAcase has a narrow, shallow pocket that is suitable for accommodating a small chitooligosaccharide. VhGlcNAcase is a monomeric enzyme of 74 kDa, but its crystal structures show two molecules of enzyme per asymmetric unit, in which Gln16 at the dimeric interface of the first molecule partially blocks the entrance to the active site of the neighboring molecule. The GlcNAc unit observed in subsite −1 makes exclusive hydrogen bonds to the conserved residues Arg274, Tyr530, Asp532 and Glu584, while Trp487, Trp546, Trp582 and Trp505 form a hydrophobic wall around the −1 GlcNAc. The catalytic mutants D437A/N and E438A/Q exhibited a drastic loss of GlcNAcase activity, confirming the catalytic role of the acidic pair (Asp437–Glu438).
Collapse
Affiliation(s)
- Piyanat Meekrathok
- Biochemistry-Electrochemistry Research Unit, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Marco Bürger
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Arthur T Porfetye
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Sawitree Kumsaoad
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Ingrid R Vetter
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Wipa Suginta
- Biochemistry-Electrochemistry Research Unit, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
33
|
Gregory GJ, Boyd EF. Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J 2021; 19:1014-1027. [PMID: 33613867 PMCID: PMC7876524 DOI: 10.1016/j.csbj.2021.01.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria have evolved mechanisms that allow them to adapt to changes in osmolarity and some species have adapted to live optimally in high salinity environments such as in the marine ecosystem. Most bacteria that live in high salinity do so by the biosynthesis and/or uptake of compatible solutes, small organic molecules that maintain the turgor pressure of the cell. Osmotic stress response mechanisms and their regulation among marine heterotrophic bacteria are poorly understood. In this review, we discuss what is known about compatible solute metabolism and transport and new insights gained from studying marine bacteria belonging to the family Vibrionaceae.
Collapse
Affiliation(s)
| | - E. Fidelma Boyd
- Corresponding author at: Department of Biological Sciences, 341 Wolf Hall, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
34
|
Nishikino T, Kojima S, Homma M. [Flagellar related genes and functions in Vibrio]. Nihon Saikingaku Zasshi 2021; 75:195-214. [PMID: 33390367 DOI: 10.3412/jsb.75.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteria can move or swim by flagella. On the other hand, the motile ability is not necessary to live at all. In laboratory, the flagella-deficient strains can grow just like the wild-type strains. The flagellum is assembled from more than 20 structural proteins and there are more than 50 genes including the structural genes to regulate or support the flagellar formation. The cost to construct the flagellum is so expensive. The fact that it evolved as a motor organ means even at such the large cost shows that the flagellum is essential for survival in natural condition. In this review, we would like to focus on the flagella-related researches conducted by the authors and the flagellar research on Vibrio spp.
Collapse
Affiliation(s)
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
35
|
Symbiotic chitin degradation by a novel anaerobic thermophilic bacterium Hydrogenispora sp. UUS1-1 and the bacterium Tepidanaerobacter sp. GT38. Enzyme Microb Technol 2020; 144:109740. [PMID: 33541575 DOI: 10.1016/j.enzmictec.2020.109740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 01/21/2023]
Abstract
Chitin is the second most abundant organic compound in nature. Although mesophilic bacteria degrade insoluble chitin, there is a paucity of data describing degradation of insoluble chitin by anaerobic thermophilic bacteria. In this report, we screened cow manure compost for new chitin degradation systems, and identified a chitinolytic bacterial community (CBC) that showed high chitin degradation activity under thermophilic conditions, i.e., 1% (w/v) chitin powder degraded completely within 7 days at 60 °C. Metagenomic analysis revealed that the CBC was dominated by two bacterial genera from Hydrogenispora, an uncultured taxonomic group, and Tepidanaerobacter. Hydrogenispora were abundant in the early-to-mid stages of culturing with chitin, whereas the population of Tepidanaerobacter increased during the later stages of culturing. Strains UUS1-1 and GT38, which were isolated as pure cultures using the roll-tube method with colloidal chitin, N-acetyl-d-glucosamine, and glucose as carbon sources, were found to be closely related to H. ethanolica and T. acetatoxydans, respectively. Strain UUS1-1 readily degraded chitin and is the first anaerobic thermophilic chitinolytic bacterium reported, whereas strain GT38 showed no chitinolytic activity. Based on phylogenetic analysis, UUS1-1 and GT38 should be classified as novel genera and species. Zymogram analysis revealed that UUS1-1 produces at least two chitinases with molecular weights of 150 and 40 kDa. A coculture of UUS1-1 and GT38 degraded crystalline chitin faster with lower accumulation of lactate compared with UUS1-1 alone, indicating that the strains maintained a symbiotic association through assimilation of organic acids in chitin degradation and that strain GT38 consumed end-products to reduce end-product inhibition and enhance the degradation of crystalline chitin.
Collapse
|
36
|
Ungkulpasvich U, Uke A, Baramee S, Kosugi A. Draft genome sequence data of the anaerobic, thermophilic, chitinolytic bacterium strain UUS1-1 belonging to genus Hydrogenispora of the uncultured taxonomic OPB54 cluster. Data Brief 2020; 33:106528. [PMID: 33304949 PMCID: PMC7708789 DOI: 10.1016/j.dib.2020.106528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 11/09/2020] [Indexed: 11/27/2022] Open
Abstract
Strain UUS1-1 (=JCM33882 =DSM111537) is a novel chitinolytic, thermophilic, anaerobic bacterium belonging to the genus Hydrogenispora of the uncultured taxonomic OPB54 cluster within the phylum Firmicutes. Strain UUS1-1 has a unique, long, hair-like rod morphology and a strong ability to degrade crystalline chitin. The whole genome of strain UUS1-1 was sequenced on an Ion GeneStudio S5 system, which yielded 86 contigs comprising 2,482,547 bp, 2235 protein-coding sequences, and a G+C content of 52.1 mol%. Strain UUS1-1 is the second cultivable isolate, besides H. ethanolica, within the OPB54 cluster and may be classified as a novel species. The genomic data have been deposited at the National Center for Biotechnology Information (NCBI) under accession number JAAKDE00000000.
Collapse
Affiliation(s)
- Umbhorn Ungkulpasvich
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Ayaka Uke
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Sirilak Baramee
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Akihiko Kosugi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.,Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| |
Collapse
|
37
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
38
|
Stutzmann S, Blokesch M. Comparison of chitin-induced natural transformation in pandemic Vibrio cholerae O1 El Tor strains. Environ Microbiol 2020; 22:4149-4166. [PMID: 32860313 PMCID: PMC7693049 DOI: 10.1111/1462-2920.15214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
The human pathogen Vibrio cholerae serves as a model organism for many important processes ranging from pathogenesis to natural transformation, which has been extensively studied in this bacterium. Previous work has deciphered important regulatory circuits involved in natural competence induction as well as mechanistic details related to its DNA acquisition and uptake potential. However, since competence was first reported for V. cholerae in 2005, many researchers have struggled with reproducibility in certain strains. In this study, we therefore compare prominent seventh pandemic V. cholerae isolates, namely strains A1552, N16961, C6706, C6709, E7946, P27459, and the close relative MO10, for their natural transformability and decipher underlying defects that mask the high degree of competence conservation. Through a combination of experimental approaches and comparative genomics based on new whole-genome sequences and de novo assemblies, we identify several strain-specific defects, mostly in genes that encode key players in quorum sensing. Moreover, we provide evidence that most of these deficiencies might have recently occurred through laboratory domestication events or through the acquisition of mobile genetic elements. Lastly, we highlight that differing experimental approaches between research groups might explain more of the variations than strain-specific alterations.
Collapse
Affiliation(s)
- Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health InstituteSchool of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health InstituteSchool of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
| |
Collapse
|
39
|
Transporters of glucose and other carbohydrates in bacteria. Pflugers Arch 2020; 472:1129-1153. [PMID: 32372286 DOI: 10.1007/s00424-020-02379-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Glucose arguably is the most important energy carrier, carbon source for metabolites and building block for biopolymers in all kingdoms of life. The proper function of animal organs and tissues depends on the continuous supply of glucose from the bloodstream. Most animals can resorb only a small number of monosaccharides, mostly glucose, galactose and fructose, while all other sugars oligosaccharides and dietary fibers are degraded and metabolized by the microbiota of the lower intestine. Bacteria, in contrast, are omnivorous. They can import and metabolize structurally different sugars and, as a consortium of different species, utilize almost any sugar, sugar derivative and oligosaccharide occurring in nature. Bacteria have membrane transport systems for the uptake of sugars against steep concentration gradients energized by ATP, the proton motive force and the high energy glycolytic intermediate phosphoenolpyruvate (PEP). Different uptake mechanisms and the broad range of overlapping substrate specificities allow bacteria to quickly adapt to and colonize changing environments. Here, we review the structures and mechanisms of bacterial representatives of (i) ATP-dependent cassette (ABC) transporters, (ii) major facilitator (MFS) superfamily proton symporters, (iii) sodium solute symporters (SSS) and (iv) enzyme II integral membrane subunits of the bacterial PEP-dependent phosphotransferase system (PTS). We give a short overview on the distribution of transporter genes and their phylogenetic relationship in different bacterial species. Some sugar transporters are hijacked for import of bacteriophage DNA and antibacterial toxins (bacteriocins) and they facilitate the penetration of polar antibiotics. Finally, we describe how the expression and activity of certain sugar transporters are controlled in response to the availability of sugars and how the presence and uptake of sugars may affect pathogenicity and host-microbiota interactions.
Collapse
|
40
|
Li RK, Hu YJ, Ng TB, Guo BQ, Zhou ZH, Zhao J, Ye XY. Expression and biochemical characterization of a novel chitinase ChiT-7 from the metagenome in the soil of a mangrove tidal flat in China. Int J Biol Macromol 2020; 158:1125-1134. [PMID: 32360969 DOI: 10.1016/j.ijbiomac.2020.04.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Chitinases play an important role in the process of chitin bioavailability. In this study, we cloned a new chitinase gene and characterized its recombinant protein. The new 1251 bp gene of chitinase (ChiT-7) was cloned from the metagenome of the mangrove tidal flat soil in the city of Zhangzhou in Fujian Province (China) by genome walking. The gene encoded a mature protein with 381 amino acids, which manifested certain sequence similarity (59% identity) to characterized GH18 chitinases. The mature protein of ChiT-7 was successfully expressed in E. coli BL21 (DE3). After purification, the specific activity of the recombinant enzyme was 0.63 U/mg at the optimal pH of 6.0 and the optimal temperature of 45 °C. The rChiT-7 was active over a wide pH range, and the residual enzyme activity reached 80% or higher at 30 °C-50 °C. rChiT-7 hydrolyzed colloidal chitin with (GlcNAc)2 and GlcNAc as the main final products. Structural analysis of ChiT-7 indicated that ChiT-7 could be a processive chitinase. rChiT-7 manifested characteristics analogous to those of fungi and actinomycetes and exhibited sequence homology.
Collapse
Affiliation(s)
- Ren Kuan Li
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China; National Engineering Laboratory for High-efficient Enzyme Expression, PR China
| | - Ya Juan Hu
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Bing Qi Guo
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China
| | - Zi He Zhou
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China
| | - Jing Zhao
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China
| | - Xiu Yun Ye
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China; National Engineering Laboratory for High-efficient Enzyme Expression, PR China.
| |
Collapse
|
41
|
Rehman S, Grigoryeva LS, Richardson KH, Corsini P, White RC, Shaw R, Portlock TJ, Dorgan B, Zanjani ZS, Fornili A, Cianciotto NP, Garnett JA. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog 2020; 16:e1008342. [PMID: 32365117 PMCID: PMC7224574 DOI: 10.1371/journal.ppat.1008342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/14/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an often-fatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.
Collapse
Affiliation(s)
- Saima Rehman
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Katherine H. Richardson
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Paula Corsini
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard C. White
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rosie Shaw
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Theo J. Portlock
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Benjamin Dorgan
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Zeinab S. Zanjani
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Arianna Fornili
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London, United Kingdom
- Chemistry and Biochemistry Department, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
42
|
Meekrathok P, Stubbs KA, Aunkham A, Kaewmaneewat A, Kardkuntod A, Bulmer DM, Berg B, Suginta W. NAG‐thiazoline is a potent inhibitor of the
Vibrio campbellii
GH20 β‐
N
‐Acetylglucosaminidase. FEBS J 2020; 287:4982-4995. [DOI: 10.1111/febs.15283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/15/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Piyanat Meekrathok
- School of Chemistry Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Keith A. Stubbs
- School of Molecular Sciences The University of Western Australia Crawley WA Australia
| | - Anuwat Aunkham
- School of Biomolecular Science and Engineering (BSE) Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Anuphon Kaewmaneewat
- School of Biomolecular Science and Engineering (BSE) Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Apinya Kardkuntod
- School of Biomolecular Science and Engineering (BSE) Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - David M. Bulmer
- Institute for Cell and Molecular Biosciences Newcastle University UK
| | - Bert Berg
- Institute for Cell and Molecular Biosciences Newcastle University UK
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE) Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
43
|
Chitin Heterodisaccharide, Released from Chitin by Chitinase and Chitin Oligosaccharide Deacetylase, Enhances the Chitin-Metabolizing Ability of Vibrio parahaemolyticus. J Bacteriol 2019; 201:JB.00270-19. [PMID: 31358611 DOI: 10.1128/jb.00270-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus RIMD2210633 secretes both chitinase and chitin oligosaccharide deacetylase and produces β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) from chitin. Previously, we reported that GlcNAc-GlcN induces chitinase production by several strains of Vibrio harboring chitin oligosaccharide deacetylase genes (T. Hirano, K. Kadokura, T. Ikegami, Y. Shigeta, et al., Glycobiology 19:1046-1053, 2009). The metabolism of chitin by Vibrio was speculated on the basis of the findings of previous studies, and the role of chitin oligosaccharide produced from chitin has been well studied. However, the role of GlcNAc-GlcN in the Vibrio chitin degradation system, with the exception of the above-mentioned function as an inducer of chitinase production, remains unclear. N,N'-Diacetylchitobiose, a homodisaccharide produced from chitin, is known to induce the expression of genes encoding several proteins involved in chitin metabolism in Vibrio strains (K. L. Meibom, X. B. Li, A. Nielsen, C. Wu, et al., Proc Natl Acad Sci U S A 101:2524-2529, 2004). We therefore hypothesized that GlcNAc-GlcN also affects the expression of enzymes involved in chitin metabolism in the same manner. In this study, we examined the induction of protein expression by several sugars released from chitin using peptide mass fingerprinting and confirmed the expression of genes encoding enzymes involved in chitin metabolism using real-time quantitative PCR analysis. We then confirmed that GlcNAc-GlcN induces the expression of genes encoding many soluble enzymes involved in chitin degradation in Vibrio parahaemolyticus Here, we demonstrate that GlcNAc-GlcN enhances the chitin-metabolizing ability of V. parahaemolyticus IMPORTANCE We demonstrate that β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) enhances the chitin-metabolizing ability of V. parahaemolyticus Members of the genus Vibrio are chitin-degrading bacteria, and some species of this genus are associated with diseases affecting fish and animals, including humans (F. L. Thompson, T. Iida, and J. Swings, Microbiol Mol Biol Rev 68:403-431, 2004; M. Y. Ina-Salwany, N. Al-Saari, A. Mohamad, F.-A. Mursidi, et al., J Aquat Anim Health 31:3-22, 2019). Studies on Vibrio are considered important, as they may facilitate the development of solutions related to health, food, and aquaculture problems attributed to this genus. This report enhances the current understanding of chitin degradation by Vibrio bacteria.
Collapse
|
44
|
Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 2019; 35:144. [PMID: 31493195 DOI: 10.1007/s11274-019-2721-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that catalyze chitin, nd are synthesized by a wide variety of organisms. In nature, microbial chitinases are primarily responsible for chitin decomposition. Several chitinases have been reported and characterized, and they are garnering increasing attention for their uses in a wide range of applications. In the food industry, the direct fermentation of seafood, such as crab and shrimp shells, using chitinolytic microorganisms has contributed to increased nutritional benefits through the enhancement of chitin degradation into chitooligosaccharides. These compounds have been demonstrated to improve human health through their antitumor, antimicrobial, immunomodulatory, antioxidant, and anti-inflammatory properties. Moreover, chitinase and chitinous materials are used in the food industry for other purposes, such as the production of single-cell proteins, chitooligosaccharides, N-acetyl D-glucosamines, biocontrol, functional foods, and various medicines. The functional properties and hydrolyzed products of chitinase, however, depend upon its source and physicochemical characteristics. The present review strives to clarify these perspectives and critically discusses the advances and limitations of microbial chitinase in the further production of functional foods.
Collapse
Affiliation(s)
- Bao Le
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
45
|
Wieczorek AS, Schmidt O, Chatzinotas A, von Bergen M, Gorissen A, Kolb S. Ecological Functions of Agricultural Soil Bacteria and Microeukaryotes in Chitin Degradation: A Case Study. Front Microbiol 2019; 10:1293. [PMID: 31281293 PMCID: PMC6596343 DOI: 10.3389/fmicb.2019.01293] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/23/2019] [Indexed: 11/24/2022] Open
Abstract
Chitin provides a valuable carbon and nitrogen source for soil microorganisms and is a major component of particulate organic matter in agricultural soils. To date, there is no information on interaction and interdependence in chitin-degrading soil microbiomes. Since microbial chitin degradation occurs under both oxic and anoxic conditions and both conditions occur simultaneously in soil, the comparison of the active microbiome members under both conditions can reveal key players for the overall degradation in aerated soil. A time-resolved 16S rRNA stable isotope probing experiment was conducted with soil material from the top soil layer of a wheat-covered field. [13CU]-chitin was largely mineralized within 20 days under oxic conditions. Cellvibrio, Massilia, and several Bacteroidetes families were identified as initially active chitin degraders. Subsequently, Planctomycetes and Verrucomicrobia were labeled by assimilation of 13C carbon either from [13CU]-chitin or from 13C-enriched components of primary chitin degraders. Bacterial predators (e.g., Bdellovibrio and Bacteriovorax) were labeled, too, and non-labeled microeukaryotic predators (Alveolata) increased their relative abundance toward the end of the experiment (70 days), indicating that chitin degraders were subject to predation. Trophic interactions differed substantially under anoxic and oxic conditions. Various fermentation types occurred along with iron respiration. While Acidobacteria and Chloroflexi were the first taxa to be labeled, although at a low 13C level, Firmicutes and uncultured Bacteroidetes were predominantly labeled at a much higher 13C level during the later stages, suggesting that the latter two bacterial taxa were mainly responsible for the degradation of chitin and also provided substrates for iron reducers. Eventually, our study revealed that (1) hitherto unrecognized Bacteria were involved in a chitin-degrading microbial food web of an agricultural soil, (2) trophic interactions were substantially shaped by the oxygen availability, and (3) detectable predation was restricted to oxic conditions. The gained insights into trophic interactions foster our understanding of microbial chitin degradation, which is in turn crucial for an understanding of soil carbon dynamics.
Collapse
Affiliation(s)
- Adam S Wieczorek
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Oliver Schmidt
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany.,Department of Chemistry and Bioscience, University of Aalborg, Aalborg, Denmark
| | | | - Steffen Kolb
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
46
|
Abi-Akl R, Ledieu E, Enke TN, Cordero OX, Cohen T. Physics-based prediction of biopolymer degradation. SOFT MATTER 2019; 15:4098-4108. [PMID: 31086866 DOI: 10.1039/c9sm00262f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the natural environment, insoluble biomatter provides a preeminent source of carbon for bacteria. Its degradation by microbial communities thus plays a major role in the global carbon-cycle. The prediction of degradation processes and their sensitivity to changes in environmental conditions can therefore provide critical insights into globally occurring environmental adaptations. To elucidate and quantify this macro-scale phenomenon, we conduct micro-scale experiments that examine the degradation of isolated biopolymer particles and observe highly nonlinear degradation kinetics. Since conventional scaling arguments fail to explain these observations, it is inferred that the coupled influence of both the physical and biochemical processes must be considered. Hence, we develop a theoretical model that accounts for the bio-chemo-mechanically coupled kinetics of polymer degradation, by considering the production of bio-degraders and their ability to both dissociate the material from its external boundaries and to penetrate it to degrade its internal mechanical properties. This change in mechanical properties combined with the intake of solvent or moisture from the environment leads to chemo-mechanically coupled swelling of the material and, in-turn, influences the degradation kinetics. We show that the model quantitatively captures our experimental results and reveals distinct signatures of different bacteria that are independent of the specific experimental conditions (i.e. particle volume and initial concentrations). Finally, after validating our model against the experimental data we extend our predictions for degradation processes across various length and time scales that are inaccessible in a laboratory setting.
Collapse
Affiliation(s)
- Rami Abi-Akl
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
47
|
Pasqualetti M, Barghini P, Giovannini V, Fenice M. High Production of Chitinolytic Activity in Halophilic Conditions by a New Marine Strain of Clonostachys rosea. Molecules 2019; 24:E1880. [PMID: 31100818 PMCID: PMC6571954 DOI: 10.3390/molecules24101880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Twenty-eight fungal strains have been isolated from different natural marine substrates and plate screened for their production of chitinolytic activity. The two apparent best producers, Trichoderma lixii IG127 and Clonostachys rosea IG119, were screened in shaken cultures in media containing 1% colloidal chitin, 1% yeast nitrogen base and 38‰ NaCl, for their ability to produce chitinolytic enzymes under halophilic conditions. In addition, they were tested for optimal growth conditions with respect to pH, salinity and temperature. The Trichoderma strain appeared to be a slight halotolerant fungus, while C. rosea IG119 clearly showed to be a halophilic marine fungus, its optimal growth conditions being very coherent for life in the marine environment (i.e., pH 8.0, salinity 38‰). Due to its high and relatively fast activity (258 U/L after 192 h of growth) accompanied by its halophilic behaviour (growth from 0 to 160‰ of salinity), C. rosea was selected for further studies. In view of possible industrial applications, its medium for chitinolytic enzyme production was optimized by Response Surface Methodology using 1% colloidal chitin and different concentrations of corn step liquor and yeast nitrogen base (0-0.5%). Time course of growth under optimized condition showed that maximum activity (394 U/L) was recorded after 120 h on medium containing Corn Steep Liquor 0.47% and Yeast Nitrogen Base 0.37%. Maximum of productivity (3.3 U/Lh) was recorded at the same incubation time. This was the first study that demonstrated high chitinolytic activity in a marine strain of C. rosea.
Collapse
Affiliation(s)
- Marcella Pasqualetti
- Dipartimento di Scienze Ecologiche e Biologiche, University of Tuscia, 01100 Viterbo, Italy.
- Laboratorio di Ecologia dei Funghi Marini, CoNISMa, University of Tuscia, 01100 Viterbo, Italy.
| | - Paolo Barghini
- Dipartimento di Scienze Ecologiche e Biologiche, University of Tuscia, 01100 Viterbo, Italy.
| | - Valeria Giovannini
- Dipartimento di Scienze Ecologiche e Biologiche, University of Tuscia, 01100 Viterbo, Italy.
| | - Massimiliano Fenice
- Dipartimento di Scienze Ecologiche e Biologiche, University of Tuscia, 01100 Viterbo, Italy.
- Laboratorio di Microbiologia Marina Applicata, CoNISMa, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
48
|
Metzger LC, Matthey N, Stoudmann C, Collas EJ, Blokesch M. Ecological implications of gene regulation by TfoX and TfoY among diverse Vibrio species. Environ Microbiol 2019; 21:2231-2247. [PMID: 30761714 PMCID: PMC6618264 DOI: 10.1111/1462-2920.14562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/16/2019] [Accepted: 02/10/2019] [Indexed: 01/26/2023]
Abstract
Bacteria of the genus Vibrio are common members of aquatic environments where they compete with other prokaryotes and defend themselves against grazing predators. A macromolecular protein complex called the type VI secretion system (T6SS) is used for both purposes. Previous research showed that the sole T6SS of the human pathogen V. cholerae is induced by extracellular (chitin) or intracellular (low c‐di‐GMP levels) cues and that these cues lead to distinctive signalling pathways for which the proteins TfoX and TfoY serve as master regulators. In this study, we tested whether the TfoX‐ and TfoY‐mediated regulation of T6SS, concomitantly with natural competence or motility, was conserved in non‐cholera Vibrio species, and if so, how these regulators affected the production of individual T6SSs in double‐armed vibrios. We show that, alongside representative competence genes, TfoX regulates at least one T6SS in all tested Vibrio species. TfoY, on the other hand, fostered motility in all vibrios but had a more versatile T6SS response in that it did not foster T6SS‐mediated killing in all tested vibrios. Collectively, our data provide evidence that the TfoX‐ and TfoY‐mediated signalling pathways are mostly conserved in diverse Vibrio species and important for signal‐specific T6SS induction.
Collapse
Affiliation(s)
- Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Candice Stoudmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Esther J Collas
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
49
|
Killer toxin-like chitinases in filamentous fungi: Structure, regulation and potential roles in fungal biology. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Fukamizo T, Kitaoku Y, Suginta W. Periplasmic solute-binding proteins: Structure classification and chitooligosaccharide recognition. Int J Biol Macromol 2019; 128:985-993. [PMID: 30771387 DOI: 10.1016/j.ijbiomac.2019.02.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Periplasmic solute-binding proteins (SBPs) serve as molecular shuttles that assist the transport of small solutes from the outer membrane to the inner membrane of all Gram-negative bacteria. Based on the available crystal structures, SBPs are classified into seven clusters, A-G, and are further divided into subclusters, IV. This minireview is focused on the classification, structure and substrate specificity of a distinct class of SBPs specific for chitooligosaccharides (CBPs). To date, only two structures of CBP homologues, VhCBP and VcCBP, have been reported in the marine Vibrio species, with exposition of their limited function. The Vibrio CBPs are structurally classified as cluster C/subcluster IV SBPs that exclusively recognize β-1,4- or β-1,3-linked linear oligosaccharides. The overall structural feature of the Vibrios CBPs is most similar to the cellobiose-binding orthologue from the hyperthermophilic bacterium Thermotoga maritima. This similarity provides an opportunity to engineer the substrate specificity of the proteins and to control the uptake of chitinous and cellulosic nutrients in marine bacteria.
Collapse
Affiliation(s)
- Tamo Fukamizo
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yoshihito Kitaoku
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wipa Suginta
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|