1
|
Tawfeeq HR, Lackey AI, Zhou Y, Diolintzi A, Zacharisen SM, Lau YH, Quadro L, Storch J. Tissue-Specific Ablation of Liver Fatty Acid-Binding Protein Induces a Metabolically Healthy Obese Phenotype in Female Mice. Nutrients 2025; 17:753. [PMID: 40077623 PMCID: PMC11901660 DOI: 10.3390/nu17050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high-fat (HF)-fed LFABP knockout (LFABP-/-) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. Since LFABP is expressed in both liver and intestine, in the present study, we generated LFABP conditional knockout (cKO) mice to determine the contributions of LFABP specifically within the liver or within the intestine, to the whole-body phenotype of the global knockout. Methods: Female liver-specific LFABP knockout (LFABPliv-/-), intestine-specific LFABP knockout (LFABPint-/-), and "floxed" LFABP (LFABPfl/fl) control mice were fed a 45% Kcal fat semipurified HF diet for 12 weeks. Results: While not as dramatic as found for whole-body LFABP-/- mice, both LFABPliv-/- and LFABPint-/- mice had significantly higher body weights and fat mass compared with LFABPfl/fl control mice. As with the global LFABP nulls, both LFABPliv-/- and LFABPint-/- mice remained normoglycemic and normoinsulinemic. Despite their greater fat mass, the LFABPliv-/- mice did not develop hepatic steatosis. Additionally, LFABPliv-/- and LFABPint-/- mice had higher endurance exercise capacity when compared with LFABPfl/fl control mice. Conclusions: The results suggest, therefore, that either liver-specific or intestine-specific ablation of LFABP in female mice is sufficient to induce, at least in part, the MHO phenotype observed following whole-body ablation of LFABP.
Collapse
Affiliation(s)
- Hiba Radhwan Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Anastasia Diolintzi
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| | - Sophia M. Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yin Hei Lau
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Loredana Quadro
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
- Department of Food Science, Rutgers University, New Brunswick, NJ 07102, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Tawfeeq HR, Lackey AI, Zhou Y, Diolointzi A, Zacharisen S, Lau YH, Quadro L, Storch J. Tissue-Specific Ablation of Liver Fatty Acid-Binding Protein Induces a Metabolically Healthy Obese Phenotype in Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.02.631082. [PMID: 39803463 PMCID: PMC11722216 DOI: 10.1101/2025.01.02.631082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Background/Objectives Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high fat (HF) fed LFABP knockout (LFABP-/-) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. LFABP is expressed in both liver and intestine, thus in the present study, LFABP conditional knockout (cKO) mice were generated to determine the contributions of LFABP specifically within the liver or the intestine to the whole body phenotype of the global knockout. Methods Female liver-specific LFABP knockout (LFABPliv-/-), intestine-specific LFABP knockout (LFABPint-/-), and floxed LFABP (LFABPfl/fl) control mice were fed a 45% Kcal fat semipurified HF diet for 12 weeks. Results While not as dramatic as found for whole-body LFABP-/- mice, both LFABPliv-/- and LFABPint-/- mice had significantly higher body weights and fat mass compared with LFABPfl/fl control mice. As with the global LFABP nulls, both LFABPliv-/- and LFABPint-/- mice remained normoglycemic and normoinsulinemic. Despite their greater fat mass, the LFABPliv-/- mice did not develop hepatic steatosis. Additionally, LFABPliv-/- and LFABPint-/- mice had higher endurance exercise capacity when compared with LFABPfl/fl control mice. Conclusions The results suggest, therefore, that either liver-specific or intestine-specific ablation of LFABP in female mice is sufficient to induce, at least in part, the MHO phenotype observed following whole-body ablation of LFABP.
Collapse
Affiliation(s)
- Hiba Radhwan Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Anastasia Diolointzi
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Sophia Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Yin Hei Lau
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Loredana Quadro
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
- Department of Food Science, Rutgers University, New Brunswick, New Jersey
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
3
|
Martin GG, Landrock D, McIntosh AL, Milligan S, Landrock KK, Kier AB, Mackie J, Schroeder F. High Glucose and Liver Fatty Acid Binding Protein Gene Ablation Differentially Impact Whole Body and Liver Phenotype in High-Fat Pair-Fed Mice. Lipids 2020; 55:309-327. [PMID: 32314395 DOI: 10.1002/lipd.12238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Ad libitum-fed diets high in fat and carbohydrate (especially fructose) induce weight gain, obesity, and nonalcoholic fatty liver disease (NAFLD) in humans and animal models. However, interpretation is complicated since ad libitum feeding of such diets induces hyperphagia and upregulates expression of liver fatty acid binding protein (L-FABP)-a protein intimately involved in fatty acid and glucose regulation of lipid metabolism. Wild-type (WT) and L-fabp gene ablated (LKO) mice were pair-fed either high-fat diet (HFD) or high-fat/high-glucose diet (HFGD) wherein total carbohydrate was maintained constant but the proportion of glucose was increased at the expense of fructose. In LKO mice, the pair-fed HFD increased body weight and lean tissue mass (LTM) but had no effect on fat tissue mass (FTM) or hepatic fatty vacuolation as compared to pair-fed WT counterparts. These LKO mice exhibited upregulation of hepatic proteins in fatty acid uptake and cytosolic transport (caveolin and sterol carrier protein-2), but lower hepatic fatty acid oxidation (decreased serum β-hydroxybutyrate). LKO mice pair-fed HFGD also exhibited increased body weight; however, these mice had increased FTM, not LTM, and increased hepatic fatty vacuolation as compared to pair-fed WT counterparts. These LKO mice also exhibited upregulation of hepatic proteins in fatty acid uptake and cytosolic transport (caveolin and acyl-CoA binding protein, but not sterol carrier protein-2), but there was no change in hepatic fatty acid oxidation (serum β-hydroxybutyrate) as compared to pair-fed WT counterparts.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - John Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| |
Collapse
|
4
|
Kerendi H, Rahmati M, Mirnasuri R, Kazemi A. High intensity interval training decreases the expressions of KIF5B and Dynein in Hippocampus of Wistar male rats. Gene 2019; 704:8-14. [PMID: 30978476 DOI: 10.1016/j.gene.2019.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Although exercise training (ET) with low to moderate intensity improves several physiological aspects of brain, the effects of high intensity interval training (HIIT) are less clear on brain plasticity and cytoplasmic transport. The present study examined the effects of HIIT on the gene and protein expressions of kinesin family member 5B (KIF5B) and Dynein in the Wistar male rat hippocampal tissue. Fourteen male Wistar rats were separated into 2 groups: (1) the training group (TG: n = 7) and (2) the control group (CG: n = 7). The exercise protocol was carried out on a rodent treadmill (5 days a week for 6 weeks). The protein contents of KIF5B and Dynein were determined by the immunohistochemical analysis. Moreover, the Real-Time polymerase chain reaction (Real-Time PCR) procedure was done to measure the KIF5B mRNA and Dynein mRNA expressions. It was observed that HIIT resulted in a significant decrease in the gene expressions of KIF5B and Dynein (P = 0.001), and also the results showed that HIIT leads to a significant decrease in KIF5B (P = 0.001) and Dynein (P = 0.02) protein content of the hippocampal tissue in comparison with sedentary rats. Our findings demonstrated that HIIT is associated with the down-regulation of gene and protein levels of KIF5B and Dynein in the rat hippocampal tissue, although the underlying mechanisms have remained unknown. These changes suggest that HIIT may have negative effects on both the anterograde and retrograde cytoplasmic transports because the cytoplasmic transport is mediated by KIF5B and Dynein.
Collapse
Affiliation(s)
- Hadi Kerendi
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, IR, Iran
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, IR, Iran.
| | - Rahim Mirnasuri
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, IR, Iran
| | - Abdolreza Kazemi
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Vali E Asr University of Rafsanjan, Rafsanjan, IR, Iran
| |
Collapse
|
5
|
McIntosh AL, Atshaves BP, Martin GG, Landrock D, Milligan S, Landrock KK, Huang H, Storey SM, Mackie J, Schroeder F, Kier AB. Effect of liver fatty acid binding protein (L-FABP) gene ablation on lipid metabolism in high glucose diet (HGD) pair-fed mice. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:985-1004. [PMID: 30910689 PMCID: PMC6482111 DOI: 10.1016/j.bbalip.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/02/2019] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is the major fatty acid binding/"chaperone" protein in hepatic cytosol. Although fatty acids can be derived from the breakdown of dietary fat and glucose, relatively little is known regarding the impact of L-FABP on phenotype in the context of high dietary glucose. Potential impact was examined in wild-type (WT) and Lfabp gene ablated (LKO) female mice fed either a control or pair-fed high glucose diet (HGD). WT mice fed HGD alone exhibited decreased whole body weight gain and weight gain/kcal food consumed-both as reduced lean tissue mass (LTM) and fat tissue mass (FTM). Conversely, LKO alone increased weight gain, lean tissue mass, and fat tissue mass while decreasing serum β-hydroxybutyrate (indicative of hepatic fatty acid oxidation)-regardless of diet. Both LKO alone and HGD alone significantly altered the serum lipoprotein profile and increased triacylglycerol (TG), but in HGD mice the LKO did not further exacerbate serum TG content. HGD had little effect on hepatic lipid composition in WT mice, but prevented the LKO-induced selective increase in hepatic phospholipid, free-cholesterol and cholesteryl-ester. Taken together, these findings suggest that high glucose diet diminished the effects of LKO on the whole body and lipid phenotype of these mice.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Barbara P Atshaves
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States of America
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Stephen M Storey
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - John Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843, United States of America
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843, United States of America.
| |
Collapse
|
6
|
Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 2016; 51:655-76. [PMID: 27117865 PMCID: PMC5408584 DOI: 10.1007/s11745-016-4155-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA.
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Dr., Alabaster, AL, 35007-9105, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Chemistry, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| |
Collapse
|
7
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Atshaves B, Martin G, Hostetler H, McIntosh A, Kier A, Schroeder F. Liver fatty acid-binding protein and obesity. J Nutr Biochem 2010; 21:1015-32. [PMID: 20537520 PMCID: PMC2939181 DOI: 10.1016/j.jnutbio.2010.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/17/2022]
Abstract
While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.
Collapse
Affiliation(s)
- B.P. Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - G.G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - H.A. Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - A.L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - A.B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - F. Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| |
Collapse
|
9
|
McIntosh AL, Huang H, Atshaves BP, Wellberg E, Kuklev DV, Smith WL, Kier AB, Schroeder F. Fluorescent n-3 and n-6 very long chain polyunsaturated fatty acids: three-photon imaging in living cells expressing liver fatty acid-binding protein. J Biol Chem 2010; 285:18693-708. [PMID: 20382741 PMCID: PMC2881794 DOI: 10.1074/jbc.m109.079897] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/10/2010] [Indexed: 01/24/2023] Open
Abstract
Despite the considerable beneficial effects of n-3 and n-6 very long chain polyunsaturated fatty acids (VLC-PUFAs), very little is known about the factors that regulate their uptake and intracellular distribution in living cells. This issue was addressed in cells expressing liver-type fatty acid-binding protein (L-FABP) by real time multiphoton laser scanning microscopy of novel fluorescent VLC-PUFAs containing a conjugated tetraene fluorophore near the carboxyl group and natural methylene-interrupted n-3 or n-6 grouping. The fluorescent VLC-PUFAs mimicked many properties of their native nonfluorescent counterparts, including uptake, distribution, and metabolism in living cells. The unesterified fluorescent VLC-PUFAs distributed either equally in nuclei versus cytoplasm (22-carbon n-3 VLC-PUFA) or preferentially to cytoplasm (20-carbon n-3 and n-6 VLC-PUFAs). L-FABP bound fluorescent VLC-PUFA with affinity and specificity similar to their nonfluorescent natural counterparts. Regarding n-3 and n-6 VLC-PUFA, L-FABP expression enhanced uptake into the cell and cytoplasm, selectively altered the pattern of fluorescent n-6 and n-3 VLC-PUFA distribution in cytoplasm versus nuclei, and preferentially distributed fluorescent VLC-PUFA into nucleoplasm versus nuclear envelope, especially for the 22-carbon n-3 VLC-PUFA, correlating with its high binding by L-FABP. Multiphoton laser scanning microscopy data showed for the first time VLC-PUFA in nuclei of living cells and suggested a model, whereby L-FABP facilitated VLC-PUFA targeting to nuclei by enhancing VLC-PUFA uptake and distribution into the cytoplasm and nucleoplasm.
Collapse
Affiliation(s)
| | - Huan Huang
- From the Departments of Physiology and Pharmacology and
| | - Barbara P. Atshaves
- the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, and
| | | | - Dmitry V. Kuklev
- the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - William L. Smith
- the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ann B. Kier
- Pathobiology, Texas A & M University, Texas Veterinary Medical Center, College Station, Texas 77843-4466
| | | |
Collapse
|
10
|
Schroeder F, Petrescu AD, Huang H, Atshaves BP, McIntosh AL, Martin GG, Hostetler HA, Vespa A, Landrock D, Landrock KK, Payne HR, Kier AB. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 2007; 43:1-17. [PMID: 17882463 DOI: 10.1007/s11745-007-3111-z] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 07/26/2007] [Indexed: 12/16/2022]
Abstract
Abnormal energy regulation may significantly contribute to the pathogenesis of obesity, diabetes mellitus, cardiovascular disease, and cancer. For rapid control of energy homeostasis, allosteric and posttranslational events activate or alter activity of key metabolic enzymes. For longer impact, transcriptional regulation is more effective, especially in response to nutrients such as long chain fatty acids (LCFA). Recent advances provide insights into how poorly water-soluble lipid nutrients [LCFA; retinoic acid (RA)] and their metabolites (long chain fatty acyl Coenzyme A, LCFA-CoA) reach nuclei, bind their cognate ligand-activated receptors, and regulate transcription for signaling lipid and glucose catabolism or storage: (i) while serum and cytoplasmic LCFA levels are in the 200 mircroM-mM range, real-time imaging recently revealed that LCFA and LCFA-CoA are also located within nuclei (nM range); (ii) sensitive fluorescence binding assays show that LCFA-activated nuclear receptors [peroxisome proliferator-activated receptor-alpha (PPARalpha) and hepatocyte nuclear factor 4alpha (HNF4alpha)] exhibit high affinity (low nM KdS) for LCFA (PPARalpha) and/or LCFA-CoA (PPARalpha, HNF4alpha)-in the same range as nuclear levels of these ligands; (iii) live and fixed cell immunolabeling and imaging revealed that some cytoplasmic lipid binding proteins [liver fatty acid binding protein (L-FABP), acyl CoA binding protein (ACBP), cellular retinoic acid binding protein-2 (CRABP-2)] enter nuclei, bind nuclear receptors (PPARalpha, HNF4alpha, CRABP-2), and activate transcription of genes in fatty acid and glucose metabolism; and (iv) studies with gene ablated mice provided physiological relevance of LCFA and LCFA-CoA binding proteins in nuclear signaling. This led to the hypothesis that cytoplasmic lipid binding proteins transfer and channel lipidic ligands into nuclei for initiating nuclear receptor transcriptional activity to provide new lipid nutrient signaling pathways that affect lipid and glucose catabolism and storage.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Larqué E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, Demmelmair H, Caño A, Gil A, Bondy B, Koletzko B. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr 2006; 84:853-61. [PMID: 17023713 DOI: 10.1093/ajcn/84.4.853] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Better understanding of the mechanisms involved in docosahexaenoic acid (DHA) transfer to the neonate may contribute to improve dietary support for infants born prematurely to mothers with placental lipid transport disorders. OBJECTIVE We studied whether DHA supplements modify the messenger RNA (mRNA) expression of placental lipid transport proteins to allow a selective transfer of DHA to the fetus. DESIGN Healthy pregnant women (n = 136) received, in a double-blind randomized trial, 500 mg DHA + 150 mg eicosapentaenoic acid, 400 microg 5-methyl-tetrahydrofolic acid, 500 mg DHA + 400 microg 5-methyl-tetrahydrofolic acid, or placebo during the second half of gestation. We analyzed the fatty acid composition of maternal and cord blood phospholipids and of placenta; we quantified placental mRNA expression of fatty acid-transport protein 1 (FATP-1), FATP-4, FATP-6, fatty acid translocase, fatty acid-binding protein (FABP) plasma membrane, heart-FABP, adipocyte-FABP, and brain-FABP. RESULTS The mRNA expression of the lipid carriers assayed did not differ significantly between the 4 groups. However, the mRNA expression of FATP-1 and FATP-4 in placenta was correlated with DHA in both maternal plasma and placental phospholipids, although only FATP-4 expression was significantly correlated with DHA in cord blood phospholipids. Additionally, the mRNA expression of several membrane lipid carriers was correlated with EPA and DHA in placental triacylglycerols and with EPA in placental free fatty acids. CONCLUSIONS Correlation of the mRNA expression of the membrane placental proteins FATP-1 and especially of FATP-4 with maternal and cord DHA leads us to conclude that these lipid carriers are involved in placental transfer of long-chain polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Elvira Larqué
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Atshaves BP, McIntosh AL, Payne HR, Mackie J, Kier AB, Schroeder F. Effect of branched-chain fatty acid on lipid dynamics in mice lacking liver fatty acid binding protein gene. Am J Physiol Cell Physiol 2005; 288:C543-58. [PMID: 15692150 DOI: 10.1152/ajpcell.00359.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although a role for liver fatty acid protein (L-FABP) in the metabolism of branched-chain fatty acids has been suggested based on data obtained with cultured cells, the physiological significance of this observation remains to be demonstrated. To address this issue, the lipid phenotype and metabolism of phytanic acid, a branched-chain fatty acid, were determined in L-FABP gene-ablated mice fed a diet with and without 1% phytol (a metabolic precursor to phytanic acid). In response to dietary phytol, L-FABP gene ablation exhibited a gender-dependent lipid phenotype. Livers of phytol-fed female L-FABP-/- mice had significantly more fatty lipid droplets than male L-FABP-/- mice, whereas in phytol-fed wild-type L-FABP+/+ mice differences between males and females were not significant. Thus L-FABP gene ablation exacerbated the accumulation of lipid droplets in phytol-fed female, but not male, mice. These results were reflected in the lipid profile, where hepatic levels of triacylglycerides in phytol-fed female L-FABP-/- mice were significantly higher than in male L-FABP-/- mice. Furthermore, livers of phytol-fed female L-FABP-/- mice exhibited more necrosis than their male counterparts, consistent with the accumulation of higher levels of phytol metabolites (phytanic acid, pristanic acid) in liver and serum, in addition to increased hepatic levels of sterol carrier protein (SCP)-x, the only known peroxisomal enzyme specifically required for branched-chain fatty acid oxidation. In summary, L-FABP gene ablation exerted a significant role, especially in female mice, in branched-chain fatty acid metabolism. These effects were only partially compensated by concomitant upregulation of SCP-x in response to L-FABP gene ablation and dietary phytol.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology, Texas A&M University, Texas Veterinary Medical Center, College Station, TX 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Fatty acid-binding proteins (FABPs) belong to the conserved multigene family of the intracellular lipid-binding proteins (iLBPs). These proteins are ubiquitously expressed in vertebrate tissues, with distinct expression patterns for the individual FABPs. Various functions have been proposed for these proteins, including the promotion of cellular uptake and transport of fatty acids, the targeting of fatty acids to specific metabolic pathways, and the participation in the regulation of gene expression and cell growth. Novel genetic tools that have become available in recent years, such as transgenic cell lines, animals, and knock-out mice, have provided the opportunity to test these concepts in physiological settings. Such studies have helped to define essential cellular functions of individual FABP-types or of combinations of several different FABPs. The deletion of particular FABP genes, however, has not led to gross phenotypical changes, most likely because of compensatory overexpression of other members of the iLBP gene family, or even of unrelated fatty acid transport proteins. This review summarizes the properties of the various FABPs expressed in mammalian tissues, and discusses the transgenic and ablation studies carried out to date in a functional context.
Collapse
Affiliation(s)
- Norbert H Haunerland
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
15
|
Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 2004; 310:417-24. [PMID: 15016835 DOI: 10.1124/jpet.103.064717] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alcoholic liver disease is associated with a state of hepatic fatty acid overload. We examined the effect of ethanol and different types of dietary fat on the expression of mRNA for liver fatty acid binding protein (L-FABP), peroxisome proliferator-activated receptor-alpha (PPARalpha), and peroxisomal fatty acyl CoA oxidase (FACO). Four groups of rats (n = 5) were fed intragastrically, a liquid diet with or without ethanol (10-16 g/kg/day) for 4 weeks. Pair-fed controls received isocaloric amounts of dextrose. The source of fat was either corn oil or fish oil. Ethanolfed rats developed fatty liver, necrosis, and inflammation; the changes were more severe in the fish oil-ethanol (FE) rats. PPARalpha mRNA levels were not different between groups, although there was a trend toward increased levels in ethanol-fed rats. We calculated L-FABP/PPARalpha and FACO/PPARalpha ratios as a measure of FACO and L-FABP up-regulation relative to PPARalpha expression. Both FACO/PPARalpha and L-FABP/PPARalpha ratios were significantly decreased in FE rats. However, only L-FABP/PPARalpha was decreased in corn oil plus ethanol rats. Also, the level of L-FABP/mRNA correlated inversely with the degree of fatty liver in ethanol-fed rats. Since expression of PPARalpha response genes was impaired in ethanol-fed rats, we determined whether activation of PPARalpha would normalize the PPARalpha response and prevent the pathological changes in ethanol-fed rats. Treatment with clofibrate, a PPARalpha-activating ligand, led to a marked decrease in fatty liver and complete abrogation of necroinflammatory changes in FE rats. Also, nuclear factor kappaB activation and up-regulation of tumor necrosis factor-alpha and cyclooxygenase-2 was also abolished in clofibrate-treated rats. We conclude that adaptive gene regulation of FACO and L-FABP by PPARalpha is impaired in ethanol-fed rats and that treatment with clofibrate, a PPARalpha ligand, prevents alcohol-induced pathological liver injury, possibly by reversing the above changes.
Collapse
Affiliation(s)
- Amin A Nanji
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-4283, USA.
| | | | | | | |
Collapse
|
16
|
Atshaves BP, McIntosh AM, Lyuksyutova OI, Zipfel W, Webb WW, Schroeder F. Liver fatty acid-binding protein gene ablation inhibits branched-chain fatty acid metabolism in cultured primary hepatocytes. J Biol Chem 2004; 279:30954-65. [PMID: 15155724 DOI: 10.1074/jbc.m313571200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whereas the role of liver fatty acid-binding protein (L-FABP) in the uptake, transport, mitochondrial oxidation, and esterification of normal straight-chain fatty acids has been studied extensively, almost nothing is known regarding the function of L-FABP in peroxisomal oxidation and metabolism of branched-chain fatty acids. Therefore, phytanic acid (most common dietary branched-chain fatty acid) was chosen to address these issues in cultured primary hepatocytes isolated from livers of L-FABP gene-ablated (-/-) and wild type (+/+) mice. These studies provided three new insights: First, L-FABP gene ablation reduced maximal, but not initial, uptake of phytanic acid 3.2-fold. Initial uptake of phytanic acid uptake was unaltered apparently due to concomitant 5.3-, 1.6-, and 1.4-fold up-regulation of plasma membrane fatty acid transporter/translocase proteins (glutamic-oxaloacetic transaminase, fatty acid transport protein, and fatty acid translocase, respectively). Second, L-FABP gene ablation inhibited phytanic acid peroxisomal oxidation and microsomal esterification. These effects were consistent with reduced cytoplasmic fatty acid transport as evidenced by multiphoton fluorescence photobleaching recovery, where L-FABP gene ablation reduced the cytoplasmic, but not membrane, diffusional component of NBD-stearic acid movement 2-fold. Third, lipid analysis of the L-FABP gene-ablated hepatocytes revealed an altered fatty acid phenotype. Free fatty acid and triglyceride levels were decreased 1.9- and 1.6-fold, respectively. In summary, results with cultured primary hepatocytes isolated from L-FABP (+/+) and L-FABP (-/-) mice demonstrated for the first time a physiological role of L-FABP in the uptake and metabolism of branched-chain fatty acids.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
17
|
Atshaves BP, Payne HR, McIntosh AL, Tichy SE, Russell D, Kier AB, Schroeder F. Sexually dimorphic metabolism of branched-chain lipids in C57BL/6J mice. J Lipid Res 2004; 45:812-30. [PMID: 14993239 DOI: 10.1194/jlr.m300408-jlr200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of branched chain lipid oxidation in detoxification, almost nothing is known regarding factors regulating peroxisomal uptake, targeting, and metabolism. One peroxisomal protein, sterol carrier protein-x (SCP-x), is thought to catalyze a key thiolytic step in branched chain lipid oxidation. When mice with substantially lower hepatic levels of SCP-x were tested for susceptibility to dietary stress with phytol (a phytanic acid precursor and peroxisome proliferator), livers of phytol-fed female but not male mice i). accumulated phytol metabolites (phytanic acid, pristanic acid, and Delta-2,3-pristanic acid); ii). exhibited decreased fat tissue mass and increased liver mass/body mass; iii). displayed signs of histopathological lesions in the liver; and iv). demonstrated significant alterations in hepatic lipid distributions. Moreover, both male and female mice exhibited phytol-induced peroxisomal proliferation, as demonstrated by liver morphology and upregulation of the peroxisomal protein catalase. In addition, levels of liver fatty acid binding protein, along with SCP-2 and SCP-x, increased, suggesting upregulation mediated by phytanic acid, a known ligand agonist of the peroxisomal proliferator-activated receptor alpha. In summary, the present work establishes a role for SCP-x in branched chain lipid catabolism and demonstrates a sexual dimorphic response to phytol, a precursor of phytanic acid, in lipid parameters and hepatotoxicity.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Departments of Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Atshaves BP, Storey SM, Schroeder F. Sterol carrier protein-2/sterol carrier protein-x expression differentially alters fatty acid metabolism in L cell fibroblasts. J Lipid Res 2003; 44:1751-62. [PMID: 12810824 DOI: 10.1194/jlr.m300141-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterol carrier protein-2 (SCP-2) and SCP-x are ubiquitous proteins found in all mammalian tissues. Although both proteins interact with fatty acids, their relative contributions to the uptake, oxidation, and esterification of straight-chain (palmitic) and branched-chain (phytanic) fatty acids in living cells has not been resolved. Therefore, the effects of each gene product on fatty acid metabolism was individually examined. Based on the following, SCP-2 and SCP-x did not enhance the uptake/translocation of fatty acids across the plasma membrane into the cell: i) a 2-fold increase in phytanic and palmitic acid uptake was observed at long incubation times in SCP-2- and SCP-x-expressing cells, but no differences were observed at initial time points; ii) uptake of 2-bromo-palmitate, a nonoxidizable, poorly metabolizable fatty acid analog, was unaffected by SCP-2 or SCP-x overexpression; and iii) SCP-2 and SCP-x expression did not increase targeting of radiolabeled phytanic and palmitic acid to the unesterified fatty acid pool. Moreover, SCP-2 and SCP-x expression enhanced fatty acid uptake by stimulating the intracellular metabolism via fatty acid oxidation and esterification. In summary, these data showed for the first time that SCP-2 and SCP-x stimulate oxidation and esterification of branched-chain as well as straight-chain fatty acids in intact cells.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466, USA
| | | | | |
Collapse
|
19
|
Haunerland NH, Spener F. Properties and physiological significance of fatty acid binding proteins. LIPOBIOLOGY 2003. [DOI: 10.1016/s1569-2558(03)33007-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Atshaves BP, Storey SM, Petrescu A, Greenberg CC, Lyuksyutova OI, Smith R, Schroeder F. Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L cell fibroblasts. Am J Physiol Cell Physiol 2002; 283:C688-703. [PMID: 12176726 DOI: 10.1152/ajpcell.00586.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High levels of saturated, branched-chain fatty acids are deleterious to cells and animals, resulting in lipid accumulation and cytotoxicity. Although fatty acid binding proteins (FABPs) are thought to be protective, this hypothesis has not previously been examined. Phytanic acid (branched chain, 16-carbon backbone) induced lipid accumulation in L cell fibroblasts similar to that observed with palmitic acid (unbranched, C(16)): triacylglycerol >> free fatty acid > cholesterol > cholesteryl ester >> phospholipid. Although expression of sterol carrier protein (SCP)-2, SCP-x, or liver FABP (L-FABP) in transfected L cells reduced [(3)H]phytanic acid uptake (57-87%) and lipid accumulation (21-27%), nevertheless [(3)H]phytanic acid oxidation was inhibited (74-100%) and phytanic acid toxicity was enhanced in the order L-FABP >> SCP-x > SCP-2. These effects differed markedly from those of [(3)H]palmitic acid, whose uptake, oxidation, and induction of lipid accumulation were not reduced by L-FABP, SCP-2, or SCP-x expression. Furthermore, these proteins did not enhance the cytotoxicity of palmitic acid. In summary, intracellular FABPs reduce lipid accumulation induced by high levels of branched-chain but not straight-chain saturated fatty acids. These beneficial effects were offset by inhibition of branched-chain fatty acid oxidation that correlated with the enhanced toxicity of high levels of branched-chain fatty acid.
Collapse
Affiliation(s)
- Barbara P Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, Texas Veterinary Medical Center, College Station 77843-4466, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Huang H, Starodub O, McIntosh A, Kier AB, Schroeder F. Liver fatty acid-binding protein targets fatty acids to the nucleus. Real time confocal and multiphoton fluorescence imaging in living cells. J Biol Chem 2002; 277:29139-51. [PMID: 12023965 DOI: 10.1074/jbc.m202923200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although unesterified long chain fatty acids interact with peroxisome proliferator-activated receptors to initiate transcription within the nucleus, almost nothing is known regarding factors regulating long chain fatty acid distribution to the nucleus of living cells. The possibility that the liver fatty acid-binding protein (L-FABP) may function in this role was addressed in transfected L-cell fibroblasts overexpressing L-FABP using a series of fluorescent fatty acids differing in chain length and unsaturation. After 30 min of incubation, oxidation of BODIPY-, NBD-, and cis-parinaric acids was undetectable in L-cells. Likewise, L-cells very poorly esterified these fluorescent fatty acids in the following order: 0% BODIPY-C5, NBD-C6 (short chain length) < 0-3% NBD-C18, BODIPY-C16, cis-parinaric acid (long chain length) < 11% BODIPY-C12 (medium chain length). Real time confocal and multiphoton laser scanning microscopy (CLSM and MPLSM) showed that these fluorescent fatty acids were generally taken up in the following order: long chain (BODIPY-C16, NBD-C18) > medium chain (BODIPY-C12) short chain (BODIPY-C5, NBD-C6). The fluorescent fatty acids were imaged in the nucleus, primarily associated with the nuclear envelope, at levels about 2-3-fold lower than outside the nucleus. CLSM and MPLSM showed that L-FABP expression enhanced by 2-4-fold the initial rate and/or average maximal uptake of the long and medium chain but not the short chain fluorescent fatty acids in living cells. Furthermore, L-FABP expression increased the targeting of long and medium but not short chain fluorescent fatty acids to the nucleus by 2.9-4.4-fold and increased the proportion (i.e. nuclear:cytoplasm ratio) of medium and long chain but not short chain fatty acids by 2-3.6-fold. In summary, these results showed for the first time the presence of unesterified fatty acids in the nucleus of living cells and demonstrated that expression of a fatty acid-binding protein, L-FABP, specifically enhanced uptake and intracellular targeting of long and medium chain fatty acids to the nucleus.
Collapse
Affiliation(s)
- Huan Huang
- Department of Pathobiology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | | | |
Collapse
|
22
|
Atwal OS, Williams CS, Minhas KJ, Nijjar MS. In situ heparin-induced peroxisomal reticulum and biogenesis of peroxisomes in pulmonary intravascular macrophages (PIMs) of caprine lung: an ultrastructural and cytochemical study. THE ANATOMICAL RECORD 2002; 266:69-80. [PMID: 11748573 DOI: 10.1002/ar.10035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pulmonary intravascular macrophages (PIMs) contain a unique electron-dense globular surface-coat which is sensitive to heparin treatment, halothane anesthesia, and the digestive effect of lipolytic lipase (LPL), suggesting that the coat is predominantly composed of lipoproteins. In the present study, evidence is presented that heparin, when administered intravenously in goats, potentiated both the translocation of the surface-coat into the vacuolar system and the expansion of the Golgi apparatus. Sequentially, these changes were followed by proliferation of peroxisomes in combination with peroxisomal reticulum (PR), a transient precursor of this organelle. The peroxisomes, as well as PR, reacted positively for catalase after aldehyde fixation and 3,3'-diaminobenzidine (DAB) staining. In addition to their role as phagocytes, the ultrastructural and cytochemical detection of peroxisomes suggests a functional capacity of the PIMs, which may be adaptable to the circulating level of free fatty acids (FAAs).
Collapse
Affiliation(s)
- Onkar S Atwal
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
23
|
Gallegos AM, Atshaves BP, Storey SM, Starodub O, Petrescu AD, Huang H, McIntosh AL, Martin GG, Chao H, Kier AB, Schroeder F. Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Prog Lipid Res 2001; 40:498-563. [PMID: 11591437 DOI: 10.1016/s0163-7827(01)00015-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since its discovery three decades ago, sterol carrier protein-2 (SCP-2) has remained a fascinating protein whose physiological function in lipid metabolism remains an enigma. Its multiple proposed functions arise from its complex gene structure, post-translational processing, intracellular localization, and ligand specificity. The SCP-2 gene has two initiation sites coding for proteins that share a common 13 kDa SCP-2 C-terminus: (1) One site codes for 58 kDa SCP-x which is partially post-translationally cleaved to 13 kDa SCP-2 and a 45 kDa protein. (2) A second site codes for 15 kDa pro-SCP-2 which is completely post-translationally cleaved to 13 kDa SCP-2. Very little is yet known regarding how the relative proportions of the two transcripts are regulated. Although all three proteins contain a C-terminal SKL peroxisomal targeting sequence, it is unclear why all three proteins are not exclusively localized in peroxisomes. However, the recent demonstration that the SCP-2 N-terminal presequence in pro-SCP-2 dramatically modulated the intracellular targeting coded by the C-terminal peroxisomal targeting sequence may account for the observation that as much as half of total SCP-2 is localized outside the peroxisome. The tertiary and secondary structure of the 13 kDa SCP-2, but not that of 15 kDa pro-SCP-2 and 58 kDa SCP-x, are now resolved. Increasing evidence suggests that the 58 kDa SCP-x and 45 kDa proteins are peroxisomal 3-ketoacyl-CoA-thiolases involved in the oxidation of branched chain fatty acids. Since 15 kDa pro-SCP-2 is post-translationally completely cleaved to 13 kDa SCP-2, relatively little attention has been focused on this protein. Finally, although the 13 kDa SCP-2 is the most studied of these proteins, because it exhibits diversity of its ligand partners (fatty acids, fatty acyl CoAs, cholesterol, phospholipids), new potential physiological function(s) are still being proposed and questions regarding potential compensation by other proteins with overlapping specificity are only beginning to be resolved.
Collapse
Affiliation(s)
- A M Gallegos
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Arrese EL, Canavoso LE, Jouni ZE, Pennington JE, Tsuchida K, Wells MA. Lipid storage and mobilization in insects: current status and future directions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:7-17. [PMID: 11102830 DOI: 10.1016/s0965-1748(00)00102-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this paper we review the current status of research on fatty acid absorption and conversion to diacylglycerol in the midgut. We further discuss how diacylglycerol may leave the midgut and associate with lipophorin in hemolymph. We review the present understanding of the role of the lipid transfer particle and lipophorin receptors in lipid delivery between lipophorin and tissues. Finally, we discuss recent studies on the mobilization of diacylglycerol from the fat body in response to adipokinetic hormone. Several suggestions for exciting areas of future research are described.
Collapse
Affiliation(s)
- E L Arrese
- Department of Biochemistry and Center for Insect Science, Biological Sciences West, The University of Arizona, Tucson 85721-0088, USA
| | | | | | | | | | | |
Collapse
|
25
|
Atshaves BP, Starodub O, McIntosh A, Petrescu A, Roths JB, Kier AB, Schroeder F. Sterol carrier protein-2 alters high density lipoprotein-mediated cholesterol efflux. J Biol Chem 2000; 275:36852-61. [PMID: 10954705 DOI: 10.1074/jbc.m003434200] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although sterol carrier protein-2 (SCP-2) participates in the uptake and intracellular trafficking of cholesterol, its effect on "reverse cholesterol transport" has not been explored. As shown herein, SCP-2 expression inhibited high density lipoprotein (HDL)-mediated efflux of [(3)H]cholesterol and fluorescent 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3b-ol (NBD-cholesterol) up to 61 and 157%, respectively. Confocal microscopy of living cells allowed kinetic analysis of two intracellular pools of HDL-mediated NBD-cholesterol efflux: the highly fluorescent lipid droplet pool and the less fluorescent pool outside the lipid droplets, designated the cytoplasmic compartment. Both the whole cell and the cytoplasmic compartment exhibited two similar kinetic pools, the half-times of which were consistent with protein (t(b)(12) near 1 min) and vesicular (t(d)(12) = 10-20 min) mediated sterol transfer. Although SCP-2 expression did not alter cytoplasmic sterol pool sizes, the rapid t(b)(12) decreased 36%, while the slower t(d)(12) increased 113%. Lipid droplets also exhibited two kinetic pools of NBD-cholesterol efflux but with half-times over 200% shorter than those of the cytoplasmic compartment. The lipid droplet slower effluxing pool size and t(d)(12) were increased 48% and 115%, respectively, in SCP-2-expressing cells. Concomitantly, the level of the lipid droplet-specific adipose differentiation-related protein decreased 70%. Overall, HDL-mediated sterol efflux from L-cell fibroblasts reflected that of the cytoplasmic rather than lipid droplet compartment. SCP-2 differentially modulated sterol efflux from the two cytoplasmic pools. However, net efflux was determined primarily by inhibition of the slowly effluxing pool rather than by acceleration of the rapid protein-mediated pool. Finally, SCP-2 expression also inhibited sterol efflux from lipid droplets, an effect related to decreased adipose differentiation-related protein, a lipid droplet surface protein that binds cholesterol with high affinity.
Collapse
Affiliation(s)
- B P Atshaves
- Department of Physiology and Pharmacology and the Department of Pathobiology, Texas A & M University, College Station, Texas 77843-4466, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Veerkamp JH, Van Moerkerk And HT, Zimmerman AW. Effect of fatty acid-binding proteins on intermembrane fatty acid transport studies on different types and mutant proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5959-66. [PMID: 10998056 DOI: 10.1046/j.1432-1327.2000.01665.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Liposomes of different charge fixed to nitrocellulose filters were used to study the transfer of fatty acids to rat heart or liver mitochondria in the presence of fatty acid-binding protein (FABP) or albumin. [14C]Palmitate oxidation was used as a parameter. Different FABP types and heart FABP mutants were tested. The charge of the liposomes did not influence the solubilization and mitochondrial oxidation of palmitate without FABP and the amount of solubilized palmitate in the presence of FABP. Mitochondria did not show a preference for oxidation of FABP-bound palmitate over their tissue-specific FABP type. All FABP types increased palmitate oxidation by heart and liver mitochondria with neutral, positive and negative liposomes by 2.5-fold, 3.2-fold and twofold, respectively. Ileal lipid-binding protein and H-FABP mutants that do not bind fatty acid had no effect. Other H-FABP mutants had different effects, dependent on the site of mutation. The effect of albumin was similar to, but not dependent on, liposome charge. The ionic strength had only a slight effect. In conclusion, the transfer of palmitate from liposomal membranes to mitochondria was increased by all FABP types to a similar extent. The membrane charge had a large effect in contrast to the origin of the mitochondria.
Collapse
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands.
| | | | | |
Collapse
|
27
|
Stewart JM, Blakely JA. Long chain fatty acids inhibit and medium chain fatty acids activate mammalian cardiac hexokinase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:278-86. [PMID: 10760476 DOI: 10.1016/s1388-1981(00)00008-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated the effect of non-esterified fatty acids (FAs) on bovine heart hexokinase (type I: ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1). Long chain FAs (C14 to C20) inhibited the enzyme in a way that correlated positively with both the chain length and the degree of unsaturation. Medium chain FA with 12 or less carbons activated hexokinase in a chain length dependent manner with the greater activation shown by laurate. The activation constant of laurate was 91.5 microM with a maximal activation of 60.3%. Oleate caused a maximal decrease in specific activity of 25% with an inhibition constant of 79 microM. Using the fluorescent probe cis-parinarate, we found a saturable binding site with K(d) of 3.5 microM. Oleate competed the fluorescent probe from the protein with a K(d) of 1.4 microM. Medium chain FAs did not compete the probe from HK. The binding of fatty acid to the protein appears to be entropically driven as indicated by an Arrhenius analysis (DeltaS=+231.6 J mol(-1) deg(-1)). The presence of oleate significantly increased the K(ATP)(m) from 0.47 mM to 0.89 mM while the K(glucose)(m) in the presence of the FA (0.026+/-0.003 mM) was not significantly different from the control (0.014+/-0.004 mM). A decrease in V(max) values in the presence of oleate indicated that a mixed allosteric inhibition was operating.
Collapse
Affiliation(s)
- J M Stewart
- Biochemistry Program, Department of Biology, Mount Allison University, Flemington Building, 63B York St. E4L 1G7, Sackville, NB, Canada.
| | | |
Collapse
|
28
|
McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F. Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33379-4] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Weisiger RA. Saturable stimulation of fatty acid transport through model cytoplasm by soluble binding protein. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G109-19. [PMID: 10409157 DOI: 10.1152/ajpgi.1999.277.1.g109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
To better define the role of soluble binding proteins in the cytoplasmic transport of amphipathic molecules, we measured the diffusional mobility of a fluorescent long-chain fatty acid, 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazol)aminostearate (NBD-stearate), through model cytoplasm as a function of soluble binding protein concentration. Diffusional mobilities were correlated with the partition of the fatty acid between membrane and protein binding sites. Cytoplasm was modeled as a dense suspension of liposomes, and albumin was used as a model binding protein. Albumin saturably increased NBD-stearate mobility through the membrane suspension approximately eightfold. Fatty acid mobility in the absence of albumin was identical to the mobility of the membrane vesicles (1.99 +/- 0.33 x 10(-8) cm(2)/s), whereas the mobility at saturating concentrations was identical to the mobility of albumin (1.65 +/- 0.12 x 10(-7) cm(2)/s). The protein concentration producing half-maximal stimulation of NBD-stearate diffusion (42.8 +/- 0.3 microM) was unexpectedly greater than that required to solubilize half of the NBD-stearate (17.9 +/- 3.0 microM). These results support a proposed mechanism for cytoplasmic transport of small amphipathic molecules in which aqueous diffusion of the protein-bound form of the molecule largely determines the transport rate. However, slow interchange of fatty acid between the binding protein and membranes also appears to influence the transport rate in this model system.
Collapse
Affiliation(s)
- R A Weisiger
- Department of Medicine and the Liver Center, University of California, San Francisco, California 94143-0538, USA.
| |
Collapse
|
30
|
Glatz JF, Van Breda E, Van der Vusse GJ. Intracellular transport of fatty acids in muscle. Role of cytoplasmic fatty acid-binding protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 441:207-18. [PMID: 9781327 DOI: 10.1007/978-1-4899-1928-1_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Long-chain fatty acids represent a major substrate for energy production in striated muscles, especially in those muscles which have a high oxidative enzymatic capacity. Following their uptake from the extracellular compartment the fatty acids have to translocate through the aqueous cytoplasm of the myocytes to reach the mitochondria where they undergo oxidative degradation. This intracellular transport is assisted by cytoplasmic fatty acid-binding protein (FABPc), a small (15 kD) protein which shows a high affinity for the non-covalent binding of long-chain fatty acids, and of which several types occur. So-called heart-type or muscle-type FABPc is found in muscle cells, and is abundant especially in oxidative fibers. The muscular FABPc content appears to relate to the rate of fatty acid utilization, and also changes in concert to modulations in fatty acid utilization induced by (patho)physiological stimuli (e.g. endurance training, diabetes). The facilitation of intracellular fatty acid transport by FABPc is accomplished by increasing the concentration of the diffusing fatty acids in the aqueous cytoplasm and, most likely, also by interacting directly with membranes to promote transfer of fatty acids to and from the cytosolic binding protein.
Collapse
Affiliation(s)
- J F Glatz
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
| | | | | |
Collapse
|