1
|
Zhang Y, Song X, Zhang W, Liu F, Wang C, Liu Y, Dirk LMA, Downie AB, Zhao T. Maize PIMT2 repairs damaged 3-METHYLCROTONYL COA CARBOXYLASE in mitochondria, affecting seed vigor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36999611 DOI: 10.1111/tpj.16225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) affects seed vigor by repairing damaged proteins. While PIMT is capable of isoaspartyl (isoAsp) repair in all proteins, those proteins most susceptible to isoAsp formation have not been well characterized, and the mechanisms by which PIMT affects seed vigor remain largely unknown. Using co-immunoprecipitation and LC-MS/MS, we found that maize (Zea mays) PIMT2 (ZmPIMT2) interacted predominantly with both subunits of maize 3-METHYLCROTONYL COA CARBOXYLASE (ZmMCC). ZmPIMT2 is specifically expressed in the maize embryo. Both mRNA and protein levels of ZmPIMT2 increased during seed maturation and declined during imbibition. Maize seed vigor was decreased in the zmpimt2 mutant line, while overexpression of ZmPIMT2 in maize and Arabidopsis thaliana increased seed vigor upon artificial aging. ZmPIMT2 was localized in the mitochondria, as determined by subcellular localization assays using maize protoplasts. ZmPIMT2 binding to ZmMCCα was confirmed by luciferase complementation tests in both tobacco (Nicotiana benthamiana) leaves and maize protoplasts. Knockdown of ZmMCCα decreased maize seed aging tolerance. Furthermore, overexpression of ZmPIMT2 decreased the accumulation of isoAsp of ZmMCCα protein in seed embryos that underwent accelerated aging treatment. Taken together, our results demonstrate that ZmPIMT2 binds ZmMCCα in mitochondria, repairs isoAsp damage, and positively affects maize seed vigor.
Collapse
Affiliation(s)
- Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianbo Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feijun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Wang
- Biology Experimental Teaching Center, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Cao L, Elashal HE, Link AJ. Kinetics of Aspartimide Formation and Hydrolysis in Lasso Peptide Lihuanodin. Biochemistry 2023; 62:695-699. [PMID: 36701287 PMCID: PMC10038108 DOI: 10.1021/acs.biochem.2c00707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aspartimides are notorious as undesired side products in solid-phase peptide synthesis and in pharmaceutical formulations. However, we have discovered several ribosomally synthesized and post-translationally modified peptides (RiPPs) in which aspartimide is installed intentionally via enzymatic activity of protein l-isoaspartyl methyltransferase (PIMT) homologues. In the case of the lasso peptide lihuanodin, the methyltransferase LihM recognizes the lassoed substrate pre-lihuanodin, specifically methylating the side chain of an l-Asp residue in the ring portion of the lasso peptide. The subsequent nucleophilic attack from the adjacent amide leads to the formation of an aspartimide. The resulting aspartimide hydrolyzes regioselectively to l-Asp in buffers above pH 7. Here we report the first Michaelis-Menten kinetic measurements of such a RiPP-associated PIMT homologue, LihM, acting on its cognate substrate pre-lihuanodin. Additionally, we measured the rate of aspartimide hydrolysis, which allowed us to deduce the kinetics of the entire reaction network. The relative magnitudes of these rates explain the accumulation and relative stability of aspartimide-containing lihuanodin. We also demonstrate that the residue C-terminal to the aspartimide controls the regioselectivity of hydrolysis and thus the threadedness of the peptide.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Hader E. Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
3
|
Silzel JW, Lambeth TR, Julian RR. PIMT-Mediated Labeling of l-Isoaspartic Acid with Tris Facilitates Identification of Isomerization Sites in Long-Lived Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:548-556. [PMID: 35113558 PMCID: PMC9930442 DOI: 10.1021/jasms.1c00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isomerization of individual residues in long-lived proteins (LLPs) is a subject of growing interest in connection with many age-related human diseases. When isomerization occurs in LLPs, it can lead to deleterious changes in protein structure, function, and proteolytic degradation. Herein, we present a novel labeling technique for rapid identification of l-isoAsp using the enzyme protein l-isoaspartyl methyltransferase (PIMT) and Tris. The succinimide intermediate formed during reaction of l-isoAsp-containing peptides with PIMT and S-adenosyl methionine (SAM) is reactive with Tris base and results in a Tris-modified aspartic acid residue with a mass shift of +103 Da. Tris-modified aspartic acid exhibits prominent and repeated neutral loss of water when subjected to collisional activation. In addition, another dissociation pathway regenerates the original peptide following loss of a characteristic mass shift. Furthermore, it is demonstrated that Tris modification can be used to identify sites of isomerization in LLPs from biological samples such as the lens of the eye. This approach simplifies identification by labeling isomerization sites with a tag that causes a mass shift and provides characteristic loss during collisional activation.
Collapse
Affiliation(s)
| | | | - Ryan R. Julian
- Corresponding Author correspondence should be sent to: , Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA 92521, USA, (951) 827-3959
| |
Collapse
|
4
|
Soliman R, Cordero-Maldonado ML, Martins TG, Moein M, Conrotte JF, Warmack RA, Skupin A, Crawford AD, Clarke SG, Linster CL. l-Isoaspartyl Methyltransferase Deficiency in Zebrafish Leads to Impaired Calcium Signaling in the Brain. Front Genet 2021; 11:612343. [PMID: 33552132 PMCID: PMC7859441 DOI: 10.3389/fgene.2020.612343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Isomerization of l-aspartyl and l-asparaginyl residues to l-isoaspartyl residues is one type of protein damage that can occur under physiological conditions and leads to conformational changes, loss of function, and enhanced protein degradation. Protein l-isoaspartyl methyltransferase (PCMT) is a repair enzyme whose action initiates the reconversion of abnormal l-isoaspartyl residues to normal l-aspartyl residues in proteins. Many lines of evidence support a crucial role for PCMT in the brain, but the mechanisms involved remain poorly understood. Here, we investigated PCMT activity and function in zebrafish, a vertebrate model that is particularly well-suited to analyze brain function using a variety of techniques. We characterized the expression products of the zebrafish PCMT homologous genes pcmt and pcmtl. Both zebrafish proteins showed a robust l-isoaspartyl methyltransferase activity and highest mRNA transcript levels were found in brain and testes. Zebrafish morphant larvae with a knockdown in both the pcmt and pcmtl genes showed pronounced morphological abnormalities, decreased survival, and increased isoaspartyl levels. Interestingly, we identified a profound perturbation of brain calcium homeostasis in these morphants. An abnormal calcium response upon ATP stimulation was also observed in mouse hippocampal HT22 cells knocked out for Pcmt1. This work shows that zebrafish is a promising model to unravel further facets of PCMT function and demonstrates, for the first time in vivo, that PCMT plays a pivotal role in the regulation of calcium fluxes.
Collapse
Affiliation(s)
- Remon Soliman
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Teresa G Martins
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mahsa Moein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rebeccah A Warmack
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,University of California, San Diego, La Jolla, CA, United States
| | - Alexander D Crawford
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Oslo, Norway.,Institute for Orphan Drug Discovery, Bremer Innovations- und Technologiezentrum, Bremen, Germany
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J 2020; 477:4453-4471. [PMID: 33245750 DOI: 10.1042/bcj20200794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Proteins are essential molecules that carry out key functions in a cell. However, as a result of aging or stressful environments, the protein undergoes a range of spontaneous covalent modifications, including the formation of abnormal l-isoaspartyl residues from aspartyl or asparaginyl residues, which can disrupt the protein's inherent structure and function. PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT: EC 2.1.1.77), an evolutionarily conserved ancient protein repairing enzyme (PRE), converts such abnormal l-isoaspartyl residues to normal l-aspartyl residues and re-establishes the protein's native structure and function. Although originally discovered in animals as a PRE, PIMT emerged as a key PRE in plants, particularly in seeds, in which PIMT plays a predominant role in preserving seed vigor and viability for prolonged periods of time. Interestingly, higher plants encode a second PIMT (PIMT2) protein which possesses a unique N-terminal extension, and exhibits several distinct features and far more complexity than non-plant PIMTs. Recent studies indicate that the role of PIMT is not restricted to preserving seed vigor and longevity but is also implicated in enhancing the growth and survivability of plants under stressful environments. Furthermore, expression studies indicate the tantalizing possibility that PIMT is involved in various physiological processes apart from its role in seed vigor, longevity and plant's survivability under abiotic stress. This review article particularly describes new insights and emerging interest in all facets of this enzyme in plants along with a concise comparative overview on isoAsp formation, and the role and regulation of PIMTs across evolutionary diverse species. Additionally, recent methods and their challenges in identifying isoaspartyl containing proteins (PIMT substrates) are highlighted.
Collapse
|
6
|
Diversity and Regulation of S-Adenosylmethionine Dependent Methyltransferases in the Anhydrobiotic Midge. INSECTS 2020; 11:insects11090634. [PMID: 32947792 PMCID: PMC7565475 DOI: 10.3390/insects11090634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023]
Abstract
Multiple co-localized paralogs of genes in Polypedilum vanderplanki's genome have strong transcriptional response to dehydration and considered to be a part of adaptation machinery at the larvae stage. One group of such genes represented by L-isoaspartate O-methyltransferases (PIMT). In order to highlight specific role of PIMT paralogization in desiccation tolerance of the larvae we annotated and compared S-adenosylmethionine (SAM) dependent methyltransferases of four insect species. From another side we applied co-expression analysis in desiccation/rehydration time course and showed that PIMT coding genes could be separated into five clusters by expression profile. We found that among Polypedilum vanderplanki's PIMTs only PIMT1 and PIMT2 have enzymatic activity in normal physiological conditions. From in silico analysis of the protein structures we found two highly variable regions outside of the active center, but also amino acid substitutions which may affect SAM stabilization. Overall, in this study we demonstrated features of Polypedilum vanderplanki's PIMT coding paralogs related to different roles in desiccation tolerance of the larvae. Our results also suggest a role of different SAM-methyltransferases in the adaptation, including GSMT, JHAMT, and candidates from other classes, which could be considered in future studies.
Collapse
|
7
|
Sadakane Y, Senda S, Deguchi T, Tanaka A, Tsuruta H, Morimoto S. Effect of amino acids present at the carboxyl end of succinimidyl residue on the rate constants for succinimidyl hydrolysis in small peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140496. [PMID: 32673742 DOI: 10.1016/j.bbapap.2020.140496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
Structural alterations of aspartyl and asparaginyl residues in various proteins can lead to their malfunction, which may result in severe health disorders. The formation and hydrolysis of succinimidyl intermediates are crucial in specific protein modifications. Nonetheless, only few studies investigating the hydrolysis of succinimidyl intermediates have been published. In this study, we established a method to prepare peptides bearing succinimidyl residues using recombinant protein l-isoaspartyl methyltransferase and ultrafiltration units. Using succinimidyl peptides, we examined the effect of amino acid residues on succinimidyl hydrolysis at the carboxyl end of succinimidyl residues and determined the rate constant of hydrolysis for each peptide. The rate constant of succinimidyl hydrolysis in the peptide bearing a Ser residue at the carboxyl side (0.50 ± 0.02 /h) was 3.0 times higher than that for the peptide bearing an Ala residue (0.17 ± 0.01 /h), whereas it was just 1.2 times higher for the peptide bearing a Gly residue (0.20 ± 0.01 /h). The rate constant of succinimidyl formation in the peptide bearing a Ser residue [(2.44 ± 0.11) × 10-3 /d] was only 1.2 times higher than that for the peptide bearing an Ala residue ([1.87 ± 0.09) × 10-3 /d], whereas 5.5 times higher for the peptide bearing a Gly residue [(10.2 ± 0.2) × 10-3 /d]. These results show that the Gly and Ser residues at the carboxyl end of the succinimidyl residue have opposing roles in succinimidyl formation and hydrolysis. Catalysis of Ser residue's hydroxyl group plays a crucial role in succinimidyl hydrolysis.
Collapse
Affiliation(s)
- Yutaka Sadakane
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Sayumi Senda
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Taku Deguchi
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Atsuki Tanaka
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Hiromasa Tsuruta
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Shota Morimoto
- School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| |
Collapse
|
8
|
Mishra PKK, Mahawar M. PIMT-Mediated Protein Repair: Mechanism and Implications. BIOCHEMISTRY (MOSCOW) 2019; 84:453-463. [PMID: 31234761 DOI: 10.1134/s0006297919050018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amino acids undergo many covalent modifications, but only few amino acid repair enzymes have been identified. Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT), also known as L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (PCMT), methylates covalently modified isoaspartate (isoAsp) residues accumulated in proteins via Asn deamidation and Asp hydrolysis. This cytoplasmic reaction occurs through the formation of succinimide cyclical intermediate and generates either isoAsp or Asp from succinimide. Succinimide conversion into Asp is spontaneous, while isoAsp is restored by PIMT using S-adenosylmethionine as a methyl donor. PIMT transforms isoAsp into succinimide, thereby creating an opportunity for the later to be converted into Asp. Apart from normal cell physiology, formation of isoAsp in proteins is promoted by various stress conditions. The resulting isoAsp can form a kink or bend in the protein backbone thus making the protein conformationally and functionally distorted. Many PIMT-interacting proteins (proteins with isoAsp residues) have been reported in eukaryotes, but only few of them have been found in prokaryotes. Extensive studies in mice have shown the importance of PIMT in neurodegeneration. Detail elucidation of PIMT function can create a platform for addressing various disorders such as Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- P K K Mishra
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - M Mahawar
- Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| |
Collapse
|
9
|
Cardona T, Sánchez‐Baracaldo P, Rutherford AW, Larkum AW. Early Archean origin of Photosystem II. GEOBIOLOGY 2019; 17:127-150. [PMID: 30411862 PMCID: PMC6492235 DOI: 10.1111/gbi.12322] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 05/09/2023]
Abstract
Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life SciencesImperial College LondonLondonUK
| | | | | | | |
Collapse
|
10
|
Villegente M, Marmey P, Job C, Galland M, Cueff G, Godin B, Rajjou L, Balliau T, Zivy M, Fogliani B, Sarramegna-Burtet V, Job D. A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda. Proteomes 2017; 5:E19. [PMID: 28788068 PMCID: PMC5620536 DOI: 10.3390/proteomes5030019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda, an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos.
Collapse
Affiliation(s)
- Matthieu Villegente
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Philippe Marmey
- Institut de recherche pour le développement (IRD), UMR Diversité, Adaptation et Développement des plantes (DIADE), BP A5, 98848 Nouméa Cedex, Nouvelle-Calédonie.
| | - Claudette Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
| | - Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (Institut National de la Rechercherche Agronomique(INRA), AgroParisTech, CNRS, Université Paris-Saclay) ; « Saclay Plant Sciences (SPS) » - RD10, F-78026 Versailles, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| | - Thierry Balliau
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Michel Zivy
- Plateforme d'Analyse Protéomique de Paris Sud Ouest (PAPPSO), GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France.
| | - Bruno Fogliani
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
- Institut Agronomique Néo-Calédonien (IAC), Équipe ARBOREAL, Agriculture Biodiversité et Valorisation, BP 73 Port Laguerre, 98890 Païta, Nouvelle-Calédonie.
| | - Valérie Sarramegna-Burtet
- Institut des Sciences Exactes et Appliquées (EA 7484), Université de Nouvelle-Calédonie, BP R4, 98851 Nouméa, Nouvelle-Calédonie.
| | - Dominique Job
- Centre National de la Recherche Scientifique (CNRS), CNRS-Université Claude Bernard Lyon-Institut National des Sciences Appliquées-Bayer CropScience (UMR5240), Bayer CropScience, F-69263 Lyon CEDEX 9, France.
- AgroParisTech, Département « Science de la Vie et Santé », Unité de Formation-Recherche en Physiologie végétale, F-75231 Paris, France.
| |
Collapse
|
11
|
Petla BP, Kamble NU, Kumar M, Verma P, Ghosh S, Singh A, Rao V, Salvi P, Kaur H, Saxena SC, Majee M. Rice PROTEIN l-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity. THE NEW PHYTOLOGIST 2016; 211:627-45. [PMID: 26987457 DOI: 10.1111/nph.13923] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/03/2016] [Indexed: 05/03/2023]
Abstract
PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) is a protein-repairing enzyme involved in seed vigor and longevity. However, the regulation of PIMT isoforms during seed development and the mechanism of PIMT-mediated improvement of seed vigor and longevity are largely unknown. In this study in rice (Oryza sativa), we demonstrate the dynamics and correlation of isoaspartyl (isoAsp)-repairing demands and PIMT activity, and their implications, during seed development, germination and aging, through biochemical, molecular and genetic studies. Molecular and biochemical analyses revealed that rice possesses various biochemically active and inactive PIMT isoforms. Transcript and western blot analyses clearly showed the seed development stage and tissue-specific accumulation of active isoforms. Immunolocalization studies revealed distinct isoform expression in embryo and aleurone layers. Further analyses of transgenic lines for each OsPIMT isoform revealed a clear role in the restriction of deleterious isoAsp and age-induced reactive oxygen species (ROS) accumulation to improve seed vigor and longevity. Collectively, our data suggest that a PIMT-mediated, protein repair mechanism is initiated during seed development in rice, with each isoform playing a distinct, yet coordinated, role. Our results also raise the intriguing possibility that PIMT repairs antioxidative enzymes and proteins which restrict ROS accumulation, lipid peroxidation, etc. in seed, particularly during aging, thus contributing to seed vigor and longevity.
Collapse
Affiliation(s)
- Bhanu Prakash Petla
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Meenu Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Shraboni Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Ajeet Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Venkateswara Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Prafull Salvi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Saurabh Chandra Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| |
Collapse
|
12
|
Banerjee S, Dutta T, Lahiri S, Sengupta S, Gangopadhyay A, Kumar Karri S, Chakraborty S, Bhattacharya D, Ghosh AK. Enzymatic attributes of an l-isoaspartyl methyltransferase from Candida utilis and its role in cell survival. Biochem Biophys Rep 2015; 4:59-75. [PMID: 29124188 PMCID: PMC5668901 DOI: 10.1016/j.bbrep.2015.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDS Spontaneous deamidation and isoaspartate (IsoAsp) formation contributes to aging and reduced longevity in cells. A protein-l-isoaspartate (d-aspartate) O-methyltransferase (PCMT) is responsible for minimizing IsoAsp moieties in most organisms. METHODS PCMT was purified in its native form from yeast Candida utilis. The role of the native PCMT in cell survival and protein repair was investigated by manipulating intracellular PCMT levels with Oxidized Adenosine (AdOx) and Lithium Chloride (LiCl). Proteomic Identification of possible cellular targets was carried out using 2-dimensional gel electrophoresis, followed by on-Blot methylation and mass spectrometric analysis. RESULTS The 25.4 kDa native PCMT from C. utilis was found to have a Km of 3.5 µM for AdoMet and 33.36 µM for IsoAsp containing Delta Sleep Inducing Peptide (DSIP) at pH 7.0. Native PCMT comprises of 232 amino acids which is coded by a 698 bp long nucleotide sequence. Phylogenetic comparison revealed the PCMT to be related more closely with the prokaryotic homologs. Increase in PCMT levels in vivo correlated with increased cell survival under physiological stresses. PCMT expression was seen to be linked with increased intracellular reactive oxygen species (ROS) concentration. Proteomic identification of possible cellular substrates revealed that PCMT interacts with proteins mainly involved with cellular housekeeping. PCMT effected both functional and structural repair in aged proteins in vitro. GENERAL SIGNIFICANCE Identification of PCMT in unicellular eukaryotes like C. utilis promises to make investigations into its control machinery easier owing to the familiarity and flexibility of the system.
Collapse
Affiliation(s)
- Shakri Banerjee
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Trina Dutta
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sagar Lahiri
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Shinjinee Sengupta
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anushila Gangopadhyay
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suresh Kumar Karri
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sandeep Chakraborty
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debasish Bhattacharya
- Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anil K. Ghosh
- Drug Development, Diagnostics and Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
13
|
Wei Y, Xu H, Diao L, Zhu Y, Xie H, Cai Q, Wu F, Wang Z, Zhang J, Xie H. Protein repair L-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. PLANT MOLECULAR BIOLOGY 2015; 89:475-92. [PMID: 26438231 DOI: 10.1007/s11103-015-0383-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/19/2015] [Indexed: 05/07/2023]
Abstract
Damaged proteins containing abnormal isoaspartyl (isoAsp) accumulate as seeds age and the abnormality is thought to undermine seed vigor. Protein-L-isoaspartyl methyltransferase (PIMT) is involved in isoAsp-containing protein repair. Two PIMT genes from rice (Oryza sativa L.), designated as OsPIMT1 and OsPIMT2, were isolated and investigated for their roles. The results indicated that OsPIMT2 was mainly present in green tissues, but OsPIMT1 largely accumulated in embryos. Confocal visualization of the transient expression of OsPIMTs showed that OsPIMT2 was localized in the chloroplast and nucleus, whereas OsPIMT1 was predominately found in the cytosol. Artificial aging results highlighted the sensitivity of the seeds of OsPIMT1 mutant line when subjected to accelerated aging. Overexpression of OsPIMT1 in transgenic seeds reduced the accumulation of isoAsp-containing protein in embryos, and increased embryo viability. The germination percentage of transgenic seeds overexpressing OsPIMT1 increased 9-15% compared to the WT seeds after 21-day of artificial aging, whereas seeds from the OsPIMT1 RNAi lines overaccumulated isoAsp in embryos and experienced rapid loss of seed germinability. Taken together, these data strongly indicated that OsPIMT1-related seed longevity improvement is probably due to the repair of detrimental isoAsp-containing proteins that over accumulate in embryos when subjected to accelerated aging.
Collapse
Affiliation(s)
- Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Lirong Diao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Zonghua Wang
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China.
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China.
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China.
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China.
| |
Collapse
|
14
|
Chatterjee T, Mukherjee D, Banerjee M, Chatterjee BK, Chakrabarti P. Crystal structure and activity of protein L-isoaspartyl-O-methyltransferase from Vibrio cholerae, and the effect of AdoHcy binding. Arch Biochem Biophys 2015; 583:140-9. [PMID: 26255776 DOI: 10.1016/j.abb.2015.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 11/17/2022]
Abstract
The repair enzyme Protein L-isoaspartyl-O-methyltransferase (PIMT) is widely distributed in various organisms. PIMT catalyzes S-adenosylmethionine (AdoMet) dependent methylation of abnormal L-isoaspartyl residues, formed by the deamidation of asparagines and isomerization of aspartates. We report the crystal structure of PIMT of Vibrio cholerae (VcPIMT), the aetiological agent for cholera, complexed with the demethylated cofactor S-adenosyl-L-homocysteine (AdoHcy) to 2.05 Å resolution. A stretch of residues (39-58), lining the substrate-binding site, is disordered. Urea-induced unfolding free energy for apo and VcPIMT-AdoHcy complex reveals greater stability for the cofactor-bound protein. The kinetic parameters for the methyltransferase activity of the recombinant VcPIMT was determined using a continuous spectrophotometric color-based assay using the peptide substrate [VYP(L-isoD)HA]. The enzyme exhibited activity higher than the Escherichia coli enzyme and closer to those from thermophilic bacteria and the mammalian source. The association constant for substrate binding is 2.29 × 10(6) M(-1), quite similar to that for AdoHcy. The crystal structure and the model of the peptide-bound structure indicate that the majority of the interactions used for cofactor/substrate binding are provided by the main-chain atoms. Evolutionary relationships derived based on a phylogenetic tree constructed using the PIMT sequences are in conformity with the crystal structures of nine AdoHcy-bound PIMTs.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Debadrita Mukherjee
- Bioinformatics Centre, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Mousumi Banerjee
- Department of Biotechnology, West Bengal University of Technology, Kolkata 700064, India
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1APC Road, Kolkata 700009, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India; Bioinformatics Centre, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
15
|
Maeda H, Takata T, Fujii N, Sakaue H, Nirasawa S, Takahashi S, Sasaki H, Fujii N. Rapid Survey of Four Asp Isomers in Disease-Related Proteins by LC-MS combined with Commercial Enzymes. Anal Chem 2014; 87:561-8. [DOI: 10.1021/ac504413e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hiroki Maeda
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takumi Takata
- Research
Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Norihiko Fujii
- Radioisotope
Research Center, Teikyo University, Kaga Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiroaki Sakaue
- International University of Health and Welfare, Ohtawara, Tochigi 324-8501, Japan
| | - Satoru Nirasawa
- Japan International
Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Saori Takahashi
- Akita Research Institute
of Food and Brewing, Akita, 010-1623, Japan
| | - Hiroshi Sasaki
- Kanazawa Medical University, Kanazawa, Ishikawa 920-0293, Japan
| | - Noriko Fujii
- Department
of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Research
Reactor Institute, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
16
|
Verma P, Kaur H, Petla BP, Rao V, Saxena SC, Majee M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins. PLANT PHYSIOLOGY 2013; 161:1141-57. [PMID: 23284083 PMCID: PMC3585586 DOI: 10.1104/pp.112.206243] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/01/2013] [Indexed: 05/02/2023]
Abstract
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.
Collapse
Affiliation(s)
- Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Harmeet Kaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhanu Prakash Petla
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Venkateswara Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh C. Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
17
|
Dutta T, Banerjee S, Soren D, Lahiri S, Sengupta S, Rasquinha JA, Ghosh AK. Regulation of Enzymatic Activity by Deamidation and Their Subsequent Repair by Protein l-isoaspartyl Methyl Transferase. Appl Biochem Biotechnol 2012; 168:2358-75. [DOI: 10.1007/s12010-012-9942-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/05/2012] [Indexed: 01/19/2023]
|
18
|
Sengupta S, Chaudhuri P, Lahiri S, Dutta T, Banerjee S, Majhi R, Ghosh AK. Possible regulation of trehalose metabolism by methylation in Saccharomyces cerevisiae. J Cell Physiol 2010; 226:158-64. [DOI: 10.1002/jcp.22317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Verma P, Singh A, Kaur H, Majee M. Protein L-isoaspartyl methyltransferase1 (CaPIMT1) from chickpea mitigates oxidative stress-induced growth inhibition of Escherichia coli. PLANTA 2010; 231:329-336. [PMID: 19921250 DOI: 10.1007/s00425-009-1050-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/26/2009] [Indexed: 05/28/2023]
Abstract
PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) repairs deleterious L-isoaspartyl residues synthesized spontaneously in proteins due to aging or stressful environments and is widespread in living organisms including plants. Even though PIMT activity has been detected from various plant sources, detailed studies are limited to a few species. Our present study on a chickpea (Cicer arietinum) PIMT reveals that apart from seed, PIMT activity is present in other organs and noticeably enhanced during stressful conditions. Using degenerate oligonucleotides and RACE strategy, a full length cDNA (CaPIMT1) was cloned and sequenced. The cDNA is 920 bp in length and contains only one open reading frame of 690 bp encoding 229 amino acids. Genomic structure reveals that the CaPIMT1 gene spans about 2,050 bp in length and contains four exons and three introns. By quantitative real-time RT-PCR, we demonstrate that the transcript of CaPIMT1 is distributed across the organs with maximum levels in seed and is also enhanced under various environmental stress conditions. Purified bacterially expressed protein is further characterized for its catalytic properties. The activity is found to be elevated towards high temperature and pH conditions. Escherichia coli expressing CaPIMT1 show greater tolerance to oxidative stress than E. coli without CaPIMT1. Taken together, our results suggest that PIMT from chickpea shows a distinct pattern of expression and may have a specific role in stress adaptation apart from seed.
Collapse
MESH Headings
- Amino Acid Sequence
- Cicer/enzymology
- Cicer/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Escherichia coli/growth & development
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Molecular Sequence Data
- Organ Specificity/genetics
- Oxidative Stress
- Protein D-Aspartate-L-Isoaspartate Methyltransferase/chemistry
- Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics
- Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Stress, Physiological/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
20
|
Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P. Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. THE PLANT CELL 2008; 20:3022-37. [PMID: 19011119 PMCID: PMC2613667 DOI: 10.1105/tpc.108.058479] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 10/22/2008] [Accepted: 11/01/2008] [Indexed: 05/04/2023]
Abstract
The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments.
Collapse
Affiliation(s)
- Laurent Ogé
- Laboratoire de Biologie des Semences, Unité Mixte de Recherche 204 Institut National de la Recherche Agronomique-AgroParisTech, Institut Jean-Pierre Bourgin, F-78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Banfield KL, Gomez TA, Lee W, Clarke S, Larsen PL. Protein-repair and hormone-signaling pathways specify dauer and adult longevity and dauer development in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2008; 63:798-808. [PMID: 18772467 DOI: 10.1093/gerona/63.8.798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein damage that accumulates during aging can be mitigated by a repair methyltransferase, the l-isoaspartyl-O-methyltransferase. In Caenorhabditis elegans, the pcm-1 gene encodes this enzyme. In response to pheromone, we show that pcm-1 mutants form fewer dauer larvae with reduced survival due to loss of the methyltransferase activity. Mutations in daf-2, an insulin/insulin-like growth factor-1-like receptor, and daf-7, a transforming growth factor-beta-like ligand, modulate pcm-1 dauer defects. Additionally, daf-2 and daf-7 mutant dauer larvae live significantly longer than wild type. Although dauer larvae are resistant to many environmental stressors, a proportionately larger decrease in dauer larvae life spans occurred at 25 degrees C compared to 20 degrees C than in adult life span. At 25 degrees C, mutation of the daf-7 or pcm-1 genes does not change adult life span, whereas mutation of the daf-2 gene and overexpression of PCM-1 increases adult life span. Thus, there are both overlapping and distinct mechanisms that specify dauer and adult longevity.
Collapse
Affiliation(s)
- Kelley L Banfield
- Department of Cellular and Structural Biology, University of Texas Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
22
|
Villa ST, Xu Q, Downie AB, Clarke SG. Arabidopsis Protein Repair L-Isoaspartyl Methyltransferases: Predominant Activities at Lethal Temperatures. PHYSIOLOGIA PLANTARUM 2006; 128:581-592. [PMID: 21076691 PMCID: PMC2980331 DOI: 10.1111/j.1399-3054.2006.00772.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein L-isoaspartyl (D-aspartyl) O-methyltransferases (EC 2.1.1.77; PIMT or PCMT) are enzymes that initiate the full or partial repair of damaged L-aspartyl and L-asparaginyl residues, respectively. These enzymes are found in most organisms and maintain a high degree of sequence conservation. Arabidopsis thaliana (Arabidopsis L. Heynh.) is unique among eukaryotes in that it contains two genes, rather than one, that encode PIMT isozymes. We describe a novel Arabidopsis PIMT isozyme, designated AtPIMT2αω, encoded by the PIMT2 gene (At5g50240). We characterized the enzymatic activity of the recombinant AtPIMT2αω in comparison to the other AtPIMT2 isozymes, AtPIMT1, and to the human PCMT ortholog, to better understand its role in Arabidopsis. All Arabidopsis PIMT isozymes are active over a relatively wide pH range. For AtPIMT2αω maximal activity is observed at 50 °C (a lethal temperature for Arabidopsis); this activity is almost ten times greater than the activity at the growth temperature of 25 °C. Interestingly, enzyme activity decreases after pre-incubation at temperatures above 30°C. A similar situation is found for the recombinant AtPIMT2ψ and the AtPIMT2ω isozymes, as well as for the AtPIMT1 and human PCMT1 enzymes. These results suggest that the short-term ability of these methyltransferases to initiate repair under extreme temperature conditions may be a common feature of both the plant and animal species.
Collapse
Affiliation(s)
- Sarah T Villa
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, Paul D. Boyer Hall, University of California, Los Angeles, California 90095-1569
| | | | | | | |
Collapse
|
23
|
Gomez TA, Banfield KL, Trogler DM, Clarke SG. The L-isoaspartyl-O-methyltransferase in Caenorhabditis elegans larval longevity and autophagy. Dev Biol 2006; 303:493-500. [PMID: 17187774 PMCID: PMC1868680 DOI: 10.1016/j.ydbio.2006.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 11/03/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The protein L-isoaspartyl-O-methyltransferase, coded by the pcm-1 gene in Caenorhabditis elegans, participates in the repair of age-damaged proteins. We tested the ability of pcm-1-deficient nematodes to survive starvation stress as developmentally-arrested L1 larvae. We found that pcm-1 mutant L1 larvae do not survive as well as wild-type L1 larvae when incubated in M9 medium without nutrients. We then tested whether the starved L1 larvae could continue development when allowed access to food in a recovery assay. A loss of recovery ability with age was observed for all larvae, with little or no difference between the pcm-1 mutant and wild-type N2 larvae. Interestingly, when L1 larvae were starved in cholesterol-containing S medium or M9 medium supplemented with cholesterol, the survival rates of both mutant and wild-type animals nearly doubles, with pcm-1 larvae again faring more poorly than N2 larvae. Furthermore, L1 larvae cultured in these cholesterol-containing media show an increase in Sudan Black staining over animals cultured in M9 medium. The longevity defects of pcm-1 mutants previously seen in dauer larvae and here in L1 larvae suggest a defect in the ability of pcm-1 mutants to recycle and reuse old cellular components in pathways such as autophagy. Using an autophagosomal marker, we found evidence suggesting that the pcm-1 mutation may inhibit autophagy during dauer formation, suggesting that the absence of protein repair may also interfere with protein degradation pathways.
Collapse
Affiliation(s)
- Tara A Gomez
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
24
|
Yang ML, Doyle HA, Gee RJ, Lowenson JD, Clarke S, Lawson BR, Aswad DW, Mamula MJ. Intracellular protein modification associated with altered T cell functions in autoimmunity. THE JOURNAL OF IMMUNOLOGY 2006; 177:4541-9. [PMID: 16982891 DOI: 10.4049/jimmunol.177.7.4541] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Posttranslational protein modifications influence a number of immunologic responses ranging from intracellular signaling to protein processing and presentation. One such modification, termed isoaspartyl (isoAsp), is the spontaneous nonenzymatic modification of aspartic acid residues occurring at physiologic pH and temperature. In this study, we have examined the intracellular levels of isoAsp residues in self-proteins from MRL(+/+), MRL/lpr, and NZB/W F(1) mouse strains compared with nonautoimmune B10.BR mice. In contrast to control B10.BR or NZB/W mice, the isoAsp content in MRL autoimmune mice increased and accumulated with age in erythrocytes, brain, kidney, and T lymphocytes. Moreover, T cells that hyperproliferate to antigenic stimulation in MRL mice also have elevated intracellular isoAsp protein content. Protein l-isoaspartate O-methyltransferase activity, a repair enzyme for isoAsp residues in vivo, remains stable with age in all strains of mice. These studies demonstrate a role for the accumulation of intracellular isoAsp proteins associated with T cell proliferative defects of MRL autoimmune mice.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xu Q, Belcastro MP, Villa ST, Dinkins RD, Clarke SG, Downie AB. A second protein L-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. PLANT PHYSIOLOGY 2004; 136:2652-64. [PMID: 15347786 PMCID: PMC523330 DOI: 10.1104/pp.104.046094] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 05/31/2004] [Accepted: 06/07/2004] [Indexed: 05/18/2023]
Abstract
The spontaneous and deleterious conversion of l-asparaginyl and l-aspartyl protein residues to l-iso-Asp or d-Asp occurs as proteins age and is accelerated under stressful conditions. Arabidopsis (Arabidopsis L. Heynh.) contains two genes (At3g48330 and At5g50240) encoding protein-l-isoaspartate methyltransferase (EC 2.1.1.77; PIMT), an enzyme capable of correcting this damage. The gene located on chromosome 5 (PIMT2) produces two proteins differing by three amino acids through alternative 3' splice site selection in the first intron. Recombinant protein from both splicing variants has PIMT activity. Subcellular localization using cell fractionation followed by immunoblot detection, as well as confocal visualization of PIMT:GFP fusions, demonstrated that PIMT1 is cytosolic while a canonical nuclear localization signal, present in PIMT2psi and the shorter PIMT2omega, is functional. Multiplex reverse transcription-PCR was used to establish PIMT1 and PIMT2 transcript presence and abundance, relative to beta-TUBULIN, in various tissues and under a variety of stresses imposed on seeds and seedlings. PIMT1 transcript is constitutively present but can increase, along with PIMT2, in developing seeds presumably in response to increasing endogenous abscisic acid (ABA). Transcript from PIMT2 also increases in establishing seedlings due to exogenous ABA and applied stress presumably through an ABA-dependent pathway. Furthermore, cleaved amplified polymorphic sequences from PIMT2 amplicons determined that ABA preferentially enhances the production of PIMT2omega transcript in leaves and possibly in tissues other than germinating seeds.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Horticulture, University of Kentucky Agriculture Experiment Station, S129, Agriculture Science Center North, University of Kentucky, 800 Rose Street, Lexington, KY 40546-0312, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kindrachuk J, Parent J, Davies GF, Dinsmore M, Attah-Poku S, Napper S. Overexpression of l-Isoaspartate O-Methyltransferase in Escherichia coli Increases Heat Shock Survival by a Mechanism Independent of Methyltransferase Activity. J Biol Chem 2003; 278:50880-6. [PMID: 14527954 DOI: 10.1074/jbc.m308423200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over time and under stressing conditions proteins are susceptible to a variety of spontaneous covalent modifications. One of the more commonly occurring types of protein damage is deamidation; the conversion of asparagines into aspartyls and isoaspartyls. The physiological significance of isoaspartyl formation is emphasized by the presence of the conserved enzyme L-isoaspartyl O-methyltransferase (PIMT), whose physiological function appears to be in preventing the accumulation of deamidated proteins. Seemingly consistent with a repair function, overexpression of PIMT in Drosophila melanogaster extends lifespan under conditions expected to contribute to protein damage. Based on structural information and sequence homology we have created mutants of residues proposed to be involved in co-factor binding in Escherichia coli PIMT. Both mutants retain S-adenosyl L-methionine binding capabilities but demonstrate dramatically reduced kinetic capabilities, perhaps suggestive of catalytic roles beyond co-factor binding. As anticipated, overexpression of the wild type enzyme in E. coli results in bacteria with increased tolerance to thermal stress. Surprisingly, even greater levels of heat tolerance were observed with overexpression of the inactive PIMT mutants. The increased survival capabilities observed with overexpression of PIMT in E. coli, and possibly in Drosophila, are not due to increased isoaspartyl repair capabilities but rather a temperature-independent induction of the heat shock system as a result of overexpression of a misfolding-prone protein. An alternate hypothesis as to the physiological substrate and function of L-isoaspartyl methyltransferase is proposed.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Department of Biochemistryand Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Clarke S. Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev 2003; 2:263-85. [PMID: 12726775 DOI: 10.1016/s1568-1637(03)00011-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deamidated, isomerized, and racemized aspartyl and asparaginyl residues represent a significant part of the spontaneous damage to proteins that results from the aging process. The accumulation of these altered residues can lead to the loss of protein function and the consequent loss of cellular function. However, almost all cells in nature contain a methyltransferase that can recognize the major damaged form of the L-isoaspartyl residue, and some of these enzymes can also recognize the racemized D-aspartyl residue. The methyl esterification reaction can initiate the conversion of these altered residues to the normal L-aspartyl form, although there is no evidence yet that the L-asparaginyl form can be regenerated. This enzyme, the protein L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.1.1.77), thus functions as a protein repair enzyme. The importance of this enzyme in attenuating age-related protein damage can be seen by the phenotypes of organisms where the gene encoding has been disrupted, or where its expression has been augmented.
Collapse
Affiliation(s)
- Steven Clarke
- Department of Chemistry and Biochemistry, the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
28
|
Heinz EB, Streit WR. Biotin limitation in Sinorhizobium meliloti strain 1021 alters transcription and translation. Appl Environ Microbiol 2003; 69:1206-13. [PMID: 12571048 PMCID: PMC143622 DOI: 10.1128/aem.69.2.1206-1213.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most Sinorhizobium meliloti strains lack several key genes involved in microbial biotin biosynthesis, and it is assumed that this may be a special adaptation which allows the microbe to down-regulate metabolic activities in the absence of a host plant. To further explore this hypothesis, we employed two different strategies. (i) Searches of the S. meliloti genome database in combination with the construction of nine different gusA reporter fusions identified three genes involved in a biotin starvation response in this microbe. A gene coding for a protein-methyl carboxyl transferase (pcm) exhibited 13.6-fold-higher transcription under biotin-limiting conditions than cells grown in the presence of 40 nM biotin. Consistent with this observation, biotin-limiting conditions resulted in a significantly decreased survival of pcm mutant cells compared to parental cells or cells grown in the presence of 40 nM biotin. Further studies indicated that the autoinducer synthase gene, sinI, was transcribed at a 4.5-fold-higher level in early stationary phase in biotin-starved cells than in biotin-supplemented cells. Lastly, we observed that open reading frame smc02283, which codes for a putative copper resistance protein (CopC), was 21-fold down-regulated in response to biotin starvation. (ii) In a second approach, proteome analysis identified 10 proteins which were significantly down-regulated under the biotin-limiting conditions. Among the proteins identified by using matrix-assisted laser desorption ionization-time of flight mass spectrometry were the pi subunit of the RNA polymerase and the 50S ribosomal protein L7/L12 (L8) subunit, indicating that biotin-limiting conditions generally affect transcription and translation in S. meliloti.
Collapse
Affiliation(s)
- Elke B Heinz
- Institut für Mikrobiologie und Genetik der Universität Göttingen, D-37077 Göttingen, Germany
| | | |
Collapse
|
29
|
D'Auria JC, Chen F, Pichersky E. Chapter eleven The SABATH family of MTS in Arabidopsis Thaliana and other plant species. RECENT ADVANCES IN PHYTOCHEMISTRY 2003. [DOI: 10.1016/s0079-9920(03)80026-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Ryttersgaard C, Griffith SC, Sawaya MR, MacLaren DC, Clarke S, Yeates TO. Crystal structure of human L-isoaspartyl methyltransferase. J Biol Chem 2002; 277:10642-6. [PMID: 11792715 DOI: 10.1074/jbc.m200229200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme l-isoaspartyl methyltransferase initiates the repair of damaged proteins by recognizing and methylating isomerized and racemized aspartyl residues in aging proteins. The crystal structure of the human enzyme containing a bound S-adenosyl-l-homocysteine cofactor is reported here at a resolution of 2.1 A. A comparison of the human enzyme to homologs from two other species reveals several significant differences among otherwise similar structures. In all three structures, we find that three conserved charged residues are buried in the protein interior near the active site. Electrostatics calculations suggest that these buried charges might make significant contributions to the energetics of binding the charged S-adenosyl-l-methionine cofactor and to catalysis. We suggest a possible structural explanation for the observed differences in reactivity toward the structurally similar l-isoaspartyl and d-aspartyl residues in the human, archael, and eubacterial enzymes. Finally, the human structure reveals that the known genetic polymorphism at residue 119 (Val/Ile) maps to an exposed region away from the active site.
Collapse
Affiliation(s)
- Carsten Ryttersgaard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
31
|
Thapar N, Griffith SC, Yeates TO, Clarke S. Protein repair methyltransferase from the hyperthermophilic archaeon Pyrococcus furiosus. Unusual methyl-accepting affinity for D-aspartyl and N-succinyl-containing peptides. J Biol Chem 2002; 277:1058-65. [PMID: 11694513 DOI: 10.1074/jbc.m108261200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein l-isoaspartate-(d-aspartate) O-methyltransferases (EC ), present in a wide variety of prokaryotic and eukaryotic organisms, can initiate the conversion of abnormal l-isoaspartyl residues that arise spontaneously with age to normal l-aspartyl residues. In addition, the mammalian enzyme can recognize spontaneously racemized d-aspartyl residues for conversion to l-aspartyl residues, although no such activity has been seen to date for enzymes from lower animals or prokaryotes. In this work, we characterize the enzyme from the hyperthermophilic archaebacterium Pyrococcus furiosus. Remarkably, this methyltransferase catalyzes both l-isoaspartyl and d-aspartyl methylation reactions in synthetic peptides with affinities that can be significantly higher than those of the human enzyme, previously the most catalytically efficient species known. Analysis of the common features of l-isoaspartyl and d-aspartyl residues suggested that the basic substrate recognition element for this enzyme may be mimicked by an N-terminal succinyl peptide. We tested this hypothesis with a number of synthetic peptides using both the P. furiosus and the human enzyme. We found that peptides devoid of aspartyl residues but containing the N-succinyl group were in fact methyl esterified by both enzymes. The recent structure determined for the l-isoaspartyl methyltransferase from P. furiosus complexed with an l-isoaspartyl peptide supports this mode of methyl-acceptor recognition. The combination of the thermophilicity and the high affinity binding of methyl-accepting substrates makes the P. furiosus enzyme useful both as a reagent for detecting isomerized and racemized residues in damaged proteins and for possible human therapeutic use in repairing damaged proteins in extracellular environments where the cytosolic enzyme is not normally found.
Collapse
Affiliation(s)
- Nitika Thapar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
32
|
Griffith SC, Sawaya MR, Boutz DR, Thapar N, Katz JE, Clarke S, Yeates TO. Crystal structure of a protein repair methyltransferase from Pyrococcus furiosus with its L-isoaspartyl peptide substrate. J Mol Biol 2001; 313:1103-16. [PMID: 11700066 DOI: 10.1006/jmbi.2001.5095] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein L-isoaspartyl (D-aspartyl) methyltransferases (EC 2.1.1.77) are found in almost all organisms. These enzymes catalyze the S-adenosylmethionine (AdoMet)-dependent methylation of isomerized and racemized aspartyl residues in age-damaged proteins as part of an essential protein repair process. Here, we report crystal structures of the repair methyltransferase at resolutions up to 1.2 A from the hyperthermophilic archaeon Pyrococcus furiosus. Refined structures include binary complexes with the active cofactor AdoMet, its reaction product S-adenosylhomocysteine (AdoHcy), and adenosine. The enzyme places the methyl-donating cofactor in a deep, electrostatically negative pocket that is shielded from solvent. Across the multiple crystal structures visualized, the presence or absence of the methyl group on the cofactor correlates with a significant conformational change in the enzyme in a loop bordering the active site, suggesting a role for motion in catalysis or cofactor exchange. We also report the structure of a ternary complex of the enzyme with adenosine and the methyl-accepting polypeptide substrate VYP(L-isoAsp)HA at 2.1 A. The substrate binds in a narrow active site cleft with three of its residues in an extended conformation, suggesting that damaged proteins may be locally denatured during the repair process in cells. Manual and computer-based docking studies on different isomers help explain how the enzyme uses steric effects to make the critical distinction between normal L-aspartyl and age-damaged L-isoaspartyl and D-aspartyl residues.
Collapse
Affiliation(s)
- S C Griffith
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Thapar N, Clarke S. Expression, purification, and characterization of the protein repair l-isoaspartyl methyltransferase from Arabidopsis thaliana. Protein Expr Purif 2000; 20:237-51. [PMID: 11049748 DOI: 10.1006/prep.2000.1311] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein l-isoaspartate (d-aspartate) O-methyltransferase (EC 2.1.1. 77) is a repair enzyme that methylates abnormal l-isoaspartate residues in proteins which arise spontaneously as a result of aging. This enzyme initiates their conversion back into the normal l-aspartate form by a methyl esterification reaction. Previously, partial cDNAs of this enzyme were isolated from the higher plant Arabidopsis thaliana. In this study, we report the cloning and expression of a full-length cDNA of l-isoaspartyl methyltransferase from A. thaliana into Escherichia coli under the P(BAD) promoter, which offers a high level of expression under a tight regulatory control. The enzyme is found largely in the soluble fraction. We purified this recombinant enzyme to homogeneity using a series of steps involving DEAE-cellulose, gel filtration, and hydrophobic interaction chromatographies. The homogeneous enzyme was found to have maximum activity at 45 degrees C and a pH optimum from 7 to 8. The enzyme was found to have a wide range of affinities for l-isoaspartate-containing peptides and displayed relatively poor reactivity toward protein substrates. The best methyl-accepting substrates were KASA-l-isoAsp-LAKY (K(m) = 80 microM) and VYP-l-isoAsp-HA (K(m) = 310 microM). We also expressed the full-length form and a truncated version of this enzyme (lacking the N-terminal 26 amino acid residues) in E. coli under the T7 promoter. Both the full-length and the truncated forms were active, though overexpression of the truncated enzyme led to a complete loss of activity.
Collapse
Affiliation(s)
- N Thapar
- Department of Chemistry and Biochemistry, Molecular Biology Institute, Los Angeles, California 90095, USA
| | | |
Collapse
|
34
|
Ingrosso D, D'angelo S, di Carlo E, Perna AF, Zappia V, Galletti P. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4397-405. [PMID: 10880963 DOI: 10.1046/j.1432-1327.2000.01485.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT; EC 2. 1.1.77) catalyses the methyl esterification of the free alpha-carboxyl group of abnormal L-isoaspartyl residues, which occur spontaneously in protein and peptide substrates as a consequence of molecular ageing. The biological function of this transmethylation reaction is related to the repair or degradation of age-damaged proteins. Methyl ester formation in erythrocyte membrane proteins has also been used as a marker reaction to tag these abnormal residues and to monitor their increase associated with erythrocyte ageing diseases, such as hereditary spherocytosis, or cell stress (thermal or osmotic) conditions. The study shows that levels of L-isoaspartyl residues rise in membrane proteins of human erythrocytes exposed to oxidative stress, induced by t-butyl hydroperoxide or H2O2. The increase in malondialdehyde content confirmed that the cell membrane is a primary target of oxidative alterations. A parallel rise in the methaemoglobin content indicates that proteins are heavily affected by the molecular alterations induced by oxidative treatments in erythrocytes. Antioxidants largely prevented the increase in membrane protein methylation, underscoring the specificity of the effect. Conversely, we found that PCMT activity, consistent with its repair function, remained remarkably stable under oxidative conditions, while damaged membrane protein substrates increased significantly. The latter include ankyrin, band 4.1 and 4.2, and the integral membrane protein band 3 (the anion exchanger). The main target was found to be particularly protein 4.1, a crucial element in the maintenance of membrane-cytoskeleton network stability. We conclude that the increased formation/exposure of L-isoaspartyl residues is one of the major structural alterations occurring in erythrocyte membrane proteins as a result of an oxidative stress event. In the light of these and previous findings, the occurrence of isoaspartyl sites in membrane proteins as a key event in erythrocyte spleen conditioning and hemocatheresis is proposed.
Collapse
Affiliation(s)
- D Ingrosso
- Institute of Biochemistry of Macromolecules and Division of Nephrology/Department of Pediatrics, School of Medicine, Second University of Naples, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Kim E, Lowenson JD, Clarke S, Young SG. Phenotypic analysis of seizure-prone mice lacking L-isoaspartate (D-aspartate) O-methyltransferase. J Biol Chem 1999; 274:20671-8. [PMID: 10400700 DOI: 10.1074/jbc.274.29.20671] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Within proteins and peptides, both L-asparaginyl and L-aspartyl residues spontaneously degrade, generating isomerized and racemized aspartyl residues. The enzyme protein L-isoaspartate (D-aspartate) O-methyltransferase (E.C. 2.1.1.77) initiates the conversion of L-isoaspartyl and D-aspartyl residues to normal L-aspartyl residues. This "repair" reaction helps to maintain proper protein conformation by preventing the accumulation of damaged proteins containing abnormal amino acid residues. Pcmt1-/- mice manifest two key phenotypes: a fatal seizure disorder and retarded growth. In this study, we characterized both phenotypes and demonstrated that they are linked. Continuous electroencephalogram monitoring of Pcmt1-/- mice revealed that abnormal cortical activity for approximately 50% of each 24-h period, even in mice that had no visible evidence of convulsions. The fatal seizure disorder in Pcmt1-/- mice can be mitigated but not eliminated by antiepileptic drugs. Interestingly, antiepileptic therapy normalized the growth of Pcmt1-/- mice, suggesting that the growth retardation is due to seizures rather than a global disturbance in growth at the cellular level. Consistent with this concept, the growth rate of Pcmt1-/- fibroblasts was indistinguishable from that of wild-type fibroblasts.
Collapse
Affiliation(s)
- E Kim
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Isoaspartyl sites, in which an aspartic acid residue is linked to its C-flanking neighbor via its beta-carboxyl side chain, are generally assumed to be an abnormal modification arising as proteins age. The enzyme protein L-isoaspartate methyltransferase (PIMT), present in many bacteria, plants, and animals, catalyzes the conversion of isoaspartate to normal alpha-linked aspartyl bonds and is thought to serve an important repair function in cells. Having introduced a plasmid into Escherichia coli that allows high-level expression of rat PIMT, we explored the possibility that the rat enzyme reduces isoaspartate levels in E. coli proteins, a result predicted by the repair hypothesis. The present study demonstrates that this is indeed the case; E. coli cells expressing rat PIMT had significantly lower isoaspartate levels than control cells, especially in stationary phase. Moreover, the distribution of isoaspartate-containing proteins in E. coli differed dramatically between logarithmic- and stationary-phase cultures. In stationary-phase cells, a number of proteins in the molecular mass range of 66 to 14 kDa contained isoaspartate, whereas in logarithmic-phase cells, nearly all of the detectable isoaspartate resided in a single 14-kDa protein which we identified as ribosomal protein S11. The near stoichiometric levels of isoaspartate in S11, estimated at 0.5 mol of isoaspartate per mol of S11, suggests that this unusual modification may be important for S11 function.
Collapse
Affiliation(s)
- C L David
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, USA
| | | | | |
Collapse
|
37
|
Bilodeau D, Béliveau R. Inhibition of GTPgammaS-dependent L-isoaspartyl protein methylation by tyrosine kinase inhibitors in kidney. Cell Signal 1999; 11:45-52. [PMID: 10206344 DOI: 10.1016/s0898-6568(98)00030-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Protein carboxyl methylation in rat kidney cytosol is increased by the addition of guanosine 5'-O-[gamma-thio]triphosphate (GTPgammaS), a non-hydrolysable analogue of GTP. GTPgammaS-stimulated methyl ester group incorporation takes place on isoaspartyl residues, as attested by the alkaline sensitivity of the labelling and its competitive inhibition by L-isoaspartyl-containing peptides. GTPgammaS was the most potent nucleotide tested, whereas GDPbetaS and ATPgammaS also stimulated methylation but to a lesser extent. Maximal stimulation (5-fold) of protein L-isoaspartyl methytransferase (PIMT) activity by GTPgammaS was reached at a physiological pH in the presence of 10 mM MgCl2. Other divalent cations, such as Cu2+, Zn2+ and Co2+ (100 microM), totally inhibited GTPgammaS-dependent carboxyl methylation. The phosphotyrosine phosphatase inhibitor vanadate potentiated the GTPgammaS stimulation of PIMT activity in the kidney cytosol at a concentration lower than 40 microM, but increasing the vanadate concentration to more than 40 microM resulted in a dose-dependent inhibition of the GTPgammaS effect. The tyrosine kinase inhibitors genistein (IC50 = 4 microM) and tyrphostin (IC50 = 1 microM) abolished GTPgammaS-dependent PIMT activity by different mechanisms, as was revealed by acidic gel analysis of methylated proteins. Whereas tyrphostin stabilised the methyl ester groups, genistein acted by blocking a crucial step required for the activation of PIMT activity by GTPgammaS. The results obtained with vanadate and genistein suggest that tyrosine phosphorylation regulates GTPgammaS-stimulated PIMT activity in the kidney cytosol.
Collapse
Affiliation(s)
- D Bilodeau
- Département de chimie-biochimie, Université du Québec à Montréal et Centre de Cancérologìe Charles Bruneau, Hôpital Ste-Justine, Montréal, Québec, Canada
| | | |
Collapse
|
38
|
Szymanska G, Leszyk JD, O'Connor CM. Carboxyl methylation of deamidated calmodulin increases its stability in Xenopus oocyte cytoplasm. Implications for protein repair. J Biol Chem 1998; 273:28516-23. [PMID: 9774482 DOI: 10.1074/jbc.273.43.28516] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely distributed protein-L-isoaspartate(D-aspartate) O-methyltransferase (PIMT; EC 2.1.1.77) is postulated to play a role in the repair or metabolism of damaged cellular proteins containing L-isoaspartyl residues derived primarily from the spontaneous deamidation of protein asparaginyl residues. To evaluate the functional consequence of PIMT-catalyzed methylation on the stability of isoaspartyl-containing proteins in cells, Xenopus laevis oocytes were microinjected with both deamidated and nondeamidated forms of recombinant chicken calmodulin (CaM) containing a hemagglutinin (HA) epitope at its N terminus. Processing of HA-CaM was monitored by electrophoretic analysis and Western blotting of oocyte extracts. The experiments indicate that deamidated HA-CaM is degraded after microinjection, while nondeamidated HA-CaM is stable. Kinetic analysis is consistent with the entry of microinjected HA-CaM into two intracellular pools with distinct hydrolytic stabilities. The larger, more stable pool may consist of HA-CaM bound to the heterogeneous pool of oocyte CaM binding proteins detected by an overlay procedure. Enzymatic methylation of deamidated HA-CaM with purified PIMT prior to injection results in its stabilization. Conversely, inhibition of endogenous oocyte PIMT with sinefungin, a nonhydrolyzable analog of S-adenosylhomocysteine, increases the rate of deamidated HA-CaM degradation. These results are consistent with a role for PIMT-catalyzed methylation in the repair of damaged cellular proteins.
Collapse
Affiliation(s)
- G Szymanska
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02167-3811, USA
| | | | | |
Collapse
|
39
|
Ichikawa JK, Clarke S. A highly active protein repair enzyme from an extreme thermophile: the L-isoaspartyl methyltransferase from Thermotoga maritima. Arch Biochem Biophys 1998; 358:222-31. [PMID: 9784234 DOI: 10.1006/abbi.1998.0830] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We show that the open reading frame in the Thermotoga maritima genome tentatively identified as the pcm gene (R. V. Swanson et al., J. Bacteriol. 178, 484-489, 1996) does indeed encode a protein L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.1.1.77) and that this protein repair enzyme displays several novel features. We expressed the 317 amino acid pcm gene product of this thermophilic bacterium in Escherichia coli as a fusion protein with an N-terminal 20 residue hexa-histidine-containing sequence. This protein contains a C-terminal domain of approximately 100 residues not previously seen in this enzyme from various prokaryotic or eukaryotic species and which does not have sequence similarity to any other entry in the GenBank databases. The C-terminal region appears to be required for enzymatic function as no activity is detected in two recombinant constructs lacking this domain. Sedimentation equilibrium analysis indicated that the enzyme is monomeric in solution. The Km values for measured for peptide and protein substrates were found to be intermediate between those of the high-affinity human enzyme and those of the lower-affinity wheat, nematode, and E. coli enzymes. The enzyme was extremely heat stable, with no loss of activity after 60 min at 100 degreesC. Enzyme activity was observed at temperatures as high as 93 degreesC with an optimal activity of 164 nmol/min/mg protein at 85 degreesC. This activity is approximately 18-fold higher than the maximal activities of mesophilic homologs at 37 degreesC. These data suggest that the Thermotoga enzyme has unique features for initiating repair in damaged proteins containing L-isoaspartyl residues at elevated temperatures.
Collapse
Affiliation(s)
- J K Ichikawa
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, 90095-1569, USA
| | | |
Collapse
|
40
|
O'Connor MB, O'Connor CM. Complex interactions of the protein L-isoaspartyl methyltransferase and calmodulin revealed with the yeast two-hybrid system. J Biol Chem 1998; 273:12909-13. [PMID: 9582322 DOI: 10.1074/jbc.273.21.12909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely distributed protein-L-isoaspartyl, D-aspartyl carboxylmethyltransferase (EC 2.1.1.77) is hypothesized to play a role in the repair or metabolism of deamidated and isomerized proteins that are spontaneously generated during the aging of proteins in cells. The yeast two-hybrid system was used to identify proteins that potentially interact with the methyltransferase in a cellular processing pathway. Two cDNAs, both encoding calmodulin, were isolated from a human fetal brain cDNA library using the human methyltransferase as the bait. Enzymatic assays with purified components revealed a complex set of interactions between the methyltransferase and calmodulin. Calmodulin weakly stimulated protein carboxylmethyltransferase activity in vitro at concentrations of the two proteins reflecting their representation in mammalian brain. Calmodulin stimulation of methyltransferase was observed in both the presence and absence of calcium, although the effect was greater in the presence of calcium. Native calmodulin was not a substrate for the carboxylmethyltransferase, but deamidated variants of calmodulin act as substrates for the methyltransferase, with calculated Km values of 3.6 and 8.6 microM for calcium-liganded and unliganded calmodulin, respectively. Both the effector and substrate interactions of calmodulin with the protein isoaspartyl methyltransferase likely contributed to the positive results obtained with the two-hybrid system.
Collapse
Affiliation(s)
- M B O'Connor
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02167-3811, USA
| | | |
Collapse
|