1
|
Alizamani E, Ghorbanzadeh B, Naserzadeh R, Mansouri MT. Montelukast, a cysteinyl leukotriene receptor antagonist, exerts local antinociception in animal model of pain through the L-arginine/nitric oxide/cyclic GMP/K ATP channel pathway and PPARγ receptors. Int J Neurosci 2021; 131:1004-1011. [PMID: 32408781 DOI: 10.1080/00207454.2020.1769618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The leukotrienes are inflammatory mediators. In the present study, the analgesic role of local montelukast, a cysteinyl leukotriene receptor antagonist, and the possible involvement of L-arginine/NO/cGMP/KATP channel pathway and PPARγ receptors was assessed in the formalin test in rats. METHODS AND RESULTS The local administration of montelukast into the hind paw produced dose-related analgesia during both phases of the formalin test. Furthermore, pre-treatment with L-NAME, methylene blue, and glibenclamide prevented montelukast (10 μg/paw)-induced antinociception in both early and late phases of the test. Moreover, the local L-arginine and diazoxide before the sub-effective dose of montelukast (3 μg/paw) produced an analgesic effect. Also, local GW-9662 blocked antinociception induced by montelukast plus pioglitazone (10 μg/paw). CONCLUSION In conclusion, montelukast produced peripheral analgesia through PPARγ receptors and activation of the L-arginine/NO/cGMP/KATP channel pathway, with potential for a new topical analgesic drug.
Collapse
Affiliation(s)
- Ehsan Alizamani
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
- Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Naserzadeh
- Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | | |
Collapse
|
2
|
Jia Z, Wang L, Jiang S, Sun M, Wang M, Yi Q, Song L. Functional characterization of hemocytes from Chinese mitten crab Eriocheir sinensis by flow cytometry. FISH & SHELLFISH IMMUNOLOGY 2017; 69:15-25. [PMID: 28826623 DOI: 10.1016/j.fsi.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Hemocytes comprise a diversity of cell types with functional and structural heterogeneity, and they play key roles in the host defense of invertebrates. In the present study, the hemocytes from Chinese mitten crab Eriocheir sinensis were directly separated into two groups by flow cytometry. The hemocytes in P1 group were full of round and abundant granules with deeply staining cytoplasm, while P2 hemocytes were more diverse with a wide range of sizes and less granularity. Both P1 and P2 hemocytes exhibited phagocytic ability, but the phagocytic rate of P1 hemocytes increased which was significantly higher than that of P2 hemocytes after LPS stimulations. The levels of ROS production and intracellular Calcium as well as lysosome content were higher in P1 hemocytes than that in P2 hemocytes under both normal and immune-activated situations. The genes involved in phagocytosis, antimicrobial and antioxidant activities were mainly expressed in P1 hemocytes, while the genes involved in proPO activation system were highly expressed in P2 hemocytes. These results collectively suggested that P1 hemocytes were the main immunocompetent hemocytes in Chinese mitten crab and P2 hemocytes mainly participated in proPO activation system.
Collapse
Affiliation(s)
- Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mingzhe Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
3
|
Stefano GB, Mantione KJ, Capellan L, Casares FM, Challenger S, Ramin R, Samuel JM, Snyder C, Kream RM. Morphine stimulates nitric oxide release in human mitochondria. J Bioenerg Biomembr 2015; 47:409-17. [PMID: 26350413 DOI: 10.1007/s10863-015-9626-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
The expression of morphine by plants, invertebrate, and vertebrate cells and organ systems, strongly indicates a high level of evolutionary conservation of morphine and related morphinan alkaloids as required for life. The prototype catecholamine, dopamine, serves as an essential chemical intermediate in morphine biosynthesis, both in plants and animals. We surmise that, before the emergence of specialized plant and animal cells/organ systems, primordial multi-potential cell types required selective mechanisms to limit their responsiveness to environmental cues. Accordingly, cellular systems that emerged with the potential for recruitment of the free radical gas nitric oxide (NO) as a multi-faceted autocrine/paracrine signaling molecule, were provided with extremely positive evolutionary advantages. Endogenous morphinergic signaling, in concert with NO-coupled signaling systems, has evolved as an autocrine/paracrine regulator of metabolic homeostasis, energy metabolism, mitochondrial respiration and energy production. Basic physiological processes involving morphinergic/NO-coupled regulation of mitochondrial function, with special emphasis on the cardiovascular system, are critical to all organismic survival. Key to this concept may be the phenomenon of mitochondrial enslavement in eukaryotic evolution via endogenous morphine.
Collapse
Affiliation(s)
- George B Stefano
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA.
| | - Kirk J Mantione
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Lismary Capellan
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Federico M Casares
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Sean Challenger
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Rohina Ramin
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Joshua M Samuel
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Christopher Snyder
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| | - Richard M Kream
- MitoGenetics Research Institute, MitoGenetics LLC, 3 Bioscience Park Drive, Suite 307, Farmingdale, NY, 11735, USA
| |
Collapse
|
4
|
Gagné F, André C, Fortier M, Fournier M. Immunotoxic potential of aeration lagoon effluents for the treatment of domestic and hospital wastewaters in the freshwater mussel Elliptio complanata. J Environ Sci (China) 2012; 24:781-789. [PMID: 22893952 DOI: 10.1016/s1001-0742(11)60862-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Municipal wastewaters are major sources of pollution for the aquatic biota. The purpose of this study was to determine the levels of some pharmaceutical products and the immunotoxic potential of a municipal wastewater aeration lagoon for the treatment of the domestic wastewaters of a small town with wastewater inputs from a 400-bed hospital complex. Endemic mussels were collected, caged and placed in the final aeration lagoon and at sites 1 km upstream and 1 km downstream of the effluent outfall in the receiving river for a period of 14 days. The results showed that the final aeration lagoon contained high levels of total coliforms, conductivity and low dissolved oxygen (2.9 mg/L) as well as detectable amounts of trimethoprim, carbamazepine, gemfibrozil, and norfloxacin at concentrations exceeding 50 ng/L. The lagoon effluent was indeed toxic to the mussel specimens, as evidenced by the appearance of mortality after 14 days (10% mortality), decreased mussel weight-to-shell-length ratio and loss of hemocyte viability. The number of adhering hemocytes, phagocytic activity, total nitrite levels and arachidonic cyclooxygenase activity were significantly higher in mussels placed in the final aeration lagoon. A multivariate analysis also revealed that water pH, conductivity, total coliforms and dissolved oxygen were the endpoints most closely linked with phagocytic activity, the amount of adhering hemocytes and loss of hemocyte viability. In conclusion, exposure of mussels to treated aerated lagoon wastewater is deleterious to freshwater mussels where the immune system is compromised.
Collapse
Affiliation(s)
- Francois Gagné
- Fluvial Ecosystem Research, Environment Canada, Montréal, Quebec H2Y 2E7, Canada.
| | | | | | | |
Collapse
|
5
|
Kream RM, Stefano GB. Interactive effects of endogenous morphine, nitric oxide, and ethanol on mitochondrial processes. Arch Med Sci 2010; 6:658-62. [PMID: 22419921 PMCID: PMC3298331 DOI: 10.5114/aoms.2010.17077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/10/2010] [Accepted: 05/19/2010] [Indexed: 02/06/2023] Open
Abstract
Positive evolutionary pressure has preserved the ability to synthesize chemically authentic morphine, albeit in homeopathic concentrations, throughout animal phyla. The prototype catecholamine dopamine (DA) serves as an essential chemical intermediate in morphine biosynthesis both in plants and animals, thereby providing considerable insight into the roles reciprocal "morphinergic" and catecholamine regulation of diverse physiological processes. Primordial, multi-potential cell types, before the emergence of specialized plant and animal cells/organ systems, required selective mechanisms to limit their responsiveness to environmental noise. Accordingly, cellular systems that emerged with the potential for recruitment of the free radical gas nitric oxide (NO) as a multi-faceted autocrine/paracrine signaling molecule were provided with extremely positive evolutionary advantages. Endogenous "morphinergic" in concert with NO-coupled signaling systems have evolved as autocrine/paracrine regulators of metabolic homeostasis, energy metabolism, mitochondrial respiration and energy production. Basic physiological processes involving "morphinergic"/NO-coupled regulation of cardiovascular mitochondrial function, with special emphasis on the interactive effects of ethanol, are discussed within the context of our review.
Collapse
Affiliation(s)
- Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, NY, USA
| | | |
Collapse
|
6
|
Nieto-Fernandez F, Andrieux S, Idrees S, Bagnall C, Pryor SC, Sood R. The effect of opioids and their antagonists on the nocifensive response of Caenorhabditis elegans to noxious thermal stimuli. INVERTEBRATE NEUROSCIENCE 2010; 9:195-200. [PMID: 20397037 DOI: 10.1007/s10158-010-0099-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
Opiates modulate nociception in vertebrates. This has also been demonstrated in a number of invertebrate models. Herein, the effect of the opiate morphine and opioid neuropeptides Endomorphin 1 and 2 on the thermal avoidance (Tav) behavior of Caenorhabditis elegans is explored. Adult wild-type C. elegans N2 were collected from NGM plates using M9 buffer and exposed to morphine and endomorphine 1 and 2 in concentrations between 10(-8) and 10(-4) M (2.5 pmol/mg to 25 nmol/mg) for 30 min and tested for Tav. The opioid receptor antagonists Naloxone and CTOP were tested in combination with the drugs. Forty-seven percentage of the morphine exposed worms exhibited a class I response versus 76% of the control group (P < 0.001). Endomorphin 1 and 2 also caused a statistically significant reduction in class I responses, 36 and 39%, respectively. These effects were reversed with Naloxone and CTOP. Thermonocifensive behavior in C. elegans is modulated by opioids.
Collapse
|
7
|
Dortch-Carnes J, Randall KR. Morphine-induced nitric oxide production in isolated, iris-ciliary bodies. Exp Eye Res 2009; 89:660-4. [PMID: 19555685 PMCID: PMC2757460 DOI: 10.1016/j.exer.2009.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/28/2009] [Accepted: 06/13/2009] [Indexed: 12/21/2022]
Abstract
Considerable evidence suggests that the nitric oxide (NO)/cGMP signaling pathway plays an integral role in opioid receptor-mediated responses in the cardiovascular and immune systems. Previous studies in our laboratory and others have shown that nitric oxide (NO) plays a role in morphine-induced reduction of intraocular pressure (IOP) and pupil diameter (PD) in the New Zealand white (NZW) rabbit. The present study is designed to determine the effect of morphine on NO production in the isolated, iris-ciliary body (ICB), site of aqueous humor production, as this effect could be associated with morphine-stimulated changes in aqueous humor dynamics and iris function. ICBs obtained from normal NZW rabbits were utilized in these experiments. In some experiments, ICB samples were treated with morphine (1, 10 and 100 microM) for 1 h and later examined for changes in NO levels using a NO detection kit. In other experiments, tissue samples were pretreated with naloxone (non-selective opioid receptor antagonist), L-NAME (non-selective NO-synthase inhibitor) or GSH (sulfhydryl reagent) for 30 min, followed by treatment with morphine (10 muM). Morphine caused a concentration-dependent increase in the release of NO from ICBs. Levels of NO detected in the incubation medium of ICB samples increased from 1.49 +/- 0.19 (control) to 8.81 +/- 2.20 microM/mg protein (morphine-treated; 100 microM). Morphine-stimulated release of NO was significantly inhibited in tissues pretreated with 10 microM naloxone, L-NAME, or GSH. Results obtained from this study suggest that morphine stimulates NO release from the ICB through a mechanism that involves activation of NO-releasing opioid receptors. These results support the in vivo effects of morphine demonstrated in previous studies.
Collapse
Affiliation(s)
- Juanita Dortch-Carnes
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, 720 Westview Dr., Atlanta, GA, 30310-1495, USA. address:
| | | |
Collapse
|
8
|
Gagné F, André C, Cejka P, Hausler R, Fournier M, Blaise C. Immunotoxic effects on freshwater mussels of a primary-treated wastewater before and after ozonation: a pilot plant study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 69:366-373. [PMID: 18076989 DOI: 10.1016/j.ecoenv.2007.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/10/2007] [Accepted: 10/21/2007] [Indexed: 05/25/2023]
Abstract
The immunotoxic potential of a primary-treated municipal effluent following enhanced disinfection by ozonation was studied in the freshwater mussel Elliptio complanata. Mussels were exposed to increasing concentrations (0%, 1%, 3%, 10%, and 20% v/v) of the effluent before and after ozone treatment (approximately 10 mg/L of purged O(3)) in a continuous flow-through laboratory for 7 weeks. Immunocompetence was appraised by measuring phagocytosis, cell viability (fluorescein retention), cell adherence to polystyrene micro-wells, cyclooxygenase (COX) activity and total nitrite levels in peripheral hemocytes from the hemolymphs. The results showed that phagocytosis was significantly inhibited by the primary-treated effluent at a threshold concentration of 1.7% v/v. Cell viability was also significantly reduced three-fold compared to controls at the same effluent threshold concentration, but hemocyte adherence was unchanged. COX activity was increased 1.3-fold at a threshold concentration of 14% v/v. Total nitrite levels were significantly increased 2.2-fold at a threshold concentration of 5.5% v/v. Ozone treatment of the effluent was not successful in removing phagocytic inhibition, but did completely remove cytotoxicity from hemocytes. Ozonation also reduced cell adherence at a threshold concentration of 1.7% v/v. The inflammatory properties of the effluent appeared to be accentuated by the ozone, as evidenced by an increase in COX activity, which reached 2.6-fold activity compared to controls, as compared to the 1.3-fold increase witnessed in the primary-treated effluent. Furthermore, total nitrite levels reached a two-fold induction at a threshold concentration of 1.7% v/v in the ozone-enhanced effluent compared to 5.5% v/v in the primary-treated effluent. In conclusion, ozonation of a primary-treated effluent successfully reduced microbial loading and completely removed cytotoxicity, but increased the inflammatory properties of the effluent. Investigations aimed at examining the impacts of sustained inflammation on the host's capacity to remove potentially pathogenic bacteria are recommended.
Collapse
Affiliation(s)
- F Gagné
- Fluvial Ecosystem Research, Environment Canada, Montréal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
9
|
Pryor SC, Zhu W, Cadet P, Bianchi E, Guarna M, Stefano GB. Endogenous morphine: opening new doors for the treatment of pain and addiction. Expert Opin Biol Ther 2006; 5:893-906. [PMID: 16018736 DOI: 10.1517/14712598.5.7.893] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) signalling is at the forefront of intense research interest because its many effects remain controversial and seemingly contradictory. This paper examines its role as a potential mediator of pain and tolerance. Within this context discussion covers endogenous morphine, documenting its ability to be made in animal tissues, including nervous tissue, and in diverse animal phyla. Supporting morphine as an endogenous signalling molecule is the presence of the newly cloned mu3 opiate receptor subtype found in animal (including human) immune, vascular and neural tissues, which is coupled to NO release. Importantly, this mu opiate receptor subtype is morphine-selective and opioid peptide-insensitive, further highlighting the presence of morphinergic signalling coupled to NO release. These findings provide novel insights into pain and tolerance as morphinergic signalling exhibits many similarities with NO actions. Taken together, a select morphinergic signalling system utilising NO opens the gate for the development of novel pharmaceuticals and/or the use of old pharmaceuticals in new ways.
Collapse
Affiliation(s)
- Stephen C Pryor
- State University of New York--College at Old Westbury, Neuroscience Research Institute, Old Westbury, NY 11568, USA
| | | | | | | | | | | |
Collapse
|
10
|
Zhu W, Pryor SC, Putnam J, Cadet P, Stefano GB. Opiate alkaloids and nitric oxide production in the nematode Ascaris suum. J Parasitol 2004; 90:15-22. [PMID: 15040662 DOI: 10.1645/ge-3208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The tissue distribution, course of secretion, and sex differences of morphine were delineated in Ascaris suum. Nitric oxide (NO) release in various tissues in response to morphine and its metabolite morphine-6-glucuronide (M6G) were also examined. Ascaris suum of both sexes along with their incubation fluid were analyzed for morphine concentrations by high-performance liquid chromatography (HPLC) over a 5-day period. Various tissues were also dissected for HPLC and NO analysis. Morphine was found to be most prevalent in the muscle tissue, and there is significantly more morphine in females than males, probably because of the large amounts present in the female uterus. Morphine (10(-9) M) and M6G (10(-9) M) stimulated the release of NO from muscles. Naloxone (10(-7) M) and N-nitro-L-arginine methyl ester (10(-6) M) blocked (P < 0.005) morphine-stimulated NO release from A. suum muscle tissue. D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH2 (CTOP) (10(-7) M) did not block morphine's NO release. However, naloxone could not block M6G-stimulated NO release by muscles, whereas CTOP (10(-7) M) blocked its release. These findings were in seeming contradiction to our earlier inability to isolate a mu opiate receptor messenger RNA by reverse transcriptase-polymerase chain reaction using a human mu primer. This suggests that a novel mu opiate receptor was possibly present and selective toward M6G.
Collapse
Affiliation(s)
- Wei Zhu
- State University of New York, Old Westbury Neuroscience Research Institute, P.O. Box 210, Old Westbury, New York 11568, USA
| | | | | | | | | |
Collapse
|
11
|
Gaskari SA, Mani AR, Ejtemaei-Mehr S, Namiranian K, Homayoun H, Ahmadi H, Dehpour AR. Do endogenous opioids contribute to the bradycardia of rats with obstructive cholestasis? Fundam Clin Pharmacol 2002; 16:273-9. [PMID: 12570015 DOI: 10.1046/j.1472-8206.2002.00089.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endogenous opioids have nitric oxide (NO)-dependent cardiovascular actions. In the light of biological evidence of accumulation of endogenous opioids in cholestasis and also existence of NO-dependent bradycardia in cholestatic subjects, this study was carried out to evaluate the role of endogenous opioids in the generation of bradycardia in a rat model of cholestasis. Male Sprague-Dawley rats were used to induce cholestasis by surgical ligation of the bile duct, with sham-operated animals serving as a control. The animals were divided into six groups which received naltrexone [20 mg/kg/day, subcutaneously (s.c.)], N(G)-L-nitro-arginine methyl ester (L-NAME, 3 mg/kg/day, s.c.), aminoguanidine (200 mg/kg/day, s.c.), L-arginine (200 mg/kg/day, s.c.), naltrexone + L-NAME (20 and 3 mg/kg/day, s.c) or saline. One week after the operation, a lead II electrocardiogram (ECG) was recorded and the spontaneously beating atria of the animals were then isolated and the chronotropic responses to epinephrine evaluated. The plasma L-nitro-tyrosine level and alanine amino transferase and alkaline phosphatase activities were also measured. The heart rate of cholestatic animals was significantly lower than that of control rats in vivo and this bradycardia was corrected with daily adminstration of naltrexone or L-NAME. The basal spontaneous beating rate of atria in cholestatic animals was not significantly different from that of sham-operated animals in vitro. Cholestasis induced a significant decrease in the chronotropic effect of epinephrine. This effect was corrected by daily injection of naltrexone or L-NAME, or concurrent administration of naltrexone + L-NAME, and was not corrected by aminoguanidine. L-arginine had an equivalent effect to L-NAME and increased the chronotropic effect of epinephrine in cholestatic rats but not in control animals. Bile duct ligation increased the plasma activity of liver enzymes as well as the level of L-nitro-tyrosine. L-arginine and naltrexone treatment significantly decreased the elevation of liver enzymes in bile duct-ligated rats. Pretreatment of cholestatic animals with naltrexone or L-NAME decreased the plasma L-nitro-tyrosine level. The results suggest that either prevention of NO overproduction or protection against liver damage is responsible for recovery of bradycardia after naltrexone administration.
Collapse
Affiliation(s)
- Seyed Ali Gaskari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
What is the role of the cannabinoid system in invertebrates and can it tell us something about the human system? We discuss in this review the possible presence of the cannabinoid system in invertebrates. Endocannabinoid processes, i.e., enzymatic hydrolysis, as well as cannabinoid receptors and endocannabinoids, have been identified in various species of invertebrates. These signal molecules appear to have multiple roles in invertebrates; diminishing sensory input, control of reproduction, feeding behavior, neurotransmission and antiinflammatory actions. We propose that since this system worked so well, it was retained during evolution, and that invertebrates can serve as a model to study endogenous cannabinoid signaling.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire de Neuroimmunologie des Annélides, LIMR CNRS 8017, IFR 17 INSERM, Université des Sciences et Technologies de Lille, Villeneuve d' Ascq, France
| | | |
Collapse
|
13
|
Weeks BS, Goldman S, Touma S, Payne M, Cadet P, Stefano GB. Morphine inhibits indolactam V-induced U937 cell adhesion and gelatinase secretion. J Cell Physiol 2001; 189:179-88. [PMID: 11598903 DOI: 10.1002/jcp.10015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We demonstrate that indolactam V, a non-phorbol protein kinase C activator, promotes U937 cell attachment to fibronectin, type IV collagen and laminin. In the absence of indolactam V, 2-4% of U937 cells attach to all test substrates, however, in the presence of 100 nM indolactam V, 25, 16 and 11% of U937 cells attach to fibronectin, type IV collagen and laminin, respectively. When added concomitantly, 90 microM H-7, a protein kinase C inhibitor, reduces indolactam V-induced U937 cell adhesion to fibronectin by 91%. Monoclonal antibodies directed against both the beta1 and alpha 5 integrin subunits inhibit indolactam V-induced U937 cell adhesion to fibronectin by 62 and 52%, respectively. Indolactam V also promotes homotypic aggregation in U937 cells, which is blocked with either anti-ICAM or anti-LFA-1 antibodies. In addition, indolactam V promotes U937 cell secretion of a 92 kDa gelatinase as demonstrated by zymography. In the presence of low levels of morphine (10 nM-1.0 microM), the U937 cell attachment to matrix proteins was not significantly affected. However, in the presence of 10 microM morphine, the indolactam V treated cells exhibit a 71-74% reduction in cell adhesion to the matrix proteins. Further, 10 microM morphine also blocks indolactam V-induced homotypic aggregation and gelatinase secretion. The inhibitory effect of morphine on cell-matrix adhesion and gelatinase secretion was not inhibited by the opiate receptor antagonist naloxone (1 microM). While 10 microM naloxone did partially counteract the effect of 10 microM morphine on U937 cell attachment, this effect was likely non-specific since 10 microM naloxone alone increased cell adhesion. Supporting this conclusion, PCR analysis revealed that U937 cells do not express the mu high affinity morphine receptor. Also, indolactam V did not induce mu receptor expression, suggesting that morphine acts on U937 cells in a non-specific fashion.
Collapse
Affiliation(s)
- B S Weeks
- Division of Mathematics and Sciences, Department of Biology, Adelphi University, Garden City, New York 11530, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Nahavandi A, Mani AR, Homayounfar H, Akbari MR, Dehpour AR. The role of the interaction between endogenous opioids and nitric oxide in the pathophysiology of ethanol-induced gastric damage in cholestatic rats. Fundam Clin Pharmacol 2001; 15:181-7. [PMID: 11468029 DOI: 10.1046/j.1472-8206.2001.00028.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interaction between endogenous opioids and nitric oxide (NO) has been shown in different biological models and pharmacological evidence suggest that opioids can induce NO release in endothelium as well as in neural cells. Cholestasis is associated with NO overproduction. The reason for increased NO synthesis is not clearly known but it can potentiate development of gastric mucosal damage in cholestatic subjects. Based on increased plasma levels of endogenous opioids and existence of NO overproduction in cholestasis, the present experiments were performed to investigate the role of interaction between endogenous opioids and NO in generation of ethanol-induced gastric damage in cholestatic rats. Cholestasis was induced by surgical ligation of bile duct and sham-operated rats served as controls. The animals received either 20 mg/kg of naltrexone or saline for 6 days and then were fasted and received L-arginine (200 mg/kg), NG-nitro-L-arginine methylester (L-NAME; 2, 5 and 10 mg/kg) or saline. The ethanol-induced gastric mucosal damage was significantly more severe in cholestatic rats than in sham-operated animals (115 +/- 12 mm2 vs. 72 +/- 11 mm2, P < 0.05). L-NAME significantly enhanced the development of gastric mucosal lesions in sham-operated rats. But in cholestatic animals, L-NAME decreased and L-arginine enhanced the severity of gastric damage. Pretreatment of animals with naltrexone decreased severity of gastric mucosal damage in cholestatic rats. Concurrent administration of naltrexone with L-arginine was protective against ethanol-induced gastric damage in both normal and cholestatic groups. Administration of naltrexone with L-NAME had the same effect in cholestatic and control rats and increased severity of gastric damage. Plasma levels of NO2- + NO3- were significantly higher in cholestatic rats than control animals (72 +/- 6 microM vs. 39 +/- 3 microM, P < 0.05). Pretreatment of animals with naltrexone significantly reduced plasma levels of NO2- + NO3- in cholestatic animals, but not in control rats (33 +/- 6 microM vs. 32 +/- 4 microM). The protective effect of L-NAME against gastric damage in cholestatic rats can be explained by inhibition of NO overproduction and it seems that interaction between opioids and NO may have an important role in generation of NO overproduction and gastric complications in cholestatic rats.
Collapse
Affiliation(s)
- A Nahavandi
- Department of Physiology, Iran University of Medical Sciences, PO Box 14155-6183, Tehran, Iran
| | | | | | | | | |
Collapse
|
15
|
McPherson BC, Yao Z. Morphine mimics preconditioning via free radical signals and mitochondrial K(ATP) channels in myocytes. Circulation 2001; 103:290-5. [PMID: 11208691 DOI: 10.1161/01.cir.103.2.290] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND We tried to determine whether morphine mimics preconditioning (PC) to reduce cell death in cultured cardiomyocytes and whether opioid delta(1) receptors, free radicals, and K(ATP) channels mediate this effect. METHODS AND RESULTS Chick embryonic ventricular myocytes were studied in a flow-through chamber while flow rate, pH, and O(2) and CO(2) tension were controlled. Cardiomyocyte viability was quantified with propidium iodide (5 micromol/L), and production of free radicals was measured with 2',7'-dichlorofluorescin diacetate. PC with 10 minutes of simulated ischemia before 10 minutes of reoxygenation or morphine (1 micromol/L) or BW373U86 (10 pmol/L) infusion for 10 minutes followed by a 10-minute drug-free period before 1 hour of ischemia and 3 hours of reoxygenation reduced cell death to the same extent (*P:<0.05) (PC, 20+/-1%, n=7*; morphine, 32+/-4%, n=8*; BW373U86, 21+/-6%; controls, 52+/-5%, n=8). Like PC, morphine and BW373U86 increased free radical production 2-fold before ischemia (0.35+/-0.10, n=6*; 0.41+/-0.08, n=4* versus controls, 0.15+/-0.05, n=8, arbitrary units). Protection and increased free radical signals during morphine infusion were abolished with either the thiol reductant 2-mercaptopropionyl glycine (400 micromol/L), an antioxidant; naloxone (10 micromol/L), a nonselective morphine receptor antagonist; BNTX (0.1 micromol/L), a selective opioid delta(1) receptor antagonist; or 5-hydroxydecanoate (100 micromol/L), a selective mitochondrial K(ATP) channel antagonist. CONCLUSIONS These results suggest that direct stimulation of cardiocyte opioid delta(1) receptors leads to activation of mitochondrial K(ATP) channels. The resultant increase of intracellular free radical signals may be an important component of the signaling pathways by which morphine mimics preconditioning in cardiomyocytes.
Collapse
Affiliation(s)
- B C McPherson
- Department of Anesthesia and Critical Care, the University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
16
|
|
17
|
Abstract
This paper is the twenty-second installment of the annual review of research concerning the opiate system. It summarizes papers published during 1999 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunologic responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
18
|
Salzet M, Chopin V, Baert J, Matias I, Malecha J. Theromin, a novel leech thrombin inhibitor. J Biol Chem 2000; 275:30774-80. [PMID: 10837466 DOI: 10.1074/jbc.m000787200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We purified the most potent thrombin inhibitor described to date from the rhynchobdellid leech Theromyzon tessulatum. Designated theromin, it was purified to apparent homogeneity by gel permeation and anion exchange chromatography followed by two reverse-phase steps of high performance liquid chromatography. The primary sequence of theromin (a homodimer of 67 amino acid residues including 16 cysteine residues) was determined by a combination of reduction and s-beta-pyridylethylation, Edman degradation, trypsin enzymatic digestion, and matrix-assisted laser desorption mass spectrometry measurement. Theromin exhibits no sequence homology with any other thrombin inhibitors. Furthermore, theromin significantly diminishes, in a dose-dependent manner, the level of human granulocyte and monocyte activation induced by lipopolysaccharides. In summary, this potent thrombin inhibitor promises to have high biomedical significance.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, Unité Propre de la Recherche Supérieure Associée au CNRS 8017 CNRS, SN3, Université des Sciences et Technologie de Lille, F-59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
19
|
Salzet M, Breton C, Bisogno T, Di Marzo V. Comparative biology of the endocannabinoid system possible role in the immune response. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4917-27. [PMID: 10931174 DOI: 10.1046/j.1432-1327.2000.01550.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this review we discuss data showing that the endogenous cannabinoid system, represented by cannabinoid receptors, endogenous cannabinoid receptor ligands and enzymes for the biosynthesis and degradation of these ligands, is conserved throughout evolution from coelenterates to man. This signaling system has been suggested to play several roles in animals, including the regulation of cell development and growth, nervous functions, reproduction and feeding behavior. In this article, however, we shall describe with more detail the possible function of the endogenous cannabinoid system in the modulation of immune response in organisms from the lower to the higher levels of animal evolution.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
20
|
Laurent V, Salzet B, Verger-Bocquet M, Bernet F, Salzet M. Morphine-like substance in leech ganglia. Evidence and immune modulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2354-61. [PMID: 10759861 DOI: 10.1046/j.1432-1327.2000.01239.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Binding experiments followed by measurement of nitric oxide release revealed an opiate alkaloid high affinity receptor with no affinity to opioids, representing a new mu-subtype receptor in the brain of the leech Theromyzon tessulatum. In addition, evidence of morphine-like substances was found in immunocytochemical studies and HPLC coupled to electrochemical detection (500 mV and 0.02 Hz). Based on previous evidence of the involvement of morphine as an immune response inhibitor, we demonstrate that in leech ganglia injection of lipopolysaccharide (LPS; a potent immunostimulatory agent derived from bacteria) provoked an increase in the level of ganglionic morphine-like substances after a prolonged latency period of 24 h (from 2.4 +/- 1.1 pmol per ganglion to 78 +/- 12.3 pmol per ganglion; P < 0.005; LPS injected 1 microg x mL-1); this effect is both concentration- and time-dependent. Finally, we have demonstrated that morphine, after binding to its own receptor, inhibits leech immunocyte activation through adenylate cyclase inhibition and nitric oxide release. This report confirms that morphine is an evolutionarily stable potent immunomodulator.
Collapse
Affiliation(s)
- V Laurent
- Laboratoire d'Endocrinologie des annélides, UPRESA 8017 CNRS, SN3, Université des Sciences et Technologie de Lille, France
| | | | | | | | | |
Collapse
|