1
|
Maldonado YE, Malagón O, Cumbicus N, Gilardoni G. A new leaf essential oil from the Andean species Gynoxys szyszylowiczii Hieron. of southern Ecuador: chemical and enantioselective analyses. Sci Rep 2024; 14:16360. [PMID: 39014058 PMCID: PMC11252159 DOI: 10.1038/s41598-024-67482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
The essential oil obtained from the dry leaves of Gynoxys szyszylowiczii Hieron. was described in this study for the first time. The chemical analysis, conducted on two stationary phases of different polarity, permitted to identify sixty-four compounds, that were quantified with at least one column. The main components, on a non-polar and polar stationary phase respectively, were germacrene D (21.6-19.2%), α-pinene (4.4-4.9%), n-tricosane (4.3% on both columns), (E)-β-caryophyllene (3.3-4.3%), 1-docosene (3.2-2.8%), α-cadinol (2.8-3.1%), and cis-β-guaiene (2.6-3.0%). This investigation was complemented by the enantioselective analysis of some major chiral compounds, carried out on two chiral selectors based on β-cyclodextrines. As a result, (S)-( +)-α-phellandrene, (S)-( +)-β-phellandrene, and (1S,2R,6R,7R,8R)-( +)-α-copaene appeared enantiomerically pure, whereas α-pinene, β-pinene, terpinen-4-ol, and germacrene D were detected as scalemic mixtures. Finally, linalool was practically racemic. The distillation yield, analytically calculated by weight of dry plant material, was 0.03%.
Collapse
Affiliation(s)
- Yessenia E Maldonado
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, 110107, Loja, Ecuador
| | - Omar Malagón
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, 110107, Loja, Ecuador
| | - Nixon Cumbicus
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, Loja, 110107, Ecuador
| | - Gianluca Gilardoni
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, 110107, Loja, Ecuador.
| |
Collapse
|
2
|
Sexual Differences in Eurya loquaiana Dunn Floral Scent and How Pollinators Respond. PLANTS 2022; 11:plants11192560. [PMID: 36235425 PMCID: PMC9571124 DOI: 10.3390/plants11192560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Eurya plants are usually dioecious or subdioecious with small fragrant flowers. Here, we investigate the floral scent components of the subdioecious species Eurya loquaiana Dunn and how floral scent affects pollinators. Headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS) was used to compare the floral scents of male, female, and hermaphrodite flowers. We also test whether differences in floral scent affect the foraging behaviors of pollinators and describe the flower morphological traits of the three sexes. Twenty-eight floral scent compounds were tentatively identified, and four monoterpenoids were tentatively identified as the most abundant compounds: linalool oxide (pyranoid), linalool, lilac aldehyde, and linalool oxide (furanoid). There were floral scent differences among the sex types, and male flowers were more attractive to pollinators in the wild, even when visual factors were excluded, indicating that pollinators likely distinguish sexual differences by floral scent. In the competition for pollinators, the advantage that male flowers have over female and hermaphrodite flowers can likely be accounted for the differences in floral scent and display size.
Collapse
|
3
|
De Marchi L, Pretti C, Cuccaro A, Oliva M, Tardelli F, Monni G, Magri M, Bulleri F. A multi-bioassay integrated approach to assess antifouling potential of extracts from the Mediterranean sponge Ircinia oros. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1521-1531. [PMID: 34351580 PMCID: PMC8724186 DOI: 10.1007/s11356-021-15683-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The phylum Porifera and their symbionts produce a wide variety of bioactive compounds, playing a central role in their ecology and evolution. In this study, four different extracts (obtained by non-polar and semi-polar extraction methodologies) of the Mediterranean sponge Ircinia oros were tested through a multi-bioassay integrated approach to assess their antifouling potential. Tests were performed using three common species, associated with three different endpoints: the marine bacterium Aliivibrio fischeri (inhibition of bioluminescence), the marine diatom Phaeodactylum tricornutum (inhibition of growth), and different development stages of the brackish water serpulid Ficopomatus enigmaticus (gametes: sperm motion, vitality inhibition and cellular damage; larvae: development; adults: AChE (acetylcholinesterase)-inhibitory activity). The effects of extracts were species specific and did not vary among different extraction methodologies. In particular, no significant reduction of bioluminescence of A. fischeri was observed for all tested samples. By contrast, extracts inhibited P. tricornutum growth and had toxic effects on different F. enigmaticus' developmental stages. Our results suggest that the proposed test battery can be considered a suitable tool as bioactivity screening of marine natural products.
Collapse
Affiliation(s)
- Lucia De Marchi
- Dipartimento di Biologia - Unità di Ecologia e Biologia Marina, Università di Pisa, Pisa, Italy
| | - Carlo Pretti
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy.
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56122, San Piero a Grado (PI) Pisa, Italy.
| | - Alessia Cuccaro
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56122, San Piero a Grado (PI) Pisa, Italy
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Matteo Oliva
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Federica Tardelli
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Gianfranca Monni
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, 56122, San Piero a Grado (PI) Pisa, Italy
| | - Michele Magri
- Dipartimento di Biologia - Unità di Ecologia e Biologia Marina, Università di Pisa, Pisa, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia - Unità di Ecologia e Biologia Marina, Università di Pisa, Pisa, Italy
| |
Collapse
|
4
|
Aresta A, Cotugno P, De Vietro N, Longo C, Mercurio M, Ferriol P, Zambonin C, Nonnis Marzano C. Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae). Mar Drugs 2021; 19:711. [PMID: 34940710 PMCID: PMC8706640 DOI: 10.3390/md19120711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was employed for the headspace determination of the volatile organic fraction emitted by two of the most common Mediterranean demosponges, Ircinia variabilis and Sarcotragus spinosulus, and of indole and some biogenic amines released by sponges in an aqueous medium. A total of 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane and 75 µm carboxen/polydimethylsiloxane fibers were used for the headspace extraction of low molecular weight sulfur compounds from a hermetically sealed vial containing sponge fragments, while the direct immersion determination of indole and biogenic amines was performed. The biogenic amines were extracted after in-solution derivatization with isobutyl chloroformate. All analytical parameters (linearity, limits of detection, and quantification, precision, and recovery) were evaluated for indole and biogenic amines. SPME-GC-MS proved to be a reliable means of highlighting the differences between molecules released by different sponges, principally responsible for their smell. The combined approaches allowed the identification of several volatile compounds in the headspace and other molecules released by the sponges in an aqueous medium, including indole and the BAs cadaverine, histamine, isobutylamine, isopentylamine, propylamine, 2-phenylethylamine, putrescine and tryptamine. The results obtained represent a further contribution to the picture of odoriferous molecules secreted by sponges.
Collapse
Affiliation(s)
- Antonella Aresta
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (P.C.); (N.D.V.); (C.Z.)
| | - Pietro Cotugno
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (P.C.); (N.D.V.); (C.Z.)
| | - Nicoletta De Vietro
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (P.C.); (N.D.V.); (C.Z.)
| | - Caterina Longo
- Department of Biology, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (C.N.M.)
| | - Maria Mercurio
- Department of Biology, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (C.N.M.)
| | - Pere Ferriol
- Department of Biology, University of the Balearic Islands, 07122 Palma, Spain;
| | - Carlo Zambonin
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (P.C.); (N.D.V.); (C.Z.)
| | | |
Collapse
|
5
|
Eliseenkov EV, Zenkevich IG. Characterization of Substituted 1,3-Dioxolanes and 1,3-Dioxanes by Gas Chromatography–Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820140087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Bauer P, Buettner A. Characterization of Odorous and Potentially Harmful Substances in Artists' Acrylic Paint. Front Public Health 2018; 6:350. [PMID: 30555813 PMCID: PMC6281683 DOI: 10.3389/fpubh.2018.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 01/18/2023] Open
Abstract
Acrylic paints are fast drying water based paints that are easy to handle and have a high covering capacity and therefore possess many characteristics that make them applicable in a wide range of applications, such as varnishes or artists paints. Due to their emitted volatile organic compounds, these paints are associated with different work-related diseases and are known to emit an unpleasant odor. In this study six acrylic paints for artists were analyzed regarding their odor-active constituents. Therefore, the samples were extracted with dichloromethane and purified via solvent assisted flavor evaporation prior to analysis of the distillates by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and GC-GC-MS/O. Additionally all samples were sensorially characterized by a trained sensory panel. The identified odorous substances were primarily benzene derivatives (styrene, ethylbenzene, allylbenzene, propylbenzene) with a plastic-like, aromatic and solvent-like odor. Thereby, polycyclic aromatic hydrocarbons (naphthalene, indane, and tetralin derivatives) contributed to the plastic- and mothball-like odor whereas acrylic monomers (butyl acrylate) were found to be responsible for a mushroom-like and geranium leaf-like odor. As most of these substances are also known to be harmful, a reduction or replacement of these substances by less toxic and non-odor active ingredients is likely to turn out to be advisable in order to reduce the odor and potential negative physiological effects of paints.
Collapse
Affiliation(s)
- Patrick Bauer
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
7
|
Barra L, Barac P, König GM, Crüsemann M, Dickschat JS. Volatiles from the fungal microbiome of the marine sponge Callyspongia cf. flammea. Org Biomol Chem 2018; 15:7411-7421. [PMID: 28872169 DOI: 10.1039/c7ob01837a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The volatiles emitted by five fungal strains previously isolated from the marine sponge Callyspongia cf. flammea were captured with a closed-loop stripping apparatus (CLSA) and analyzed by GC-MS. Besides several widespread compounds, a series of metabolites with interesting bioactivities were found, including the quorum sensing inhibitor protoanemonin, the fungal phytotoxin 3,4-dimethylpentan-4-olide, and the insect attractant 1,2,4-trimethoxybenzene. In addition, the aromatic polyketides isotorquatone and chartabomone that are both known from Eucalyptus and a new O-desmethyl derivative were identified. The biosynthesis of isotorquatone was studied by feeding experiments with isotopically labeled precursors and its absolute configuration was determined by enantioselective synthesis of a reference compound. Bioactivity testings showed algicidal activity for some of the identified compounds, suggesting a potential ecological function in sponge defence.
Collapse
Affiliation(s)
- Lena Barra
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany.
| | | | | | | | | |
Collapse
|
8
|
Block E, Batista VS, Matsunami H, Zhuang H, Ahmed L. The role of metals in mammalian olfaction of low molecular weight organosulfur compounds. Nat Prod Rep 2017; 34:529-557. [PMID: 28471462 PMCID: PMC5542778 DOI: 10.1039/c7np00016b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Covering: up to the end of 2017While suggestions concerning the possible role of metals in olfaction and taste date back 50 years, only recently has it been possible to confirm these proposals with experiments involving individual olfactory receptors (ORs). A detailed discussion of recent experimental results demonstrating the key role of metals in enhancing the response of human and other vertebrate ORs to specific odorants is presented against the backdrop of our knowledge of how the sense of smell functions both at the molecular and whole animal levels. This review emphasizes the role of metals in the detection of low molecular weight thiols, sulfides, and other organosulfur compounds, including those found in strong-smelling animal excretions and plant volatiles, and those used in gas odorization. Alternative theories of olfaction are described, with evidence favoring the modified "shape" theory. The use of quantum mechanical/molecular modeling (QM/MM), site-directed mutagenesis and saturation-transfer-difference (STD) NMR is discussed, providing support for biological studies of mouse and human receptors, MOR244-3 and OR OR2T11, respectively. Copper is bound at the active site of MOR244-3 by cysteine and histidine, while cysteine, histidine and methionine are involved with OR2T11. The binding pockets of these two receptors are found in different locations in the three-dimensional seven transmembrane models. Another recently deorphaned human olfactory receptor, OR2M3, highly selective for a thiol from onions, and a broadly-tuned thiol receptor, OR1A1, are also discussed. Other topics covered include the effects of nanoparticles and heavy metal toxicants on vertebrate and fish ORs, intranasal zinc products and the loss of smell (anosmia).
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, USA.
| | | | | | | | | |
Collapse
|
9
|
New Cytotoxic 24-Homoscalarane Sesterterpenoids from the Sponge Ircinia felix. Int J Mol Sci 2015; 16:21950-8. [PMID: 26378524 PMCID: PMC4613290 DOI: 10.3390/ijms160921950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 11/28/2022] Open
Abstract
Two new 24-homoscalarane sesterterpenoids, felixins F (1) and G (2), were isolated from the sponge Ircinia felix. The structures of new homoscalaranes 1 and 2 were elucidated by extensive spectroscopic methods, particularly with one-dimensional (1D) and two-dimensional (2D) NMR, and, by comparison, the spectral data with those of known analogues. The cytotoxicity of 1 and 2 against the proliferation of a limited panel of tumor cell lines was evaluated and 1 was found to show cytotoxicity toward the leukemia K562, MOLT-4, and SUP-T1 cells (IC50 ≤ 5.0 μM).
Collapse
|
10
|
Lai YY, Lu MC, Wang LH, Chen JJ, Fang LS, Wu YC, Sung PJ. New Scalarane Sesterterpenoids from the Formosan Sponge Ircinia felix. Mar Drugs 2015; 13:4296-309. [PMID: 26184237 PMCID: PMC4515618 DOI: 10.3390/md13074296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/01/2022] Open
Abstract
Five new scalarane sesterterpenoids, felixins A–E (1–5), were isolated from the Formosan sponge Ircinia felix. The structures of scalaranes 1–5 were elucidated on the basis of spectroscopic analysis. Cytotoxicity of scalaranes 1–5 against the proliferation of a limited panel of tumor cell lines was evaluated.
Collapse
Affiliation(s)
- Ya-Yuan Lai
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Li-Hsueh Wang
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
| | - Jih-Jung Chen
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 907, Taiwan.
| | - Lee-Shing Fang
- Department of Sport, Health and Leisure, Cheng Shiu University, Kaohsiung 833, Taiwan.
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan.
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan.
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
11
|
Pita L, López-Legentil S, Erwin PM. Biogeography and host fidelity of bacterial communities in Ircinia spp. from the Bahamas. MICROBIAL ECOLOGY 2013; 66:437-447. [PMID: 23529652 DOI: 10.1007/s00248-013-0215-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Research on sponge microbial assemblages has revealed different trends in the geographic variability and specificity of bacterial symbionts. Here, we combined replicated terminal-restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA gene sequences to investigate the biogeographic and host-specific structure of bacterial communities in two congeneric and sympatric sponges: Ircinia strobilina, two color morphs of Ircinia felix and ambient seawater. Samples were collected from five islands of the Bahamas separated by 80 to 400 km. T-RFLP profiles revealed significant differences in bacterial community structure among sponge hosts and ambient bacterioplankton. Pairwise statistical comparisons of clone libraries confirmed the specificity of the bacterial assemblages to each host species and differentiated symbiont communities between color morphs of I. felix. Overall, differences in bacterial communities within each host species and morph were unrelated to location. Our results show a high degree of symbiont fidelity to host sponge across a spatial scale of up to 400 km, suggesting that host-specific rather than biogeographic factors play a primary role in structuring and maintaining sponge-bacteria relationships in Ircinia species from the Bahamas.
Collapse
Affiliation(s)
- Lucía Pita
- Department of Animal Biology, University of Barcelona, Diagonal Avenue 643, 08028, Barcelona, Spain
| | | | | |
Collapse
|
12
|
Yarnold JE, Hamilton BR, Welsh DT, Pool GF, Venter DJ, Carroll AR. High resolution spatial mapping of brominated pyrrole-2-aminoimidazole alkaloids distributions in the marine sponge Stylissa flabellata via MALDI-mass spectrometry imaging. MOLECULAR BIOSYSTEMS 2012; 8:2249-59. [PMID: 22777271 DOI: 10.1039/c2mb25152c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of pharmacologically active brominated pyrrole-2-aminoimidazole (B-P-2-AI) alkaloids have been isolated from several families of marine sponges, including those belonging to the genus Stylissa. In the present study, MALDI mass spectrometry imaging (MALDI-imaging) was applied to determine the spatial distribution of B-P-2-AIs within 20 μm cross sections of S. flabellata. A number of previously characterised B-P-2-AIs were readily identified by MALDI-imaging and confirmed by MS-MS and NMR profiling. Unknown B-P-2-AIs were also observed. Discrete microchemical environments were revealed for several B-P-2-AIs including dibromophakellin which was localised within the external pinacoderm and internal network of choanoderm chambers. Additionally, dibromopalau'amine and konbu'acidin B were also found to be confined to the choanoderm, while sceptrin was found to be highly abundant within the mesohyl. Further brominated compounds of unknown structure were also observed to have distinct localisation in both choanoderm chambers and the pinacoderm. These findings provide insights into the chemical ecology of S. flabellata, as most B-P-2-AIs were found on highly exposed surfaces, where they may act to prevent pathogens, predation and/or biofouling. Moreover this study demonstrates the power of MALDI-imaging to visualise the location of a range of metabolites in situ and to characterise compounds by MS-MS directly from intact specimens without the need for extraction. These methodologies facilitate selective targeting of micro-regions of sponge to screen for symbiotic microbial candidates or genes that may be involved in the production of the correlated compounds, and may represent a change in paradigm for natural product drug development.
Collapse
Affiliation(s)
- Jennifer E Yarnold
- Environmental Futures Centre, Griffith University, Southport, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Sneed JM, Pohnert G. The green macroalga Dictyosphaeria ocellata influences the structure of the bacterioplankton community through differential effects on individual bacterial phylotypes. FEMS Microbiol Ecol 2010; 75:242-54. [PMID: 21155850 DOI: 10.1111/j.1574-6941.2010.01005.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Marine macroalgae are subjected to large numbers of bacteria in their environment. These bacteria have the potential to affect the health and ecology of algae in a variety of ways and can be both beneficial and harmful to the algae. Therefore, algae have likely evolved mechanisms to differentially regulate the growth of bacterial species. In this study, we examined the effects of the green alga Dictyosphaeria ocellata on the bacterioplankton community in field enclosure experiments and on individual, naturally co-occurring bacterial strains in laboratory co-culture experiments. In field experiments, we compared the bacterioplankton communities of enclosures with and without D. ocellata using denaturing gradient gel electrophoresis and found that the alga significantly changed the bacterial community composition. Seven bacterial phylotypes were eliminated in the presence of the alga and five were found exclusively with the alga. We also examined the effects of algal-treated water on the development of the bacterial community within enclosures and found no change in the community composition. Laboratory co-culture experiments revealed that D. ocellata and D. ocellata extracts affect the growth of individual bacterial strains in a species-specific manner and that the mechanisms responsible for these effects also differed by bacterial species.
Collapse
Affiliation(s)
- Jennifer M Sneed
- Institute for Inorganic and Analytical Chemistry, Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University Jena, Jena, Germany
| | | |
Collapse
|
14
|
|
15
|
Fatty acid profile, volatiles and antibacterial screening of lipids of the sponge Fasciospongia cavernosa (Schmidt) collected from the bay of Bengal (Orissa coast). JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2009. [DOI: 10.2298/jsc0911241m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fatty acid composition as well as the volatiles of a lipophilic extract from the marine sponge Fasciospongia cavernosa (Schmidt) was analyzed. The fatty acids (FA) were characterized by linear saturated fatty acids (33.05 %), branched saturated fatty acids (9.30 %) and mono-unsaturated fatty acids (18.07 %). A significant amount of polyunsaturated fatty acids (PUFA) (30.79 %) was found in the total lipid, which included linoleic acid (18:2 n-6, 11.14 %), 9,12,15-octadecatrienoic acid/?-linolenic acid (18:3 n-3, 1.99 %), dihomo-?-linolenic acid (20:3 n-6, 2.03 %) and arachidonic acid (20:4 n-3, 0.51 %). An antibacterial assay of the lipid extract of F. cavernosa showed broad-spectrum activity against different human and fish pathogens.
Collapse
|
16
|
Cohen SAP, Hatt H, Kubanek J, McCarty NA. Reconstitution of a chemical defense signaling pathway in a heterologous system. ACTA ACUST UNITED AC 2008; 211:599-605. [PMID: 18245637 DOI: 10.1242/jeb.009225] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemical signaling plays an important role in ecological interactions, such as communication and predator-prey dynamics. Since sessile species cannot physically escape predators, many contain compounds that deter predation; however, it is largely unknown how predators physiologically detect deterrent chemicals. Few studies have investigated ecologically relevant aversive taste responses in any predator. Our objective was to determine if a signaling pathway for detecting marine sponge-derived deterrent compounds could be reconstituted in a heterologous expression system to ultimately facilitate investigation of the molecular mechanism of such an aversive behavioral response. Zebrafish (Danio rerio) rejected artificial diets laced with sponge chemical defense compounds that were previously shown to deter a generalist marine predator, Thalassoma bifasciatum, suggesting that zebrafish can recognize deterrent compounds relevant to coral reef systems. Transcripts made from a zebrafish cDNA library were expressed in a heterologous system, Xenopus laevis oocytes, and tested for chemoreceptor activation via electrophysiology, using the cystic fibrosis transmembrane conductance regulator (CFTR) as a reporter. Oocytes expressing gene sequences from the library and CFTR exhibited a CFTR-like electrophysiological response to formoside and ectyoplasides A and B, sponge defense compounds. Therefore, the chemical defense-activated signaling pathway can be reconstituted in Xenopus oocytes. Kinetics of the responses suggested that the responses to formoside and ectyoplasides A and B were receptor-mediated and capable of using the G(alphas) signaling pathway in this system. This bioassay has the potential to lead to the identification of genes that encode receptors capable of interacting with deterrent chemicals, which would enable understanding of predator detection of chemical defenses.
Collapse
|
17
|
Galeano E, Martínez A. Antimicrobial activity of marine sponges from Urabá Gulf, Colombian Caribbean region. J Mycol Med 2007. [DOI: 10.1016/j.mycmed.2006.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Richelle-Maurer E, De Kluijver M, Feio S, Gaudêncio S, Gaspar H, Gomez R, Tavares R, Van de Vyver G, Van Soest R. Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas conifera. BIOCHEM SYST ECOL 2003. [DOI: 10.1016/s0305-1978(03)00072-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Bryan PJ, McClintock JB, Slattery M, Rittschof DP. A comparative study of the non-acidic chemically mediated antifoulant properties of three sympatric species of ascidians associated with seagrass habitats. BIOFOULING 2003; 19:235-245. [PMID: 14626843 DOI: 10.1080/0892701031000085222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present study investigated aspects of the antifoulant properties of three sympatric species of ascidians found in seagrass habitats of the Gulf of Mexico, Southern Atlantic Ocean, and Caribbean. Field observations in Saint Joseph Bay, Florida indicate that all three species are common and that the tunic of the solitary ascidian Molgula occidentalis is often heavily fouled, while the outer surfaces of both the colonial ascidians Amaroucium stellatum and Botryllus planus are free of fouling organisms. Antifoulant activities of a suite of increasing hydrophilic organic extracts prepared from the tunic of M. occidentalis and whole colonies of A. stellatum and B. planus were measured using both sympatric microbial (bacteria) and macroinvertebrate (cyprid larvae of Balanus amphitrite) fouling organisms in laboratory bioassays. In addition, field antifoulant assays were conducted by combining organic extracts with controlled-release resin and subsequently coating this material on to acrylic rods deployed in the field for a 72 h period. Extracts of the tunic of M. occidentalis generally did not inhibit bacterial growth. The exception was the methanol extract, which inhibited growth in one of the six marine bacteria tested. Moreover, only the highest concentrations of hexane and methanol tunic extracts tested prevented attachment of cyprid larvae. Field assays revealed no antifoulant activity on rods coated with resin containing extracts of M. occidentalis. Inhibition of both microbial growth and cyprid settlement were much more pronounced in whole-organism extracts of the two colonial ascidians. Most potent were the aqueous methanol extracts of colonies of B. planus and A. stellatum which inhibited growth in five of the six marine bacteria tested. In addition, hydrophilic and lipophilic extracts of the colonial ascidians significantly inhibited attachment of cyprid larvae, in many instances across a wide range of extract concentrations. Field antifoulant assays indicated that extracts of both colonial ascidians inhibited settlement of bryozoans and barnacles. The findings indicate that the colonial ascidians B. planus and A. stellatum possess chemical antifoulant properties. In contrast, the solitary ascidian M. occidentalis appears to either tolerate fouling or possess other non-chemical mechanisms to cope with the risks associated with epibiont overgrowth.
Collapse
Affiliation(s)
- Patrick J Bryan
- Department of Biology, Central Washington University, Ellensburg, WA 98926, USA.
| | | | | | | |
Collapse
|
20
|
Petrichtcheva NV, Duque C, Dueñas A, Zea S, Hara N, Fujimoto Y. New nitrogenous eudesmane-type compounds isolated from the Caribbean sponge Axinyssa ambrosia. JOURNAL OF NATURAL PRODUCTS 2002; 65:851-855. [PMID: 12088426 DOI: 10.1021/np0104471] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fractionation of an acetone-methanol (1:1) extract of the Caribbean marine sponge Axinyssa ambrosia yielded three new sesquiterpenes whose structures were established by spectroscopic methods as (4R*,5R*,7S*,10R*)-eudesm-11-en-4-ylamine hydrochloride (1), axinyssamine hydrochloride, (4R*,5R*,7S*,10R*)-4-isocyanatoeudesm-11-ene (3), and (4R*,5R*,7S*,10R*)-formamidoeudesm-11-ene (4). Compound 1 exhibited significant cytotoxic activity against cancer cells and was also active in a lethality test using polyps of the scleractinian coral Madracis mirabilis.
Collapse
|
21
|
Pawlik JR, McFall G, Zea S. Does the odor from sponges of the genus Ircinia protect them from fish predators? J Chem Ecol 2002; 28:1103-15. [PMID: 12184391 DOI: 10.1023/a:1016221415028] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Caribbean sponges of the genus Ircinia contain high concentrations of linear furanosesterterpene tetronic acids (FTAs) and produce and exude low-molecular-weight volatile compounds (e.g., dimethyl sulfide, methyl isocyanide, methyl isothiocyanate) that give these sponges their characteristic unpleasant garlic odor. It has recently been suggested that FTAs are unlikely to function as antipredatory chemical defenses, and this function may instead be attributed to bioactive volatiles. We tested crude organic extracts and purified fractions isolated from Ircinia campana, I. felix, and I. strobilina at naturally occurring concentrations in laboratory and field feeding assays to determine their palatability to generalist fish predators. We also used a qualitative technique to test the crude volatile fraction from I. felix and I. strobilina and dimethylsulfide in laboratory feeding assays. Crude organic extracts of all three species deterred feeding of fishes in both aquarium and field experiments. Bioassay-directed fractionation resulted in the isolation of the FTA fraction as the sole active fraction of the nonvolatile crude extract for each species, and further assays of subfractions suggested that feeding deterrent activity is shared by the FTAs. FTAs deterred fish feeding in aquarium assays at concentrations as low as 0.5 mg/ml (fraction B, variabilin), while the natural concentrations of combined FTA fractions were > 5.0 mg/ml for all three species. In contrast, natural mixtures of volatiles transferred from sponge tissue to food pellets and pure dimethylsulfide incorporated into food pellets were readily eaten by fish in aquarium assays. Although FTAs may play other ecological roles in Ircinia spp., these compounds are effective as defenses against potential predatory fishes. Volatile compounds may serve other defensive functions (e.g., antimicrobial, antifouling) but do not appear to provide a defense against fish predators.
Collapse
Affiliation(s)
- Joseph R Pawlik
- Center for Marine Science Research, University of North Carolina at Wilmington 28403-3297, USA.
| | | | | |
Collapse
|