1
|
di Biase L, Bonura A, Pecoraro PM, Carbone SP, Di Lazzaro V. Unlocking the Potential of Stroke Blood Biomarkers: Early Diagnosis, Ischemic vs. Haemorrhagic Differentiation and Haemorrhagic Transformation Risk: A Comprehensive Review. Int J Mol Sci 2023; 24:11545. [PMID: 37511304 PMCID: PMC10380631 DOI: 10.3390/ijms241411545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Stroke, a complex and heterogeneous disease, is a leading cause of morbidity and mortality worldwide. The timely therapeutic intervention significantly impacts patient outcomes, but early stroke diagnosis is challenging due to the lack of specific diagnostic biomarkers. This review critically examines the literature for potential biomarkers that may aid in early diagnosis, differentiation between ischemic and hemorrhagic stroke, and prediction of hemorrhagic transformation in ischemic stroke. After a thorough analysis, four promising biomarkers were identified: Antithrombin III (ATIII), fibrinogen, and ischemia-modified albumin (IMA) for diagnostic purposes; glial fibrillary acidic protein (GFAP), micro RNA 124-3p, and a panel of 11 metabolites for distinguishing between ischemic and hemorrhagic stroke; and matrix metalloproteinase-9 (MMP-9), s100b, and interleukin 33 for predicting hemorrhagic transformation. We propose a biomarker panel integrating these markers, each reflecting different pathophysiological stages of stroke, that could significantly improve stroke patients' early detection and treatment. Despite promising results, further research and validation are needed to demonstrate the clinical utility of this proposed panel for routine stroke treatment.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Adriano Bonura
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Roma, Italy
| |
Collapse
|
2
|
Adrenomedullin Is a Diagnostic and Prognostic Biomarker for Acute Intracerebral Hemorrhage. Curr Issues Mol Biol 2021; 43:324-334. [PMID: 34208106 PMCID: PMC8928941 DOI: 10.3390/cimb43010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Hemorrhagic stroke remains an important health challenge. Adrenomedullin (AM) is a vasoactive peptide with an important role in cardiovascular diseases, including stroke. Serum AM and nitrate-nitrite and S-nitroso compounds (NOx) levels were measured and compared between healthy volunteers (n = 50) and acute hemorrhagic stroke patients (n = 64). Blood samples were taken at admission (d0), 24 h later (d1), and after 7 days or at the time of hospital discharge (d7). Neurological severity (NIHSS) and functional prognosis (mRankin) were measured as clinical outcomes. AM levels were higher in stroke patients at all times when compared with healthy controls (p < 0.0001). A receiving operating characteristic curve analysis identified that AM levels at admission > 69.0 pg/mL had a great value as a diagnostic biomarker (area under the curve = 0.89, sensitivity = 80.0%, specificity = 100%). Furthermore, patients with a favorable outcome (NIHSS ≤ 3; mRankin ≤ 2) experienced an increase in AM levels from d0 to d1, and a decrease from d1 to d7, whereas patients with unfavorable outcome had no significant changes over time. NOx levels were lower in patients at d0 (p = 0.04) and d1 (p < 0.001) than in healthy controls. In conclusion, AM levels may constitute a new diagnostic and prognostic biomarker for this disease, and identify AM as a positive mediator for hemorrhagic stroke resolution.
Collapse
|
3
|
Abstract
Adrenomedullin, a peptide with multiple physiological functions in nervous system injury and disease, has aroused the interest of researchers. This review summarizes the role of adrenomedullin in neuropathological disorders, including pathological pain, brain injury and nerve regeneration, and their treatment. As a newly characterized pronociceptive mediator, adrenomedullin has been shown to act as an upstream factor in the transmission of noxious information for various types of pathological pain including acute and chronic inflammatory pain, cancer pain, neuropathic pain induced by spinal nerve injury and diabetic neuropathy. Initiation of glia-neuron signaling networks in the peripheral and central nervous system by adrenomedullin is involved in the formation and maintenance of morphine tolerance. Adrenomedullin has been shown to exert a facilitated or neuroprotective effect against brain injury including hemorrhagic or ischemic stroke and traumatic brain injury. Additionally, adrenomedullin can serve as a regulator to promote nerve regeneration in pathological conditions. Therefore, adrenomedullin is an important participant in nervous system diseases.
Collapse
Affiliation(s)
- Feng-Jiao Li
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Si-Ru Zheng
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Dong-Mei Wang
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Zoccal DB, Colombari DSA, Colombari E, Flor KC, da Silva MP, Costa-Silva JH, Machado BH, Moraes DJA, Murphy D, Paton JFR. Centrally acting adrenomedullin in the long-term potentiation of sympathetic vasoconstrictor activity induced by intermittent hypoxia in rats. Exp Physiol 2019; 104:1371-1383. [PMID: 31328309 DOI: 10.1113/ep087613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Adrenomedullin in the rostral ventrolateral medulla (RVLM) increases sympathetic activity; given that adrenomedullin is released during hypoxia, what are the effects of its agonism and antagonism in the RVLM after chronic intermitent hypoxia (CIH) exposure? What is the main finding and its importance? CIH exposure sensitizes adrenomedullin-dependent mechanisms in the RVLM, supporting its role as a sympathoexcitatory neuromodulator. A novel mechanism was identified for the generation of sympathetic overdrive and hypertension associated with hypoxia, providing potential guidance on new therapeutic approaches for controlling sympathetic hyperactivity in diseases such as sleep apnoea and neurogenic hypertension. ABSTRACT Adrenomedullin in the rostral ventrolateral medulla (RVLM) has been shown to increase sympathetic activity whereas the antagonism of its receptors inhibited this autonomic activity lowering blood pressure in conditions of hypertension. Given that hypoxia is a stimulant for releasing adrenomedullin, we hypothesized that the presence of this peptide in the RVLM associated with chronic intermittent hypoxia (CIH) would cause sympathetic overdrive. Juvenile male rats (50-55 g) submitted to CIH (6% oxygen every 9 min, 8 h day-1 for 10 days) were studied in an arterially perfused in situ preparation where sympathetic activity was recorded. In control rats (n = 6), exogenously applied adrenomedullin in the RVLM raised baseline sympathetic activity when combined with episodic activation of peripheral chemoreceptors (KCN 0.05%, 5 times every 5 min). This sympathoexcitatory response was markedly amplified in rats previously exposed to CIH (n = 6). The antagonism of adrenomedullin receptors in the RVLM caused a significant reduction in sympathetic activity in the CIH group (n = 7), but not in controls (n = 8). The transient reflex-evoked sympathoexcitatory response to peripheral chemoreceptor stimulation was not affected by either adrenomedullin or adrenomedullin receptor antagonism in the RVLM of control and CIH rats. Our findings indicate that CIH sensitizes the sympathoexcitatory networks within the RVLM to adrenomedullin, supporting its role as an excitatory neuromodulator when intermittent hypoxia is present. These data reveal novel state-dependent mechanistic insights into the generation of sympathetic overdrive and provide potential guidance on possible unique approaches for controlling sympathetic discharge in diseases such as sleep apnoea and neurogenic hypertension.
Collapse
Affiliation(s)
- Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Debora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Karine C Flor
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - João H Costa-Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.,Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
5
|
Satriano A, Pluchinotta F, Gazzolo F, Serpero L, Gazzolo D. The potentials and limitations of neuro-biomarkers as predictors of outcome in neonates with birth asphyxia. Early Hum Dev 2017; 105:63-67. [PMID: 27993431 DOI: 10.1016/j.earlhumdev.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Perinatal asphyxia and its complication, hypoxic-ischemic encephalopathy, are still among the major causes of perinatal mortality and morbidity. Despite accurate standard postnatal monitoring procedures, the post-insult period is crucial because at a time when radiologic pictures are still silent, brain damage may already be at a subclinical stage. Against this background, the measurement of quantitative parameters, such as constituents of nervous tissue, that are able to detect subclinical lesions at a stage when routine brain monitoring procedures are still silent, could be particularly useful. Therefore, in the present review we report the potentials and limitations of biomarkers in predicting outcome in neonates complicated by perinatal asphyxia.
Collapse
Affiliation(s)
- Angela Satriano
- Dept. of Cardiology and Laboratory Research, S. Donato Milanese University Hospital, Milan, Italy.
| | - Francesca Pluchinotta
- Dept. of Cardiology and Laboratory Research, S. Donato Milanese University Hospital, Milan, Italy.
| | - Francesca Gazzolo
- Dept. of Maternal, Fetal and Neonatal Medicine, "C. Arrigo" Children's Hospital Alessandria, Italy.
| | - Laura Serpero
- Dept. of Maternal, Fetal and Neonatal Medicine, "C. Arrigo" Children's Hospital Alessandria, Italy.
| | - Diego Gazzolo
- Dept. of Maternal, Fetal and Neonatal Medicine, "C. Arrigo" Children's Hospital Alessandria, Italy.
| |
Collapse
|
6
|
Ochoa-Callejero L, Pozo-Rodrigálvarez A, Martínez-Murillo R, Martínez A. Lack of adrenomedullin in mouse endothelial cells results in defective angiogenesis, enhanced vascular permeability, less metastasis, and more brain damage. Sci Rep 2016; 6:33495. [PMID: 27640364 PMCID: PMC5027589 DOI: 10.1038/srep33495] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/26/2016] [Indexed: 12/28/2022] Open
Abstract
Adrenomedullin (AM) is a vasodilating peptide involved in the regulation of circulatory homeostasis and in the pathophysiology of certain cardiovascular diseases. AM plays critical roles in blood vessels, including regulation of vascular stability and permeability. To elucidate the autocrine/paracrine function of AM in endothelial cells (EC) in vivo, a conditional knockout of AM in EC (AM(EC-KO)) was used. The amount of vascularization of the matrigel implants was lower in AM(EC-KO) mice indicating a defective angiogenesis. Moreover, ablation of AM in EC revealed increased vascular permeability in comparison with wild type (WT) littermates. In addition, AM(EC-KO) lungs exhibited significantly less tumor growth than littermate WT mice using a syngeneic model of metastasis. Furthermore, following middle cerebral artery permanent occlusion, there was a significant infarct size decrease in animals lacking endothelial AM when compared to their WT counterparts. AM is an important regulator of EC function, angiogenesis, tumorigenesis, and brain response to ischemia. Studies of AM should bring novel approaches to the treatment of vascular diseases.
Collapse
Affiliation(s)
- Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006-Logroño. Spain
| | - Andrea Pozo-Rodrigálvarez
- Neurovascular Research Group, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Av. Doctor Arce 37, 28002-Madrid. Spain
| | - Ricardo Martínez-Murillo
- Neurovascular Research Group, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Av. Doctor Arce 37, 28002-Madrid. Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006-Logroño. Spain
| |
Collapse
|
7
|
Serrano-Ponz M, Rodrigo-Gasqué C, Siles E, Martínez-Lara E, Ochoa-Callejero L, Martínez A. Temporal profiles of blood pressure, circulating nitric oxide, and adrenomedullin as predictors of clinical outcome in acute ischemic stroke patients. Mol Med Rep 2016; 13:3724-34. [PMID: 27035412 PMCID: PMC4838158 DOI: 10.3892/mmr.2016.5001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
Stroke remains an important health and social challenge. The present study investigated whether blood pressure (BP) parameters and circulating levels of nitric oxide metabolites (NOx) and adrenomedullin (AM) may predict clinical outcomes of stroke. Patients (n=76) diagnosed with acute ischemic stroke were admitted to the stroke unit and clinical history data and monitored parameters were recorded. Blood plasma was collected at days 1, 2, and 7 to measure NOx and AM levels. Infarct volume, neurological severity [on the National Institutes of Health Stroke Scale (NIHSS)], and functional prognosis (on the Rankin scale) were measured as clinical outcomes. Patients with higher BP had more severe symptoms (NIHSS >3; P<0.01) and BP variability predicted neurological severity and growth of infarct volume. NOx values were significantly lower in stroke patients than in healthy controls (P<0.01). An increase in NOx levels from day 1 to day 2 was beneficial for the patients as measured by NIHSS at 7 days and 3 months, and by Rankin at 3 months [odds ratio (OR), 0.91] whereas a steep increase from day 2 to day 7 was detrimental and associated with an increase in infarct volume (OR, 35.3). AM levels were significantly higher in patients at day 1 and 2 than in healthy individuals (P<0.01) and these levels returned to normal at day 7. Patients with high AM levels at day 2 had significantly higher NIHSS scores measured at day 1 (P<0.05) and 7 (P<0.01). A receiving operating characteristic curve analysis identified that AM levels at day 2 of >522.13 pg/ml predicted increased neurological severity at day 7 (area under the curve=0.721). Multivariate logistic regression indicated that AM levels at day 2 predicted increased neurological severity at 7 days and at 3 months. BP parameters and changing levels for NOx and AM predicted long-term clinical outcomes as measured by infarct volume, neurological severity scale, and functional prognosis.
Collapse
Affiliation(s)
- Marta Serrano-Ponz
- Stroke Unit, Neurology Service, Hospital San Pedro, 26006 Logroño, Spain
| | | | - Eva Siles
- Experimental Biology Department, University of Jaén, 23071 Jaén, Spain
| | | | - Laura Ochoa-Callejero
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
8
|
Igarashi K, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Yamauchi A, Toriyama Y, Tanaka M, Liu T, Xian X, Imai A, Zhai L, Owa S, Koyama T, Uetake R, Ihara M, Shindo T. Pathophysiological roles of adrenomedullin-RAMP2 system in acute and chronic cerebral ischemia. Peptides 2014; 62:21-31. [PMID: 25252154 DOI: 10.1016/j.peptides.2014.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 11/20/2022]
Abstract
The accessory protein RAMP2 is a component of the CLR/RAMP2 dimeric adrenomedullin (AM) receptor and is the primary determinant of the vascular functionality of AM. RAMP2 is highly expressed in the brain; however, its function there remains unclear. We therefore used heterozygous RAMP2 knockout (RAMP2+/-) mice, in which RAMP2 expression was reduced by half, to examine the actions of the endogenous AM-RAMP2 system in cerebral ischemia. To induce acute or chronic ischemia, mice were subjected to middle cerebral artery occlusion (MCAO) or bilateral common carotid artery stenosis (BCAS), respectively. In RAMP2+/- mice subjected to MCAO, recovery of cerebral blood flow (CBF) was slower than in WT mice. AM gene expression was upregulated after infarction in both genotypes, but the increase was greater in RAMP2+/- mice. Pathological analysis revealed severe nerve cell death and demyelination, and a higher level of oxidative stress in RAMP2+/- mice. In RAMP2+/- mice subjected to BCAS, recovery of cerebral perfusion was slower and less complete than in WT mice. In an 8-arm radial maze test, RAMP2+/- mice required more time to solve the maze and showed poorer reference memory. They also showed greater reductions in nerve cells and less compensatory capillary growth than WT mice. These results indicate the AM-RAMP2 system works to protect nerve cells from both acute and chronic cerebral ischemia by maintaining CBF, suppressing oxidative stress, and in the case of chronic ischemia, enhancing capillary growth.
Collapse
Affiliation(s)
- Kyoko Igarashi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Akihiro Yamauchi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Yuichi Toriyama
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Tian Liu
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Xian Xian
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Akira Imai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Liuyu Zhai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Shinji Owa
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Teruhide Koyama
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Ryuichi Uetake
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Masafumi Ihara
- Department of Regenerative Medicine, Research Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| |
Collapse
|
9
|
Díaz-Castro J, Florido J, Kajarabille N, Garrido-Sánchez M, Padilla C, de Paco C, Navarrete L, Ochoa JJ. The timing of cord clamping and oxidative stress in term newborns. Pediatrics 2014; 134:257-64. [PMID: 25022744 DOI: 10.1542/peds.2013-3798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Clamping and cutting of the umbilical cord is the most prevalent of all operations, but the optimal timing of cord clamping is controversial, with different timings offering advantages and disadvantages. This study, for the first time, compares the influence of early and late cord clamping in correlation with oxidative stress and inflammation signaling, Because cord clamping timing may have a significant influence on placenta-to-infant blood transfer, thereby modifying oxygenation of maternal and fetal tissues, and on the transfer of inflammatory mediators throughout the placenta. METHODS Sixty-four pregnant subjects were selected at the Gynecology and Obstetrics Services Department of the Clinico San Cecilio Hospital, Granada, Spain, based on disease-free women who experienced a normal course of pregnancy and a spontaneous, vaginal, single delivery. Half of the subjects had deliveries with early-clamped newborn infants (at 10 s), and the other half had late-clamped deliveries (at 2 min). RESULTS Erythrocyte catalase activity was significantly greater in the late-clamped group than in the early-clamped group (P < .01 for the umbilical vein and P < .001 for the artery). The values for superoxide dismutase, total antioxidant status, and soluble tumor necrosis factor receptor II were all significantly higher in the late-clamped group compared with the early-clamped group (P < .01, P < .001, and P < .001, respectively). CONCLUSIONS The results suggest a beneficial effect of late cord clamping, produced by an increase in antioxidant capacity and moderation of the inflammatory-mediated effects induced during delivery of term neonates.
Collapse
Affiliation(s)
- Javier Díaz-Castro
- Department of Physiology, andInstitute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Granada, Spain
| | - Jesus Florido
- Department of Obstetrics and Gynaecology, School of Medicine, University of Granada, Granada, Spain; and
| | - Naroa Kajarabille
- Department of Physiology, andInstitute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Granada, Spain
| | - Maria Garrido-Sánchez
- Department of Obstetrics and Gynaecology, School of Medicine, University of Granada, Granada, Spain; andService of Obstetrics and Gynaecology, University Hospital San Cecilio, Granada, Spain
| | - Carmen Padilla
- Department of Obstetrics and Gynaecology, School of Medicine, University of Granada, Granada, Spain; andService of Obstetrics and Gynaecology, University Hospital San Cecilio, Granada, Spain
| | - Catalina de Paco
- Department of Obstetrics and Gynaecology, School of Medicine, University of Granada, Granada, Spain; andService of Obstetrics and Gynaecology, University Hospital San Cecilio, Granada, Spain
| | - Luis Navarrete
- Department of Obstetrics and Gynaecology, School of Medicine, University of Granada, Granada, Spain; and
| | - Julio J Ochoa
- Department of Physiology, andInstitute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Granada, Spain;
| |
Collapse
|
10
|
Chen TJ, Fu QY, Wu WQ. Plasma levels of adrenomedullin in patients with traumatic brain injury: potential contribution to prognosis. Peptides 2014; 56:146-50. [PMID: 24747282 DOI: 10.1016/j.peptides.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 01/05/2023]
Abstract
High plasma levels of adrenomedullin have been associated with stroke severity and clinical outcomes. This study aimed to analyze plasma levels of adrenomedullin in traumatic brain injury and their association with prognosis. One hundred and forty-eight acute severe traumatic brain injury and 148 sex- and age-matched healthy controls were recruited in this study. Plasma adrenomedullin concentration was measured by enzyme-linked immunosorbent assay. Unfavorable outcome was defined as Glasgow Outcome Scale score of 1-3. Compared to controls, the patients had significantly higher plasma concentrations of adrenomedullin, which were also highly associated negatively with Glasgow Coma Scale score. Plasma adrenomedullin level was proved to be an independent predictor for 6-month mortality and unfavorable outcome of patients in a multivariate analysis. A receiver operating characteristic curve was configured to show that a baseline plasma adrenomedullin level predicted 6-month mortality and unfavorable outcome of patients with high area under curve. The predictive performance of the plasma adrenomedullin concentration was also similar to that of Glasgow Coma Scale score for the prediction of 6-month mortality and unfavorable outcome of patients. In a combined logistic-regression model, adrenomedullin improved the area under curve of Glasgow Coma Scale score for the prediction of 6-month mortality and unfavorable outcome of patients, but the differences did not appear to be statistically significant. Thus, high plasma levels of adrenomedullin are associated with head trauma severity, and may independently predict long-term clinical outcomes of traumatic brain injury.
Collapse
Affiliation(s)
- Tie-Jiang Chen
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China.
| | - Qing-Yang Fu
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Wu-Quan Wu
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
11
|
Wang CL, Lin HY, Xu JW, Jiang FF, Yang M, Wang JH, Huang XQ. Blood levels of adrenomedullin on admission predict outcomes after acute intracerebral hemorrhage. Peptides 2014; 54:27-32. [PMID: 24457114 DOI: 10.1016/j.peptides.2014.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 11/29/2022]
Abstract
Increased plasma adrenomedullin level has been associated with critical illness. This study aimed to investigate the correlations of plasma adrenomedullin concentration with 3-month clinical outcomes and early neurological deterioration of patients with acute intracerebral hemorrhage. One hundred fourteen patients and 112 healthy controls were recruited. Relationships of plasma adrenomedullin concentrations with early neurological deterioration, 3-month mortality and unfavorable outcome (modified Rankin Scale score >2) were evaluated. Plasma adrenomedullin concentrations were increased in patients than in healthy individuals and were highly associated with National Institutes of Health Stroke Scale scores. A multivariate analysis selected plasma adrenomedullin concentration as an independent predictor for 3-month clinical outcomes and early neurological deterioration. A receiver operating characteristic curve analysis showed plasma adrenomedullin concentration predicted 3-month clinical outcomes and early neurological deterioration with high area under curves. The predictive value of adrenomedullin was similar to that of National Institutes of Health Stroke Scale score. In a combined logistic-regression model, adrenomedullin did not improve the predictive value of National Institutes of Health Stroke Scale score. Thus, elevated plasma adrenomedullin concentration is highly associated with 3-month clinical outcomes and early neurological deterioration of patients with acute intracerebral hemorrhage.
Collapse
Affiliation(s)
- Chuan-Liu Wang
- Department of Neurology, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324000, China
| | - Hai-Yan Lin
- Department of Neurology, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324000, China.
| | - Jian-Wei Xu
- Department of Urology, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324000, China
| | - Fei-Fei Jiang
- Department of Neurology, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324000, China
| | - Ming Yang
- Department of Neurology, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324000, China
| | - Jin-Hua Wang
- Department of Neurology, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324000, China
| | - Xiu-Qing Huang
- Department of Rehabilitation, Quzhou People's Hospital, 2 Zhongloudi Road, Kecheng District, Quzhou 324000, China
| |
Collapse
|
12
|
Seifert-Held T, Pekar T, Gattringer T, Simmet NE, Scharnagl H, Bocksrucker C, Lampl C, Storch MK, Stojakovic T, Fazekas F. Plasma midregional pro-adrenomedullin improves prediction of functional outcome in ischemic stroke. PLoS One 2013; 8:e68768. [PMID: 23894342 PMCID: PMC3718829 DOI: 10.1371/journal.pone.0068768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/02/2013] [Indexed: 11/29/2022] Open
Abstract
Background To evaluate if plasma levels of midregional pro-adrenomedullin (MR-proADM) improve prediction of functional outcome in ischemic stroke. Methods In 168 consecutive ischemic stroke patients, plasma levels of MR-proADM were measured within 24 hours from symptom onset. Functional outcome was assessed by the modified Rankin Scale (mRS) at 90 days following stroke. Logistic regression, receiver operating characteristics (ROC) curve analysis, net reclassification improvement (NRI), and Kaplan-Meier survival analysis were applied. Results Plasma MR-proADM levels were found significantly higher in patients with unfavourable (mRS 3–6) compared to favourable (mRS 0–2) outcomes. MR-proADM levels were entered into a predictive model including the patients' age, National Institutes of Health Stroke Scale (NIHSS), and the use of recanalization therapy. The area under the ROC curve did not increase significantly. However, category-free NRI of 0.577 (p<0.001) indicated a significant improvement in reclassification of patients. Furthermore, MR-proADM levels significantly improved reclassification of patients in the prediction of outcome by the Stroke Prognostication using Age and NIHSS-100 (SPAN-100; NRI = 0.175; p = 0.04). Kaplan-Meier survival analysis showed a rising risk of death with increasing MR-proADM quintiles. Conclusions Plasma MR-proADM levels improve prediction of functional outcome in ischemic stroke when added to the patients' age, NIHSS on admission, and the use of recanalization therapy. Levels of MR-proADM in peripheral blood improve reclassification of patients when the SPAN-100 is used to predict the patients' functional outcome.
Collapse
|
13
|
Risso FM, Sannia A, Gavilanes DAW, Vles HJ, Colivicchi M, Ricotti A, Li Volti G, Gazzolo D. Biomarkers of brain damage in preterm infants. J Matern Fetal Neonatal Med 2012; 25 Suppl 4:101-104. [PMID: 22958034 DOI: 10.3109/14767058.2012.715024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE There is growing evidence on the usefulness of biomarkers in the early detection of preterm infants at risk for brain damage. However, among different tools Activin A, S100B protein and adrenomedullin assessment offer the possibility to investigate brain/multiorgan function and development. This could be especially useful in perinatal medicine that requires even more non-invasive techniques in order to fulfill the minimal handling in diagnostic and therapeutic strategy performance. MATERIALS AND METHODS The concept of Unconventional Biological Fluid (UBF: urine and saliva) is becoming even stronger and regards the assessment in non-invasive biological fluids of biochemical markers involved in the cascade of events leading to brain damage. RESULTS Activin A, S100B protein and adrenomedullin in UBF were increased in preterm newborns developing brain damage and/or ominous outcome. CONCLUSIONS The present manuscript offers an update on the usefulness of Activin A, S100B protein an adrenomedullin in UBF as brain damage markers. The findings open a new cue on the use of these markers in daily neonatal intensive care unit (NICU) activities.
Collapse
MESH Headings
- Activins/analysis
- Activins/genetics
- Activins/metabolism
- Adrenomedullin/analysis
- Adrenomedullin/genetics
- Adrenomedullin/metabolism
- Biomarkers/analysis
- Biomarkers/cerebrospinal fluid
- Biomarkers/metabolism
- Biomarkers/urine
- Brain Injuries/cerebrospinal fluid
- Brain Injuries/diagnosis
- Brain Injuries/metabolism
- Brain Injuries/urine
- Humans
- Infant, Newborn
- Infant, Premature/cerebrospinal fluid
- Infant, Premature/metabolism
- Infant, Premature/urine
- Infant, Premature, Diseases/cerebrospinal fluid
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/metabolism
- Infant, Premature, Diseases/urine
- Nerve Growth Factors/analysis
- Nerve Growth Factors/genetics
- Nerve Growth Factors/metabolism
- S100 Calcium Binding Protein beta Subunit
- S100 Proteins/analysis
- S100 Proteins/genetics
- S100 Proteins/metabolism
- Saliva/chemistry
- Saliva/metabolism
Collapse
Affiliation(s)
- Francesco M Risso
- Department of Neonatology, G Gaslini Children's University Hospital, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Muñetón-Gómez VC, Doncel-Pérez E, Fernandez AP, Serrano J, Pozo-Rodrigálvarez A, Vellosillo-Huerta L, Taylor JS, Cardona-Gómez GP, Nieto-Sampedro M, Martínez-Murillo R. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations. Front Cell Neurosci 2012; 6:30. [PMID: 22876219 PMCID: PMC3410634 DOI: 10.3389/fncel.2012.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022] Open
Abstract
The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism.
Collapse
Affiliation(s)
- Vilma C Muñetón-Gómez
- Neurovascular Research Group, Department of Molecular, Cellular, and Developmental Neurobiology, Spanish Council for Scientific Research (CSIC), Instituto Cajal Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ochoa JJ, Díaz-Castro J, Kajarabille N, García C, Guisado IM, De Teresa C, Guisado R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J Pineal Res 2011; 51:373-80. [PMID: 21615492 DOI: 10.1111/j.1600-079x.2011.00899.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strenuous exercise induces inflammatory reactions together with high production of free radicals and subsequent muscle damage. This study was designed to investigate for the first time and simultaneously whether over-expression of inflammatory mediators, oxidative stress, and alterations in biochemical parameters induced by acute exercise could be prevented by melatonin. This indoleamine is a potent, endogenously produced free radical scavenger and a broad-spectrum antioxidant; consequently, it might have positive effects on the recovery following an exercise session. The participants were classified into two groups: melatonin-treated men (MG) and placebo-treated individuals (controls group, CG). The physical test consisted in a constant run that combined several degrees of high effort (mountain run and ultra-endurance). The total distance of the run was 50 km with almost 2800 m of ramp in permanent climbing and very changeable climatic conditions. Exercise was associated with a significant increase in TNF-α, IL-6, IL-1ra (in blood), and also an increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) and isoprostane levels (in urine), and indicated the degree of oxidative stress and inflammation induced. Oral supplementation of melatonin during high-intensity exercise proved efficient in reducing the degree of oxidative stress (lower levels of lipid peroxidation, with a significant increase in antioxidative enzyme activities); this would lead to the maintenance of the cellular integrity and reduce secondary tissue damage. Data obtained also indicate that melatonin has potent protective effects, by preventing over-expression of pro-inflammatory mediators and inhibiting the effects of several pro-inflammatory cytokines. In summary, melatonin supplementation before strenuous exercise reduced muscle damage through modulation of oxidative stress and inflammation signaling associated with this physical challenge.
Collapse
Affiliation(s)
- Julio J Ochoa
- Department of Physiology, University of Granada, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Coenzyme Q10 supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr 2011; 51:791-9. [DOI: 10.1007/s00394-011-0257-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/30/2011] [Indexed: 10/17/2022]
|
17
|
Pre-treatment of adrenomedullin suppresses cerebral edema caused by transient focal cerebral ischemia in rats detected by magnetic resonance imaging. Brain Res Bull 2011; 84:69-74. [DOI: 10.1016/j.brainresbull.2010.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 11/19/2022]
|
18
|
Hurtado O, Serrano J, Sobrado M, Fernández AP, Lizasoain I, Martínez-Murillo R, Moro MA, Martínez A. Lack of adrenomedullin, but not complement factor H, results in larger infarct size and more extensive brain damage in a focal ischemia model. Neuroscience 2010; 171:885-92. [PMID: 20854881 DOI: 10.1016/j.neuroscience.2010.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
Abstract
Adrenomedullin (AM) and its binding protein, complement factor H (FH), are expressed throughout the brain. In this study we used a brain-specific conditional knockout for AM and a complete knockout for FH to investigate the effect of these molecules on the pathophysiology of stroke. Following 48 h of middle cerebral artery permanent occlusion, there was a statistically significant infarct size increase in animals lacking AM when compared to their wild type littermates. In contrast, lack of FH did not affect infarct volume. To investigate some of the mechanisms by which lack of AM may augment brain damage, markers of nitrosative stress, apoptosis, and autophagy were studied at the mRNA and protein levels. There was a significant increase of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-9 (MMP9), fractin, and Beclin-1 in the peri-infarct area of AM-deficient mice when compared to their wild type counterparts and to contralateral and sham-operated controls. These data suggest that AM exerts a neuroprotective action in the brain and that this protection may be mediated by regulation of iNOS, matrix metalloproteases, and inflammatory mediators. In the future, substances that increase AM actions in the central nervous system may be used as potential neuroprotective agents in stroke.
Collapse
Affiliation(s)
- O Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Veroni C, Gabriele L, Canini I, Castiello L, Coccia E, Remoli ME, Columba-Cabezas S, Aricò E, Aloisi F, Agresti C. Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Mol Cell Neurosci 2010; 45:234-44. [PMID: 20600925 DOI: 10.1016/j.mcn.2010.06.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/20/2010] [Accepted: 06/22/2010] [Indexed: 02/07/2023] Open
Abstract
Fine regulation of the innate immune response following brain injury or infection is important to avoid excessive activation of microglia and its detrimental consequences on neural cell viability and function. To get insights on the molecular networks regulating microglia activation, we analyzed expression, regulation and functional relevance of tumor necrosis factor receptors (TNFR) 2 in cultured mouse microglia. We found that microglia upregulate TNFR2 mRNA and protein and shed large amounts of soluble TNFR2, but not TNFR1, in response to pro-inflammatory stimuli and through activation of TNFR2 itself. By microarray analysis, we demonstrate that TNFR2 stimulation in microglia regulates expression of genes involved in immune processes, including molecules with anti-inflammatory and neuroprotective function like granulocyte colony-stimulating factor, adrenomedullin and IL-10. In addition, we identify IFN-γ as a regulator of the balance between pro- and anti-inflammatory/neuroprotective factors induced by TNFR2 stimulation. These data indicate that, through TNFR2, microglia may contribute to the counter-regulatory response activated in neuropathological conditions.
Collapse
Affiliation(s)
- Caterina Veroni
- Departments of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Harten SK, Ashcroft M, Maxwell PH. Prolyl hydroxylase domain inhibitors: a route to HIF activation and neuroprotection. Antioxid Redox Signal 2010; 12:459-80. [PMID: 19737089 DOI: 10.1089/ars.2009.2870] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract Ischemic stroke is a major cause of death worldwide, and current therapeutic options are very limited. Preconditioning with an ischemic or hypoxic insult is beneficial in experimental models of ischemic stroke. Ischemia/hypoxia results in activation of numerous transcription factors, including hypoxia inducible factor (HIF), which is a master regulator of oxygen homeostasis. HIF activation induces a diverse range of target genes, encompassing a wide variety of cellular processes; including angiogenesis, energy metabolism, cell survival, radical production/scavenging, iron metabolism, stem cell homing, and differentiation. Inhibition of HIF prolyl hydroxylase domain (PHD) enzymes results in activation of HIF and is likely to mimic, at least in part, the effects of hypoxia preconditioning. A caveat is that not all consequences of HIF activation will be beneficial and some could even be deleterious. Nevertheless, PHD inhibitors may be therapeutically useful in the treatment of stroke. Prototype PHD inhibitors have shown promising results in preclinical models.
Collapse
Affiliation(s)
- Sarah K Harten
- Division of Medicine, Rayne Institute, University College London, University Street, London, United Kingdom.
| | | | | |
Collapse
|
21
|
Griffiths MR, Neal JW, Fontaine M, Das T, Gasque P. Complement factor H, a marker of self protects against experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2009; 182:4368-77. [PMID: 19299737 DOI: 10.4049/jimmunol.0800205] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CNS innate immune response is a "double-edged sword" representing a fine balance between protective antipathogen responses and detrimental neurocytotoxic effects. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. In analogy to the newly described neuroimmune regulatory proteins also known as "don't eat me" signals (CD200, CD47, CD22, fractalkine, semaphorins), we herein identify the key role of complement regulator factor H (fH) in controlling neuroinflammation initiated in an acute mouse model of Ab-dependent experimental autoimmune encephalomyelitis. Mouse fH was found to be abundantly expressed by primary cultured neurons and neuronal cell lines (N1E115 and Neuro2a) at a level comparable to BV2 microglia and CLTT astrocytes. Mouse neurons expressed other complement regulators crry and low levels of CD55. In the brain, the expression of fH was localized to neuronal bodies and axons, endothelial cells, microglia but not oligodendrocytes and myelin sheaths and was dramatically reduced in inflammatory experimental autoimmune encephalomyelitis settings. When exogenous human fH was administered to disease Ab-dependent experimental autoimmune encephalomyelitis animals, there was a significant decrease in clinical score, inflammation, and demyelination, as compared with PBS-injected animals. We found that the accumulation of human fH in the brain parenchyma protected neurons from complement opsonization, axonal injury, and leukocyte infiltration. Our data argue for a key regulatory activity of fH in neuroprotection and provide novel therapeutic avenues for CNS chronic inflammatory diseases.
Collapse
Affiliation(s)
- Mark R Griffiths
- Department of Medical Biochemistry, Cardiff University, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Roldós V, Martín-Santamaría S, Julián M, Martínez A, Choulier L, Altschuh D, de Pascual-Teresa B, Ramos A. Small-molecule negative modulators of adrenomedullin: design, synthesis, and 3D-QSAR study. ChemMedChem 2008; 3:1345-55. [PMID: 18759242 DOI: 10.1002/cmdc.200800066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adrenomedullin (AM) is a peptidic hormone that was isolated in 1993, the function of which is related to several diseases such as diabetes, hypertension, and cancer. Compound 1 is one of the first nonpeptidic small-molecule negative modulators of AM, identified in a high-throughput screen carried out at the National Cancer Institute. Herein we report the synthesis of a series of analogues of 1. The ability of the synthesized compounds to disrupt the binding between AM and its monoclonal antibody has been measured, together with surface plasmon resonance (SPR)-based binding assays as implemented with Biacore technology. These data were used to derive a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, with a q(2) (LOO) value of 0.8240. This study has allowed us to identify relevant features for effective binding to AM: the presence of a hydrogen-bond donor group and an aromatic ring. Evaluation of the ability of selected compounds to modify cAMP production in Rat2 cells showed that the presence of a free carboxylic acid is essential for negative AM modulation.
Collapse
Affiliation(s)
- Virginia Roldós
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo CEU, Boadilla del Monte, 28668 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lack of adrenomedullin in the mouse brain results in behavioral changes, anxiety, and lower survival under stress conditions. Proc Natl Acad Sci U S A 2008; 105:12581-6. [PMID: 18723674 DOI: 10.1073/pnas.0803174105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adrenomedullin (AM) gene, adm, is widely expressed in the central nervous system (CNS) and several functions have been suggested for brain AM. Until now, a formal confirmation of these actions using genetic models has been elusive since the systemic adm knockout results in embryo lethality. We have built a conditional knockout mouse model using the Cre/loxP approach. When crossed with transgenic mice expressing the Cre recombinase under the tubulin Talpha-1 promoter, we obtained animals with no AM expression in the CNS but normal levels in other organs. These animals lead normal lives and do not present any gross morphological defect. Specific areas of the brain of animals lacking CNS AM contain hyperpolymerized tubulin, a consequence of AM downregulation. Behavioral analysis shows that mice with no AM in their brain have impaired motor coordination and are hyperactive and overanxious when compared to their wild-type littermates. Treatment with methylphenidate, haloperidol, and diazepam did not show differences between genotypes. Circulating levels of adrenocorticotropic hormone and corticosterone were similar in knockout and wild-type mice. Animals with no brain AM were less resistant to hypobaric hypoxia than wild-type mice, demonstrating the neuroprotective function of AM in the CNS. In conclusion, AM exerts a beneficial action in the brain by maintaining homeostasis both under normal and stress conditions.
Collapse
|
24
|
Tixier E, Leconte C, Touzani O, Roussel S, Petit E, Bernaudin M. Adrenomedullin protects neurons against oxygen glucose deprivation stress in an autocrine and paracrine manner. J Neurochem 2008; 106:1388-403. [DOI: 10.1111/j.1471-4159.2008.05494.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Park SC, Yoon JH, Lee JH, Yu SJ, Myung SJ, Kim W, Gwak GY, Lee SH, Lee SM, Jang JJ, Suh KS, Lee HS. Hypoxia-inducible adrenomedullin accelerates hepatocellular carcinoma cell growth. Cancer Lett 2008; 271:314-22. [PMID: 18657357 DOI: 10.1016/j.canlet.2008.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 11/18/2022]
Abstract
Adrenomedullin is implicated in tumor progression and induced by hypoxia. We evaluated if adrenomedullin signaling is active in hepatocellular carcinoma (HCC), especially under hypoxic conditions, and to analyze its prognostic implication in HCC patients. HCC cells expressed adrenomedullin and its receptor, and hypoxia induced adrenomedullin expression. Adrenomedullin stimulated HCC cell growth via Akt activation, which was prevented by adrenomedullin peptide inhibitor. Clinico-pathological analysis revealed adrenomedullin extent was related to vascular invasion and N-cadherin intensity, which were reported to indicate a poor prognosis. In conclusion, adrenomedullin signaling is hypoxia-inducible and functionally active in HCCs, and its expression may be a prognostic factor.
Collapse
Affiliation(s)
- Su Cheol Park
- Department of Internal Medicine, Korea Institute of Radiological and Medical Sciences, Korea Cancer Center Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Serrano J, Fernández AP, Sánchez J, Rodrigo J, Martínez A. Adrenomedullin expression is up-regulated by acute hypobaric hypoxia in the cerebral cortex of the adult rat. Brain Pathol 2008; 18:434-42. [PMID: 18371176 DOI: 10.1111/j.1750-3639.2008.00142.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Hypobaric hypoxia can produce neuropsychological disorders such as insomnia, dizziness, memory deficiencies, headache and nausea. Here we report the changes in adrenomedullin (AM) expression observed in rats exposed to hypobaric hypoxia and different times of reoxygenation. AM immunoreactivity was transiently elevated in the cerebral cortex after 7 h of exposure to a simulated altitude of 8325 m (27 000 ft). This higher expression was seen in all pyramidal cells and in a subset of small interneurons. AM-positive nonpyramidal neurons contained also calbindin and calretinin, but no parvalbumin immunoreactivity, thus identifying them as bipolar and double bouquet cells. Small blood vessels and related astroglia also became immunoreactive following the hypobaric insult. AM up-regulation decreased progressively with the time of reoxygenation, reaching almost control levels after 5 days. Real-time PCR quantification of AM mRNA and Western blotting confirmed the up-regulation of AM expression following hypobaria. In addition, hypobaria modulates alternative splicing of the AM gene resulting in a higher production of AM. Our data show that AM expression regulation constitutes a cortical response to hypobaria, suggesting that AM modulation may provide new therapeutic avenues to prevent and/or treat the symptoms produced by hypobaria.
Collapse
Affiliation(s)
- Julia Serrano
- Department of Cellular, Molecular, and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
García MA, Martín-Santamaría S, de Pascual-Teresa B, Ramos A, Julián M, Martínez A. Adrenomedullin: a new and promising target for drug discovery. Expert Opin Ther Targets 2006; 10:303-17. [PMID: 16548778 DOI: 10.1517/14728222.10.2.303] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a critical role in several diseases such as hypertension, cancer, diabetes, cardiovascular and renal disorders, among others. Interestingly, AM behaves as a protective agent against some pathologies, yet is a stimulating factor for other disorders. Thus, AM can be considered as a new and promising target for the design of non-peptidic modulators that could be useful for the treatment of those pathologies, by regulating AM levels or the activity of AM. A full decade on from its discovery, much more is known about AM molecular biology and pharmacology, but this knowledge still needs to be applied to the development of clinically useful drugs.
Collapse
Affiliation(s)
- Mario A García
- Universidad San Pablo CEU, Departamento de Química, Facultad de Farmacia, Urbanización Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, Niwa M. Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 2006; 26:109-18. [PMID: 16763778 PMCID: PMC11520619 DOI: 10.1007/s10571-006-9028-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 11/08/2005] [Indexed: 12/14/2022]
Abstract
AIMS Brain vascular endothelial cells secret Adrenomedullin (AM) has multifunctional biological properties. AM affects cerebral blood flow and blood-brain barrier (BBB) function. We studied the role of AM on the permeability and tight junction proteins of brain microvascular endothelial cells (BMEC). METHODS BMEC were isolated from rats and a BBB in vitro model was generated. The barrier functions were studied by measuring the transendothelial electrical resistance (TEER) and the permeability of sodium fluorescein and Evans' blue albumin. The expressions of tight junction proteins were analyzed using immunocytochemistry and immunoblotting. RESULTS AM increased TEER of BMEC monolayer dose-dependently. Immunocytochemistry revealed that AM enhanced the claudin-5 expression at a cell-cell contact site in a dose-dependent manner. Immunoblotting also showed an overexpression of claudin-5 in AM exposure. CONCLUSIONS AM therefore inhibits the paracellular transport in a BBB in vitro model through claudin-5 overexpression.
Collapse
Affiliation(s)
- Masaru Honda
- Department of Neurosurgery, Nagasaki University School of Medicine, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Xia CF, Yin H, Borlongan CV, Chao J, Chao L. Postischemic infusion of adrenomedullin protects against ischemic stroke by inhibiting apoptosis and promoting angiogenesis. Exp Neurol 2006; 197:521-30. [PMID: 16343485 DOI: 10.1016/j.expneurol.2005.10.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 10/18/2005] [Accepted: 10/20/2005] [Indexed: 12/31/2022]
Abstract
Adrenomedullin (AM) is a peptide hormone widely distributed in the central nervous system. Our previous study showed that AM gene delivery immediately after middle cerebral artery occlusion (MCAO) protected against cerebral ischemia/reperfusion (I/R) injury by promoting glial cell survival and migration. In the present study, we investigated the effect of delayed AM peptide infusion on ischemic brain injury at 24 h after MCAO. AM infusion significantly reduced neurological deficit scores at days 2, 4, and 8 after cerebral I/R. AM reduced cerebral infarct size at 8 and 15 days after surgery as determined by quantitative analysis. Double staining showed that AM infusion reduced TUNEL-positive apoptotic cells in both neurons and glial cells, as well as reduced caspase-3 activity in the ischemic area of the brain. In addition, AM treatment increased capillary density in the ischemic region at 15 days after I/R injury. Parallel studies revealed that AM treatment enhanced the proliferation of cultured endothelial cells as measured by both (3)H-thymidine incorporation and in situ BrdU labeling. Both in vitro and in vivo AM effects were blocked by calcitonin gene-related peptide (8-37), an AM receptor antagonist. Moreover, AM's effects were associated with increased cerebral nitric oxide (NO) levels, as well as decreased NAD(P)H oxidase activities and superoxide anion production. These results indicate that a continuous supply of exogenous AM peptide protects against I/R injury by improving the survival of neuronal and glial cells, and promoting angiogenesis through elevated NO formation and suppression of oxidative stress.
Collapse
Affiliation(s)
- Chun-Fang Xia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
30
|
Kis B, Chen L, Ueta Y, Busija DW. Autocrine peptide mediators of cerebral endothelial cells and their role in the regulation of blood-brain barrier. Peptides 2006; 27:211-22. [PMID: 16137789 DOI: 10.1016/j.peptides.2005.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/21/2005] [Accepted: 07/21/2005] [Indexed: 01/08/2023]
Abstract
A unique feature of cerebral endothelial cells (CECs) is the formation of the blood-brain barrier (BBB), which contributes to the stability of the brain microenvironment. CECs are capable of producing several substances mediating endothelium-dependent vasorelaxation or vasoconstriction, regulating BBB permeability, and participating in the regulation of cell-cell interactions during inflammatory and immunological processes. The chemical nature of these mediators produced by CECs ranges from gaseous anorganic molecules (e.g. nitric oxide) through lipid mediators (e.g. prostaglandins) to peptides. Peptide mediators are a large and diverse family of bioactive molecules which can elicit multiple effects on cerebral endothelial functions. In this review, we summarize current knowledge of peptide mediators produced by CECs, such as adrenomedullin, angiotensin, endothelin and several others and their role in the regulation of BBB functions.
Collapse
Affiliation(s)
- Bela Kis
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
31
|
Martin B, Lopez de Maturana R, Brenneman R, Walent T, Mattson MP, Maudsley S. Class II G protein-coupled receptors and their ligands in neuronal function and protection. Neuromolecular Med 2005; 7:3-36. [PMID: 16052036 PMCID: PMC2636744 DOI: 10.1385/nmm:7:1-2:003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs-adenylate cyclase-cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bronwen Martin
- Laboratory of Neurosciences, National Institute on Ageing Intramural Research Program, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
32
|
Xu Y, Krukoff TL. Adrenomedullin stimulates nitric oxide release from SK-N-SH human neuroblastoma cells by modulating intracellular calcium mobilization. Endocrinology 2005; 146:2295-305. [PMID: 15677761 DOI: 10.1210/en.2004-1354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used SK-N-SH human neuroblastoma cells to test the hypothesis that adrenomedullin (ADM), a multifunctional neuropeptide, stimulates nitric oxide (NO) release by modulating intracellular free calcium concentration ([Ca2+]i) in neuron-like cells. We used a nitrite assay to demonstrate that ADM (10 pM to 100 nM) stimulated NO release from the cells, with a maximal response observed with 1 nM at 30 min. This response was blocked by 1 nM ADM(22-52), an ADM receptor antagonist or 2 microM vinyl-L-NIO, a neuronal NO synthase inhibitor. In addition, 5 microM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, an intracellular calcium chelator, eliminated the ADM-induced NO release. Similar results were observed when the cells were incubated in calcium-free medium or when L-type calcium channels were inhibited with 5 microM nifedipine or 10 microM nitrendipine. Depletion of calcium stores in the endoplasmic reticulum (ER) with 1 microM cyclopiazonic acid or 150 nM thapsigargin, or inhibition of ryanodine-sensitive receptors in the ER with 10 microM ryanodine attenuated the ADM-induced NO release. NO responses to ADM were mimicked by 1 mM dibutyryl cAMP, a cAMP analog, and were abrogated by 5 microM H-89, a protein kinase A inhibitor. Furthermore, Fluo-4 fluorescence-activated cell sorter analysis showed that ADM (1 nM) significantly increased [Ca2+]i at 30 min. This response was blocked by nifedipine (5 microM) or H-89 (5 microM) and was reduced by ryanodine (10 microM). These results suggest that ADM stimulates calcium influx through L-type calcium channels and ryanodine-sensitive calcium release from the ER, probably via cAMP-protein kinase A-dependent mechanisms. These elevations in [Ca2+)]i cause activation of neuronal NO synthase and NO release.
Collapse
Affiliation(s)
- Yong Xu
- Department of Cell Biology and Center for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
33
|
Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, Taki W, Miyatake K, Kangawa K. Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke 2005; 36:853-8. [PMID: 15746464 DOI: 10.1161/01.str.0000157661.69482.76] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Adrenomedullin (AM) induces angiogenesis and inhibits cell apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. Transplantation of mesenchymal stem cells (MSCs) has been shown to improve neurological deficits after stroke in rats. We investigated whether AM enhances the therapeutic potency of MSC transplantation. METHODS Male Lewis rats (n=100) were subjected to 2-hour middle cerebral artery occlusion. Immediately after reperfusion, rats were assigned randomly to receive intravenous transplantation of MSCs plus subcutaneous infusion of AM for 7 days (MSC+AM group), AM infusion alone (AM group), MSC transplantation alone (MSC group), or vehicle infusion (control group). Neurological and immunohistological assessments were performed to examine the effects of these treatments. RESULTS Some engrafted MSCs were positive for neuronal and endothelial cell markers, although the number of differentiated MSCs did not differ significantly between the MSC and MSC+AM groups. The neurological score significantly improved in the MSC, AM, and MSC+AM groups compared with the control group. Importantly, improvement in the MSC+AM group was significantly greater than that in the MSC and AM groups. There was marked induction of angiogenesis in the ischemic penumbra in the MSC+AM group, followed by the AM, MSC, and control groups. AM infusion significantly inhibited apoptosis of transplanted MSCs. As a result, the number of engrafted MSCs in the MSC+AM group was significantly higher than that in the MSC group. CONCLUSIONS AM enhanced the therapeutic potency of MSCs, including neurological improvement, possibly through inhibition of MSC apoptosis and induction of angiogenesis.
Collapse
Affiliation(s)
- Kenichiro Hanabusa
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xia CF, Yin H, Borlongan CV, Chao J, Chao L. Adrenomedullin Gene Delivery Protects Against Cerebral Ischemic Injury by Promoting Astrocyte Migration and Survival. Hum Gene Ther 2004; 15:1243-54. [PMID: 15684700 DOI: 10.1089/hum.2004.15.1243] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adrenomedullin (AM) has been shown to protect against ischemia/reperfusion-induced myocardial infarction and apoptosis. In the present study, we examined the potential neuroprotective action of delayed AM gene transfer in cerebral ischemia. Three days after a 1-hr occlusion of the middle cerebral artery (MCAO), rats were injected intravenously with adenovirus harboring human AM cDNA. The experiment was terminated 7 days after MCAO. AM gene transfer significantly reduced cerebral infarct size compared with that of rats before virus injection and compared with that of rats injected with control virus. The expression of recombinant human AM was identified in ischemic brain by immunostaining. Morphological analyses showed that AM gene transfer enhanced the survival and migration of astrocytes into the ischemic core. Cerebral ischemia markedly increased astrocyte apoptosis, and AM gene delivery significantly reduced apoptosis to near normal levels as seen in sham control rats. Similarly, in primary cultured astrocytes, AM stimulated cell migration and inhibited hypoxia/reoxygenation-induced apoptosis. The effects of AM on both migration and apoptosis were abolished by calcitonin gene-related peptide [CGRP(8-37)], an AM receptor antagonist. Enhanced cell survival after AM gene transfer was accompanied by markedly increased cerebral nitric oxide and Bcl-2 levels, as well as Akt and GSK-3beta phosphorylation, but reduced NADPH oxidase activity and superoxide production. Inactivation of GSK-3beta by phosphorylation led to reduced GSK-3beta activity and caspase- 3 activation. These results indicate that exogenous AM provides neuroprotection against cerebral ischemia injury by enhancing astrocyte survival and migration and inhibiting apoptosis through suppression of oxidative stress-mediated signaling events.
Collapse
Affiliation(s)
- Chun-Fang Xia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
35
|
Martínez A, Julián M, Bregonzio C, Notari L, Moody TW, Cuttitta F. Identification of vasoactive nonpeptidic positive and negative modulators of adrenomedullin using a neutralizing antibody-based screening strategy. Endocrinology 2004; 145:3858-65. [PMID: 15107357 DOI: 10.1210/en.2003-1251] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenomedullin (AM) is a peptide hormone implicated in blood pressure regulation and in the pathophysiology of important diseases, such as hypertension, cancer, and diabetes. However, nonpeptidic modulators of this peptide that could be used to clinically regulate its actions are not available. We present here an efficient new method to screen a large library of small molecules. This technology was applied to the identification of positive and negative modulators of AM function. A two-tier screening strategy was developed in which the first screening entails disruption of the interaction between the peptide and a neutralizing monoclonal antibody. Selected compounds were further characterized by their ability to modulate second messengers in cells containing specific AM receptors. A parallel screen against gastrin-releasing peptide selected a different subset of molecules, confirming the specificity of the screening method. Identified AM-positive regulators reduced blood pressure in vivo, whereas AM-negative regulators mediated vasoconstriction, as predicted by the vasodilatory activity of AM. Binding of the small molecules to immobilized AM was demonstrated by surface plasmon resonance assays, with K(d) values ranging from 7.76 x 10(-9) to 4.14 x 10(-6) m. Preclinical development of AM modulators may result in useful drugs for the prevention and treatment of hypertension, cancer, and diabetes.
Collapse
Affiliation(s)
- Alfredo Martínez
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Frank R Sharp
- Department of Neurology, Pediatrics and Neuroscience Program, Vontz Center for Molecular Studies, Room 2327, 3125 Eden Avenue, University of Cincinnati, Cincinnati, Ohio 45267-0536, USA.
| | | |
Collapse
|
37
|
Schneider A, Fischer A, Krüger C, Aronowski J. Identification of regulated genes during transient cortical ischemia in mice by restriction-mediated differential display (RMDD). ACTA ACUST UNITED AC 2004; 124:20-8. [PMID: 15093682 DOI: 10.1016/j.molbrainres.2004.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2004] [Indexed: 01/07/2023]
Abstract
Cerebral ischemia induces transcriptional changes in a number of pathophysiologically important genes. Here we have systematically studied gene expression changes in the cortex after 150 min of focal cortical ischemia and 2 and 6 h reperfusion in the mouse by a fragment display technique (restriction-mediated differential display, RMDD). We identified 57 transcriptionally altered genes, of which 46 were known genes, and 11 unknown sequences. Of note, 14% of the regulated genes detected at 2 h reperfusion time were co-regulated in the contralateral cortex. Four genes were verified to be upregulated by quantitative PCR. These were Metallothionein-II (mt2), Receptor (calcitonin)-activity modifying protein 2 (ramp2), Mitochondrial phosphoprotein 65 (MIPP65), and the transcription elongation factor B2/elongin B (tceb). We could identify several genes that are known to be induced by cerebral ischemia, such as the metallothioneins and c-fos. Many of the genes identified provide hints to potential new mechanisms in ischemic pathophysiology. We discuss the identity of the regulated genes in view of their possible usefulness for pharmacological intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Armin Schneider
- Department of Molecular Neurology and Technology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
38
|
Schneider A, Fischer A, Weber D, von Ahsen O, Scheek S, Krüger C, Rossner M, Klaussner B, Faucheron N, Kammandel B, Goetz B, Herrmann O, Bach A, Schwaninger M. Restriction-mediated differential display (RMDD) identifies pip92 as a pro-apoptotic gene product induced during focal cerebral ischemia. J Cereb Blood Flow Metab 2004; 24:224-36. [PMID: 14747749 DOI: 10.1097/01.wcb.0000104960.26014.7a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies of gene expression changes after cerebral ischemia can provide novel insight into ischemic pathophysiology. Here we describe application of restriction-mediated differential display to screening for differentially expressed genes after focal cerebral ischemia. This method combines the nonredundant generation of biotin-labeled fragment sets with the excellent resolution of direct blotting electrophoresis, reliable fragment recovery, and a novel clone selection strategy. Using the filament model in mouse with 90 minutes MCA occlusion followed by 2, 6, and 20 hours reperfusion, we have compared gene expression in sham-operated animals to both the ipsi- and contralateral forebrain hemisphere of ischemic mice. Our screening method has resulted in the identification of 70 genes differentially regulated after transient middle cerebral artery occlusion (MCAO), several of which represent unknown clones. We have identified many of the previously published regulated genes, lending high credibility to our method. Surprisingly, we detected a high degree of correspondent regulation of genes in the nonischemic hemisphere. A high percentage of genes coding for proteins in the respiratory chain was found to be up-regulated after ischemia, potentially representing a new mechanism involved in counteracting energy failure or radical generation in cerebral ischemia. One particularly interesting gene, whose upregulation by ischemia has not been described before, is pip92; this gene shows a rapid and long-lasting induction after cerebral ischemia. Here we demonstrate that pip92 induces cell death in primary neurons and displays several hallmarks of pro-apoptotic activity upon overexpression, supporting the notion that we have identified a novel pathophysiological player in cerebral ischemia. In summary, restriction-mediated differential display has proven its suitability for screening complex samples such as brain to reliably identify regulated genes, which can uncover novel pathophysiological mechanisms.
Collapse
Affiliation(s)
- Armin Schneider
- Department of Molecular Neurology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Takahashi K, Udono-Fujimori R, Totsune K, Murakami O, Shibahara S. Suppression of cytokine-induced expression of adrenomedullin and endothelin-1 by dexamethasone in T98G human glioblastoma cells. Peptides 2003; 24:1053-62. [PMID: 14499284 DOI: 10.1016/s0196-9781(03)00181-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is accumulating evidence showing that glial cells and gliomas secrete some neuropeptides and vasoactive peptides, such as adrenomedullin and endothelin-1. We have previously shown that expression of these two peptides is induced by inflammatory cytokines in T98G human glioblastoma cells. Glucocorticoids are frequently used for the treatment of inflammatory diseases and glioblastomas. We therefore studied effects of dexamethasone on expression of adrenomedullin and endothelin-1 in T98G human glioblastoma cells. Dexamethasone dose-dependently increased adrenomedullin mRNA levels and immunoreactive-adrenomedullin levels in the medium in T98G cells, whereas it decreased immunoreactive-endothelin levels in the medium. A combination of three cytokines, interferon-gamma (100 U/ml), tumor necrosis factor-alpha (20 ng/ml) and interleukin-1beta (10 ng/ml) induced expression of adrenomedullin and endothelin-1 in T98G cells. Dexamethasone (10(-8) mol/l) suppressed increases in expression of both adrenomedullin and endothelin-1 induced by these three cytokines. Thus, dexamethasone alone increased adrenomedullin expression whereas it suppressed the cytokine-induced expression of adrenomedullin in T98G cells. These findings raised the possibility that effects of dexamethasone on brain inflammation and glioblastomas may be partly mediated or modulated by its effects on expression of adrenomedullin and endothelin-1.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | | | | | | | | |
Collapse
|
40
|
López J, Martínez A. Cell and molecular biology of the multifunctional peptide, adrenomedullin. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:1-92. [PMID: 12455746 DOI: 10.1016/s0074-7696(02)21010-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenomedullin (AM) is a recently discovered regulatory peptide involved in many functions including vasodilatation, electrolyte balance, neurotransmission, growth, and hormone secretion regulation, among others. This 52-amino acid peptide is expressed by specific cell types in many organs throughout the body. A complex receptor system has been described for AM; it requires at least the presence of a seven-transmembrane-domain G-protein-coupled receptor, a single-transmembrane-domain receptor activity modifying protein, and a receptor component protein needed to establish the connection with the downstream signal transduction pathway, which usually involves cyclicAMP. In addition, a serum-binding protein regulates the biological actions of AM, frequently by increasing AM functional attributes. Changes in levels of circulating AM correlate with several critical diseases, including cardiovascular and renal disorders, sepsis, cancer, and diabetes. Whether AM is a causal agent, a protective reaction, or just a marker for these diseases is currently under investigation. New technologies seeking to elevate and/or reduce AM levels are being investigated as potential therapeutic avenues.
Collapse
Affiliation(s)
- José López
- Cell Biology Unit, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
41
|
Serrano J, Encinas JM, Fernández AP, Castro-Blanco S, Alonso D, Fernández-Vizarra P, Richart A, Bentura ML, Santacana M, Cuttitta F, Martínez A, Rodrigo J. Distribution of immunoreactivity for the adrenomedullin binding protein, complement factor H, in the rat brain. Neuroscience 2003; 116:947-62. [PMID: 12617936 DOI: 10.1016/s0306-4522(02)00773-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenomedullin is a multifunctional amidated peptide that has been found in most nuclei of the CNS, where it plays a neuromodulatory role. An adrenomedullin binding protein has recently been found in plasma and characterized as complement factor H. This regulator of the complement system inhibits the progression of the complement cascade and modulates the function of adrenomedullin. Our study shows the ample distribution of factor H immunoreactivity in neurons of telencephalon, diencephalon, mesencephalon, pons, medulla, and cerebellum in the rat CNS, using immunohistochemical techniques for both light and electron microscopy. Factor H immunoreactivity was found in the cytoplasm, but nuclear staining was also a common finding. Some blood vessels and glial cells were also immunoreactive for factor H. Colocalization studies by double immunofluorescence followed by confocal microscopy revealed frequent coexistence of factor H and adrenomedullin immunoreactivities, thus providing morphological evidence for the potential interaction of these molecules in the CNS. The presence of factor H immunoreactivity in glial cells was confirmed by colocalization with glial fibrillary acidic protein. In summary, factor H is highly expressed in the CNS where it could play important roles in regulating adrenomedullin actions and contributing to an intracerebral complement system.
Collapse
Affiliation(s)
- J Serrano
- Department of Neuroanatomy and Cell Biology, Cajal Institute, CSIC, Avenue Doctor Arce 37, E-28002 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Adrenomedullin (AM) is a pluripotent hormone with structural similarities to calcitonin gene-related peptide (CGRP), which is expressed by many tissues in the body and shows a remarkable range of effects mediated by paracrine/autocrine and possibly endocrine mechanisms. AM has been implicated as a mediator of several pathologies such as cardiovascular and renal disorders, sepsis, inflammation, diabetes and cancer, among others. AM is expressed in a variety of tumors where it aggravates several of the molecular and physiological features of malignant cells. AM has been shown to be a mitogenic factor stimulating growth in several cancer types and to encourage a more aggressive tumor phenotype. In addition, AM is an apoptosis survival factor for cancer cells and an indirect suppressor of the immune response through its binding protein, complement factor H, and regulation in expression of cytokines. AM plays an important role in environments subjected to low oxygen tensions, which is a typical feature in the proximity of solid tumors. Under these conditions, AM is upregulated through a hypoxia-inducible factor 1 (HIF-1)-dependent pathway and acts as a potent angiogenic factor promoting neovascularization. The collective findings brought together over the last years place AM as a major regulator of carcinogenesis-tumor progression and identifies its autocrine loop as a putative target for developing new strategies against human cancers.
Collapse
Affiliation(s)
- E Zudaire
- Cell and Cancer Biology Branch, National Cancer Institute, National Institutes of Health, Building 10, Room 13N262, Bethesda MD 20892, USA.
| | | | | |
Collapse
|
43
|
Udono-Fujimori R, Udono T, Totsune K, Tamai M, Shibahara S, Takahashi K. Adrenomedullin in the eye. REGULATORY PEPTIDES 2003; 112:95-101. [PMID: 12667630 DOI: 10.1016/s0167-0115(03)00027-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adrenomedullin (AM) is a multifunctional regulatory peptide that is produced and secreted by various types of cells. We showed the presence of high concentrations of adrenomedullin-immunoreactivity in the vitreous fluid, and the levels were elevated in patients with proliferative vitreoretinopathy. Furthermore, adrenomedullin mRNA expression levels were elevated in the tissues of intraocular tumors and orbital tumors. Adrenomedullin is produced and secreted by cultured human retinal pigment epithelial (RPE) cells. Inflammatory cytokines and hypoxia are strong stimulators for the adrenomedullin expression in retinal pigment epithelial cells. Adrenomedullin stimulated the proliferation of retinal pigment epithelial cells both under normoxia and hypoxia. Dexamethasone (DEX) increased the adrenomedullin expression in two cultured cell lines of human retinal pigment epithelial cells; ARPE-19 cells and D407 cells, while it had no noticeable effects on the cytokine-induced adrenomedullin expression. These findings suggest that adrenomedullin is involved in the pathophysiology of inflammatory and neoplastic eye diseases as an autocrine or paracrine growth stimulator. The findings on glucocorticoid-induced AM expression raise the possibility that it may be related to the pathogenesis of some eye diseases, such as central serous chorioretinopathy and multifocal posterior pigment epitheliopathy, which are frequently seen in patients treated with high doses of glucocorticoids.
Collapse
Affiliation(s)
- Reiko Udono-Fujimori
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Sendai 980-8575, Aoba, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Kis B, Abrahám CS, Deli MA, Kobayashi H, Niwa M, Yamashita H, Busija DW, Ueta Y. Adrenomedullin, an autocrine mediator of blood-brain barrier function. Hypertens Res 2003; 26 Suppl:S61-70. [PMID: 12630813 DOI: 10.1291/hypres.26.s61] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the discovery that adrenomedullin gene expression is 20- to 40-fold higher in endothelial cells than even in the adrenal medulla, this peptide has been regarded as an important secretory product of the vascular endothelium, together with nitric oxide, eicosanoids, endothelin-1, and other vasoactive metabolites. Cerebral endothelial cells secrete an exceptionally large amount of adrenomedullin, and the adrenomedullin concentration is about 50% higher in the cerebral circulation than in the peripheral vasculature. The adrenomedullin production of cerebral endothelial cells is induced by astrocyte-derived factors. Adrenomedullin causes vasodilation in the cerebral circulation, may participate in the maintenance of the resting cerebral blood flow, and may be protective against ischemic brain injury. Recent data from our laboratory indicate that adrenomedullin, as an endothelium-derived autocrine/paracrine hormone, plays an important role in the regulation of specific blood-brain barrier properties. Adrenomedullin is suggested to be one of the physiological links between astrocyte-derived factors, cyclic adenosine 3'5'-monophosphate (cAMP), and the induction and maintenance of the blood-brain barrier. Moreover, the role of adrenomedullin in the differentiation and proliferation of endothelial cells and in angiogenesis suggests a more complex function for adrenomedullin in the cerebral circulation and in the development of the blood-brain barrier.
Collapse
Affiliation(s)
- Béla Kis
- Department of Physiology and Pharmacology, Wake Forest University, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Encinas JM, Serrano J, Alonso D, Fernández AP, Rodrigo J. Adrenomedullin over-expression in the caudate-putamen of the adult rat brain after ischaemia-reperfusion injury. Neurosci Lett 2002; 329:197-200. [PMID: 12165411 DOI: 10.1016/s0304-3940(02)00648-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression of adrenomedullin (AM) was studied in the caudate-putamen of the adult rat brain using a global cerebral ischaemia model. The animals were subjected to 30 min of glucose and oxygen deprivation, and the brains were collected after 0, 2, 4, 6, 8 and 10 h of reperfusion. Coronal sections of the caudate-putamen were studied by immunocytochemistry using a specific polyclonal antibody against AM and examined by light microscopy. Under these experimental conditions AM immunoreactivity increased in the wall of the blood vessels and in three different types of neurons distributed throughout the caudate-putamen. Our findings suggest that the over-expression of AM and its changes in its intracellular location might be involved in the neuronal responses to brain ischaemia with a possible neuroprotector role.
Collapse
Affiliation(s)
- Juan-Manuel Encinas
- Department of Neuroanatomy and Cell Biology, Instituto de Neurobiología Ramón y Cajal, CSIC, Avenida Doctor del Arce 37, 28002 Madrid, Spain
| | | | | | | | | |
Collapse
|